J. Math. Soc. Japan
Vol. 41, No. 1, 1989

Rate of decay at high energy of local spectral
projections associated with Schrodinger operators

By Kenji YAJIMA

(Received Aug. 7, 1987)

§1. Introduction.

~

Let §=—(1/2)A+V(x), A=0%/0x2+ --- +0%/0x%, be a Schridinger operator
on R", n=1. We assume that the potential V(x) satisfies the following as-
sumption for some m=0.

ASSUMPTION (A),. V(x) is a real-valued C=-function of x and for any
multi-index a,

(LD 105V ()] < Col+1x)™', x=R".

Then the operator § with the domain D(H)=S(R"), the space of rapidly de-
creasing functions, is real symmetric in the Hilbert space L*(R"). We let § be
any one of its selfadjoint extensions and {Eg(I), I&B'} the associated spectral
measure. B! is the o-field of Borel subsets of R!.

The purpose of this paper is to study the spectral projections Eg(/) at
high energy and to prove, in particular, the following theorem. We denote
m=max(m, 2) and <{x>=(1+x?)"/2,

THEOREM 1.1. Let V(x) satisfy the assumption (A)n, m=0 and let O be a
selfadjoint extension of —(1/2)A+V(x)|sr™ in the Hilbert space L*(R™). Then
for any ¢>1/2 and p>0 there exists a constant C>0 such that

(1.2) [Kx>~UEg([A—pAM2- 27 24 p A2V AN 1)~ < Cd w(A)
for all 2=20. Here d,(A)=<A>~Y™ and {A>=(1+1)'7>,

REMARK 1.2. (1) When V(x)=0, it is well-known that the decay rate 1~/
is optimal. Thus the theorem implies the invariance of the decay rate of “local
spectral measure” (x> 1Eg([1—p, A+ p])Xx>"? for m=2.

(2) When V(x) is singular, VeLg, p>n/2, a weaker version of
appears in Section 6.

COROLLARY 1.3. Let ¢;(x) be the normalized eigenfunction of © associated
with the eigenvalue 2;=0. Then for ¢>1/2,
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(1.3) x>~ (x)] 22 = Cdn(4))'?,
where C is independent of A;=0.

COROLLARY 1.4. Let R(z)=($—2z)'. Then for any ¢>0 and ¢>1/2,
(1.4) [<x> R(Atie)x> Y = Codn(A)]og(2+2), A=0.

The study of the spectral theory for Schrodinger or for general elliptic
operators has a long history and it has a huge body of literature (cf. Hérmander
[8], Reed-Simon [16], Simon and references therein). Among the topics
intensively studied are the high energy asymptotics of eigenvalues and the
asymptotic behavior at |x|—oo of the eigenfunctions. Compared to these, the
asymptotic behavior at high energy of eigenfunctions is less intensively studied
and even the simplest results like do not seem to exist in the literature
except for the case n=1 or the case m<0. Titchmarsh showed a slightly
stronger results than for the case n=1 when V(x) is increasing in |x| and
V”(x)>0. Gel’fand-Levitan [6] and their colleagues studied in detail the asymp-
totic behavior as A—oco of solutions of —u”+V(x)u=Au and the associated
spectral function on compact subsets of x&R! (cf. Levitan-Sargsjan [14]). As
for the case m<0, (1.2) is known for a long time in the scattering theory (cf.
Agmon for the case m<<—1; for m<0 see Saito or Isozaki-Kitada [10];
see also Vainberg [21]).

In fact, the motivation for this work was originated from the stability
problem for time periodic Schrodinger equations
0u 1

ot = —'E‘Au'l_V(x)u_*—Vl(t) x)u, Vl(t+1: .X) = Vl(t’ -x)-

We ask the following question: Suppose §=—(1/2)A+V(x) has purely discrete
spectrum {4;: j=1, 2, ---} with eigenfunctions {¢,(x)}. Then all solutions of the
initial value problem for

(1.5)

0u 1

o T pAutVinu
may be written in the form Xcje *%i'¢(x) and they are bound states in the
following sense:

}gg Slth“ Ul Lecizi>ry =0,

lim sgp]IE@((l, oo )u(®)|] = 0.

Do all solutions of the initial value problem for remain as bound states after
a small periodic perturbation V,(¢, x) is turned on? or do some solutions gain
more and more energy from V,(t, x) via the resonance and fly away from any
compact subset of x-space?

It is well-known ([22], [23]) that this problem is virtually equivalent to the
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spectral problem for the Floquet operator U(l, 0), U(¢, s) being the evolution
operator for Moreover the spectral properties of U(1, 0) can be inferred
from those of explicit operator &=—:9/0t—(1/2)A+V (x)+V(t, x) on the extended
Hibert space L*(TXR"), T=R/Z. We regard & a perturbation of K,=—:0/0t
+H. Clearly & has only pure point spectrum {2nz+2;; n=0, 1, £2, ---,
7=1, 2, ---} which, however, is dense in the reals in generic. Thus for dealing
with & by the perturbation technique, we need overcome the problem of small
divisors. This requires some detailed analysis of eigenfunctions at high energy
and this work should be regarded as a first step toward such direction (cf.
Arnold [2], Bellissard [4], Moser [15], Gallavotti [5], Howland [9]).

The rest of the paper is devoted to the proof of the theorem. Our approach
is rather standard and basically simple (cf. [7], and [21]). We decompose
the phase space T*R"=R"XR"™ into two parts, the on-shell part where
[82/24V(x)—A] <CA and the off-shell part |&%/24+V(x)—A|>CA, C>0. Since
xER™ can be localized to a ball B(pA"/™)={x: |x|<p,4"™}, this splitting can
be accomplished by cutting the &-space: @&, )+ @&, )=1 where @,&, A<
C=(R™) (j=0, 1) is such that 0 D&, D1, @&, D=1 for 1/2<£%/22<2 and
D&, =0 for £2/24¢[1/3,3]. X=CHR™), 0=ZX(x)<1, is a cut-off function such
that
(1.6) XUx)=1 for |x]=9/10 and Ux)=0 for |x|=1.

I=I1(p, A)=[A—pAY/3~Y% 24 pAt/2-1/m],

In Section 2 we study the off-shell part Eg(1)®@,(D, AA(x/p,A"™) using the

expression by the resolvent:

) Eo(D) = —5 | (0-01dL.

We study the operator (§—&)'@,(D, DX(x/p,A"™) by constructing the para-
metrix in terms of a pseudo-differential operator. In Sections 3~5, we treat
the on-shell part Eg(I)Dy(D, A)A(x/p.A*'™). Because of the difficulty near the
reals, we evade and exploit the expression through the propagator:

(1.8) -0 = o\ goeio-var,

where g is the inverse Fourier transform of g. ~ We investigate
e~ 9@ (D, DA(x/p,A™) by constructing its approximation for |¢|<p,A-¢/21™
in terms of a Fourier integral operator which has the phase linear in the time
variable :

(1.9) F(Of(x) = (2my | s aran G, x, &, )/ (3)dyde.

The operator of this form was first introduced by Hérmander for studying
the spectral properties of elliptic operators and has been proved to be quite
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efficient ([19], [21]). In Section 3 the phase function ¢ is constructed and
necessary estimates are proved by solving the Hamilton-Jacobi equation associated
with . In Section 4 we construct A(f, x, & v) and show that F(¢) of is
indeed a good approximation to e *9@y(D, DX(x/peAY™) for |t|< oA~V ™,
This reduces the estimation of Eg(I)@4(D, DX(x/p,A™) to that of the integral
operator of the form

<2n>-n§ei¢<x'f’ VB HEIRE 24V (9)—2), %, €, 1) f(V)dyde.

We study this operator in Section 5 and complete the proof of [Theorem 1.1 and
Corollaries 1.3~1.4. Section 6 contains a brief discussion for non-smooth poten-
tials.

We list here some of the notation which will be used throughout the paper.
For x=(x,., x5, =+, x,)ER", | x| =(x24 --- +x2)"/2. When we write x=(x,, x)ER",
x=(%x,, -+, xp)€R" ! and for r=(7y, --- , 4. )R, z=(0, 7y, -, Ta-1)ER™. For
p=1 and r=1, L?"(R™) stands for

v, Lo =17 (7 {{ e, 17da} "an)"" = 1£1,.,<eo).

L*¥R*)=L*R") and its norm is denoted simply by || ||. This symbol is also
used to denote the norm of operators from L%R") to L*R"). We also use the
function space

L' = Ly(R: LXR*™) = {f s sup dp({xs 2 [ f(xy, llze>a1) = [l <eo},

where g stands for the 1-dimensional Lebesgue measure. 0,=(0,,, -, 0.,) and
for multi-index a=(ay, ---, a,), 05=051---0%». |a|=a;+ - +a,. a<pB means
a#p and a;=8; for j=1,2,--,n. e;=(, -,1,--,0) is the j-th standard
unit vector. For some class of functions p(x, &, y), the pseudo-differential
operator P(x, D, x) with the symbol p(x, & v) is defined as

P(x, D, x)f(x) = @x) (=04 p(x, & ) (»)dvdg

where the integral is taken in the sense of oscillatory integrals (cf. Hérmander
or Kumano-go [13]). Symbol f(x) may also stand for the multiplication
operator by the function f(x). For a=R, a.=max(0, a). Hess¢ is the Hessian
matrix {0°¢/0x;0x;} and 0,0,¢ etc. stands for the matrix {0%¢/dx,0y;} etc. The
same symbol C may stand for different constants in various contexts when no
confusions are feared.
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§2. Off-shell estimate.
We let ¢,=C=(R") (=0, 1) be such that 0=¢,()<1 and

(2.1) oH)=1 for 27'<t<2,  @(t)=0 for t&[1/3, 3],
(2.2) Gl +gt) =1, (=R

and set @,(&, A)=¢,(&/22). Clearly

(2.3) 108D ,(&, D] £ Cond'*XE/NA YN, Jalzl, N20.
Decomposing the spectral projection

(2.4) Eg(I(4, p)) = Es(I(4, p)@«D, D+ EI(4, p))P:(D, 2),

we treat, in this section, the off-shell part Eg(I(2, p))@.(D, ).

THEOREM 2.1. Let V(x) satisfy (A)n. Then for any ¢=0, there exists a
constant C>0 such that for i=1
(2.5) IEg(I(p, D)D«(D, AXxy~7| = CQATHHmD4/motlihy gmoim),

In the rest of this section, we devote ourselves to proving [Theorem 2.1

We let I'(2, p) be the complex rectangular contour with the vertexes
A+2p2 %1+ 4/—1 and take 4,0 and ¢>0 such that

(2.6), 2/5—2p20 %" 1m+ > 10  for A=2,,
(2.6); [V(x)] £10-°2  for |x|=2edV™, 1=4,.

It is enough to prove the theorem for 1=4,. We set

@) Pz, Df(x) = @ry [ 4p(e, 35 2, Df()dye,
P& vz, A= E/2+V()—2)'Di(&, DX(y/eA'™).

LEMMA 2.1. Let 2=24,and z€I' (4, p). Then P(z, 2) maps S(R") into S(R™)
and with a constant C>0 independent of f and z
(2.8) 1Pz, Dfl| = CAIfIl.

Proor. By virtue of [2.3) and [2.6), we have for (&, y)Ssuppp and
zel'(2, p) that |&2/2+V(y)—z| =max(4/5, £%/10). Hence
(2.9) |050LD(, ¥5 2, D] = Cgpd™ 1 F0+/m=3min(A717 17172, ()21,

It follows ([8]) that P(z, 4) is continuous both in S(R") and L*R") and that
the estimate is satisfied.
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By Lemma 2.1, we may compute for f&S(R™):
(2.10) (9—2)P(z, Df(x) = (27r)'“Sé’”“”)'5(82/2+V(X)—2)1)(5, ¥z, Af(y)dydé
= Oy(D, D(x/eA'™) f(x)+W(z, A)f(x),
(2.11) Wz, Af(x) = (27r)‘"Sem“y"5w(x, & 1/ (y)dyd§,
w(x, & y) = V(x)=V(yDpE, y; 2, 4).

LEMMA 2.3. There exists a constant C>0 independent of z<I' (4, p), A=A
and feS(R™) such that

(2.12) Wz, DfI| < CAZ32Hm=DIm| £
PROOF.  Since "4V (x)—V(y)]=—10:e" ="V (x, ), VO(x, y) =
S:@xV(ﬁx—{—(l——ﬁ)y)dO, integration by parts yields

(2.13) Wiz, Af(x)= (27r)'"§e“x‘y"5V“’(x, ¥)-0:p(&, ¥; 2, Af(y)dyd§.
By virtue of [2.9) and
|02080%X(x /4e 2™V D (x, y)0ep(E, ¥ ;3 2, A)| = Cappd d/2rim-taizifi-byim

Hence the Calderdn-Vaillancourt theorem implies
(2.14) X(x/4ed™W (2, D] < CA~32+m=Dyim| £
When | x}=3eAY™ and (&, y)=supp p, then |x—y|=ed"™ and after integrating
by parts with respect to &-variables we have,

Wiz, Af(x)= (Zﬂ)‘"Se“”‘”'flx~yl‘“’V“’(x, IN—=A8)Y0:p(§, v ; 2z, D f(y)dyds.

It follows that
[(I—=X(x /4™ )W (2, Df(x)] = CM“”“‘““’“’”S@—W“”lf(y)ldy,

N>n+m,
and the Young inequality implies for N=1, 2, ---
(2.15) [A—=X(x/4ed"™ DWW (2, Af | < CyA=NEHm=DLIm £
Summing up [2.14) and [2.15), we obtain [2.12).
PROOF OF THEOREM 2.1. Multiply both sides of (2.10) by (2ri)"}(H—z)"'X

Eg(I(4, p)) and integrate the resulting equation with respect to zl'(4, p).
By Cauchy’s theorem, it follows that

Eo(I(2, 00D, D(x/e2™)f = @ziy™|, (D=2 Bl o)Wz, Df dz
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and implies
(2.16) IEg(I(2, D@D, DX(x/ed™)f|| < CATHHmDwim=tih
Combining with the obvious estimate

IE(I(4, p))@«(D, AA—A(x/ed ™) x>~ < CaA~oI™,
we conclude the proof of Theorem 2.1.

§3. Hamilton-Jacobi equation.

We consider the following boundary value problem for Hamilton-Jacobi
equation

(3.1 F@HHx, & AV = 5E+V (),
3.2) &(x, & y)=0  for (x—y)-£=0,
(3.3 0.6(x, & y)=§&  for x=y.

We solve the equations (3.1)~(3.3) by the standard method of bicharacteristics
([11]). We find it convenient to parametrize the plane {x:(x—y)-£§=0} via &-
independent variables (cf. [19]): Take a finite covering {Sj}j-"=1 of the unit
sphere S*'={&: |&|=1} by open subsets S,={f=S"!: |§—E&i|<10-"}, EleSm1,
and choose for each ; a smooth orthogonal matrix-valued function Oj(é) for
€S, such that
(3.4) 0/ =e=(1,0,-,0), £€85,.
We extend the domain of definition of O; to the cone S;={&: EZS/IEIESJ-}
spanned by S; by homogeneity: 0,(&)=0,&), £S; and parameterize the plane
{x:(x—y)-&=0} as {O0&*c+y:7r=R" '} where z=(0, r). When S, is fixed
and only £ S; are considered, the subscript j will be often omitted.

For (3.1)~(3.3) the corresponding bicharacteristic equations are, after scaling
the time by the factor A'/%,

dqg/dt = A2 p(t), dp/dt = — A%,V (q(t)),
q0) = y+0E¥*z,  p0) = (E+2V(»)—V(y+O0EFD))E.
We consider (3.5) for the parameter (z, &, y) in the domain
(3.6) D4, m;p)={(r,§ NER"'XR"XR":
Iz <3pa™, £2/22&(1/4, 4), E€S;, | y| <1072p2/ ™},

and write its solutions as (¢(t, 7, &, ), p(t, 7, &, »)), though some of the variables
are often suppressed. R=|t|+<{z>+<y) and k*=max(l, k).

(3.5

PROPOSITION 3.1. Let (A). be satisfied with m>1. Then there exist
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0<0:<(10n)™* and a decreasing function A,(p) of 0<p=<p, such that the following
statements are satisfied for |t|<3pA"™ and (z, &, y)ED,A, m; p), A=2(p),
0<p=p;:

(1) 27272 ph] = 3.

@) 27t + 1)) = lg)—y| = 3t +1z]).

(3) For k=0,1, 2, ---, and multi-indeces &, B and 7,
(B.7)  18802050K(q(t)— y— OE)*r—1A1%E)|

< Caﬁrkl-x—lrl/zl”(1—k)+R(m~\o'1+,9+r|—k*+1)++!7|(10g R)s(m,1d+/9+)’l) ,
where e(m, j)=1 if meN, m=2 and j=m, and e(m, j)=0 otherwise.

PrOOF. By the assumption it is possible to find 0<p,<1 and a
decreasing function 4,(p) such that
(3.8) [V(x)|+10%02Y™]0,V(x)| < 10722  for |x|=<10%paY/™
(3.9) 10%(p2+1) < A(p)V™, 1911101 pA(p)™ = oo

for any 0<p=p, and 4=4,(p). Hereafter we assume A=4,(p) and 0<p=p.,.
Let t*=inf{|¢|: |q(t)—y|>10pA"™}. Then for |¢|<t*, (3.8) implies

(3.10) pXO)/ A= {&+2V(y)—2V(g)}t/2 € [1/3, 9],

(B.11)  27d/dty¥(gt)—y)* = A HEH2V (y)—2V (g(t)—(g(t)— ¥)a:V (g(t))}
< [1/3, 9],

and hence

(3.12) 12/3 < (g(t)—y)*—12 < 9.

Therefore 10%022%™—9022% ™ <9¢*? and (3.10)~(3.12) imply the statements (1)~(2).
For proving statement (3) we need prepare several lemmas. First three lemmas,
Lemma 3.2~3.4 are easy consequences of elementary estimates and we omit
the proof.

LEMMA 3.2. Let po=(&+2V(y)—2V(y+0*&)x)?¢ and ¢o=y+O0E)*z+
127 °po.  Then for (z, &, y)ED,A, m; p) and =R,

[02050K(po—&)| < CLEYTI T (L)) im-1&+ 84T +IT1

103058Kqi— y— OO —tA 1 39)] S ClE @™ M (Key+(yd)mmidesenn,

LEMMA 3.3.  Suppose that q(t)=(q.(t), ---, q.(t)) satisfies (3.7). Let
0,;=(k;, @;, Bs, 15, 7=1,2, .-+, 1, I=2 be such that |0;|=1and 6,4+ --- +0,=0=
(k, &, B, 7). Then for any choice of 1<i,,1,, ---,;,<n we have
(3.13) 119402103089, t, <, 7, ©)

=
< Cx—lruzminuwn’ Rl—1&+,8\—k_]__2—1R(m-|0|)++I71+l)

for |t|<3p2 ™, (z, &, y)EDQ, m; p).
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LEMMA 3.4. Let ¢, 6=0. Suppose that q(t, 7, v, &) satisfies (3.7) and that
W(x, &, y) satisfies
(3.14) 103050W (x, &, )l
S CAITH(Cxy (D) a0 4 T+ (log (e 4-Cy)))FCm 1 448471,
Then, with 0%, .,=0%0% for a=(k, @) and R=|t|+<{>+<{»D,
(3-15) [at(zt,r)agaEW(q(t) T, E; y), S: y)l

< C2-|r|/2R(m—la+ﬁ+r1—a)++|r1+&(10g R)scm,1a+ﬁ+r|) .

Moreover (3.15) remains valid after replacing m by m; if the log term is absent
in (3.14), then the factor (logR):*™!'a+3+10 in (3.15) may be replaced by
(lOg R)e(m.1d+ﬁ+r|).

LEMMA 3.5. There exists a constant C ,>0 independent of (z, &, y)S D4, m; p)
and |t|<3pA"™ such that

. C,, c<—1,
(3.16) S (s)ods <1 ClogR, o=—1,
0 caR1+o s 0.>_1.

PROOF. For ¢=0, (3.16) follows from the statement (2) of the proposition.
Let ¢<0. As in (3.11), it is easy to see that (1/2)(d/dt)*q(t)=1/3. By integ-
ration g(t)*=(—1tmin)?/6-+q(tmin)® Where fminSR' is such that ming(t)’*=q¢(tmin)?,
50 {g(s))° < CiKs—tminy’. This implies [3.16).

CONTINUATION OF THE PROOF OF PROPOSITION 3.1. We rewrite (3.5) into

the equivalent integral equation
t

(3.17) a(t) = gt)— 27| (t— 5)0. Vig(s)ds .
and prove (3) by induction. Since |9, V(g(#))|<Clq(®)y™ ! and m>1,
and 3.5 imply the estimate (3.7) for the case (&, @, 8, y)=0. Suppose now that
(3.7) is satisfied for =0 and |a+pB+y|<h—1, h=1 and let us prove it for
k=0 and |a+p+y|=h. Denote as n=(t, 7, &, v), 0=(k, &, B,7) and Q)
=09(q(t)—q.()). Differentiating we have, for k=0,

(3.18) Q(t) = Ro(®)—27*{ (t—3)Hess V(g(s)Qy(s)ds,
where Ry(t)=Rj(t)+ Ri(t) and

i) = 2] (t—9)Hess Vig(s)aas)ds,

161

Ry(t) = =27 > 0C0nstS:(t—S)aiaz V(g(s)0%1q;,(s) -+ 0, (s)ds .

=2 15l=L 01+ +0 ;=
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By and Lemma 3.2,

(3.19) | Ry#)| < CA-1-IT12 || Rem=10D+iT1

Using the estimate [3.13), we have for m=m>=|d|-+1=I(+1 (=3),

320 |20 Vig®) TI 82q;, ()] < CREm1DwHn=1zm1s2,

for 2Z5) I<m<I+1 and |0 >m,

(3.20), |LHS of (3.20),] < CA~'T/*(R'Tg(t)y™ 01 27 RITHK ()™t 1)
for [=|0| <m<!{+1 and |0|<m,

(3.20) ILHS of (3.20),] < CR''{q(t)ym-101-1-17112
for (=m,

(3.20) 1920, Vg T 8rg,,(B)] < C 7 PR T gopm=.
Combining (3.20),~(3.20), and we obtain

.21 | RY(1)| < CA- 171112 ROm-1004+1T1(Jog R)s¢m: 101

Now we let p,=<p, be sufficiently small so that
|42{ =5 Hess Vigsylds| < 172
for any (z, &, y)EDQ, m, p), p<p, and |t|<3p,4"™. Then we have
sup 1Qo(s)] = CA7 R | ROm-10D++1T I (log R)*C™ 10D,

This proves (3.7) for all (k, &, B, y) with £=0. For proving (3.7) for the case
k=1, we differentiate

3.0t = d.0u)— 17| 3. Vigts)ds

byJ0¢056% and proceed exactly in the same way as above. This proves the
case k=1. For k=2, we differentiate

0iq(t) = —0, V(qt, 7, &, y)A™!
and apply inductively.

Using [Proposition 3.1 we prove the following lemma. Hereafter we assume,
without loss of generality, m>1.

LEMMA 3.6. If p,>0 is sufficiently small, the following statement is satisfied
for every 0<p=<p, and 2A2=A(p): For every (§, y) with |y]<1072p2%/™,
1/4<E8%/2054, E€Sy, q(t, T, &, v) is diffeomorphic from
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TBp)={(t,7): [t]<8pA"™, |v|<3p2"/™}
to its image and

(3.22) 9(T(0/9), & ) C X(p) = {x: | x| <pad*} C g(TB3p), &, ¥).

PrROOF. By estimate (3.7), we have

@23 @, 2004000, 8 »-(* 1 ] = ety

for |t|<3pA"™, (z, &, y)ED)A, m; p), 0<p=<p, and A=A(p,). Here the con-
stants C in (3.7) is independent of 0<<p=<p, and if we choose p, sufficiently
small the RHS of (3.23) is smaller than 107%/2n for |t|<3p,AY™, (t, &, )=
Dy4, m; p;). Then the lemma follows by the implicit function theorem.

We put for 1=4,(p,),
Yio)={(&, y): 1/4<8%/22<4, E<S;, |y £1072p,21 ™}
and denote the inverse of the map (¢, 7)—x=¢q({, 7, &, y) as (¢, ©)=((x, &, ),
7(x, §, y)) for (x, &, V)EX(0)XY(p1). For (¢, 7, & y)ETBp)XY(p1), we set
(3.2 ut, 7, & ) =] ps, 7, &, yrds

and define for (x, & y)=X(p.)X Y (p)), j=1, -, N,
Pi(x, & ¥)=u;i(x, §, ¥), o(x, §, ), §, ¥).
It is clear that ¢,=¢; on X(0.)X(Y(p)NY(p.)) and
#(x, & 9)=94x,§ ), (x,§ »)EX(p)XYp01)
defines @(x, &, y)=C=(2(p1)) on
Qo) = {(x, & ¥): |x|<p. V™, 471<€2/22<4, |y <1072p, 21/}

PROPOSITION 3.7. For every (§, y)=\U¥X.Yi(p1), o(x,&, y) satisfies the
Hamilton-Jacobi equation (3.1) on X(p,) with the boundary conditions (3.2)~(3.3).
Moreover it satisfies

(3.25) 0:90(q(t, 7, &, ), & ) =pt, 7,8 ),
(3.26) (0:0)q(t, 7, &, ), & y) =t P+ 1E1 7 o] OE)*T,
(3.27) (0,8)q(t, 7, &, ¥), & ¥) =120, V(y)— bz, §, ¥).

Proor. The statements are well known and are easy consequences of the
theory of first order partial differential equations (cf. [117]). Hence the proof
is omitted.
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Using the statement (3) of Proposition 3.1, we prove the following

PROPOSITION 3.8. Let ¢(x, &, ) be as above. Then for (x,§&, y)E2(py),
¢D(x) 5; y>:¢(xy Ey y)—(x_y)'E SatZ.Sﬁes
(3°28) ¢D(y7 E; y) - 07 (az¢0)(3’; E) y) - Oy
(3.29) lagaﬁag xgbp(x, E = Caﬁyl_(“'m)ﬂL(m"'“+ﬁ+7‘>++’r‘(logL)s(m"‘“'ts”‘),
(330) |aga§aga5¢p(x, E, y)] < caﬁrz—(ulr\)/ZL(m—|a+ﬁ+r\)++xr1+1(10gL)g(m, la+B+T1) ,

where L={x)+<y> and C.p; are independent of 2=2(p;) and (x, &, y)SL(p1).

ProoF. Equations [3.28)are obvious by (3.2)~(3.3). We denote p=(t, 7, §, ¥),
R=|t|+<{>+<y)> and treat

0:05(x, &, ¥) = 0.0(x, &, y)—E=¢(x, &, ¥)
first. Differentiating [(3.25), we have for |a+8+7|/=1
(3.31)  8%.080L p(t, 7, &, y)—&]
= 111"":2il |=l<axi1 axilmaga)‘;{[;)(q’ 5’ y)aijQil(t) a'ufla\qi‘a‘(t)
@ s
+ 333 Const(8305'3%'$)(g, &, ¥)051qs, -+ 674qq, .

Here pu=(t, 7), a=(k, &) and in the second member in the RHS the first sum is taken
over ', 7' and § such that B:=B—f'=0, y’=y—7'=0, 1< |3 |al+|B%+ 178
and such that either |8'|+ 7' |<{B8]+]yl—1 or |6|<|a|—1; the second over
0;=(a;, B3, v and 7;, 1=<7<[=|d| such that |6,|=1, 0,4+ - +60,=(a, B 7%
and e; + --- +e;;=d. If we fix N=0 and let a run in (3.31) over multi-indeces

of length |a|=N, then by virtue of (3.23), the resulting equations can be
solved for {02060%): |a|=N} and we have

(3.32) B 1@0050Natt, 7, &, 9, & )
éc(lagNla'ft,r)agag{;b(t; T, S» y)_EH
+3 (20505 P)g, &, ¥)0qu(t) - 8iqu ()]

where the second sum in the RHS is taken as in (3.31) but here we also let
run all over |a]=N. We prove (3.29) by induction. We treat the case f=7=0
first. When |a|<1, the second summand in the RHS of is absent and (3.7)
implies (3.29). Suppose that (3.29) is satisfied for every a with |a|<N—1 and
B=7r=0, N=2. Then by Lemma 34 and [Proposition 3.1](3)

(3.33) 2,105t 7, &, 9), & )| < CAHER N +(log R .



Rate of decay at high energy 129

Since C'=Z({q(t, 7, &, ¥y)>+<y>)/R<LC by [Proposition 3.1 (2), [(3.33) proves (3.29)
for all a if B=y=0 by induction. Thus for completing the induction argument
it suffices to show (3.29) for (a, B, 7) with |a+B+y|=M=1 under the condition
that it is satisfied for all (a’, B8/, 7/) such that either |a’4p'+7y'|SM—1 or
la’+B'+¢'|=M and (B, y)<(B, 7). Since either [d|+|B'|+|7'|<M—1 or
(B!, TH<(B, 1) in the second sum in the RHS of [3.32), the induction hypothesis
and imply (3.29) for |a+B8+y|=M. By (8.7) and

(334) la?z,nagaé{aggzﬁ(q(t, T, f, y), E, y)_(q(t, 7, 8, y)_y)”
= Ca,sy,l‘l-m/2R<m—xa+ﬁ+r|)++|r|+1(log R):(mtat411>

Starting with [3.34), we repeat the argument for proving (3.29) virtually word
by word and obtain (3.30).

It is sometimes desirable that the function ¢ is defined everywhere. We
take ¢,= CT(R') such that

o.(t) =1 for 13/48<t<15/4, supp¢.C (1/4,4)

and define
(3.35) Bo(x, & y) = X(x/p A ™)Go(§%/2X( /10720, 2 ™) (%, &, ¥)
(336) é(x, 5’ y):‘(X"y)E'f‘GZD(X, 5’ y)'

It should be clear that

é(xy &} y)=¢(x; Sr y)y (x’ &; y)EQ1(PI),

where 2,(0.)={(x,&, y): |x|=<(1/2)p,4"'™, 13/48<£?/22<15/4, | y| =(1072/2)p, 2"/ ™}
and ¢(x, &, v) satisfies (3.28)~(3.30) of [Proposition 3.8

Let k=k,=(1/2—1/m)/2. The change of the scale (x, &, y)—>(A"*x, &, 17*y)
will be often used in what follows. We set as

$x, &, ¥) = S x, XE, 1),

D@, & = (g 20189,

LEMMA 3.9. If 0<p, is sufficiently small, then for 2=2,(p,),

337 oo g (] )] s 1070,

(3.38) |05050LD($.)(x, &, ¥

< Cp-YHU =kl ak BT +(m-la+,3+rl-l)+/7?t(10g A)sCmata+ By

PROOF. On supp ¢p, <xp+<{y><100,2"". Hence (3.37)~(3.38) follow from
(3.29)~(3.30) by changing p, small, if necessary.
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§4. Parametrix.
We take p, small enough so that the properties of Section 3 are satisfied
for 0<p=p; and set p,=10"%p,. By virtue of the mapping
1
(4.1) & — 1(x, & )= | 2.g(ox+(1—0)y, §, 3)do

defines for each |x|<10°0,4"™ and |y|<10p,4"™ a diffeomorphism from the
annulus {&:1/4<§?/22<4} to its image which contains {75:7/24<%?/24<7/2}
such that the inverse image of {5:1/3<%?/2A<3} is contained in {§:7/24<
£2/22<7/2}. We denote the inverse of by &=&(x, 3, ).

We choose ¢, CF(R') such that ¢@,(t)=1 for 7/24<t<7/2 and supp@;C
[13/48, 15/47. We have ¢,(t)ps(t)=¢s(t) and, by the preceeding remark
6s(6(x, 9, ¥ /20)D(n, A=y, ). We let for 2=2,(po),

@.2) Ax, § ) = Ux/10p 8 )D&, DU/ pol'™),

4.3) Fof (x) = Q2m) "Seiw'é’ VAx, & ¥)f(y)dydE.

Note that the change of ¢ to ¢ in the integrand of (4.3) does not affect the
definition of Fi.
LEMMA 4.1. There exists a constant C>0 such that
4.4 |Fof =@o(D, A(x/ oA ™)f|| < CRIT312+R=D/f(Jog 2)=m D £,
for all €S8, A=2(po).
Proor. We set
Au(x, & 3) = Ux/10062 "W/ 0ok )Go(£2/20)Do(1(x, &, ¥), Adet(dn(x, &, v)/0€)

and let F,f be defined by (4.3) with A, replacing A,. Writing as ¢(x, &, y)=

{(x—y)-n(x, &, y) and making the change of variables §—¢&(x, 3, y), we have
that

Fof(x) = @ayn|e s 1 A, 7, 3)f(y)dydy .

After integrating by parts, we have for any N=0,
| Fof ()= @o(D, DU/ 0okt ™) f ()]

= @2m)™"

ge“””‘ PHL=X(x/10p.2 /"N Do(§, DU/ oA ™) f(¥)dydE

< cN§<1 =3 | 4 poAM )N (ESN AN 2| £(3) | dydE.
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Hence by the Young inequality
(4.5) 1Ef(x)— DD, WU/ 0l ™) f | < Cya V2 f1) .

On the other hand this same change of variables leads to

(46) Fuf(x)=Fuf(x) = @) {5== 0 (e 1000k 3/ po21™)
X{D(&(x, 5, ¥), Adet(0&(x, 5, ¥)/09)—D«(y, D} f(y)dydy.
Since K(x, 7, v)=0(&(x, 7, v), A)det(04(x, 5, v)/07n) satisfies

K(x, 7, )= 0o, ) = (x=)-| 9K (ox-+(1=0)y, 7, y)do
by (3.2) and (3.3), we may rewrite (4.6) as
Fof(x)—Fof(x) = 2x) "Se“”"y"”X(x/lopoll”h)x(y/‘ool”’%)

1
X(Soi(an 0K (ox+(1—0a)y, 3, y)do)f(y)dydy .
By (3.29) we have
100500, -0:)K (o x-+(1=0), 7, IIX(x/10002 ™ U3/ pal/™)]
< Caﬁrz—s/2+2/ﬁ1+(ﬁm—3)+/ﬁL(lOg 2)5(m,3) .
Thus by Calderon-Vaillancourt theorem
4.7 |Fof —Fof || < CRIT-212+ =91l (Jog 2)20m 9| £
Combining [4.7) with [4.5), we obtain (4.4).

Let |y <p,4"™and 1/3<|€]%/24<3. Then by[3.22), for every || 30,4/ 12
the map Q: T(2p.,)>(s, t)—q(A**+s, 7, &, y) is a diffeomorphism such that
Q(T(20.))DX(15000)DQ(T(30p,)). Hence it is clear that the equation
(4.8) A, (3%t +s, T, &, 3), §, y)detdg(A/*t+s, 7, &, ¥)/0(s, T)*

= Adq(s, 7, §, ), & y)detdq(s, 7, & )/d(s, )"/

uniquely defines a smooth function A(t, x, & y)ECT({(x, &, ¥): | x| <1500,4Y™,
[£12/22€[1/3, 3], |yl <pod'™}) for every |t] <3p,2"™ "2 Note that ¢(x, & »)
=¢(x, §, y) on supp A(t, -)T2.(py).

LEMMA 4.2. Let A(t, x, &, y) be defined as above. Then:

(4-9> A(O) X, 5; J’) = AO(xr E: y>'
(4.10) For |t|<3p0,A"™ 12 and (x, &, y)ER™,
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0, A+ 310.,80., A+(1/2DA$- A =0.
@.11) |3502050LA(, 1, &, )

< CA-1-Q/2=U AT =kt kRt (- a7 =k ([0 2)eCm, la+B4ri+D)

Proor. Equation is obvious. By t—q(v/A t+s, r, &, y) for each
fixed (s, 7,&, ») is an integral curve for the vector field d.¢(x, &, y). Since
¢=¢ on all the integral curves starting from supp A, |t]<3p,AY™"%2 it is
well-known that the equation determines a unique solution of (4.9)~(4.10).
We prove (4.11). We set, for 0=(k, a, B, 7),

0(0) = —1—=1/2=1/m)|y| +(m—|a+B+y| —k*)+/m+(k*—k) /1.
For R=|t| +<{>+<{y><CaV™ (3.7) and Lemma 3.4 imply that
(4.12) |3%02050% det(dg(A %t +s, T, &, ¥)/0(s, T))| < CA7P(log A)sm 1&+B+T1+D
| 85020501 Aula(t, 7, &, 9), &, M)

< Cl—l—(1/2-1/7ﬁ)lrl+(ﬁl-l0!)+/771(10g Az Q+p+r1)

Since |detdg(A**t+s, T, &, ¥)/d(s, t)|=1/2, (4.12) remains valid if LHS is
replaced by |3:02050L(detdg(AV%+s, t, &, ¥)/8(s, T))"'|. Hence

(4.13)  |0502050LA(t, g2t +s, T, &, ), §, ¥)| < CA7P(log A)ysem: 14+F4T14D>

and we obtain (4.11) for the case £#=0. For general £=1, we inductively use
(4.10) and obtain (4.11).

We define for |¢] <3p,A!/™-1/2
(1) FOfx) = @my et p-ucnvan 4, x, &, ) f(y)dyds.

It is clear that for fe Ll ,(R"), F@)f(x)=C%(R") and is smooth in the #-variable.

PROPOSITION 4.3. There exists a constant 0,>0 such that for |t| <3p,A ™~/
and fL¥R"),

(4.15) |F)f—e *9Qo(D, DU(y/pod'™)fI| < CRIT-32+ =D/ (og 2)mD| £
PrROOF. It is clear from (4.3) and that
(4.16) F(0)f(x) = Fof(x)

and that the changes of ¢(x, £, y) and V(y) respectively by @(x, &, v) and
V(3)=2v/20,2"")V(v) in the integral of (4.14) (so that |¥(y)|<10-22) do not
change F(t)f(x). After a simple computation using and (4.10), we see for
feL¥R")
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(4.17) L@)f(x) = (—id/0t—(1/2)A+ V(x)F(t) f(x)
= —2—1(275)-ngei6(1.5’ y)-it(§2/2+i;-(y))(AxA)(t’ X, S: y)f(y>dyd§ .

We change the scale as (x, &, y)—(A7*x, A*&, 27%y), k=1/2—1/m)/2, in (4.17).
By (4.11) and Lemma 3.9,

|02050K AL AXE, 27" x, A&, 27" p)|
< Cz-l-ma+ﬂ+r|+(ﬁn—xa+ﬂ+r|-3)+lfﬁ+1/ﬁt(10g A)sem la+B+71+3) ,
. o 0 —1
— 2k52 ~K _ ~1,-1
| D@~ sm—(] ~, )| = 1070,
|03050ED(— (478> + VA "y < Capy-
Hence the L®-boundedness theorem of oscillatory integral operators ([3]) implies

(4.18) IL@) | £ CA =94 /h41if([o 2eem. 9

Integrating (4.17) and using [4.16) and (4.18), we obtain

(4.19) o Fof=FOf 1 < | 1L()f lds

< Caer-amchonar(log 2)m | |

for [t|<3p,A™ Y2, (4.19) and (4.4) imply (4.11).

§5. Local spectral projection, proof of Theorem 1.1.

We choose g=S(R") such that suppgC(—1, 1) and g({)>0 for |{|=1 and
set
(5.1) gr(d, 9)f(x) = (Zﬂ)‘l/zr e (0 AM mVRYTE () 0, AR UBE(8) f(x)dE .
LEMMA 5.1. Let 6=1/2. Then for 2=24.,(po)

1{g(o5* 2 15 H—2)Po(D, )—gr(d, DIKx>~" f]|
S G fl,  fELARY.

PrROOF. By (4.15), we have ||gr(4, 9)f||<C| f]| and

5.2)  H{g(pol '™ X H—2)DoD, D)~ gr(4, PIKx>™"A=A2x/ o2 ™)f |
< CrVR| £

for 0=1/2. Again by (4.15),
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(5.3) Hg(pod ™ D—)PD, )—gr(A, DNL(2x/pod""™)f||
= @r) | (pur ey gt/ port et
X {e 0P y(D, DX(x/ oA ™)~ F )} X(2x/ 002 ™) f db||
s crrfl.
Combining (5.2) and [5.3), we obtain Lemma 5.1l
Substituting (4.14) into (5.1), we rewrite

. 24D (y)— _
G.4) g2, D)f(x) = @m)|eweri 0k, < Zlffz-f,yﬁf L, % & ¥)F(dyez,

K t, x, & 3) = pa* 8@/ po) AQY™-11%, x, &, v),

ReC 5,8 9 = @ay " eIt %, & .

LEMMA 5.2. K}ES(R““) and for each fixed {, K&, )& C3(2(py). Fur-
thermore K, satisfies for any 1=0, 1,2, -, and 0=(a, B, 7),

Ciapi{Q>™"  for any ¢<2 when m<2,
CjrapKQ IMIAUM=UDITI (Jog )™ 114D yhon m>2.

Here [m] is the largest integer not greater than m.

|0H03050K S, x, &, 9| = {

PROOF. As K, C3(—po, po)X8:(p1)), the first statement of the lemma is
obvious. By (4.11) it is easy to see that

|afaga§agKg(t: x’ E} y)l

< Ckaﬁrl—a/Z—l/ﬁmn+<<17L—|01—k*>+—<m—k*>)/ﬁz(10g )l)scm,xewn .

Hence the integration by parts shows that the quantity in question is bounded
for any j=0, 1, 2, --- by

PN-J - 2= 1Y TI+ (=101 - 5%~ (T30} /] e(m, | 61+1)
(5.5) CLE>74 (log A) .

Letting j=[m] in (5.5), we obtain the lemma for the case m>2. When m<2
we let j=1 and j=2 in (5.5) and interpolate the resulting estimates.

For estimating gr(4, 9), we first decompose the integral (5.4) as follows.
Take a function w(é, $)=C=(S*'xS™") such that suppwcC{(§, $): & 9>1-10"7)

and Ssn_lw(é, 7))dyv(n)=1 for every £=S™! where dv is the standard surface
measure on S"°!, and define for each 7=S"! as
(5.6)  gr(4, H; Nf(x)

= <2z>-"§ei5<xsf-w&(§f%%?f—,yﬁd, %, €, y)w(é, Nf()dydé
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where £=£/|&|. Then
5.7) g, O)f(x) = | g2, 5 7iui).

PROPOSITION 5.3. Let q¢>1/2. Then there exists a constant C >0 independent
of H&S"! such that for every f&L*R™)

lgr(2, &; NI CAH ™ adaf]].

PrOOF. By the rotationary invariance of our assumption it suffices to prove

the case 7=, only. In this case the proposition follows immediately from the
following

LEMMA 5.4. There exists a constant C>0 such that

(5.8 lgr(2, 95 e)fllee = CAY™ | f 1,
(5.9) lgr(2, D5 e)f 2w < Clllog {x:>+1)f a1,
(6.10) lgr(2, ©; e)fllss < CAV*7[(log x>+ 1) 2 f o,y

PrROOF OF LEMMA 5.4. By the Marcinkiewicz interpolation theorem for
vector valued functions follows from and [65.9]. We prove
first. If (x, &, y)=suppK,Nsuppw(-, e;), then &>0, £2/22<[1/3, 3], |IV(»)| <
10722 and £?%/£2°<107¢, £=(&,, ---, £€,). Hence 2/2+102§2—|-2]I7(y)[ <&2<64 and
the change of the variable 51»»(5%—52—217(3)))”2 is permissible in (5.6). Denote
as a(&)=w(é, e,) and v;=(x,, &, v,). Taking w,=C3(S" ") such that

0O, e)=w, e) and suppw,C{EeS™: &-e,>1-2-1077)

and defining @l(f)zwl(é), we set

Py, x, &, ) = g(x, E—E2-2V (N2, &, yan(E—E*—2V(y)'2, €)
+(1—a,(&— &2V ("2, ENx—y)-&,

W, x, & 9 = K(SUE00 5 @2, &, )

X&(E1—g -2V () a(& - =2V (), 8.
Then performing the change of variable as above, we rewrite (5.6) as

(6.11) gr(4, 9; e)f(x)

= (271')‘ISdeyldEI{(Zﬂ)‘"“S PRACIOIN 20N )]

R2n-2

XW (s, &, 91, 1, €, 9/ (s, Pdyd§}

and regard the inner integral as an operator with parameter v,=(x,, &, v:)
acting on the function spaces over R™':
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G12) 2, Dhx) = @o et 20w, 5, € DhG)ydE.

An application of and an elementary estimation yield the
following

LEMMA 5.5. For any multi-index 0=(a, B, y) we have

" CL&>~7  for any <2 when m<2,
(5.13) laxaﬁagW(vn x, &, ,'X)l = {C<C>—[m]2(1/m-1/2)])’l(logZ)E(m,101+1) when m>2,

where {=(£2/2—2)/AV2-1,
As for the phase function, we write as
¢(v1’ X, §} 2) = (x_y)f'f‘ {(xl—yl)@]x—&)‘*‘ép(x, 771) §, 3’)}@1(771, §)

where 1}12(5%——5—217(3;))”2. We set x=(1/2—1/m)/2 as before. Using the
relation (3.35)~(3.36) and Lemma 3.9, we have the following

LEMMA 5.6. Let ¢ v, x, &, y)=¢(v1, A7%x, 2§, A7%y) and

— aa_vayébx a§6y¢x
Q(¢x>(vl; X, g: J_}) - (aa_ca§¢:: a§a§¢x) .
Then for sufficiently small p,>0 the following statements hold :
(1) Each element of the matrix D(¢.) is bounded with their derivatives uni-

Jformly w.r.t. (v, x, §, y) and A= 24,(po).

(i) [D@ow, = 69~ )| =107,
for all (vy, x, §, y) and 2=2,(po).

We now apply the L%*boundedness theorem for the oscillatory integrals
operators ([3]) to [5.I2Z) Since [emma 55 implies that W.(v,, x, &, y)=
W (v, 27*x, A*&, A~*y) satisfies

-a <
|aga§agm<vl, % & )] §«{ C&> for any 0<2 when m<2,

CKEHy-tma when m>2,
with {=(£2/2—A)2*/™~*/2 the boundness theorem ([3]) yields

(514 120, Dho) s < OS2 Il s,

Here, and hereafter, d=[m] when m>2 and when m<2 4 is an arbitrary
number smaller than 2. Hence by (5.10)~(5.11)

(5.15) lexh, B, e)f(xr, aw s Cf o (S2TIN g 1.

~V2iz

Combining [(5.15) with the obvious inequality

(5.16) [0 (/a—np/p-rm g1y iedg, < Cam
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for 0>1, we obtain [5.8)
For proving we return to the expression (5.6). By [3.28) and (3.29)
we may write for 1=2,(po), 0o>0 small as

a&égb(xr E’ y) = (x—y)'S:a:caf&D(0X+(l"—0)y, E, y)d0
and -
ilgoax555D<5X+<l—0)y, g, y)d0| <107,

Hence \aﬁz(x, & v)|=1x—yl|/2 and after performing integration by parts, we

may rewrite as

(.17) geld, §; () = @y |efensom(SEEEIZA o e ) oy,

MG, x, & =LA+ 18:31%) 4 30:,0:, 51+18:5 19 VIR, 7, &, v, 1)
i 3 (L 18:31979:,8-85, (Ra(C, %, &, v, 7))
FiR AL 18:317( 35 85-0:,8 )ORE, %, €, Ml 7).

LEMMAZ5.7. For any 0=(a, B, 1), we have, with g=aum-12g2 /2 4V ()= 2),

(5.18)  102050: M, x, &, ¥)I

c<x_y>-ll—(1/2—l/m)lTl<C>—[m]21/m(10g 2>£(T/L,10\+1), m>2;
={ CLx—y> K> 7AY2 for any ¢<2, m=2.

Proor. By (3.30), we have
Cx—y>|03050L(1+10:0 %) | + | 050501 (1+ | 8¢5 | %) 0¢ |
< C(x—y)“l“"T"2+(’7‘“‘0')+/’7‘+‘7'/’7L(10g 2)5(7"',[0!).

Combining this with Lemma 52, we obtain (5.18).
Starting from (5.17), we proceed in exactly the same way as before. For
7=e;, we set

0z, & = ML < G- -2000™, £, 3) 420 (),

Z(vs, Dh(x) = <2n>-"+lgei¢<”b 280Q(vy, x, &, Yh(y)dydé.
Then, we have as before,
(5.19) g4, 05 e)f(0) = Qay*| 2w, D (s, Hyidés.

Lemma 5.7 and the argument which lead to yield
2/2— ]\~
L

21/2—1/1%

1 Z(vs, DR 2anty < C<x1—y1>‘12‘“"<
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where as before d=[m] for m>2 and ¢ is any number in (0, 2) for m<2. Thus

by
ge(h, ©; e)f G, Il = CCri=y57 17 (3, iy,
and follows. This completes the proof of Lemma 5.4,

COMPLETION OF THE PROOF OF THEOREM 1.1. Let jg>1/2. By (5.6)~(5.7)
and [Proposition 5.3 we have

(5.20) lgr(2, DICxD™f || < CAR| f].
Combining with Lemma 5.1, we obtain

[g(pg' A= 1HH—2ND (D, DLxDf | < CA ™| £
Since g(&)=C>0 for |&|<1, it follows that

(5.21)  |Es([A—pod* 1™, A o2 Y ADO (D, D<xy U | < CA2 £
Adding up and (5.21), we obtain
IEg([A— poAM2Y™ A+ 0, A2 YR )= < CA71/2R

and it is clear that this remains valid for arbitrary p>0 replacing p,. Estimate
then follows by the well-known identity |T*T|=|T||2. This completes
the proof of Theorem L1.

Corollary 1.3 is a trivial consequence of [Theorem J1.1I.

PROOF OF COROLLARY 1.4. Note first that {(Eg([n, n+1])<x>"9f, (x> >
Cd (D) f)? for any n=[4/2, 2]. Hence,

[(R(Axie)f, g)l
< I(R(Z-l-ze)Ef,(Rl\(l PR RS VLTS g)HH (;1 A+ie) (Eg(dDS, g)

=X ”"‘HflllrgH+ XZ}W] Jfnax ((u— 2+ 2 Eg(n, n+1)f |- | Eg(n, n+1)g]|

< C(AV ™+ d n(Dlog(A+2)) [<x>f 1K x>g]
and the relation follows.

§6. Singular potentials.
In this section we assume
AsSUMPTION (B),. For some m=>0 and p=max(n/2+¢, 2), >0

©D sup ([ 1V Indy) " = | Vi < o0
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By Sobolev embedding theorem, we have for ¢=ag,=n/p
(6.2) [<x>™ V(XD fll < Cl Vs m I f ]

and —(1/2)A+ V(x)|sg™, is real symmetric on L*R"). We let § be any of its
selfadjoint extensions.

THEOREM 6.1. Let Assumption (B), be satisfied and § be as above. Then for
I=[—a, a] and R>1,

(6.3) M x/RYEg(I+X(x/R)| < CA= /2R /GmenIpE A=1.

We prove [6.3), following the argument of Sections 2~5 but with slight
modifications. @,(D, 2) and @,(D, ) are as in §2 and [I',(4, a) the contour
At+2a+i—A—2a+i—2A—2a—i—2A+2a—i—2A+2a+i. We denote X (x)=X(x/L) and
Ho=—(1/2)A.

LEMMA 6.1. Let [, s=0. Then for any N=0,
(6.4) [(L=X2p )X DD (Do—2)"' Do (D, D] < CxaA™Y
for zel'\(4, a), L=1.

PROOF. Let g (x)=x>(x*/2—2z/2)"'¢.(x*/2). Then by integrations by parts,
we have for |x|=2L

(6.5) [<xD (=AY (DHe—2)'D(D, DX f(x)]
= |@m)-n et miant | x| =Y 2N AN g 6/ L F ()
< 2a) 16V ULl AY gl A2 N a2 || f .
Integrating (6.5) and using the interpolation, we obtain [(6.4).
LEMMA 6.2. For 0<s<2 and A=A*=10(a+1),
(6.6) KDY ($y—2)"'@(D, DIl < 42327,  z&I4(2, a).
ProOF. Apply the Plancherel theorem.
LEMMA 6.3. For 2=4*, L=1 and o,=n/p,
6.7) | V(Do—2)"1@ (D, DX| < Caool2t zel'\(Z, a).
ProOF. This is an immediate consequence of (6.2) and [(6.4).
PROPOSITION 6.4. Let I=[—a, a], a>0, R=1 and 1=10(a+1). Then
(6.8) IEs(I+2)D(D, Mgl < CA7027,
PrROOF. For f=s§ and zel',(4, a), (Dy—2)"'@ (D, DHXpf=S(R™) and
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Es(I+2)(Hy—2)" '@ (D, Wpf = Eg(I+A)D—2)"' DD, AXrf
+Eg(I+2)(H—2)"V(Dy—2)"'D(D, DXzf.
Integrate this on z&7'(4, a) and use to obtain

For studying Eg(I+2)@4(D, )Xz we adopt again the expression [1.8). Here
our parametrix is simply exp(—it9,).

LEMMA 6.5. Let s, and N=0. Then there exists a constant C>0 such that
for any A=1, L=1 and — oo <t<oo,

(6.9) [(A=Xacwzie1+2 XD DY e 590D (D, DL < CAN(VZ [t|+L) Y.

PrROOF. We prove for t=0. If |x|=4VA+L), |y|<L and &

supp @+, A), then |x—té—y|=(| x| ++/At+L)/4. Hence by integration by parts,
we have for any N=0,

(6.10)  [<KD>*e "%Q(D, MXrf(x)]

= nf gica-pe-regre [ [ TIE)  p AR

@myeferceven [ [ E20 D™ e 0ue, )t )|
S Cus(| x| At L) 2N g esizenie [riz| £

Taking N large enough and integrating (6.10), we obtain [6.9).

LEMMA 6.6. If 0<2/l=n(1/2—1/¢)<1, then

(6.13) (Slne-“@oungdt)”‘ < Cuful.

PROOF. See Lemma 3.1 of [24].
By and (6.2),
(6.12) [VA—Xiwzisirp)e ™ 90@(D, DALf| < CAY(VA It +L)Y V| f] .

and Hoélder inequality imply for 1/p+1/p'=1/2, 2/I=n/p and
1/1+1/1'=1,

¢ )
(6.12) [[1Vticvare- 904D, 2t flds

1/1

¢ YU /ct .
= ([ tmenlyds)” ([ le-200uD, 2tur1}ds)
< CAVPV (WA LY+ fL L 120,

LEMMA 6.7. Let g€C3(—1,1) and p=0. Then for L=1,

(6.13) 1{g((D—2)/22)— g(Do—2)/2°)} Do(D, DALl
< CLZ—-(I-n/2p)/2(1+z(l/2—p)(m+n/2p+l)> , i>1.
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Proor. By [6.1) and [(6.12) it follows that

(e 0 —e=c4000y(D, Vs f1 = [ e-tct-n0 Ve 11200 (D, itz fus|
< CQ Y2710 (WAt 4 Lymereniem).
Thus by the functional calculus
(B~ /A7) g((Be—D/20)} DD, D
< |7 a2 Al + Ly de
< CyA ¥4 Q- R A g gAY g
LEMMA 6.8. For L=1,
|g((De—2/2)0D, il < C22 1 g, 221.

ProOOF. By the trace theorem

sup| _f@1dg = CLI0 S, fes.
>0 J1é1=r

Hence by using the Minkowski inequality we obtain

18((Do—A)/22)Do(D, DXLSfI* < Cllfllzgjlg((r2/2—2)/2”)l2dr
< G2 flEllgl®

PROOF OF THEOREM 6.1. Choose now p=02m-+1+2n/p)/(4m+6+2n/p) and
g=S(R") such that g(x)>0 for x=[—a, a] and g=C3(R'). Then by Lemmas
6.7~6.8, ‘

(6.13) IEs(I+Po(D, M.l = Cllg(D—2A)/2°)Do(D, DXzl

é C[z—(l—n/zp)/(4m+2n/p+6) .

Combining [Proposition 6.4 with [6.13), we obtain
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