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Let $M$ be an orientable closed 3-manifold and $K$ a tame knot in $M$. We say
that $K$ is a fibered knot if $C1(M-N(K))$ is a fiber bundle over $S^{1}$ whose fiber
is an orientable closed surface with one hole and a fiber intersects a meridian
of $K$ in a single point, where $N(K)$ is a regular neighborhood of $K$ and $C1(\cdot)$

is the closure. In particular, we say that $K$ is a genus one fibered knot if the
fiber is a torus with one hole. Hereafter we call it GOF-knot for brevity.

Then it was showed in [3] and [6] by Burde, Zieschang and Gonz\’alez-Acuna
that $S^{3}$ contains just two GOF-knots, those are the trefoil knot and the figure
eight knot.

In this paper we will determine GOF-knots in some lens spaces and show
existences of lens spaces containing no GOF-knots. In fact, we have the follow-
ing results.

PROPOSITION 1. Let $m$ be a non-negative integer and $L(m, 1)$ a lens space of
type $(m, 1)$ , where $L(O, 1)=S^{2}\cross S^{1}$ and $L(1,1)=S^{3}$ . Then $L(m, 1)$ contains at
least two GOF-knots $K_{1}$ and $K_{2}$ illustrated in Figure 1 with a fiber surface as
drawn, where $mO$ means a surgery description of $L(m, 1)$ . The orientation is
given in Figure 1. The monodromy of $K_{1}$ is presented by $(^{m+2}1-10)$ and the

means
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Figure 1.
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monodromy of $K_{2}$ is presented by $(\begin{array}{ll}-m+2 -11 0\end{array})$ . If $m=1$ , then $K_{1}$ is the figure

eight knot and $K_{2}$ is the trefoil knot. If $m=0$ , then the knots $K_{1}$ and $K_{2}$ are
equivalent. If $m>0$ , then the knots $K_{1}$ and $K_{2}$ are not equivalent.

THEOREM 1. $L(O, 1)$ contains just one GOF-knot, which is $K_{1}(=K_{2})$ of Pro-
position 1.

THEOREM 2. $L(1,1),$ $L(2,1)$ and $L(3,1)$ contain just two GOF-knots, which
are $K_{1}$ and $K_{2}$ of Proposiiion 1.

THEOREM 3. $L(4,1)$ contains just three GOF-knots, which are $K_{1}$ and $K_{2}$ of
Propositjon 1 and $K_{3}$ illusirated in Figure 2 with a fiber surface as drawn. The

monodromy of $K_{3}$ is presented by $(\begin{array}{l}3-10-1\end{array})$ .

THEOREM 4. (1) $L(5,1)$ contains just two GOF-knots, which are $K_{1}$ and $K_{2}$

of Proposition 1.
(2) $L(5,2)$ contains just one GOF-knot $K$ illustrated in Figure 3 with a fiber

surface as drawn. The monodromy of $K$ is presented by $(\begin{array}{l}5332\end{array})$ .

Figure 2. Figure 3.

REMARK 1. By the proof of Theorem 4, we will see that the knot $K_{2}$ in
$L(5,1)$ has two meridians. Then we can see that $K_{2}$ does not have proPerty
$P’$ , where we say that a knot $K$ in a 3-manifold $M$ has “property $P’$ , if every
non-trivial Dehn surgery along $K$ yields a 3-manifold which is not homeomorphic
to $M$.

THEOREM 5. (1) $L(19,1)$ contains just two GOF-knots, which are $K_{1}$ and $K_{2}$

of Proposition 1.
(2) $L(19,3)$ contains just one GOF-knot, which is $K$ illustrated in Figure 4

with a fiber surface as drawn. The monodromy of $K$ is presenfed by $(\begin{array}{ll}-16 35 -1\end{array})$ .
(3) $L(19,2),$ $L(19,4)$ and $L(19,7)$ do not contain GOF-knots.
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Figure 4.

In \S 1 we will express 3-manifolds containing GOF-knots. It will be denoted
by $M_{A(a)}$ , where $A$ is a matrix in $SL_{2}(Z)$ and $a$ is an integer. In \S 2 we will
introduce some sufficient condition following Casson-Gordon in [4] for Heegaard
splittings to be irreducible. In \S 3 we will give a presentation of the funda-
mental group of $M_{A(a)}$ . In \S 4 we will describe how to draw a Heegaard dia-
gram of a Heegaard splitting of $M_{A(a)}$ . In \S 5 we will show some lemmas to
prove theorems. Finally in \S 6 we will prove theorems.

In this paper we will work in the piecewise linear category. For the stand-
ard terms in the three dimensional topology and knot theory, we refer to [8]
and [13].

REMARK 2. Let $K$ be a fibered knot in an orientable closed 3-manifold $M$.
If $K$ is contained in a 3-ball in $M$ then $C1(M-N(K))$ is homeomorpbic to $M\# E$ ,
where $E$ is a knot exterior in $S^{3}$ and $\#$ means a connected sum. Since
$C1(M-N(K))$ is surface bundle over $S^{1}$ , it is irreducible and the connected sum is
trivial. Then $M$ is homeomorphic to $S^{3}$ . Thus we see that any fibered knot in
$M$ except $S^{3}$ is not a local knot. But by Theorem of [7], any fibered knot in
an orientable closed 3-manifold with an abelian fundamental group is null homo-
topic. Hence any GOF-knot in a lens space is null homotopic.

\S 1. Preliminaries.

Let $T$ be a torus with one hole. We denote the orientation preserving
homotopy group of $T$ by $\mathcal{H}(T)$ . Namely $\mathcal{H}(T)$ is the group of all orientation
preserving self-homeomorphisms of $T$ modulo the subgroup consisting of those
homeomorphisms which are isotopic to the identity. Then $\mathcal{H}(T)$ is isomorphic
to $SL_{2}(Z)$ . Let $\phi$ be a self-homeomorphism of $T$ and $A$ a matrix in $SL_{2}(Z)$

with $[\phi]=A$ , where $[\phi]$ is the element of $\mathcal{H}(T)$ containing $\phi$ . Then we denote
the T-bundle over $S^{1}$ with monodromy $\phi$ by $M_{A}$ . Let $u(\in\partial M_{A})$ be the oriented
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boundary of a fiber as in Figure 5 and $t$ an oriented simple loop in $\partial M_{A}$

intersecting $u$ in a single point as in Figure 5. In this paper we often regard
oriented loops (with a common base point) as elements of a fundamental group.
Then we have $\pi_{1}(\partial M_{A})=(t, u|tut^{-1}u^{-1}=1)$ . Let $V$ be a solid torus and $\mu$ a
meridian in $\partial V$. Let $\psi$ be a homeomorphism of $\partial V$ to $\partial M_{A}$ . Then there exist
coprime integers $a$ and $b$ with $\psi(\mu)=u^{a}t^{b}$ in $\pi_{1}(\partial M_{A})$ , and by $M_{A(a.b)}$ we denote
the closed 3-manifold obtained from $M_{A}$ and $V$ by identifying the boundaries
by $\psi$ .

Figure 5.

Since there are infinitely many isotopy classes of the loops which intersect
$u$ in a single point, $a$ depends on the choice of $t$ . But by the arguments in
\S 4, 5 and 6, we will see that there are no ambiguities in the proofs of theorems.

PROPOSITION 2. $M_{A(a,b)}$ has a Heegaard splitting of genus three.

PROOF. Recall $M_{A}=T\cross[0,1]/(x, 1)\sim(\phi(x), 0)$ , where $x\in T$ . Put $H_{1}=T\cross$

$[0,1/2]$ and $H_{2}=T\cross[1/2,1]$ . Let $D$ be a small disk in $T$ such that $D\cap\partial T=$

$\partial D\cap\partial T$ is a subarc as in Figure 6-1. Put $N=D\cross[1/2,1]$ and put $V_{1}=H_{1}\cup N$.
Then $V_{1}$ is a genus three handlebody. Put $V_{2}=C1(H_{2}-N)\cup V$ . Since $C1(H_{2}-N)\cap V$

$=C1(\partial T-\partial D)\cross[1/2,1]$ is a disk, $V_{2}$ is also a genus three handlebody. Thus
$M_{A(a.b)}=V_{1}\cup V_{2}$ is a Heegaard splitting of genus three.

Now, suppose that $M$ contains a GOF-knot. Then $M$ is homeomorphic to
some $M_{A(a,b)}$ . Moreover from the definition of fibered knots, we may assume
$b=1$ . Hereafter we denote $M_{A(a,1)}$ by $M_{A(a)}$ .

PROPOSITION 3. $M_{A(a)}$ has a Heegaard spljtting of genus two.

The proof of Proposition 3 is contained in the arguments in \S 4.

\S 2. Rectangle condition.

In this section, we introduce some sufficient condition following Casson-
Gordon in [4] for Heegaard splittings to be irreducible.
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Let $F$ be a genus $g(>1)$ orientable closed surface and $P$ and $Q$ two pants
embedded in $F$, where a pants is a disk with two holes. Put $\partial P=l_{1}\cup l_{2}\cup l_{3}$ and
$\partial Q=m_{1}\cup m_{2}\cup m_{3}$ . We suppose that $\partial P$ and $\partial Q$ intersect transversely. Then we
say that $P$ and $Q$ are tight if:

(1) there is no 2-gon $B$ in $F$ such that $\partial B=\alpha\cup\beta$ , where $\alpha$ is a subarc of
$\partial P$ and $\beta$ is a subarc of $\partial Q$ ,

(2) for any two components $l_{r}$ and $l_{s}$ of $\partial P$ and for any two components
$m_{t}$ and $m_{u}$ of $\partial Q$ there is a rectangle $R$ embedded in $P$ and $Q$ such that Int $R\cap$

$(\partial P\circ\partial Q)=\emptyset$ and the four edges of $\partial R$ are subarcs of $l_{r},$ $l_{s},$ $m_{t}$ and $m_{u}$ .
Let $\mathcal{L}=\{l_{1}, l_{2}, \cdots , l_{3g- 3}\}$ ( $\mathcal{M}=\{m_{1},$ $m_{2},$ $\cdots$ , $m_{3g-3}\}$ resp.) be a collection of

mutually disjoint simple loops on $F$ such that $\mathcal{L}$ ( $\mathcal{M}$ resp.) cuts $F$ into $2g-2$

pants $P_{1},$ $P_{2},$ $\cdots$ , $P_{2g-2}$ ( $Q_{1},$ $Q_{2},$ $\cdots$ , $Q_{2g-2}$ resp.). Then we say that $X$ and $\mathcal{M}$

are tight if any pair $P_{t}$ and $Q_{j}$ are tight.
Let $(V_{1}, V_{2} : F)$ be a Heegaard splitting of a closed 3-manifold $M$. We say

that $(V_{1}, V_{2} : F)$ satisfies a rectangle condition if there exist two collections of
mutually disjoint simple loops $\mathcal{L}$ and $\mathcal{M}$ on $F$ such that $\mathcal{L}$ and $\mathcal{M}$ are tight and
each $l_{i}$ ( $m_{j}$ resp.) bounds a disk in $V_{1}$ ( $V_{2}$ resp.). We say that $(V_{1}, V_{2} : F)$ has
a cancelling pair if there exists a non-separating disk $D_{i}$ properly embedded in $V_{i}$

$(i=1,2)$ such that $\partial D_{1}$ and $\partial D_{2}$ intersect transversely in a single point. Then
Casson-Gordon proved in [4]:

THEOREM A. If $(V_{1}, V_{2} : F)$ satisfies a rectangle condition, then $(V_{1}, V_{2} : F)$

has no cancelling pajrs.

Here, we note that the lens spaces (including $S^{2}\cross S^{1}$ and $S^{3}$ ) are exactly the
3-manifolds with Heegaard splittings of genus one. Bonahon-Otal and Waldhausen
proved in [1] and [14] that any two Heegaard splittings of a lens space $L$ (in-

cluding $S^{2}\cross S^{1}$ and $S^{3}$ ) of the same genus $(>1)$ are isotopic each other. There-
fore any Heegaard splitting of genus $g(>1)$ of $L$ has a cancelling pair. Thus
we have:

COROLLARY B. If an orientable closed 3-manifold $M$ has a Heegaard spljtting
of genus $g(>1)$ which satisfies a rectangle condition, then $M$ is not homeomorphic
to a lens space, $S^{2}\cross S^{1}$ or $S^{3}$ .

\S 3. A presentation of the fundamental group of $M_{A(a)}$ .
Let $x^{*}$ and $y^{*}$ be two oriented simple loops in $T$ as in Figure 6-1. And let

$x$ and $y$ be two oriented loops based at $P$ as in Figure 6-2. Then we have
$\pi_{1}(T)=(x, y| )$ . Let $f$ be a Dehn twist along $x^{*}$ and $g$ a Dehn twist along $y^{*}$ ,
and let $f_{*}$ and $g*be$ induced self-isomorphisms of $\pi_{1}(T)$ . Then $f_{*}(x)=x,$ $f_{*}(y)$

$yx,$ $g_{*}(x)=xy$ and $g_{*}(y)=y$ . Hence we have $[f]=(\begin{array}{l}1011\end{array})=Xand[g]=(\begin{array}{l}1101\end{array})=Y$,
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since $(1, O)X=(1,0),$ $(0,1)X=(1,1),$ $(1, O)Y=(1,1)$ and $(0,1)Y=(O, 1)$ .

Figure 6-1. Figure 6-2.

Let $\phi$ be a self-homeomorphism of $T$ with $[\phi]=A=(rpqs)$ in $SL_{2}(Z)$ . Then
$\phi_{*}(x)$ and $\phi_{*}(y)$ are words of $x$ and $y$ . Since $SL_{2}(Z)$ is generated by $X$ and $Y$,
$A$ is decomposed into a word of $X$ and $Y$. Then by the above correspondence,
$[\phi]$ is decomposed into a word of $[f]$ and $[g]$ . Therefore the exponent sum
of $x$ in the word $\phi_{*}(x)$ is $p$ , that of $y$ in $\phi_{*}(x)$ is $q$ , that of $x$ in $\phi_{*}(y)$ is $r$

and that of $y$ in $\phi_{*}(y)$ is $s$ . Then we have:

$\pi_{1}(M_{A(a)})=\langle_{t’}^{x}yu|t^{-1}xt=\phi_{*}(x)u^{a}t=1,t^{-1}yt=\phi_{*}(y)u=xyx^{-1}y^{-1}\rangle$ ,

$H_{1}(M_{A(a)})=(x, y|x=x^{p}y^{q}, y=x^{r}y^{s}, xy=yx)$

$=\langle_{y}^{x}|(\begin{array}{lll}p -1 q r s-1\end{array})(\begin{array}{l}xy\end{array})=(\begin{array}{l}00\end{array})\rangle$ ,

and $|H_{1}(M_{A(a)})|=$ det $(\begin{array}{lll}p -1 q r s-1\end{array})|=|p+s-2|$ .

\S 4. Heegaard diagrams of $M_{A(a)}$ .
In this section we describe how to draw a Heegaard diagram of $M_{A(a)}$ and

study conditions for the Heegaard splitting to satisfy a rectangle condition.
Let $\phi$ be a self-homeomorphism of $T$ with $[\phi]=A$ . Recall $M_{A}=T\cross[0,1]/$

$(x, 1)\sim(\phi(x), 0)$ and $M_{A(a)}=M_{A} \bigcup_{\psi}V$ , where $\psi$ is the attaching homeomorphism
of $\partial V$ to $\partial M_{A}$ . Put $V_{1}=T\cross[0,1/2]$ and $V_{2}=(T \cross[1/2,1])\bigcup_{\psi}V$ . Then $V_{1}$ is a
genus two handlebody. Since $b=1,$ $\psi^{-1}(\partial T\cross[1/2,1])$ is an annulus in $\partial V$ whose
core is homotopic to the core of $V$ , and $V_{2}$ is a genus two handlebody. Thus
$M_{A(a)}=V_{1}\cup V_{2}$ is a genus two Heegaard splitting of $M_{A(a)}$ . Furthermore we
can regard $V_{2}$ as $T\cross[1/2,1]$ . Therefore the attaching homeomorphism $h$ of
$\partial V_{2}$ to $\partial V_{1}$ is as follows:

$h|_{T\cross t1/21}$ : $T\cross\{1/2\}arrow T\cross\{1/2\}$ is the identity,
$h|_{TxtlI}$ : $T\cross\{1\}arrow T\cross\{0\}$ is $\phi$ ,
$h|_{\partial T\cross[1/2.1]}$ : $\partial T\cross[1/2,1]arrow\partial T\cross[0,1/2]$ is a-times Dehn twists along $u$ ,
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where $u=\partial T\cross\{1/4\}$ is the oriented simple loop illustrated in Figure 5.
Let $\alpha,$ $\beta$ and $\gamma$ be three oriented arcs properly embedded in $T$ as in Figure 7.

Figure 7.

Since $\phi$ is orientation preserving, we may assume that $\phi|_{\partial T}$ is the identity.
Then $\phi(\alpha)$ is an oriented arc with $\partial\phi(\alpha)=\partial\alpha$ , similarly $\partial\phi(\beta)=\partial\beta$ and $\partial\phi(\gamma)=\partial\gamma$ .
Put $D_{a}^{1}=\alpha\cross[0,1/2],$ $D_{\beta}^{1}=\beta\cross[0,1/2],$ $D_{\gamma}^{1}=\gamma\cross[0,1/2],$ $D_{\alpha}^{2}=\alpha\cross[1/2,1],$ $D_{\beta}^{2}=$

$\beta\cross[1/2,1]$ and $D_{\gamma}^{2}=\gamma\cross[1/2,1]$ . Then $D_{a}^{i},$ $D_{\beta}^{?}$ and $D_{\gamma}^{i}$ are three mutually dis-
joint non-separating disks properly embedded in $V_{i}(i=1,2)$ . Hence a Heegaard
diagram of the Heegaard splitting $M_{A(a)}=V_{1}\cup V_{2}$ is obtained by drawing $\alpha\cross\{1/2\}$ ,
$\beta\cross\{1/2\},$ $\gamma\cross\{1/2\},$ $\phi(\alpha)\cross\{0\},$ $\phi(\beta)\cross\{0\},$ $\phi(\gamma)\cross\{0\}$ and the image of $(\partial\alpha\cup\partial\beta\cup\partial\gamma)$

$\cross[0,1/2]$ by a-times Dehn twists along $u$ .
We assume that $\phi_{*}(x)$ and $\phi_{*}(y)$ are reduced words of $x$ and $y$ . We say

that $\phi$ is of type I if $\phi_{*}(x)=zwx^{-1}y^{-1}$ ($z=x^{-1},$ $y$ or $y^{-1}$ ) and $\phi_{*}(y)=yxy^{-1}wy^{-1}$ ,
$\phi$ is of type II if $\phi_{*}(x)=xyx^{-1}wx^{-1}$ and $\phi_{*}(y)=zwy^{-1}x^{-1}$ ($z=x,$ $x^{-1}$ or $y^{-1}$ ) where
$w$ is a word of $x$ and $y$ .

LEMMA 1. If $\phi$ is of type I (type II resp.), then the Heegaard splitting
$(V_{1}, V_{2})$ of $M_{A(a)}$ satisfies a rectangle condition for any $a$ with $a>0$ ( $a<0$ resp.).

PROOF. Put $l_{1}=\partial D_{\alpha}^{1},$ $l_{2}=\partial D_{\beta}^{1},$ $l_{3}=\partial D_{\gamma}^{1},$ $m_{1}=\partial D_{\alpha}^{2},$ $m_{2}=\partial D_{\beta}^{2}$ and $m_{3}=\partial D_{\gamma}^{2}$ , and
put $x=\{l_{1}, l_{2}, l_{3}\}$ and $\mathcal{M}=\{m_{1}, m_{2}, m_{3}\}$ . Put $F=V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}$ . Then $\mathcal{L}$

( $\mathcal{M}$ resp.) cuts $F$ into two pants $P_{1}$ and $P_{2}$ ( $Q_{1}$ and $Q_{2}$ resp.). See Figure 8.

Figure 8.
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Let $\tilde{x}$ and $\tilde{y}$ be two arcs properly embedded in $T$ as in Figure 7. By
$\phi_{*}(\alpha)$ ( $\phi_{*}(\beta)$ resp.) we denote the word of $x$ and $y$ obtained by counting the
intersections of $\phi(\alpha)$ ( $\phi(\beta)$ resp.) and $\tilde{x}\cup\tilde{y}$ . Since we may assume that $\phi|_{N}$ is
the identity for a small neighborhood $N$ of $\partial T$ in $T$ , we have $\phi_{*}(y)=y\phi_{*}(\alpha)$

from the deformation in Figure 9. Then $\phi_{*}(\alpha)=y^{-1}\phi_{*}(y)$ . Similarly we have
$\phi_{*}(\beta)=x^{-1}\phi_{*}(x)$ .

$arrow$

Figure 9.

Figure 10.

Suppose that $\phi$ is of type I. Then $\phi_{*}(\alpha)=xy^{-1}wy^{-1}$ and $\phi_{*}(\beta)=x^{-1}zwx^{-1}y^{-1}$

are reduced words, for $z=x^{-1},$ $y$ or $y^{-1}$ . Therefore we may draw the images
$\phi(\alpha),$ $\phi(\beta)$ and $\phi(\gamma)$ as in Figure 10. Note that $\phi_{*}(\gamma)=\phi_{*}(\alpha)\phi_{*}(\beta)$ . Moreover
we may assume that there are no 2-gons in components of $C1(T-(\alpha\cup\beta\cup\gamma\cup$

$\phi(\alpha)\cup\phi(\beta)\cup\phi(\gamma)))$ . Therefore for $i=1$ or 2 and $j=1$ or 2, $P_{i}$ and $Q_{j}$ are tight
for any $a$ with $a>0$ . Thus $(V_{1}, V_{2})$ satisfies a rectangle condition for any $a$

with $a>0$ .
The case when $\phi$ is of type II, we can similarly see that $(V_{1}, V_{2})$ satisfies

a rectangle condition for any $a$ with $a<0$ . This completes the proof.

LEMMA 2. SuppOse that $\phi_{*}(x)$ does not take any form of $xyx^{-1}y^{-1}xw,$ wxy $x^{-1}$ ,
yxw or $wxyx^{-1}y^{-1}$ and $\phi_{*}(y)$ does not take any form of $xyw,$ $wyxy^{-1}x^{-1},$ $yxy^{-1}x^{-1}yw$

or $wyx^{-1}y^{-1}$ , where $w$ is a word of $x$ and $y$ . Then the Heegaard splitting $(V_{1}, V_{2})$

of $M_{A(a)}$ satisfies a rectangle condition for any $a$ with a $|>1$ .

PROOF. In the presentation of $\pi_{1}(M_{A(a)})$ in \S 3, put $tu=\tilde{t}$ . Then we have

$\pi_{1}(M_{A(a)})=\langle x_{f},$ $yu|f^{-1}x\tilde{t}=\tilde{\phi}(x)u^{a-1}f=1^{*}u=xyx^{-1}y^{-1}t^{-1}yf=\tilde{\phi}_{*}(y)\rangle$ ,
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where $\phi_{*}(x)=u^{-1}\phi_{*}(x)u,$ $\phi_{*}(y)=u^{-1}\phi_{*}())u$ and $\emptyset$ is a self-homeomorphism of $T$

which is isotopic to $\phi$ in $T$ but not rel. ($1T$. Then by the hypothesis, $\tilde{\phi}$ is of
type I. So by Lemma 1, the Heegaard $S_{1}11itting(V_{1}, V_{2})$ of $M_{A(a)}$ satisfies a re-
ctangle condition for any $a$ with $a-1>0$ . Namely $a>1$ .

Next, in the presentation of $\pi_{1}(M_{A(a)})$ , put $tu^{-1}=\tilde{t}$ . Then we can similarly
see that the Heegaard splitting $(V_{1}, V_{2})$ of $M_{A(a)}$ satisfies a rectangle condition
for any $a$ with $a<-1$ . This completes th( proof.

\S 5. Some lemmas.

LEMMA 3. Let $A$ and $B$ be two matrices in $SL_{2}(Z)$ . Then $M_{A}$ is homeo-
morphjc to $M_{B}$ if and only if $A$ is conjugate to $B$ or $B^{-1}$ in $GL_{2}(Z)$ .

PROOF. This is proved by the same arguments as the proof of Proposition
2 of [11]. Note that in the proof of the sufficiency of Theorem of [10] there
is no need to hypothesize that $F$ is closed and the genus of $F$ is greater than 1.

LEMMA 4 (Lemma of [3]). Let $A=(rpqs)$ be a matrix in $SL_{2}(Z)$ and put $T=$

$p+s$ . Then $A$ is conjugate to the matrix taking the form of $(^{T-s’}r’ q’s’)$ in $GL_{2}(Z)$ ,

where $0\leqq s’\leqq T/2$ if $T>0,0\geqq s’\geqq T/2$ if $T<0$ and $s’=0$ if $T=0$ .

PROOF. This is proved by using the following two formulas:

$(\begin{array}{l}101x\end{array})(\begin{array}{ll}p qr s\end{array})(\begin{array}{ll}1 0-x 1\end{array})=(^{p-xq}*s+xqq)$ and

$(\begin{array}{ll}1 x01 \end{array})(\begin{array}{ll}p qr s\end{array})(\begin{array}{ll}1 -x0 1\end{array})=(^{p+xr}rs-xr*)$ .

For the detail, see Lemma of [3].

LEMMA 5. Put $A=(\begin{array}{ll}m+2 -11 0\end{array})$ , where $m$ is an integer. Then the following
holds.

(1) $\pi_{1}(M_{A(0)})\cong Z_{1m}$ .
(2) $\pi_{1}(M_{A(-1)})$ is cyclic if and only if $m=-5$ or $-7$ . Moreover $\pi_{1}(M_{A(-1)})$

$\cong Z_{5}$ if $m=-5$ and $\pi_{1}(M_{A(- 1)})\cong Z_{7}$ if $m=-7$ .
(3) $\pi_{1}(M_{A(1)})$ is not cyclic.
(4) For any $a$ with $|a|>1,$ $M_{A(a)}$ does not admit a Heegaard splitting of

genus one.

PROOF. Let $\phi$ be a self-homeomorphism of $T$ with $[\phi]=A$ . Recall $X=$

$(_{1}^{]}01)$ , $Y=(\begin{array}{l}1110\end{array})$ , $[f]=X$, $[g]=Y,$ $f_{*}^{\pm 1}(x)=x$ , $f_{*}^{\pm 1}(y)=yx^{\pm 1},$ $g_{*}^{\pm 1}(x)=xy^{\pm 1}$ and
$g_{*}^{\pm 1}(y)=y$ . We note that $A=XY^{-1}X^{-(m+1)}$ so that $\phi_{*}=f_{*}^{-(m+1)}\circ g_{*}^{-1}\circ f_{*}$ . Then
$\phi_{*}(x)=f_{*}^{-(m+1)}\circ g_{*}^{-1}\circ f_{*}(x)=f_{*}^{-(m+1)}\circ g_{*}^{-1}(x)=f_{*}^{-(m+1)}(xy^{-1})=f_{*}^{-m}(x^{2}y^{-1})=\cdots=x^{m+2}\gamma^{-1}$
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and $\phi_{*}(y)=f_{*}^{-(m+1)}\circ g_{*}^{-1_{\circ}}f_{*}(y)=f_{*}^{-(m+1)}\circ g_{*}^{-1}(yx)=f_{*}^{-(m+1)}(yxy^{-1})=\ldots=yxy^{-1}$ . Thus
we have

$\pi_{1}(M_{A(a)})=\langle_{t’}^{x},yu|t^{-1}xt=x^{m+2}y^{-1},$$t^{-1}yt=yxy^{-1}u^{a}t=1,u=xyx^{-1}y^{-1}\rangle$ .

PROOF OF (1). If $a=0$ , then $\pi_{1}(M_{A(0)})=(x, ylx=x^{m+2}y^{-1}, y=yxy^{-1})=$

$(x, y|x^{m+1}=y, x=y)=Z_{1m}$ .
PROOF OF (4). Since $\phi_{*}(x)=x^{m+2}y^{-1}$ and $\phi_{*}(y)=yxy^{-1},$ $\phi*satisfies$ the hy-

pothesis of Lemma 2, and the Heegaard splitting of $(V_{1}, V_{2})$ of $M_{A(a)}$ satisfies a
rectangle condition for any $a$ with $|a|>1$ . Then by Corollary $B$ , $M_{A(a)}$ does
not admit a Heegaard splitting of genus one.

PROOF OF (2). If $a=-1$ , then $\pi_{1}(M_{A(- 1)})=(x,$ $y,$ $t|t^{-I}xt=x^{m+2}y^{-1},$ $t^{-1}yt=$

$yxy^{-1},$ $t=xyx^{-1}y^{-1}$ ) $=(x, y|yxy^{-1}xy=x^{m+3}-1 yxy=xyx)=(x,$
$y|yxy^{-1}xy=x^{m+3}$ ,

yxyyxy $=xyxyxy$ ) $=(x, y, a, b|yxy xy=x^{m+3}, a^{2}=b^{3}, a=yxy, b=xy)=$

$(x, a, b|x^{-1}bxb^{-1}xb=x^{m+3}, a^{2}=b^{3}, a=x^{-1}b^{2})=(x,$ $a,$ $b|bxb^{-1}xb=x^{m+4},$ $a^{2}=b^{3},$ $x=$

$b^{2}a^{-1})=(a, b|b^{3}a^{-1}ba^{-1}b=(b^{2}a^{-1})^{m+4},$ $a^{2}=b^{3}$ ) $=(a, b|aba^{-1}b(ab^{-2})^{m+4}=1,$ $a^{2}=b^{3}$). Add
the relation $a^{2}=b^{3}=1$ to the last presentation. Then we have $\pi_{1}(M_{A(-1)})/a^{2}=b^{3}=1$

$=(a, b|(ab)^{m+6}=a^{2}=b^{3}=1)$ . By Satz 3 of [12], $\pi_{1}(M_{A(-1)})/a^{2}=b^{3}=1$ is not cyclic
for any $m$ with $|m+6|>1$ . Therefore $\pi_{1}(M_{A(-1)})$ is not cyclic for any $m$ with
$|m+6|>1$ . If $m+6=0$ , then $\pi_{1}(M_{A(-1)})=(a, b|aba^{-1}b^{3}a^{-1}b^{2}a^{-1}=1, a^{2}=b^{3})=$

$(a, b|ab^{3}a^{-1}=1, a^{2}=b^{8})=(a, b|a^{2}=b^{3}=1)\cong Z_{2}*Z_{3}$ , is not cyclic.
Suppose $|m+6|=1$ , then $m=-5$ or $-7$ . If $m=-5$ , then $\pi_{1}(M_{A(-1)})=$

$(a, b|aba^{-1}b^{3}a^{-1}=1, a^{2}=b^{3})=(a, b|ab=1, a^{2}=b^{3})=Z_{5}$ . If $m=-7$ , then $\pi_{1}(M_{A(-1)})$

$=(a, b|ab^{3}a^{-1}b^{2}a^{-1}=1, a^{2}=b^{3})=(a, b|a=b^{6}, a^{2}=b^{3})=Z_{7}$ . This completes the
proof of (2).

PROOF OF (3). If $a=1,then\pi_{1}(M_{A(1)})=(x-1-ly_{1}-,$ $t|t^{-1}xt=x^{m+2}y^{-1}-1-1t^{-1}yt=yxy^{-1}$ ,

$t=yxy:_{1}x^{-1})=$
( $x,$ $y|xyx$ $y$ xyxyx

$=x^{m+2}y-1-1$ -lxyx $y$ yyxyx $=yxy^{-1}$ ) $=$

( $x,$ $y|y$ $xyx^{-1}y^{-1}x^{-1}yxy^{-1}x^{m+1}=1$ , yxy xyx $y$ $xy^{-1}x^{-1}=1$ ).

If $m$ is even, then $\pi_{1}(M_{A(1)})/x^{2}=y^{2}=1=(x, y|(yx)^{5}=x^{2}=y^{2}=1)$ . By Satz 3
of [12], $\pi_{1}(M_{A(1)})$ is not cyclic. If $m=1$ , then $M_{A}$ is the figure eight knot
exterior in $S^{3}$ . By \S 10 of [6], $\pi_{1}(M_{A(1)})$ is not cyclic. If $m=-1$ , then $M_{A}$

is the trefoil knot exterior in $S^{3}$ . By [3], $\pi_{1}(M_{A(1)})$ is not cyclic (cf. [9]).

Thus hereafter we assume $|m|>2$ .
Put $G=\pi_{1}(M_{A(1)}),$ $r_{1}=y^{-1}xyx^{-1}y^{-1}x^{-1}yxy^{-1}x^{m+1}$ and $r_{2}=yxy^{-1}xyx^{-1}y^{-1}x$ .

$y^{-1}x^{-1}$ . Let $F$ be a free group generated by $x$ and $y$ . Let 7: $Farrow G$ be an onto
homomorphism and $\alpha;Garrow H$ an abelianaizer, where $H=G/xy=yx=(t|t^{m}=1)$ .

Suppose $m>2$ . Then by noting $\alpha(x)=\alpha(y)=t$ and performing the free
calculus, we have the following:

$\alpha\gamma\frac{\partial r_{1}}{\partial x}=-1+3r^{-1}-t^{-2}+(1+t+\cdots+t^{m-1})$ ,
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$\alpha\gamma\frac{\partial r_{1}}{\partial y}=1-3t^{-1}+t^{-2}$ ,

$\alpha\gamma\frac{\partial r_{2}}{\partial x}=-t^{2}+3t-1$ ,

$\alpha\gamma\frac{\partial r_{2}}{\partial y}=t^{2}-3t+1$ .

Fcr the free calculus, we refer Ch. VI of [5]. Let $A$ be the Alexander
matrix of $G$ , then

$A=(\begin{array}{lll}-1+3t^{-1}-t^{-2}+(1+t+ \cdots +t^{m- 1})1-3t^{-1}+t^{-2}-t^{2}+3t-1 t^{2}-3t+1 \end{array})$

$\sim(\begin{array}{llll}1+t+ \cdots +t^{m- 1} 0 0 t^{2}-3t+1\end{array})$ .

Let $B$ be the Alexander matrix of $H$, then $B=(1+t+\cdots+t^{m-1})$ . Let $E_{k}(A)$

( $E_{k}(B)$ resp.) be the $k$ th elementary ideal of $A$ ( $B$ resp.). Then $E_{0}(A)=E_{0}(B)$

$=(1+t+\cdots+t^{m-1})$ and $E_{k}(A)=E_{k}(B)=JH(k>1)$ , where $J$ is the integer ring
and $JH$ is the group ring on $H$. Furthermore $E_{1}(B)=JH$.

From now we will show that $E_{1}(A)\neq E_{1}(B)$ . Suppose that $E_{1}(A)=E_{1}(B)$

$(=JH)$ . Then since $E_{1}(A)=(1+t+\cdots+t^{m-1}, t^{2}-3t+1)$ , there exist two polyno-
mials $p(t)$ and $q(t)$ in $JH$ such that $p(t)(1+t+\cdots+t^{m-1})+q(t)(t^{2}-3t+1)=1$ . Since
$t^{m}=1$ , we can put $p(t)=p_{0}+p_{1}t+\cdots+p_{m-1}r^{m-1}$ and $q(t)=q_{0}+q_{1}t+\cdots+q_{m-1}t^{m-1}$ .
Then by comparing the coefficients, we have the following equalities:

$p(1)+q_{m-2}-3q_{m-1}+q_{0}=1$ ,

$p(1)+q_{m-1}-3q_{0}+q_{1}=0$ and
$P(1)+q_{i-2}-3q_{i- 1}+q_{t}=0$ $(2\leqq i\leqq m-1)$ .

Put $b_{t}=q_{i}-P(1)(0\leqq i\leqq m-1)$ . Then we have:

$b_{0}=3b_{m-1}-b_{m-2}+1$ ,

$b_{1}=3b_{0}-b_{m-1}$ and
$b_{i}=3b_{i-1}-b_{i- 2}$ $(2\leqq i\leqq m-1)$ .

Let $\{c_{n}\}$ be the sequence defined inductively as follows: $c_{1}=1$ , $c_{2}=3$ and
$c_{n+2}=3c_{n+1}-c_{n}$ .

Then the following equalities are easily checked inductively:

$b_{i}=c_{i}b_{1}-c_{i-1}b_{0}$ $(2\leqq i\leqq m-1)$ ,

$b_{0}=c_{m}b_{1}-c_{m-1}b_{0}+1$ and
$b_{1}=-c_{m-1}b_{1}+(3+c_{m-2})b_{0}$ .



92 K. MORIMOTO

From the last two equalities we have

$b_{0}+ \frac{c_{m- 1}^{2}-C_{m}{}_{-2}C_{m^{-c_{m+1}}}}{1+c_{m- 1}}b_{0}=1$ .

By the way, $c_{n}^{q}-C_{n}{}_{-1}C_{n+1}=c_{n}^{2}-c_{n- 1}(3c_{n}-c_{n-l})=c_{n}(c_{n}-3c_{n-1})+c_{n- 1}^{2}=c_{n-1}^{9}-$

Cn-2Cn $=\cdots=c_{2}^{2}-C{}_{1}C_{3^{=1}}$ . Then we have $(1-(c_{m+1}-1)/(c_{m-1}+1))b_{0}=1$ . Since $c_{m+1}-$

$1-2(c_{m-1}+1)=3(c_{m}-c_{m-1}-1)\geqq 3(c_{2}-c_{1}-1)>0$ , we have $(c_{m+1}-1)/(c_{m-1}+1)>2$

and $|1-(c_{m+1}-1)/(c_{m-1}+1)|>1$ .
Therefore $|b_{0}|<1$ , and this contradicts to that $b_{0}$ is an integer $(\neq 0)$ .
If $m<-2$ , then $\alpha\gamma(\partial r_{1}/\partial x)=-1+3t^{-1}-t^{-2}-(1+t+ -- +t^{l})$ , where $l=-m$ .

We have a contradiction similarly. Therefore $E_{1}(A)\neq E_{1}(B)$ and $G$ is not cyclic.
This completes the proof of (3).

\S 6. Proofs of Proposition 1 and Theorems 1, 2, 3, 4 and 5.

PROOF OF PROPOSITION 1. Let $m$ be an integer and put $A=(^{m+2}1-10)$ .
From the proof of Lemma 5, we have $\pi_{1}(M_{A(0)})=(x,$ $y,$ $t|t^{-1}xt=x^{m+2}y^{-1},$ $t^{-1}yt=$

$yxy^{-1},$ $t=1$ ) $=Z_{|m|}$ . Let $M_{A(0)}=V_{1}\cup V_{2}$ be the Heegaard splitting given in \S 4.
Then by using the method in \S 4 and the above presentation, we can draw a
Heegaard diagram of the Heegaard splitting of $(V_{1}, V_{2})$ and can see that $M_{A(0)}$

is homeomorphic to $L(|m|, 1)$ . Furthermore by drawing pictures, we have Figure
1, and we can see that the core of $V$ is the knot $K_{1}$ if $m\geqq 0$ and is the knot $K_{2}$

if $m\leqq 0$ , where $V$ is a solid torus and $M_{A(0)}=M_{A}\cup V$ . This is a routine matter
and we omit the detail.

If $m\neq 0$ , then $(\begin{array}{ll}m+2 -11 0\end{array})$ is not conjugate to ( $1$

‘

$01$) in $GL_{2}(Z)$ . By

Lemma 3 the complement of $K_{1}$ in $L(m, 1)$ is not homeomorphic to the comle-
ment of $K_{2}$ in $L(-m, 1)$ . Hence the knots $K_{1}$ and $K_{2}$ are not equivalent.

Now we prove Theorems 1, 2, 3, 4 and 5. Through the following proofs we
assume that $M_{A(a)}=M_{A}\cup V$ and $C$ is the core of $V$ .

PROOF OF THEOREM 1. Put $A=(rpqs)$ and suppose that $M_{A(a)}$ is homeomorphic

to $S^{2}\cross S^{1}$ . Since $H_{1}(S^{2}\cross S^{1})\cong Z$ , we have $P+s-2=0$ (see \S 3). Then by Lemma
4 we may put $A=(\begin{array}{l}2-101\end{array})$ or $(\begin{array}{ll}1 n01 \end{array})(n\geqq 0)$ . If $A=(\begin{array}{ll}1 n01 \end{array})$ , then $H_{1}(M_{A(a)})=$

$(x,$ $y|(\begin{array}{ll}0 n00 \end{array})(\begin{array}{l}xy\end{array})=(\begin{array}{l}00\end{array}))=Z+Z_{n}$ . Hence $n=1$ and $A=(\begin{array}{ll}1 10 1\end{array})$ . Since

$(\begin{array}{l}1 01-1\end{array})(\begin{array}{l}1101\end{array})(\begin{array}{l}011-1\end{array})=(\begin{array}{l}2-101\end{array})$ , after all we may assume $A=(\begin{array}{l}2-11 0\end{array})$ . Then by

Lemma 5, $a=0$ and $C$ is the knot $K_{1}(=K_{2})$ of Proposition 1.

PROOF OF THEOREM 2. Put $A=(_{r}^{p}qs)$ .
The case when $M_{ACa)}$ is homeomorphic to $S^{3}$ has been proved in [3] and [6].
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The case when $M_{A(a)}$ is homeomorphic to $L(2,1)$ . From $|p+s-2|=2,$ $p+s$

$-=4$ or $0$ . Then by Lemma 4, we may put $A=(4r0q)$ , $(_{r}^{3}q1)$ , $(_{r}^{2}2q)$ or $(_{r}^{0}0q)$ .
In any case, qrl is 1 or a prime number. By two formulas in the proof of
Lemma 4, we may assume $A=(\begin{array}{l}4-10l\end{array})$ or $(\begin{array}{l}0-11 0\end{array})$ . Then by Lemma 5, $a=0$ and
$C$ is the knot $K_{1}$ or $K_{2}$ of Proposition 1.

The case when $M_{A(a)}$ is homeomorphic to $L(3,1)$ . From $|p+s-2|=3,$ $p+s$

$=5$ or $-1$ and we may put $A=(5r0q),$ $(_{r}^{4}q1),$ $(_{r}^{3}2q)$ or $(^{-1}r0q)$ . By the same

reason as the above, we may assume $A=(\begin{array}{ll}5 -11 0\end{array})$ or $(\begin{array}{l}-1-11 0\end{array})$ . Then by Lemma
5, $a=0$ and $C$ is the knot $K_{1}$ or $K_{2}$ of Proposition 1.

PROOF OF THEOREM 3. Put $A=(rpqs)$ and suppose that $M_{A(\alpha)}$ is homeomorphic

to $L(4,1)$ . From $|P+s-2|=4,$ $p+s=6$ or $-2$ .

Case (1): $p+s=6$ .
In this case, by Lemma 4 we may put $A=(6r0q),$ $(_{r}^{5}q1),$ $(_{r}^{4}q2)$ or $(_{r}^{3}q3)$ . If

$A=(4r2q)$ , then $|qr|=7$ and $A$ is conjugate to $(\begin{array}{l}6-11 0\end{array})$ . If $A=(3rq3)$ , then $|qr|$

$=8$ and $A$ is cojugate to $(\begin{array}{l}6-101\end{array})$ or $(\begin{array}{l}5221\end{array})$ . Hence we may assume $A=(\begin{array}{l}6-101\end{array})$

or $(\begin{array}{l}5221\end{array})$ . If $A=(\begin{array}{l}5221\end{array})$ , then $H_{1}(M_{A(a)})=(x,$ $y|(\begin{array}{l}4220\end{array})(\begin{array}{l}xy\end{array})=(\begin{array}{l}00\end{array}))\cong Z_{2}+Z_{2}\neq Z_{4}$ .
This is a contradiction. Then by Lemma 5, $a=0$ and $C$ is the knot $K_{1}$ of
Proposition 1.

Case (2): $p+s=-2$ .
In this case we may put $A=(\begin{array}{ll}-2 -11 0\end{array})$ or $(\begin{array}{l}-1 n0-1\end{array})(n\geqq 0)$ . SuPpose $A=$

$(\begin{array}{l}-1 n0-1\end{array})$ and that $\phi$ be the self-homeomorphism of $T$ with $[\phi]=A$ . Since $A=$

$X^{2}Y^{-1}X^{2}Y^{-n-1},$ $\phi_{*}(x)=g_{*}^{-n-1}\circ f_{*}^{2}\circ g_{*}^{-1}\circ f_{*}^{2}(x)=y^{n+1}x^{-1}y^{-1}$ and $\phi_{*}(y)=yxy^{-1}x^{-1}y^{-1}$ .
Then we have $\pi_{1}(M_{A(a)})=(x,$ $y,$ $t,$ $u|t^{-1}xt=y^{n+1}x^{-1}y^{-1},$ $t^{-1}yt=yxy^{-1}x^{-1}y^{-1},$ $u^{a}t=1$ ,
$u=xyx^{-1}y^{-1})$ . Then by Lemma 1 and Corollary $B,$ $M_{A(a)}$ is not homeomorphic
to $L(4,1)$ for any $a>0$ , for $\phi$ is of type I. Thus we have $a\leqq 0$ . Put $tu^{-1}=\tilde{t}$ .
Then we have $\pi_{1}(M_{A(a)})=(x,$ $y,$

$t\sim,$ $u|t^{-1}\sim xt=\phi_{*}(x),\tilde{t}^{-1}y^{\sim}r=\phi_{*}(y),$ $u^{a+1}t=1,$ $u=$

$xyx^{-1}y^{-1})$ , where $\phi_{*}(x)=uy^{n+1}x^{-1}y^{-1}u^{-1}=xyx^{-1}y^{n-1}x^{-1}$ and $\phi_{*}(y)=$

$uyxy^{-1}x^{-1}y^{-1}u^{-1}=xy^{-1}x^{-1}$ . Then $\hat{\phi}$ is of type II. By Lemma 1 and Corollary
$B,$ $M_{A(a)}$ is not homeomorphic to $L(4,1)$ for any $a+1<0$ . Therefore we have
$-1\leqq a\leqq 0$ . If $a=0$ , then $\pi_{1}(M_{A(0)})=(x, y|y^{n+1}x^{-1}y^{-1}x^{-1}=1, xy^{-1}x^{-1}y^{-1}=1)=$

$(x, y|y^{n+2}x^{-2}=1, x^{-1}yxy=1)$ . Then $\pi_{1}(M_{A(0)})/x^{2}=1=(x, y|y^{n+2}=x^{2}=(xy)^{2}=1)$ .
Since $n+2\geqq 2$ it is not cyclic by [12]. If $a=-1$ , then $\pi_{1}(M_{A(-1)})=$

$(x, y|yx^{-1}y^{n-1}x^{-1}=1, xy^{-1}x^{-I}y^{-I}=1)=(x, y|y^{n-2}x^{-2}=1, x^{-1}yxy=1)$ . Then
$\pi_{1}(M_{A(a)})/x^{2}=1=(x, y|y^{n-2}=x^{2}=(xy)^{2}=1)$ . Since $n-2\geqq-2$ it is cyclic if and
only if $n=1$ or 3 by [12]. If $n=1$ or 3, then $\pi_{1}(M_{A(a)})\cong Z_{4}$ . Hence we may as-
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sume $A=(\begin{array}{l}-1 10-1\end{array})$ or $(\begin{array}{ll}-1 30 -1\end{array})$ . Since $(\begin{array}{ll}-1 10 -1\end{array})$ is conjugate to $(\begin{array}{l}-2-10l\end{array})$ ,

after all we have $A=(\begin{array}{ll}-2 -11 0\end{array})$ or $(\begin{array}{ll}-1 30 -1\end{array})$ . If $A=(\begin{array}{ll}-2 -11 0\end{array})$ , then by Lemma 5

$C$ is the knot $K_{2}$ of Proposition 1. If $A=(\begin{array}{l}-1 30-1\end{array})$ , then by drawing pictures

we can see that $C$ is the knot $K_{3}$ illustrated in Figure 2. Note that $(\begin{array}{l}-1 30-1\end{array})$

is not conjugate to $(\begin{array}{ll}-2 -11 0\end{array})$ in $GL_{2}(Z)$ .

PROOF OF THEOREM 4. Put $A=(rpqs)$ and suppose that $M_{A(a)}$ is homeo-
morphic to $L(5,1)$ or $L(5,2)$ . Since $|P+s-2|=5,$ $p+s=-3$ or 7.

Case (1): $p+s=-3$ .
In this case, by Lemma 4 we may put $A=(-3r0q)$ or $(^{-2}r-1q)$ . In both

cases $|qr|=1$ , and we may assume $A=(\begin{array}{ll}-3 -11 0\end{array})$ . Then by Lemma 5, $\pi_{1}(M_{A(a)})$

is cyclic if and only if $a=0$ or $-1$ . If $a=0$ , then $C$ is the knot $K_{2}$ of Proposi-
tion 1. If $a=-1$ , then by drawing pictures we can see that $C$ is the knot $K_{2}$

of Proposition 1 again. Hence we can see that $K_{2}$ has two meridians.

Case (2): $P+s=7$ .
In this case we may put $A=(7r0q),$ $(_{r}^{6}q1),$ $(_{r}^{5}2q)$ or $(_{r}^{4}3q)$ . Then by using

two formulas in the proof of Lemma 4 we may assume $A=(\begin{array}{l}7-101\end{array})$ or $(\begin{array}{l}5332\end{array})$ . If
$A=(\begin{array}{l}7-101\end{array})$ , then by Lemma 5 $C$ is the knot $K_{1}$ of Proposition 1.

Suppose $A=(\begin{array}{l}5332\end{array})$ . Since $A=YXYX$, $\phi_{*}(x)=f_{*}\circ g_{*}\circ f_{*}\circ g_{*}(x)=xyxyx^{2}yx$

and $\phi_{*}(y)=yx^{2}yx$ . Then we have $\pi_{1}(M_{A(a)})=(x,$ $y,$ $t,$ $u|t^{-1}xt=xyxyx^{2}yx,$ $t^{-1}yt=$

$yx^{2}yx,$ $u^{a}t=1,$ $u=xyx^{-1}y^{-1}$ ). Since $\phi$ satisfies the hypothesis of Lemma 2, we
have $a=-1$ , $0$ or 1 by Corollary B. If $a=0$ , then $\pi_{1}(M_{A(0)})=(x,$ $y|yxyx^{2}yx$

$=1,$ $x^{2}yx=1$ ) $=$ ( $x,$ $y$ lyxy $=1,$ $x^{2}yx=1$ ) $\cong Z_{5}$ . In this case, by drawing pictures
we can see that $M_{A(0)}$ is homeomorphic to $L(5,2)$ and $C$ is the knot $K$

illustrated in Figure 3.
If $a=-1$ , then $\pi_{1}(M_{A(- 1)})=(x,$ $y|yxy^{-1}xyx^{-1}y^{-1}=xyxyx^{2}yx,$ $yxy^{-1}x^{-1}\cdot$

$yxyx^{-1}y^{-1}=yx^{2}yx)=$ ( $x,$ $y,$ $a|ay^{-1}xya^{-1}=xa^{2}xa,$ $y^{-1}x^{-1}$ aya $=xa,$ $yx=a$ ) $=$

( $y,$ $a|ay^{-2}$ aya $=y^{-1}a^{3}y^{-1}a^{2},$ $y^{-1}a^{-1}yaya^{-1}=y^{-1}a^{2}$ ) $=(y,$ $a|ay^{-2}ay=y^{-1}a^{3}y^{-1}a^{3}$ ,
$yay=a^{4})=(y, a|ay^{-3}a^{4}=y^{-1}a^{3}y^{-1}a^{3}, yay=a^{4})=(y,$ $a|ay^{-4}=y^{-1}a^{3}y^{-1}a^{-1}y^{-1}$ ,
$yay=a^{4})=(y, a|y^{-4}=a^{-1}y^{-1}a^{-1}, ayay=a^{5})=(y, a|a^{5}=y^{5}=(ay)^{2})$ is not cyclic
by [12].

If a $=1$ , then $\pi_{1}(M_{A(1)})=(x,$ $y|xyx^{-1}y^{-1}$xyxyx $=xyxyx^{2}yx,$ $xyx^{-1}yxy^{-1}x^{-1}$

$=yx^{2}yx)=(x, y| xyx=yx^{2}yx^{2}yx^{2}y, xyx^{-1}yx=yx^{2}yx^{2}y)=(x,$ $y,$ $a|$ $xyx=a^{3}y$ ,
$xyx^{-1}yx=a^{2}y,$ $yx^{2}=a$ ) $=$ ( $x,$ $y|$ $xax=a^{4},$ xax $ax=a^{3}$) $=(x, a|a^{4}=xax, x^{4}=axa)$

$=(x, a|a^{5}=x^{5}=(ax)^{2})$ is not cyclic by [12], This completes the proof.
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PROOF OF THEOREM 5. Put $A=(rpqs)$ and suppose that $M_{A(a)}$ is homeo-
morphic to a lens space whose fundamental group is a cyclic group of the order
19. Since $|p+s-2|=19,$ $p+s=21$ or $-17$ .

Case (1): $p+s=21$ .
In this case we may put $A=(21r0q),$ $(^{20}rq1),$ $(^{19}rq2),$ $(^{18}rq3),$ $(^{17}r4q),$ $(^{16}rq5)$ ,

$(^{15}rq6),$ $(^{14}r7q),$ $(^{13}r8q),$ $(^{12}rq9)$ or $(^{11}r10q)$ . In any case, $|qr|$ is 1 or a prime

number. By two formulas in the proof of Lemma 4, we may assume $A=$

$(\begin{array}{ll}21 -11 0\end{array})$ . Then by Lemma 5, $a=0$ and $C$ is the knot $K_{1}$ of Proposition 1.

Case (2): $p+s=-17$ .
In this case we may put $A=(-17r0q),$ $(^{-16}r-1q),$ $(^{-15}r-2q),$ $(^{-14}r-3q)$ ,

$(^{-13}r-4q)$ , $(^{-12}r-5q)$ , $(^{-11}r-6q)$ , $(^{-10}r-7q)$ or $(^{-9}r-8q)$ . Then by two

formulas in the proof of Lemma 4, we may assume $A=(\begin{array}{l}-17-10l\end{array})$ or $(\begin{array}{ll}-16 35 -1\end{array})$ .
If $A=(\begin{array}{l}-17-11 0\end{array})$ , then by Lemma 5 $a=0$ and $C$ is the knot $K_{2}$ of Proposition 1.

Suppose $A=(\begin{array}{ll}-16 35 -1\end{array})$ . Since $A=X^{-1}YXYX^{-6},$ $\phi_{*}(x)=f_{*}^{-6}\circ g_{*}\circ f_{*}\circ g_{*}\circ f_{*}^{-1}(x)$

$=xyx^{-6}yx^{-5}yx^{-6}- 6-5$ and $\phi_{*}(y)=x^{6}y^{-1}x^{-1}$ . Then we have $\pi_{1}(M_{A(a)})=(x,$ $y,$ $t,$ $u|t^{-1}xt$

$=xyx$ $yx$ $yx^{-6},$ $t^{-1}yt=x^{6}y^{-1}x^{-1},$ $u^{a}f=1$ , $u=xyx^{-1}y^{-1}$ ). Then by Lemma 1
and Corollary $B,$ $M_{A(a)}$ is not homeomorphic to a lens space for any $a<0$ , because
$\phi$ is of type $\Pi$ . Thus we have $a\geqq 0$ . Put $tu=t$ . Then $\pi_{1}(M_{A(a)})=$

$(x, y, t, u|\tilde{t}^{-1}x\tilde{t}=\phi_{*}(x), \tilde{t}^{-1}yt=\phi_{*}(y), u^{a- 1}\tilde{t}=1, u=xyx^{-1}y^{-1})$ , where $\tilde{\phi}_{*}(x)=$

$u^{-1}xyx^{-6}yx^{-5}yx^{-6}u=yx^{-5}yx^{-5}yx^{-5}yx^{-1}y^{-1}$ and $\phi_{*}(y)=u^{-1}x^{6}y^{-1}x^{-1}u=yxy^{-1}x^{4}y^{-1}$ .
Then $\phi$ is of type I. By Lemma 1 and Corollary $B$ , $M_{A(a)}$ is not homeo-
morphic to a lens space for any $a-1>0$ . Thus we have $0\leqq a\leqq 1$ . If $a=0$ ,
then $\pi_{1}(M_{A(0)})=$ ( $x,$ $y|yx^{-6}yx^{-5}yx^{-6}=1,$ yxyx $=1$ ) $=(x, y|(x^{6}y^{-1})^{3}x^{-1}=1$ ,
$x^{6}y^{-1}=yx)=(x, y|yxyxy=1, x^{6}=yxy)=(x, y|yx^{7}=1, x^{6}=yxy)=Z_{19}$ . By
drawing pictures we can see that $M_{A(0)}$ is homeomorphic to $L(19,3)$ and $C$ is
the knot $K$ illustrated in Figure 4.

If $a=1$ , then $\pi_{1}(M_{A(1)})=(x,$ $y|xyx^{-1}y^{-1}$xyxyx $=xyx^{-6}yx^{-5}yx^{-6}$ ,
$xyx^{-1}yxy^{-1}x^{-1}=x^{6}y^{-1}x^{-1})=(x, y| xyxy^{-1}=yx^{-5}yx^{-5}yx^{-5}, yx^{-5}=xy^{-1}x^{-1})=$

$(x, y, a| xyxy^{-1}=a^{3}, a=xy^{-1}x^{-1}, yx^{-5}=a)=$ ( $x,$ $a|$ xaxa $=a^{3},$ $a=x^{-4}a^{-1}x^{-1}$ )

$=(x, a|a^{4}=xax, x^{-4}=axa)=(x, a|a^{5}=x^{-3}=(ax)^{2})$ is not cyclic by [12].
By the way, by [2] there are five different lens spaces whose fundamental

group is a cyclic group of the order 19, those are $L(19,1)$ , $L(19,2)$ , $L(19,3)$ ,
$L(19,4)$ and $L(19,7)$ . Hence by the above arguments we can see that $L(19,2)$ ,
$L(19,4)$ and $L(19,7)$ do not contain GOF-knots. This completes the proof.
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Now let $L$ be a lens space, then from the arguments in this paper we can
$eas;[y$ see that $L$ contains only finitely many GOF-knots. In fact, it seems that
$L$ does not contain a great many GOF-knots. Tht $s$ we will set up the follow-
ing question.

QUESTION. Are the numbers of GOF-knots in all $\prime_{ens}spa^{\rho\rho}s$ bounded
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