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It is well known that a Riemannian manifold is locally symmetric if and
only if the curvature tensor is parallel. In 1958, W. Ambrose and 1. M. Singer
gave a local characterization of locally homogeneous spaces, which is an
extension of locally symmetric case.

In this note, we consider the following problem,

If the local property of a Riemannian manifold is similar to the above space,
then is it diffeomorphic to the above?

Initiated by H. Rauch, many works for such a kind of problem are de-
veloped. Recently, M. Gromov gave a new aspect and showed a remarkable
theorem. We use this theorem as a main tool. The same method is used in
21, [6l, etc.

For an n-dimensional Riemannian manifold (M, g), we denote by V the
covariant derivative, R=R, the curvature tensor, Kj the sectional curvature,
vol(M) the volume, diam(M) the diameter of M. Let M(n, 4, V, D) be the
category of all complete Riemannian manifolds M with dimension n, | Ky| < A%,
vol(M)=V, diam(M Y<D. We shall prove the following Theorems 1 and 2.

THEOREM 1. Given integers m, n>0 and constants A, V, D>0, there is a
constant 8=0(m, n, A, V, D)>0 depending only on m, n, A, V, D such that if M
M(n, A, V, D) satisfies the condition that |N™R|<4d, then M is diffeomorphic to a
locally symmetric space.

It should be noted that Min-Oo and E. Ruh [13], [14] gave other conditions
of pinching for locally symmetric space. In their assumption, the constant does
not depend on the volume or the injectivity radius. In our case, the almost flat
manifold is an example to show that removing the dependence of the volume is
impossible. This fact is noted by Ruh.

THEOREM 2. Given an integer n>0 and constants A, V, D>0, there is a constant
0=d(n, A, V, D)>0 depending only on n, A, V, D such that if MeWM(n, A,V, D)
has a tensor field T of type (1,2) satisfying the following conditions (x), then M
s diffeomorphic to a locally homogeneous space.
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1) gTxY, TxY)= A
2) 1g(TxY, 2)+g(Y,TxZ2)| =6
(%) @ |xRyyz—[TxY, Ryz]+Rryyvz+Ryryz| <9
@ |xTy—[Tx, Tyl+Tryrl =0
for unit vectors X, Y, Z.

W. Ambrose and I. M. Singer proved that if M satisfies (x) for =0,
then M is isometric to a locally homogeneous space. In this case, T is a differ-
ence between the Levi-Civita connection and the canonical connection of M.
If T=0, then M is locally symmetric.
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and T. Sunada. He also wishes to thank the referee for useful advices.

§1. Preliminaries.

We summarize basic tools for the proof of theorems. Let M(n, 4,7) be
the category of all complete Riemannian manifolds with dimension n, |Kjy|< A*
and the injectivity radius iy=:. For M, M’'eWM(n, 4, i), we recall the definition
of Lipschitz and Hausdorff distances.

DEFINITION ([9]). 1. Lipschitz distance; d. (M, M’).
di(M, M’") = inf(|log(df)|+ logdf™1),
where infimum runs over bi-Lipschitz homeomorphisms f: M—M’ and
df =sup{d(f(x), f(y)/d(x, )| x, yEM, x#y}

and d(x, y) is the distance induced from the Riemannian metric.
2. Hausdorff distance; dgz(M, M’).

du(M, M') = inf(dZ(f(M), " (M"))),

where infimun runs over metric spaces Z with a distance dZ, isometric imbed-
dings f: M—Z, f': M'—Z and

d4(f(M), f'(M")) =max( sup ( inf d(x,y)), sup ( inf d(x, y)).

ref(M) yeEf' (M) yES (M) zEf M)
The following theorems are essential for the proof.

THEOREM A ([9]). M(n, 4,V, D) is precompact with respect to the Haus-
dorff distance.
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THEOREM B ([7], [9], [11], [18]). If {M.}CM(n, A, 7) is a Cauchy sequence
with respect to the Hausdorff distance, then there is a smooth manifold M with
C"*-metric such that

(1) M, is diffeomorphic to M for sufficiently large i,

(ii) limd M;, M) =limdz(M;, M)=0.

THEOREM C. If {M,}CWM(n, 4, 1) is a Cauchy sequence with respect to the
Hausdorff distance and there is a constant A’>0 with |NRy,|<A’, then there
exists a subsequence of {M;} such that the exponential map of M is of class C*.

Theorem C is necessary for the proof of the following theorem. The proof
is essentially contained in [7].

THEOREM D ([12], I, Theorem 3.10). If the exponential map of a Riemannian
manifold M is of class C*, a distance preserving selfmap of M is of class C'.

THEOREM E ([15], p. 200). Let G be a locally compact effective transforma-
tion group of connected C' manifold M and let each transformation of G be of
class C*. Then G is a Lie group and the map GXM—M is of class C'.

§2. Outline of the proof.

Assume that the conclusion of does not hold. Then, there exists
a sequence {M;}CM(n, A, V, D) such that

(1) M, satisfies the condition () in for 0=1/1,

(2) M, is not diffeomorphic to a locally homogeneous space.
From Theorem A, taking a subsequence if necessary, we may assume that {M;}
is a Cauchy sequence with respect to the Hausdorff distance. Then, by Theo-
rems B and C, there is a limit manifold M with the exponential map of class C'.
Assume for a moment the following condition (F) is proved.

(F) The identity component of the group of isometries G, of the universal
covering space M of M acts transitively on M.

Then, by Theorems D and E, G, is a Lie group and M is C'-diffeomorphic to
the homogeneous space G,/K, where K is the isotropy subgroup of G,. Since
M is C=-manifold and G./K is so, these are C>-diffeomorphic. The induced
metric g, of Go/K from C"“-metric is Go-invariant, thus C*. Using Theorem
B, we see M; is diffeomorphic to a locally homogeneous space. This is a con-
tradiction.

To prove (F), we first see that there is a local quasi-isometry from a point
p to ¢ in M by the argument in [12]. Next, extend this local quasi-isometry
to of larger domain by the method of Cartan-Ambrose-Hicks. Finally, Ascoli’s
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theorem implies the condition (F).

Note that the condition |Ky|<A4% and |V™R,|<é’ for m=2 implies |VR|
<0 by interpolation inequality. Thus, the proof of is the special
case of with T=0.

For the sake of the brevity, fix M(n, 4, v, D) or M(n, 4, ;) and a manifold
M always belongs to this category. (Note that by Cheeger’s result, we may
assume M(n, 4, v, D)CM(n, A, i) for some :>0.) The dependence of n, 4, v, D, ¢
in the constants which appear in later abbreviated. Moreover, in the following
sections, we use the same letter ¢ or C in different constants, unless otherwise
stated, 0 (resp. C) appearing in later is smaller (resp. larger) than the previous
one.

§3. Comparison lemmas between the Levi-Civita connection and the
canonical connection.

In later sections, we use two kind of connections. One is the Levi-Civita
connection V and the other is the connection V=V—T, which is the canonical
connection if M is locally homogeneous.

Put the curvature B of ¥, Byy=V:x.y1—[Vx, ¥y] and the torsion S of ¥,
SxY=TxY—-TyX. Then, the condition (x¥) for 4 in is equivalent
to the following condition (**) for some ¢’. Note that d’ tends to zero when 0
tends to zero.

ey 1T =4
) Vgl <&
3) IVR| =0
4 INT| <98 (.e. |VS|<8)
where |-| is the norm induced from Riemannian metric g. (In later, we use

same letter 4 in the conditions (x) and (x*) for simplicity.)

Let /(y) denote the length of a curve y. We call a geodesic, the exponential
map with respect to the connection V (resp. V), V-geodesic (resp. V-geodesic),
V-exp or exp(V) (resp. V-exp or exp(V)) etc. For any points p, g=M, let ﬁ{,q
(resp. P},) be the parallel translation with respect to the connection ¥V (resp. V)
along a curve 7 from p to ¢. In particular, if 7 is minimal V-geodesic then we
denote ﬁpq:ﬁgq (resp. Ppo=2P},).

First we give an estimate of the norm of the V-parallel transformation.

LEMMA 3.1. For any ¢>0 and R>0, there exists a constant 0=0d(e, R)>0

such that if M satisfies the condition (x) or (xx) for 0 and a curve v in M from p
to q satisfies I(7)XR, then
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3.1) [1PLXI—1 < e
for a unit vector X in T,M.
PrROOF. Parametrize 7 by arclength and put thﬁgm,x. Then,
d N
| 78X X)| =218 X, X1 < 2180 Xe, X0 +18(T s Xer X0I)
= 21g(Tf<an, Xl £20g(X,, Xo).

This implies
e < gl X, Xl < et
Hence the conclusion.

Second we give an estimate of the length of V-geodesics.

LEMMA 3.2. For any €>0 and R>0, there exists a constant (e, R)>0 such
that if M satisfies the condition (x) or (%) for & and a N-geodesic v in M with 7(0)
=p, |7(0)| =1, then

i1l =e  for 0<t=R.

Proor. Put f(#)=|7(t)|®. Then,
(%f(l‘) = 12g(V3s7 @), TO)] = 128(Ts5i(®), F)| < 20/°7°(1).

This implies the conclusion.

Third, we estimate the injectivity radius r=r, of M with respect to the
connection V. Note that the connection V is not always complete 2], 1, p.
139). The V-exp can only be defined in the neighborhood of the origin in
general. "

PROPOSITION 3.3. Assume that M satisfies the condition (x) or (xx) for 0.
There exists a constant 0<r=r(8) (<iy) such that exp,(\N) is injectively mapped
onto B.(p).

PROOF. Recall the Jacobi equation with respect to ﬁ,
Vi J+VS(J, O)+R(J, ¢)e =0

where ¢ is V-geodesic. Combining with Lemma 3.2, there exists »,>0 such that
if XeTB, (p), then

(3.3.1) 1/2 < || dxexp,| < 2
and

(3.3.2) exp,(VNT B,,($)) C Biy(p) = B.
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We show that exp,(V)=exp is injective on TB, (p). Assume that there exist
Xi, X,€TB, (p) such that expX,=expX,=¢. Put c¢,t)=exptX,. Since B is
simply connected, there exists a homotopy F(s, #):[0, 11X[0, {,J—B with F{)
=c,(t), F,(t)=cy(t). Since the image of F' is compact, there exists G(s, t):[0, 1]
X[0, I;]>T,M such that exp(G(s, t))=F(s, t). But exp(G(s, [s))=q, this con-
tradicts [3.3.1)

Next, we find that there exists >0 such that B,(p)Cexp(T B, (p)). Take
a minimal V-geodesic ¢,(¢) in TB, (p) with ¢,(0)=p, c,()=g=d(exp(TB.,(p)).
Let cy(t)=exp~'(c,(t)). Then, by Lemma 3.2 and we see

ri S l(cy) =21,
Therefore we get the conclusion by taking »<#,/2.

Finally, we estimate the difference of V-parallel translations and V-parallel
translations. For a curve 7 in M with 7(0)=p, |7@®)|=1, {7)<R and a unit
vector X in T,M, let X,=P},. )X, Y, =P, X.

LEMMA 3.4. lg(X, Y| £24t  for 0<t<R.
PrOOF. By we have

d ~
C_lzg(Xt, Vi) = 1gV;n X, Yol Ig(Vfchc, YOl +18(T X, Yol
= |g<T7(c)Xc, Yol £ A4040) £24.

This implies
lg(Xe, Yo <248, g.e.d.

§4. Construction of local quasi-isometry.

For p, g M, we give a local quasi-isometry ¢ from a neighborhood U of
p to a neighborhood V of ¢q. In the case when M satisfies the condition () for
0=0, the corresponding result is proved in [12], I, p. 256-262. Take a con-
tinuous curve ¢ : [0, /]—M such that 6(0)=p, o(l)=g, l(¢)=I<R and set I="PFs,
We define a map ¢:U=B8,,.(p)—V by ¢=equ(§)oloexpp(ﬁ)“‘, where r=ry.

PROPOSITION 4.1. Given ¢>0 and R>0, there exists 0=0(R, )>0 such that
if M satisfies the conditions (x) or (xx) for 0, then the map ¢ satisfies the fol-

lowing;
(1) P gedep(X)—ddpo PI(X)| < &

(i1) [1dg(X)|—1] <&
for each unit vector X of TpM, where 7 is a N-geodesic from x to p in U.

ProOF. Take V-normal coordinates {x;} at p and {y;} at ¢ such that
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1((0/0x:)5)=(0/0y:)g, g((0/0x:)p, (8/0x5)p)=0:;. Note that x’=yie¢. Let L(M)
be a linear frame bundle over M. We call a section ¢ :U— L(M) is adapted to
the normal coordinates {x;} when ¢(x) is the frame obtained by the V-parallel
translation of the linear frame at the origin along the radial V-geodesic. Let
0=(0"), =", O@=(0%) and Q2=(2¢,) be the canonical form, the connection
form, the torsion form and the curvature form of L(M) respectively. Put

' =0*0 = 3 Atydx?,
0l = g*w'; = ) B;dx*,
4.1.1) — ) 1 . = —
@1' = 0'*@1' = 2 ‘2—31']';301'/\0],
-.Q‘;': == O'*.Qij = 2 %Rijkl—a_k/\gi .
Fix a=(a*, ---, a™), we put
Al =tAY(ta),  B'j() =tB'uta),
Siik = Sijk(ta) ’ Eijkz(t) = Rijkl(ta) .

Then from [12], I, p. 258, Lemma 2, these satisfy the following system of
ordinary differential equations,

dz‘it]/dt = 51']+2 Bi”al—l—z gilm[l"‘jal s
(4.1.2) dBt,/dt = 33 R nA™vat,
Ai0)=0, B;,(0)=0.

Let u(t) be a horizontal lift of a radial V-geodesic c(t)=(ta®) to L(M) with
u(0)=(9/0x"),, ---, (8/0x™),). Then, from [12], I, p. 260, Lemma 1, we have

3 (dS%/d? = |u ()VerS) |2

where u(t) is considered as a linear mapping from R™ to T,,M. Since the
operator norm of u(t) can be estimated by Lemma 3.1, we have that if ¢ is
smaller than » and 4 in Lemma 3.2, then,

4.1.3) | OVexS) £ (LN VS| [e@®)] < (Ler)(1+e)d.
Therefore, taking e<min(1/2r, 1/2), we get

(4.1.4) |S%4(1)—S%54(0)| < 26¢.

Similarly, we also have

(4.1.5) | R?j5.(t)—R;5,(0)| < 26t.

Replace x; by y; in the definition of A%, BY,,, S%:, R, and let A%, By,
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S'i.,, R’%;,, denote the resulting functions respectively. Note that

§%,,(0) = <S(8/8x7, 8/8x*), 8/,

810 = <SU@/x), 13/0x), 10/0:%)
and
R;,.(0) = (R(3/0x, 3/0x*)3/0x", 3/0x*),

R'%;,,(0) = <R(1(/3x%), 1(8/0x*)1(3/dx"), 1(8/0x"))
By an argument similar to the proof of and [(4.1.5), we have
18744(0)—S%4(0)] £ 26R, | R";.(0)—R;5u(0)| < 26R.
Combining with [4.1.4), [4.1.5), we get
(4.1.6) 1S6,(1) =St @) S 46R, R0 ()—R'(0)| < 40R.
Since A?,, A’*;, Bi;, and B’!;, are solutions of (4.1.2), this implies
|Ar (- Al < COR,  |B'(t)—B'ut)| < COR
where a constant C depends only on ¢ and . From (4.1.1), we have
4.1.7) |§i—¢*07| < COR, |w';—¢*@’,| < COR.
By [12], 1, p. 261, we see
c*0(X)=0(cX)=0c(x)'X for XeT, M.
Therefore, from [(4.1.7), we have
lo(x)' X—a(d(x))'dg.(X)] < COR| X|.
This implies
i |o';—¢*w';| < COR
(4.1.8) |dg(V2Y )=V ag, cxrdd(X)| < COR(max(| X, |Y])).
Now we prove (i). Let Y, be a V-parallel vector field along 7. We put
Po=P38de, GO = Pudgrax(Y)—dg(Pl, YD), gt =1G()]?
where 77'(#)=r({—t). Then, from and [4.1.8), we get

-2 40| = |28(-5 (Pudgr¥ ), GO)|

< 24/g(t) |Ptﬁdgﬁr(t)(f(t))dgﬁr(t)(Yt)I
< 2V gt)(| Puddpyey(V3s Y1) | +C I P.|6R)
< 2CV g)IIPI6R < CORV g(t)
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where ||| is the norm of the linear operator, and

g(0)=0.
This implies,
g(t) = (COR)

and shows (i) by taking d<e¢/CR. To prove (ii), we see
[d@(X) =11 £ || Pdd,er(Y )| — 1d(X)] |
+11 Pdg XY — T B5 (X)) |+ 1 1o P35, — 1]
< COoR for |X|=1.

Then taking d<e¢/CR, we get the conclusion.

§5. The extension of quasi-isometry.

In this section we prepare several lemmas for an extension of quasi-isometry
in [Proposition 4.1. The method is similar to the proof of Cartan-Ambrose-Hicks
theorem. For p, g=M with d(p, ¢)<R and x, y= B, ,(p), we define V-geodesics
T1, T2, Ts parametrized by arclength such that 7,(0)=7.0)=p, 1.(l,)=y, 7.(l)=x,

7:(0)=x, 7:(ls)=y. Put
¢ = exp (V) T-exp, (V)"
& = exXPcar(V)e PEI2, o Io Py eexp, (V)

where Izﬁ‘;q in Section 4. Let 75, s be V-geodesics with 73(0)=¢(x), fa(fs)zgo(y)
and 75(0)=g(x), Fs(0)=PgaR <I-P,5(#:(0)). Then,

LEMMA 5.1. For any ¢>0, there exists =0(¢)>0 such that if M satisfies
(x) or (x*) for &, then,

| g(7+(0), F,(0N—1] < e.
Proor. Take a C'-curve 7 in M such that 7(0)=¢(y), #(0)=—de(7:(s)),

())=¢(x), T|c-1/4.01 1S V-geodesic parametrized by proportional to arclength, (not
necessary unit speed) and z(#)=¢(7,(ls—1)) for ¢>0. By [Proposition 4.1}

(5.1.1) -1 se.

By Toponogov’s comparison theorem (hereafter denoted by T.C.T.) ([5]), there
exists a>0 such that [5.1.1) o

(5.1.2) 18(6(0), 75(0))—1] < ¢/10

where ¢ is a V-geodesic from ¢(x) to 7(—a). Let & be a tangent vector at
7(t) of V-geodesic from z(—a) to z(¢t) and let f(#)=g(&,, #(¢)). Then, from the
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fact |V7'|<d and [Proposition 4.1, we see

Vit (D] = [Vagpeoande(7s(D)]
= Iﬁd¢(f3(£))d30(7;3(t))+Tdsp(fs(t))dgo(j’:!(t\/;
< 1de(Vs,c7 5 +d@(T 1, 3(1))
(5.1.3) +1de(Vs 573D =V a8 p(F5(E))|

F1d(T 15T sEN—T apczyedP(73(D) ]

= 1dp(V;yoTs )=V agesyndpl(fa)]
F1do(T 1,057 T a5 d (751

< CRJ.

On the other hand
| g(Vir&e, ()] = |Hess d.c_ay(£(), #(1))] = [Hess d-c_ay (¢ ()", (1)),

where Hess d.c_., is the hessian of the distance function from z(—a) and #()*
is the component normal to & of #(¢). Hence, taking 0<¢ in [Proposition 4.1,
we see, by the hessian estimate [9] or 1.4.4, that

Ig(Vfcofz, ()|

% d(r(—a), =(®))

1 . 201 . .
< )mﬁ— 201" A—g(&:, 2@/ 12D1])).

Note that if >0 is sufficiently small, then
dit(—a), 7)) = @/2  for 0=t
thus, by [(5.1.1)

(5.1.4) PRSI E

a

n ;;1_)(1+5)(1—(1—5)f(t))-

Next we show that [ can be choosed as [=I. By (5.1.3) and [(5.1.4), we find

|70 = 18Tk 2O +18E Tewt )] S CU-A—8)/1)+CRS.
This implies
(5.1.5) I1I—f@#)) < C'Ré  for 0<t</.

Assume that [</. Then, (d/dt)|,_id(z(—a), z()=f()=0. Thus, if we take
d<¢/10C’'R in [5.1.5), then we show that />/ and

(5.1.6) [1—f@®)] £ e/10  for 0<t<].
Since f(\)=g(&, t(1))=g(4(0), dp(75(0))), by [Proposition 4.1,
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|1—g(75(0), dp(7s(0))| < |1—g(6(0), dep(75(0)))]
(5.1.7) : +1g(6(0), dp(7s(0))— g(75(0), dep(75(0)))]
< ¢/104¢/10 < ¢/2.

By Proposition 4.1, there exists >0, if M satisfies (x) or (xx) for §, then

(5.1.8) | 1do(7:(0)] —17:(0)] | < &/2.
Combining and [5.1.8), we get the conclusion. g.e.d.

PROPOSITION 5.2. For any £¢>0 and R>0, there exists =0(e, R)>0 such that
if M satisfies (x) or (xx) for 0, then

dle(y), () e for y=B, (D).

ProoOF. By [Proposition 4.1, there exists 6>>0 such that if M satisfies (%)
or (x*) for 9§, then

(5.2.1) ll;—I] < e, 7.0 —1] < e.

We apply T.C.T. to the triangle with summits ¢(x)=75(0)=75(0), @(y)=7s(l;)
and 7,(/;). Then, using also [5.1.7), we have

(5.2.2) - d(@(y), Tsls)) = d(Fs(ls), 7olls)) = Ce.

Let 75(t) be a V-geodesic with 7,(0)=¢(x)=¢(x) and ?3(f3)=¢(y). If we replace
©, 7s, I to ¢, 7s, ﬁqﬂ‘;‘(’giol oﬁﬁ{l in the proof of Lemma 5.1, then the same argu-
ment yields the following. There exists 6>>0 such that if M satisfies (x) or (sx)
for 4, then

| 2(75(0), 75(0)—1] < ¢.
Combining with Lemma 5.1, by T.C.T., we get the conclusion.

PROPOSITION 5.3. For any ¢>0 and R>0, there exists 0=0d(g, R)>0 such
that if M satisfies (x) or (xx) for 8, then

| Ky @(X), Byeyrpensd (X)) < e
for each unit vector X in T,M, where <(a, b) is the angle between a and b.

PRrOOF. Let 7, be a V-geodesic with 7,(0)=y, 7.(0)=X. Take [,>0 satisfy-
ing z=7,(l)=B,»(p). Let 75, 75 be V-geodesics with 7;(0)=p, 7,0)=x and 7:(;)
=7,ly)=z. Put

b1 = expyoyy (Ve BEIB - Prag eI B, o P, oexp, (1),

B2 = exXPyeyy (Ve By eI B, poexp, (V).

We apply an argument of [Proposition 5.2 successively. Replace the objects in
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[Proposition 5.2 to the three cases by

(1) R—R, p—p, x—3¥, y—z, ¢=¢, (=g, 112Ts, TIT:—11\UT.

(2) R—R, p—p, x—x, y—=z, ¢, ¢, 11—=Ts, T\IIs>7:\JTs.

(8) R—-2R, p—x, x—3, y—=z, @@, Py, 11oTe 117Ul
-7, UaUe(ry). (o is in 1=Pg,.)

Then we have

1) de@), P(2)) = /10
2 dle(2), ¢(2) = &/10
) dg(@), §i(z) = /10

and thus,

(6.3.1) d((2), Pa(2)) < €/2.

Let Xlzﬁ(p(y)?,(y)dy(p(X) and Y,="Pyyyed¢(X). Then by Lemma 3.4 and (5.3.1),
(5.3.2) (XL, V)| = Ae.

Let A, #, v be V-geodesics with A(0)=¢(y), A0)=X,, p0)=¢:(»)=¢(y), £0)=
d (), v(0)=¢:(y)=¢(y) and ¥(0)=d,P(X) and let 7 and 5 be V-geodesics
with @(0)=¢.(y), gl,)=¢.(z), ¥(0)=¢,(y) and 5(/,)=¢(z). We apply an argument
of Lemma 5.1|, replacing 7,, 7s to g, Z and v, §, we see that there exists 0=
d(e, R)>0 such that if M satisfies (*) or (xx) for 0, then

| (0), ZO)] <&,  1X@0), 5O)] <.
By T.C.T., we get

(5.3.3) d(pl,), ¢:1(2)) = Ce, d(v(l,), ¢s(2)) = Ce.
By [5], 1.31 Corollary, we get

(5.3.4) d(A(l,), p) = Ce.
Thus, by [5.3.1), [5.3.3) and [5.3.4), we get '

(5.3.5) d(A(ly), v(l)) = d(AUy), pl)+d(plL), $:(2)

+d(1(2), ¢Pu(2))+d(e(2), v(1,)
< Ce.

Using [Proposition 4.1 and T.C.T., we have

1<0(A0), dyga(XD] < e.
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Note that d,¢u(X)=BgIp-I-P,,(X) for XeT,M, combining with Lemma 3.4
and [Proposition 4.1, we get

< [ (d (X)), XD +(1+e)e

< | 9(d yo(X), AO)| +2e+ | L(Xs, Xy)| < Ce.

Hence we get the conclusion.

LEMMA 5.4, For any ¢>0 and R>0, there exists 0=0d(e, R)>0 such that if
M satisfies (x) or (xx) for 0, then the following holds. Take q., ¢.< B, ;5(p) satisfy-
ing the conditions (1), (2). '

(1) There exist continuous curves o,, g, with {(¢;)£R, (1=1, 2)

| X(Pgs, X, P Ppa, X)) < 0.

(2) d(g, g.) 0.

Put
Qi = equi(V)oﬁggioexpp(‘?)'l =1, 2.

Then, ¢; has the properties that

(a) lld0(X)|—1] e i=1,2,
(b) d(pi(x), pa(x)) Z &,
(©) 1 9(ds0u(X), Pyyiarp,cond (X)) < &,

for unit vector XeT M and x&B.(p).

PrOOF. The conclusion (a) can be proved by the same argument to Prop-
osition 4.1. Put @s=exp,,(V)e Py, °expe,(V)™* and §$,=¢so¢,. By the assump-
tion (1), we see that

(5.4.1) d(:(x), $:(x)) = C8.

To prove (b), we estimate d(y, ¢s(y)). Let ¢, g, be V-geodesics with ¢,(0)=g¢s,,
o.(D)=y, ¢,(0)=¢q, and 02(0):Pq2q1&1(0). By [Lemma 3.4, Proposition 4.1 and [5],
1.31 Corollary, there exists d=d(s, R)>0 such that if M satisfies () or (sx)
for J, then,

I<<Pq2q101(0); quqlo'l(O))E Se,
dlps(), o:()) =&,  d(y, 0:() = d(a:(), a:(1)) S ¢.
Thus, we have

d(y, es(3) < d(y, o.(D)+d(e:(D), ps(¥)) S ¢
Combining with we get the conclusion (b). To prove (c), we put
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Py — engal(x)(ﬁ%ﬁqgﬁa(ﬁx)"ﬁgéfﬁ;;l"expx(ﬁ)—1 ’

O = EXP¢2<x>(‘~7)°ﬁq‘§§a(zzzx>°ﬁgéf-ﬁi;l"eXDx(ﬁ)'l
where 1 is a V-geodesic from p to x. Replace ¢ and ¢ in Proposition 4.2 to
¢, and ¢,, or ¢, and ¢;. We see that there exists 6=d(e, R)>0 such that if M

satisfies (x¥) or (x%) for &, then
dlpi(2), pu(2) S e,  d@u(2), s(2) Z .

By the conclusion (a), we have

d(ps(2), ¢s(2)) < d(@a(2), pi(2)+d(@i(2), ©u(2)+d(@x(2), ¢s(2)
< 2¢+4Co.

Let ui, p, be V-geodesics from ¢,(x)=¢,(x) to ¢,(2), from ¢,(x) to ¢s(x). By
[5], 1.31 Corollary, Lemma 3.4 and Proposition 4.2, combining with (b) there
exists 0=0(s, R)>0 such that if M satisfies (x) or (xx) for 0§, then

| Poyczrg e fa(0)— 20)] < ¢,
| SLUPy 2y, 2> £21(0), ﬁ¢2<x>¢1<x>ﬂ1(0))| Ze,
[(0)—dp(X)]| < e, =1, 2.

Hence the conclusion.

A broken V-geodesic is a continuous curve 7: [0, /]—M such that there
exist 0<ty<--<tn<tny1=! and 7|cs,.:,, 1 is a V-geodesic. Put 7(0)=p and ,y=
7lco.;;30 We define inductively a continuous curve 7 emanating from ¢. Set

7() = exp (V) Toexp, (V) (7 (1)) .
Assume that ;7 has already been defined. Set
@[J] = expif(ti)(‘ﬁ)oﬁ;;’:(ti)gIoﬁ;Z;il)PeeXpr(ti)(ﬁ)_l »
and
T (t) 0<t<t;
OLyIr®)  tisSt<tin.

PROPOSITION 5.5. For any ¢>0 and R>0, there exists 6=d(e, R)>0 such
that if M satisfies (x) or (x*) for 0, then the following holds. If broken V-
geodesics Ty, Y. parametrized by arclength, satisfy

1D r1O)=r0=p, 71ln=2 (G=12),

(2) for broken points 7t ;) (G=1,2, -, n)

71(t1‘+k,1); Tz(ti+k,2) = Brlz(Tj(ti.j)) (k==1),

3) rH =R,
then,

w7 () = {
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(1) d@nl@), Olrd=) < ¢

(i) 1d. 901 ](X)—Pud.O[1.1(X)| < ¢

(iii) [1dOLr;)(x)|—1] <,
for unit vector X&T,M, where ﬁjk is V-parallel translation from @[1,1(z) to
D[r.1(z) along minimal geodesic.

PROOF. Step 1. First we show the result for n=1. Assume that 7,(¢,.)
#74(to.2), T1(t.)=T72(t:,2)=2. Then by Propositions and 5.3, there exists d=
(e, R)>0 such that if M satisfies () or (xx) for d, then

d(O[r;1(2), @Lr:1(2) = €/10, |d.0[7,1(X)—P,;d. 001, 1(X)| < &/10.
Thus

(6.5.1) d(@[1:1(2), OL1:1(2)) < d(D[1:1(2), O[1:1(2)+d(PL71](2), PL71.1(2) < &/5.

On the other hand, by [Proposition 4.1 and (5.5.1), there exists d=0d(s, R)>0,
such that if M satisfies (x) or (%) for 0, then

|P12 PSZX P31X| e/10, |1d.9[r;1(X)|—1] < /10, ||13ij| 1] £ ¢/10.
Hence,
|d.O[7:1(X)— Prud . OL7.1(X)|
< 1400 1(X)—Bod . OL7)(X) | + | Poo(Prae B id ,0[7,1(X)— Pood O 1:1(X)))
+1 By (Prad BL7, 1 X)—d. O 7:1(X))]
< e/1042(14+(e/10)e/10 < ¢
Step 2. Assume that the conclusion holds for n—1. Let 7: [th_y, thl—oM
be a V-geodesic with z(t;_)=71(tn-1.1), Tth)=72n.2). Put @[,_,7:1(z(tr))=2, and

O[,_17:)7:(tn)=2,. Then by the induction hypothesis, there exists d=d(e, R)
>0 such that if M satisfies (x) or (x*) for 4, then

d(z,, z,) < €/10,
(5.5.2) 142, @L-i?: JX)— Py d sy @Laoa?>1(X)| < €/10,
[d:@Ln-111(X)1—1] < &/10.
We put :=71lcep-y 10,0 Oe=T2lttn, 5157 PLa-1710UTU0:1(0:(12)=O[n-11:1\UT U0, ](2)

=z, and O[,_.7.\Ja,J7.()=@[71,1(z)=z,. Apply Step1to tU8, and ¢,. Then
there exists d=a(e, R)>0 such that if M satisfies (¥) or (x*) for J,

d(zs, z,) < €/10,
1,00 n71UtU8,1(X)—P, ..d. 001 1(X)| < &/10,
(5.5.3) [1d, @[\ Ve, J(X)]|—1] < ¢/10,
11d. 01Ut U0,1(X)|—1| < ¢/10.
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We apply Proposition 5.4 for ¢,=z,, g;=z,. Put @7, ](7::)=P[1.1(z2)=2zs.
From [5.5.2), there exists d=0d(e, R)>0 such that if M satisfies (¥) or (xx) for
J, then :

d(zs, z5) = ¢/10,
(5.5.4)
d@[n—lrl\JTUﬁz](X)l =< ¢/10.

| d.@[7.1(X)— P,

523

Therefore, by [Proposition 4.1, there exists 6=4d(e, R)>0 such that if M satisfies
(%) or (x%) for ¢, then

d(O[71:1(2), OL7:1(2)) = d(z4, z5)+d(zs, 25) < €/5,
|B,,0o Py d OL7:1(X)— B, 4. 0171 1(X)] < ¢/10.
Hence we get, from [5.5.3), (5.5.4) and (5.5.5),
|01 1 X)—Poud OL7:1(X))]
= d,0[1:1(X)—P..,d.0[1.1(X)|
< 140071 X)— P,y d DL noarUT U0, 1(X)|
+1P,.,d. B0\ UT U0, X)—P, . P, d.0[1,](X)]
1 Prge Prysyd O 1 X)— P d OT7:1(X)]
< ¢/10+¢/5+e/10 < &.

(5.5.5)

[Proposition 4.1 implies (iii). g.e.d.

§6. Proof of Theorem 2.

As we show in Section 2, it sufficies to prove (F). Fix p, qe]\7[, we prove
that there exists a distance-preserving map @ of M with ®(p)=g. Let f;
be a diffeomorphism from J\7[i to M. Choose r/10-dense, »/100-discrete subset
N={p,} in M. Fix xM and choose a sequence J={p;}7,CN such that

(6.1) d(p, p) < 7/10, d(ps, pses) = 7/10, d(pm, x) < 7/10.
Let 7 a broken geodesic in M, with broken points {p;}. We define
O = foo@[r*]-fi.

Then, {@{} are equicontinuous and uniformly bounded on f;"*(B,(p;) by
Theorem B. Hence Ascoli’s theorem implies that there exists a limit @7. By
IProposition 5.5, @7 is local distance preserving map on B,,(p.). In the fol-
lowing, we show that @7 is independent of choosing,

@ 7,
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@ J.

(1) can immediately follow. To prove (2), we take sequences Ji={p;} and J,=
{g:x} satisfying the above condition [6.I). Since M is simply connected, we can
choose sequences J[n], n=1, 2, ---, [ such that

JInl=Apsa}, JOI=J, JUI=],

Divitnan € Briolpin), Jh,n'==%x1.

From [Proposition 5.5, we see,

lim d(@{™(x), @Jr+1N) =0,
Thus, @/1=@72, This implies (2). So we can define a map @=@’ globally.
Finally we show that there exists ¥=G, with ¥(p)=q. Let o) be a V-
geodesic with ¢(0)=p, a(1)=¢. Then, we can define a map @, by replacing ¢
in the definition of @ to ¢,=¢(). Note that @,=@. If we put ¥=0-0,*,
then ¥<G,. q.e.d.

§7. Proof of Theorem 1.

By the interpolation inequalties ([10], 12.1 Theorem and 12.5 Corollary), we
see |VR|ZC,|V™R|*™ for some constant C,. Thus it suffices to prove in the
case m=1. Substitute T=0 in [Theorem 2. Then the limit manifold M is
(C*=-)locally homogeneous space. To see that M is locally symmetric, it sufficies
to see that the geodesic symmetry of a neighborhood of a point of M; converges
to the geodesic symmetry of a neighborhood of M and that the limit is an iso-
metry. g.e.d.
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