Stiefel-Whitney homology classes and homotopy type of Euler spaces

By Akinori MATSUI and Hajime SATO

(Received May 28, 1984)

1. Introduction.

In this paper, we construct Euler spaces in fixed homotopy types such that the Stiefel-Whitney homology classes are equal to given homology elements. As a byproduct, we obtain counterexamples to Halperin's conjecture (Fulton-MacPherson [4]).

Let X be a locally compact n-dimensional polyhedron. For a point x in X, let $\chi(X, X-x)$ denote the Euler number of the pair (X, X-x). The polyhedron X is called an *integral Euler space* (resp. $mod\ 2$ Euler space) if for each x in X, $\chi(X, X-x)=(-1)^n$ (resp. $\chi(X, X-x)\equiv 1\pmod 2$) (Halperin and Toledo [6]). Sullivan [9] has shown that complex analytic spaces (resp. real analytic spaces) are integral Euler spaces (resp. $mod\ 2$ Euler spaces).

Let K' denote the barycentric subdivision of a triangulation K of a polyhedron X. If X is a mod 2 Euler space, the sum of all k-simplexes in K' is a mod 2 cycle and defines an element $s_k(X)$ in $H_k(X; \mathbf{Z}_2)$ (cf. [6]). Note that, if X is not compact, we consider the homology of infinite chains. The element $s_k(X)$ is called the k-th Stiefel-Whitney homology class of X. If X is connected and compact, $s_0(X)$ is the mod 2 reduction of the Euler number $\chi(X)$, where we identify $H_0(X; \mathbf{Z}_2)$ with \mathbf{Z}_2 . If X is a smooth manifold, PL-manifold, or \mathbf{Z}_2 -homology manifold, the class $s_k(X)$ is known to be equal to the Poincaré dual of the Stiefel-Whitney cohomology class $w^{n-k}(X)$ (Cheeger [3], Halperin-Toledo [6], Taylor [10], Blanton-McCrory [2], Veljan [11], Matsui [8]). Consequently, for such spaces, the Stiefel-Whitney homology classes $s_*(X)$ are homotopy type invariant. For further properties of Stiefel-Whitney homology classes, see [1], [7].

A polyhedron X is called purely n-dimensional if the union of all n-simplexes in a triangulation of X is dense in X. We have the following concerning mod 2 Euler spaces:

THEOREM 1. Let X be a purely n-dimensional mod 2 Euler space and let a_i , for $i=1, 2, \dots, n-1$, be elements in $H_i(X; \mathbf{Z}_2)$. Then there exist a purely n-dimensional mod 2 Euler space Y and a homotopy equivalence $h: X \rightarrow Y$ such that $h_*(a_i) = s_i(Y)$ for $i=1, 2, \dots, n-1$ and $h_*s_n(X) = s_n(Y)$.

Let $\beta: H_i(X; \mathbf{Z}_2) \to H_{i-1}(X; \mathbf{Z}_2)$ be the Bockstein homomorphism associated with the exact sequence $0 \to \mathbf{Z}_2 \to \mathbf{Z}_4 \to \mathbf{Z}_2 \to 0$. For an integral Euler space X, we have $s_{i-1}(X) = \beta s_i(X)$ if n-i is even (Halperin-Toledo [6]). Thus we have relations among the Stiefel-Whitney homology classes of an integral Euler space. In particular $\chi(X)=0$ for a compact integral Euler space X of odd dimension.

The following holds for integral Euler spaces:

THEOREM 2. Let X be a purely n-dimensional integral Euler space and let a_i , for $i=1, 2, \cdots, n-2$, be elements in $H_i(X; \mathbf{Z}_2)$ such that $a_{i-1}=\beta a_i$ if n-i is even. Then there exist a purely n-dimensional integral Euler space Y and a homotopy equivalence $h: X \to Y$ such that $h_*(a_i) = s_i(Y)$ for $i=1, 2, \cdots, n-2$, $h_*(s_{n-1}(X)) = s_{n-1}(Y)$ and $h_*(s_n(X)) = s_n(Y)$.

Note that, if X is an integral n-dimensional Euler space, and if n-k is odd, then we have the integral Stiefel-Whitney homology class $S_k(X)$ in $H_k(X; \mathbf{Z})$ such that $s_k(X)$ is the mod 2 reduction of $S_k(X)$. Let $\tilde{\beta}: H_k(X; \mathbf{Z}_2) \to H_{k-1}(X; \mathbf{Z})$ be the Bockstein homomorphism associated with the exact sequence $0 \to \mathbf{Z} \to$

A special case of our result has been given by Goldstein [5].

In the book [4], Fulton and MacPherson defined the notion of a homologically normally nonsingular map. As an analogy to the Riemann-Roch formula for singular algebraic spaces, they introduced Halperin's conjecture ([4, p. 112]):

If $f: X \rightarrow Y$ is a homologically normally nonsingular map of mod 2 Euler spaces, then

$$s_*(X) = [wN_f]^{-1} \cap f! s_*(Y),$$

where $[wN_f]^{-1}$ is the inverse of the Stiefel-Whitney cohomology class of the normal space of f defined by Thom's formula using the Steenrod squares.

Our construction gives examples where the relation does not hold.

Although the proofs of Theorems 1 and 2 are similar, we first give the proof of Theorem 1 in Section 2, since it is much simpler. In Section 3, we give the proof of Theorem 2 assuming Proposition 3.1. We prepare some elementary lemmas in Section 4 and the proof of Proposition 3.1 is given in Section 5. In Section 6, we explain Halperin's conjecture and give concrete counterexamples to this conjecture.

NOTATION AND PRELIMINARIES. If K is a simplicial complex, the underlying topological space |K| is called a polyhedron, and K is said to be a triangulation of X=|K|. We denote by $K^{(i)}$ the set of i-simplexes in K and put $K^i=\bigcup_{j\leq i}K^{(j)}$. By a simplex, we mean the closed one. We write $\operatorname{Int} \sigma$ for the interior of a simplex σ and put $\partial \sigma = \sigma - \operatorname{Int} \sigma$. We write $K(\sigma)$ for the simplicial complex consisting of all faces of σ . For two simplexes σ and τ , the relation $\sigma \leq \tau$ means

that σ is a face of τ and $\sigma < \tau$ means that σ is a proper face of τ . We write $K(\partial \sigma)$ for the simplicial complex $\{\tau \mid \tau < \sigma\}$. For a simplex σ in K, we define $\operatorname{st}(\sigma, K)$, $\operatorname{lk}(\sigma, K)$, and $\partial \operatorname{st}(\sigma, K)$ as follows;

$$\begin{split} &\operatorname{st}(\sigma,\ K) = \{\mu \in K \mid \exists \tau \geq \sigma,\ \mu \leq \tau\},\\ &\operatorname{lk}(\sigma,\ K) = \{\mu \in K \mid \exists \tau > \sigma,\ \mu < \tau,\ \mu \cap \sigma = \emptyset\},\\ &\partial \operatorname{st}(\sigma,\ K) = \{\mu \in \operatorname{st}(\sigma,\ K) \mid \sigma \text{ is not a face of } \mu\}. \end{split}$$

Let x be a point in the polyhedron X=|K|. There exists a simplex σ in K such that $x \in \text{Int } \sigma$. Put p=dimension of σ . Then $\partial \operatorname{st}(\sigma, K)$ is homeomorphic to the join $\partial \sigma *\operatorname{lk}(\sigma, K)$ and, for any ring A, we have the natural isomorphisms

$$\begin{split} H_i(X, \ X-x \ ; \ A) &= H_i(\mathrm{st}(\sigma, \ K), \ \partial \, \mathrm{st}(\sigma, \ K) \ ; \ A) \\ &= \widetilde{H}_{i-1}(\partial \, \mathrm{st}(\sigma, \ K) \ ; \ A) \\ &= \widetilde{H}_{i-p-1}(\mathrm{lk}(\sigma, \ K) \ ; \ A) \, . \end{split}$$

LEMMA 1.1. Let σ be a p-simplex of a simplicial complex K and let x be a point in X=|K| such that $x \in \text{Int } \sigma$. Then

$$\chi(X, X-x) = (-1)^{p} (1 - \chi(\operatorname{lk}(\sigma, K)),$$

$$\chi(X, X-x) = 1 + \chi(\operatorname{lk}(\sigma, K)) \quad \text{mod } 2.$$

In particular, X is a mod 2 Euler space if and only if $\chi(lk(\sigma, K)) \equiv 0 \mod 2$ for any $x \in X$ such that $x \in Int \sigma$.

By a p-disc, we mean a polyhedron homeomorphic to a p-simplex. If D is a p-disc, the boundary ∂D is homeomorphic to S^{p-1} . For a simplex σ , we denote by b_{σ} the barycenter of σ .

2. Proof of Theorem 1.

The construction of the mod 2 Euler space Y is given by the repetition of the following simple procedure. Let X be a polyhedron and let σ be a k-simplex of a triangulation K of X. Choose a k-simplex τ in K such that $\sigma \cap \tau$ is a vertex. Let $f: \sigma \to \tau$ be a linear homeomorphism such that $f \mid \sigma \cap \tau$ is the identity. We give an equivalence relation in X by $f(x) \sim x$ and denote by X_f the quotient space. We denote by π_f the projection $X \to X_f$. Obviously we have the following:

LEMMA 2.1. The projection $\pi_f: X \rightarrow X_f$ is a homotopy equivalence.

By subdividing sufficiently finely, we may assume that there exists a triangulation K_f of X_f and $\pi_f: K \to K_f$ is a simplicial map such that σ and τ are simplexes in K. For a simplex μ such that $\mu \le \sigma$, we denote by $[\mu]$ the simplex

 $\pi_f(\mu)$ in K_f .

LEMMA 2.2. The following holds:

- (1) $\chi(\mathrm{lk}(\lceil \sigma \rceil, K_f)) = \chi(\mathrm{lk}(\sigma, K)) + \chi(\mathrm{lk}(\tau, K)),$
- (2) $\chi(\operatorname{lk}([\mu], K_f)) = \chi(\operatorname{lk}(\mu, K)) + \chi(\operatorname{lk}(f(\mu), K)) 1$ if $\mu < \sigma, \mu \neq \sigma \cap \tau$,
- (3) $\chi(\operatorname{lk}([\sigma \cap \tau], K_f)) = \chi(\operatorname{lk}(\sigma \cap \tau, K)) 1.$

PROOF. This is easy by counting the number of simplexes in the links.

LEMMA 2.3. Let K be a purely k-dimensional locally finite simplicial complex. For an i-simplex τ in the barycentric subdivision K' of K with $i \leq k-2$, the number of k-simplexes σ in K' such that $\sigma > \tau$ is even.

PROOF. It is sufficient to prove the case where K is a k-simplex Δ . prove it by an induction on the dimension of Δ . If dim $\Delta=1$, there is nothing to prove. Suppose that the lemma holds for dim $\Delta < k$. Let Δ be a k-simplex and let b_{Δ} be the barycenter of Δ . The barycentric subdivision $K(\Delta)'$ of $K(\Delta)$ is equal to the cone $b_d*K(\partial \Delta)'$. Note that, if $\sigma > \tau$, $\sigma \in K'$, then $\sigma \in st(\tau, K')$. If τ is not contained in $K(\partial \Delta)'$, then there exists an (i-1)-simplex μ in $K(\partial \Delta)'$ such that $\tau = b_{\Delta} * \mu$. The number of k-simplexes in $st(\tau, K(\Delta)')$ is equal to the number of (k-1)-simplexes in $st(\mu, K(\partial \Delta)')$, which is even by the induction hypothesis. Now suppose that τ is a simplex in $K(\partial \Delta)'$. The number of k-simplexes in $\operatorname{st}(\tau, K(\Delta)')$ is equal to that of (k-1)-simplexes in $\operatorname{st}(\tau, K(\partial \Delta)')$. If i=k-2, then the number of (k-1)-simplexes in $\operatorname{st}(\tau, K(\partial \Delta)')$ is equal to two, since $K(\partial \Delta)'$ is a (k-1)-dimensional manifold. If i < k-2, then, by the induction hypothesis, we know that the number of (k-1)-simplexes in $st(\tau, K(\partial \Delta)')$ is even. This completes the proof.

LEMMA 2.4. Let $h: X \rightarrow Y$ be a PL-map of mod 2 Euler spaces X and Y. Let K and L be triangulations of X and Y such that h is a simplicial map. Let α be a homology class in $H_k(X; \mathbb{Z}_2)$ represented by a mod 2 cycle $c = \sum_p \sigma_p$, where σ_p are k-simplexes in K. Suppose that $h \mid (X - \bigcup_p \operatorname{Int} \sigma_p - |K^{k-1}|) : X - \bigcup_p \operatorname{Int} \sigma_p - |K^{k-1}| \rightarrow Y - |L^{k-1}|$ is a bijection. Then $h_*: H_*(X; \mathbb{Z}_2) \rightarrow H_*(Y; \mathbb{Z}_2)$ satisfies the relations $h_*(s_i(X)) = s_i(Y)$ for i > k and $h_*((s_k(X) - \alpha) = s_k(Y)$.

PROOF. Consider the mod 2 chain map $h_*: C_i(K') \to C_i(L')$ associated with $h: K' \to L'$. Then

$$h_{\#}(\sum_{\sigma \in K'(i)} \sigma) = \sum_{\tau \in L'(i)} \tau$$

for i > k and

$$h_{\#}(\sum_{\sigma \in L'(k)} \sigma - \sum_{q} \sigma'_{q}) = \sum_{\tau \in L'(k)} \tau$$

where $\sum_{q} \sigma'_{q}$ is the mod 2 k-chain in K' consisting of all k-simplexes in $|c| = \bigcup_{p} |\sigma_{p}|$. Hence $h_{*}(s_{i}(X)) = s_{i}(Y)$ for i > k and $h_{*}(s_{k}(X) - \alpha) = s_{k}(Y)$.

RROPOSITION 2.5. Let X be a purely n-dimensional $\operatorname{mod} 2$ [Euler space and let a be an element in $H_k(X; \mathbb{Z}_2)$ for 0 < k < n. Then there exist a purely n-dimensional $\operatorname{mod} 2$ Euler space Y and a homotopy equivalence $h: X \to Y$ such that $h_*(a) = s_k(Y)$ and $h_*(s_i(X)) = s_i(Y)$ for i > k.

PROOF. Let T be a triangulation of X. Let $\Sigma \alpha_p$ be a mod 2 cycle which represents $s_k(X)-a$, where α_p are k-simplexes in T. Let K be the simplicial complex consisting of all faces of all α_p . We subdivide T' as follows. To each p-simplex μ of T' ($p \ge k+1$), star μ at the barycenter b_μ . Then K' remains unchanged under the subdivision. Repeating this subdivision twice, we get a subdivision T_0 of T' which satisfies the following. Corresponding to each k-simplexes σ_i in K', we can choose a k-simplex τ_i in T_0 such that

- (1) $\sigma_i \cap \tau_i$ is a vertex, say v_i ,
- (2) $(\tau_i v_i) \cap (\sigma_i v_i) = \emptyset$ for all i, j,
- (3) $(\tau_i v_i) \cap (\tau_j v_j) = \emptyset$ for $i \neq j$.

Let $f_i:\sigma_i\to\tau_i$ be a linear homeomorphism such that $f_i(v_i)=v_i$. Give an equivalence relation in X by $f_i(x)\sim x$ for some i. Let X_α be the quotient space and let $\pi_\alpha:X\to X_\alpha$ be the projection. We may assume that there exist a subdivision L of T_0 and a triangulation L_α of X_α such that $\pi_\alpha:L\to L_\alpha$ is a simplicial map. Since L is locally finite, the map $\pi_\alpha:X\to X_\alpha$ is a homotopy equivalence by Lemma 2.1. Now we see that X_α is a mod 2 Euler space. Recall that X_α is a mod 2 Euler space if $\chi(\operatorname{lk}(\sigma,L_\alpha))\equiv 0\pmod 2$ for any simplex σ in L_α . From Lemma 2.3 and the fact that $\Sigma\alpha_p$ is a mod 2 cycle, we infer that the number of k-simplexes τ in K' such that $\tau>\sigma$ is even for any i-simplex σ in K' if i< k. If $0<\dim\sigma< k$, from (2) of Lemma 2.2, we see that

$$\chi(\operatorname{lk}([\sigma], L_{\alpha})) \equiv \sharp \{\tau \in K' \mid \dim \tau = k, \tau > \sigma\} \qquad (\text{mod } 2).$$

If dim $\sigma=0$, from (2) and (3) of Lemma 2.2, we also have the equation

$$\chi(\operatorname{lk}([\sigma], L_{\alpha})) \equiv \sharp \{\tau \in K' \mid \dim \tau = k, \tau > \sigma\}$$
 (mod 2).

From (1) of Lemma 2.2, we have $\chi(\operatorname{lk}[\sigma], L_{\alpha}) \equiv 0 \pmod{2}$ if $\dim \sigma = k$. Consequently, we obtain that X_{α} is a mod 2 Euler space. By Lemma 2.4, $h_*(s_i(X)) = s_i(X_{\alpha})$ for i < k and $h_*(s_k(X) - \alpha) = s_k(X_{\alpha})$. Since $s_k(X) - \alpha = a$, putting $Y = X_{\alpha}$ and $h = \pi_{\alpha}$, we get a mod 2 Euler space Y and a homotopy equivalence $h: X \to Y$ satisfying the required properties. The proof is complete.

Using Proposition 2.5, we easily get the proof of Theorem 1.

PROOF OF THEOREM 1. By Proposition 2.5, we have a purely *n*-dimensional mod 2 Euler space Y_1 and a homotopy equivalence $h_1: X \to Y_1$ such that $(h_1)_*(a_{n-1}) = s_{n-1}(Y_1)$ and $(h_1)_*(s_n(X)) = s_n(Y_1)$. Iterating this construction, we obtain purely *n*-dimensional mod 2 Euler spaces Y_1, Y_2, \dots, Y_{n-1} and homotopy equivalences

 $h_j: Y_{j-1} \rightarrow Y_j, \ 2 \leq j \leq n-1$, such that

$$(h_j)_*(s_i(Y_{j-1})) = s_i(Y_j)$$
 $i > n-j$,
 $(h_j)_*((h_{j-1}h_{j-2}\cdots h_1)_*(a_{n-j})) = s_{n-j}(Y_j)$.

Put $Y = Y_{n-1}$ and $h = h_{n-1}h_{n-2}\cdots h_1$. Then the homotopy equivalence $h: X \to Y$ satisfies the required properties. This completes the proof of Theorem 1.

3. Proof of Theorem 2.

Let K be a locally finite k-dimensional simplicial complex. We say that K is a k-dimensional pseudo-Euler complex if, for any (k-1)-simplex σ in K, $\mathrm{lk}(\sigma,K)$ is nonvoid and consists of even vertices. Note that a classical pseudomanifold is a complex K such that $\mathrm{lk}(\sigma,K)$ consists of two vertices for any (k-1)-simplex σ of K.

Let K be a k-dimensional pseudo-Euler complex. We define a set AK for K by $AK = \{(x, \sigma) \in |K| \times K^{(k)} \mid x \in \sigma\}$. A map $Asg: AK \to \{-1, 0, 1\}$ is called an attachment signal of K, if for each k-simplex σ in K, there exist proper faces τ and μ of σ such that $\sigma = \tau * \mu$ satisfying the following conditions:

AS 1. Asg
$$(x, \sigma) = 0$$
 for x in Int σ ,
or x in $|\partial \operatorname{st}(\tau, \partial \sigma)| = |\partial \operatorname{st}(\mu, \partial \sigma)|$.

AS 2. Asg $(x, \sigma) = \begin{cases} \varepsilon & \text{for } x \text{ in } |\operatorname{st}(\tau, \partial \sigma)| - |\partial \operatorname{st}(\tau, \partial \sigma)|, \\ -\varepsilon & \text{for } x \text{ in } |\operatorname{st}(\mu, \partial \sigma)| - |\partial \operatorname{st}(\mu, \partial \sigma)|, \end{cases}$
where $\varepsilon = \pm 1$.

Note that $|\operatorname{st}(\tau, \partial \sigma)|$ and $|\operatorname{st}(\mu, \partial \sigma)|$ are (k-1)-discs in $\partial \sigma$.

Let Asg be an attachment signal of a k-dimensional Euler complex K. For a subcomplex L of K and a point x in |L|, we write $Asg(x, L) = \sum Asg(x, \sigma)$, where σ runs over all k-simplexes in L such that $x \in \sigma$.

We have the following proposition, whose proof is given in Section 5 after preparations in Section 4.

PROPOSITION 3.1. Let K be a k-dimensional pseudo-Euler complex. Then there exists an attachment signal Asg of the barycentric subdivision K' satisfying the relation

$$\operatorname{Asg}(x, K') \left(= \sum_{x \in \sigma \in K'} \operatorname{Asg}(x, \sigma) \right) = 0,$$

for all x in |K'|.

In the rest of this section, we prove Theorem 2 by assuming Proposition 3.1. We need Proposition 3.1 when we prove Proposition 3.4.

Let X be a locally compact n-dimensional polyhedron. Let D and E be k-discs in X such that $D \cap E$ is a (k-1)-disc, and let $f: D \to E$ be a PL-homeomorphism such that $f|D \cap E$ is the identity. We give an equivalence relation in X by $f(x) \sim x$ and denote by X_f the quotient space. Let $\pi_f: X \to X_f$ be the projection. By subdividing sufficiently finely, we may assume that there exist triangulations T and T_f of X and X_f such that π_f is a simplicial map and that D, E, and $D \cap E$ are subpolyhedra in |T|. In the following, we also write D, E, and $D \cap E$ for the subcomplexes of T determining D, E, and $D \cap E$.

Obviously the following holds.

LEMMA 3.2. The projection $\pi_f: X \to X_f$ is a homotopy equivalence. Denote by [x] the point $\pi_f(x)$ in X_f . We have the following.

LEMMA 3.3. Assume that $\chi(X, X-x)=(-1)^n$ for all x in $E-D\cap E$. If n-k is even, then

$$\chi(X_f, X_f - [x]) - \chi(X, X - x) = \begin{cases} 0 & \text{for } x \in \text{Int } D, \\ (-1)^k & \text{for } x \in \partial D - D \cap E, \\ (-1)^{k-1} & \text{for } x \in \text{Int}(D \cap E), \\ 0 & \text{for } x \in \partial(D \cap E). \end{cases}$$

PROOF. Let σ be a simplex in D such that $x \in \operatorname{Int} \sigma$ and put $i = \dim \sigma$. Let $[\sigma]$ denote the i-simplex $\pi_f(\sigma)$ in T_f . Since $\chi(X, X - x) = (-1)^i (1 - \chi(\operatorname{lk}(\sigma, T)))$, for any polyhedron X = |K| and i-simplex σ in X such that $x \in \operatorname{Int} \sigma$, by Lemma 1.1, we study $\operatorname{lk}(\sigma, T)$ and $\operatorname{lk}([\sigma], T_f)$. Firstly, assume that $\operatorname{Int} \sigma \subset D - D \cap E$. Then $\operatorname{lk}([\sigma], T_f)$ is equal to the union $\operatorname{lk}(\sigma, T) \cup \operatorname{lk}(f(\sigma), T)$ under the identification of $\operatorname{lk}(\sigma, D)$ with $\operatorname{lk}(\sigma, E)$. Noting that $\operatorname{lk}(\sigma, D) \cap \operatorname{lk}(\sigma, E) = \operatorname{lk}(\sigma, D \cap E) = \emptyset$, we obtain that

$$\chi(\operatorname{lk}[\sigma], T_f) - \chi(\operatorname{lk}(\sigma, T)) = \chi(\operatorname{lk}(f(\sigma), T)) - \chi(\operatorname{lk}(\sigma, D)).$$

By the assumption $\chi(X, X-x) = (-1)^n$ for $x \in E-D \cap E$, we have $\chi(\operatorname{lk}(f(\sigma), T) = 1 - (-1)^{n-i}$. Obviously we have

$$\chi(\operatorname{lk}(\sigma, D)) = \begin{cases} 1 - (-1)^{k-i} & \text{if } \operatorname{Int} \sigma \in \operatorname{Int} D, \\ 1 & \text{if } \operatorname{Int} \sigma \in \partial D - D \cap E. \end{cases}$$

Applying Lemma 1.1, we obtain the first and the second equations of the lemma. Secondly, assume that $\sigma \in D \cap E$. Then $lk([\sigma], T_f)$ is equal to the space made from $lk(\sigma, T)$ under the identification of $lk(\sigma, D)$ with $lk(\sigma, E)$. Noting that $lk(\sigma, D) \cap lk(\sigma, E) = lk(\sigma, D \cap E)$, we obtain

$$\chi(\operatorname{lk}([\sigma], T_f)) - \chi(\operatorname{lk}(\sigma, T)) = \chi(\operatorname{lk}(\sigma, D \cap E)) - \chi(\operatorname{lk}(\sigma, D)).$$

Since $\sigma \in D \cap E \subset \partial D$, we have $\chi(lk(\sigma, D)) = 1$ and

$$\chi(\operatorname{lk}(\sigma, D \cap E)) = \begin{cases} 1 - (-1)^{k-i} & \text{if } \operatorname{Int} \sigma \in \operatorname{Int}(D \cap E), \\ 1 & \text{if } \operatorname{Int} \sigma \in \partial(D \cap E). \end{cases}$$

Applying Lemma 1.1, we obtain the third and the fourth equations of the lemma. The proof is complete.

Assuming Proposition 3.1, we have the following.

PROPOSITION 3.4. Let X be a purely n-dimensional integral Euler space and let a be an element in $H_k(X; \mathbf{Z}_2)$. If n-k is even, $k \neq 0$ and $k \neq n$, then there exist a purely n-dimensional integral Euler space Y and a homotopy equivalence $h: X \rightarrow Y$ such that $h_*(a) = s_k(Y)$ and $h_*(s_i(X)) = s_i(Y)$ for i > k.

PROOF. Let α be the element $s_k(X)-a$ in $H_k(X; \mathbf{Z}_2)$ and let $\sum_p \alpha_p$ be a mod 2 cycle representing α , where α_p are k-simplexes of a triangulation T of X. Let K be the simplicial complex consisting of all faces of all α_p . Since $\sum_p \alpha_p$ is a mod 2 cycle, K is a k-dimensional pseudo-Euler complex. By Proposition 3.1, there exists an attachment signal Asg of the barycentric subdivision K' of K such that $\operatorname{Asg}(x, K') = 0$ for all x in |K'|. We construct an integral Euler space X_α according to the attachment signal Asg. To each k-simplex σ_j in K', choose a k-disc D_j in X satisfying the following conditions:

(1) $\sigma_j \cap D_j$ is a (k-1)-disc such that

Asg
$$(x, \sigma_j) = -1$$
 for $x \in \text{Int}(\sigma_j \cap D_j)$,
Asg $(x, \sigma_j) = 1$ for $x \in \sigma_j - (\sigma_j \cap D_j)$.

(2)
$$(\sigma_i - (\sigma_i \cap D_i)) \cap (D_i - (\sigma_i \cap D_i)) = \emptyset$$
 for any j, i .

(3)
$$(D_j - (\sigma_j \cap D_j)) \cap (D_i - (\sigma_i \cap D_i)) = \emptyset$$
 for $j \neq i$.

Then there exists a PL-homeomorphism $f_j: \sigma_j \to D_j$ for each j such that $f_j | \sigma_j \cap D_j$ is the identity. We give an equivalence relation in X by $x \sim f_j(x)$ for some j. Denote by X_α the quotient polyhedron. By Lemma 3.2, the projection $h: X \to X_\alpha$ is a homotopy equivalence. For any x in X, denote by [x] the point h(x) in X_α . From Lemma 3.3, we obtain that

$$\chi(X_{\alpha}, X_{\alpha} - [x]) - \chi(X, X - x) = (-1)^k \sum \operatorname{Asg}(x, \sigma_i),$$

where σ_j runs over all k-simplexes in K' such that $x \in \sigma_j$. Then the equation $\operatorname{Asg}(x, K) = 0$ implies that X_α is an integral Euler space. By Lemma 2.4, we have $h_*(s_i(X)) = s_i(X_\alpha)$ for i > k and $h_*(s_k(X) - \alpha) = s_k(X_\alpha)$. Since $\alpha = s_k(X) - a$, putting $Y = X_\alpha$, we get an integral Euler space Y and a homotopy equivalence $h: X \to Y$ satisfying the required properties. This completes the proof.

Using Proposition 3.4, we can prove Theorem 2 under the assumption of Proposition 3.1.

PROOF OF THEOREM 2. Since we have the relation $s_{i-1}(Y) = \beta s_i(Y)$ if n-i is even, for n-dimensional integral Euler space Y, it is sufficient to construct a purely n-dimensional integral Euler space Y and a homotopy equivalence $h: X \to Y$ such that $h_*(a_i) = s_i(Y)$ for any i > 0 such that n-i is even. By Proposition 3.4, we have a purely n-dimensional integral Euler space Y_1 and a homotopy equivalence $h_1: X \to Y_1$ such that

$$(h_1)_*(s_i(X)) = s_i(Y_1)$$
 for $n \ge i > n-2$,
 $(h_1)_*(a_{n-2}) = s_{n-2}(Y)$.

Since $a_{n-3}=\beta a_{n-2}$, we have $(h_1)_*(a_{n-3})=s_{n-3}(Y)$. Iterating this procedure, we obtain purely n-dimensional Euler spaces $Y_2, Y_3, \dots, Y_{\lceil (n-1)/2 \rceil}$, and homotopy equivalences $h_j: Y_{j-1} \to Y_j$ $(2 \le j \le \lceil (n-1)/2 \rceil)$, such that

$$\begin{split} &(h_j)_*(s_i(Y_{j-1})) \!=\! s_i(Y_j) & \text{for} \quad n \!\ge\! i \!>\! n \!-\! 2j \,, \\ &(h_j)_*((h_{j-1}h_{j-2}\cdots h_1)_*(a_i)) \!=\! s_i(Y_j) & \text{for} \quad i \!=\! n \!-\! 2j, \; n \!-\! 2j \!-\! 1 \,. \end{split}$$

Put $Y=Y_{\lceil (n-1)/2\rceil}$ and $h=h_{\lceil (n-1)/2\rceil}h_{\lceil (n-1)/2\rceil-1}\cdots h_1$. Then the space Y and the homotopy equivalence $h:X\to Y$ satisfy the required properties.

4. Signal and checker signal.

In order to prove Proposition 3.1, we introduce a notion called signal. Let M be a triangulation of a k-dimensional PL-manifold with or without boundary. A map $sg: M^{(k)} \to \{-1, 1\}$ is a signal on $M = M^k$ if $|sg(\sigma) + sg(\tau) + sg(\mu)| = 1$ for each σ , τ , μ in $M^{(k)}$ such that $\sigma \cap \tau$ and $\tau \cap \mu$ are (k-1)-simplexes in M.

Let W be a k-dimensional submanifold of M. Then there exist at most two k-simplexes in $\operatorname{st}(\sigma,W)$ for any (k-1)-simplex σ in W. For $\varepsilon=\pm 1$, denote by $\operatorname{NC}(W,\operatorname{sg},\varepsilon)$ the set of all (k-1)-simplexes σ such that $\sharp\operatorname{st}(\sigma,W)^{(k)}=2$ and $\operatorname{sg}(\tau)=\varepsilon$ for any τ in $\operatorname{st}(\sigma,W)^{(k)}$. We denote by $\sharp\operatorname{NC}(W,\operatorname{sg},\varepsilon)$ the number of (k-1)-simplexes in $\operatorname{NC}(W,\operatorname{sg},\varepsilon)$. A signal $\operatorname{sg}:M^{(k)}\to\{-1,1\}$ is called a *checker signal* if $\operatorname{NC}(M,\operatorname{sg},\varepsilon)$ is empty for $\varepsilon=1$ and -1.

We have the following three lemmas. The proofs are easy and omitted.

LEMMA 4.1. A checker signal is determined by the value on a k-simplex in M^k . Thus we have two checker signals on M if there exists one.

Lemma 4.2. Let σ be a (k+1)-simplex. Then there exists a checker signal on the barycentric subdivision $K(\partial \sigma)'$ of $K(\partial \sigma)$.

LEMMA 4.3. Let Δ be a k-simplex and let sg be a checker signal of $K(\Delta)'$. Let b_{Δ} be the barycenter of Δ and let Δ_i be a (k-1)-face of Δ . Define a signal sg_i of $K(\Delta_i)'$ by $sg_i(\sigma) = sg(b_{\Delta}*\sigma)$ for each (k-1)-simplex σ in $K(\Delta_i)'$. Then sg_i is a checker signal.

Let τ be a (k-3)-simplex and let S be a triangulation of the circle S^1 . Then the join $K(\tau)*S$ is a triangulation of a (k-1)-disc.

LEMMA 4.4. Let sg be a signal of $K(\tau)*S$ such that $\sum sg(\sigma)=0$, where σ runs over all (k-1)-simplexes in $K(\tau)*S$. Then $\sharp NC(K(\tau)*S, sg, 1)=\sharp NC(K(\tau)*S, sg, -1)$.

PROOF. Define a signal sg' of S by $sg'(\mu) = sg(\tau * \mu)$ for each 1-simplex μ of S. Then $\sum sg'(\mu) = 0$, where μ runs over all 1-simplexes in S. Obviously $\#NC(S, sg', \varepsilon) = \#NC(K(\tau) * S, sg, \varepsilon)$ for $\varepsilon = \pm 1$. Since S is a triangulation of S^1 ,

$$\#\{\mu \mid sg'(\mu)=1\} - \#NC(S, sg', 1) = \#\{\mu \mid sg'(\mu)=-1\} - \#NC(S, sg', -1).$$

Thus we have #NC(S, sg', 1) = #NC(S, sg', -1) and $\#NC(K(\tau)*S, sg, 1) = \#NC(K(\tau)*S, sg, -1)$. This completes the proof.

Lemma 4.5. Let Δ be a k-simplex and let sg be a checker signal of $K(\Delta)'$. Suppose that σ is an i-simplex in $K(\Delta)'$ such that

- (1) $\sigma \in K(\Delta)' K(\partial \Delta)', \quad 0 \le i \le k-1, \quad or$
- (2) $\sigma \in K(\partial \Delta)'$, $0 \le i \le k-2$.

Then $\sum sg(\tau)=0$, where τ runs over all k-simplexes in $st(\sigma, K(\Delta)')$.

PROOF. Easy, e.g., by induction.

LEMMA 4.6. Let sg be a signal of $K(\partial \Delta)'$ such that the restriction of sg on $K(\Delta_i)'$ is a checker signal for each (k-1)-face Δ_i of a k-simplex Δ . Denote by Δ_{ij} the (k-2)-simplex $\Delta_i \cap \Delta_j$. Then the following holds:

- (1) If μ is a q-simplex in $K(\partial \Delta)' \bigcup_{i \neq j} K(\Delta_{ij})'$ such that $q \leq k-2$, then $NC(\operatorname{st}(\mu, K(\partial \Delta)'), \operatorname{sg}, \varepsilon)$ is empty for $\varepsilon = \pm 1$.
 - (2) $\#NC(K(\partial \Delta)', sg, 1) = \#NC(K(\partial \Delta)', sg, -1).$
 - (3) If μ is a q-simplex in $K(\Delta_{ij})'$ for $i \neq j$ such that $q \leq k-3$, then

$$\#NC(st(\mu, K(\partial \Delta)'), sg, 1) = \#NC(st(\mu, K(\partial \Delta)'), sg, -1).$$

PROOF. (1) Since the restriction of sg on $K(\Delta_i)$ is a checker signal by Lemma 4.3, any simplex in $NC(K(\partial \Delta)', sg, \varepsilon)$, for $\varepsilon = \pm 1$, is contained in $K(\Delta_{ij})$ for some i, j. Thus $NC(st(\mu, \partial \Delta), sg, \varepsilon)$ is empty.

- (2) From Lemma 4.1, we deduce that $\#(NC(K(\partial \Delta)', \operatorname{sg}, 1) \cap K(\Delta_{ij})) = \#(NC(K(\partial \Delta)', \operatorname{sg}, -1) \cap K(\Delta_{ij}))$ for $i \neq j$. Since $\#NC(K(\partial \Delta)', \operatorname{sg}, \varepsilon) = \sum_{i \neq j} \#(NC(K(\partial \Delta)', \operatorname{sg}, \varepsilon) \cap K(\Delta_{ij}))$ for $\varepsilon = \pm 1$, we have $\#NC(K(\partial \Delta)', \operatorname{sg}, 1) = \#NC(K(\partial \Delta)', \operatorname{sg}, -1)$.
- (3) First suppose that $q = \dim \mu = k 3$. Then $lk(\mu, K(\partial \Delta)')$ is a triangulation of the circle S^1 . From Lemma 4.4, it follows that $\#NC(st(\mu, K(\partial \Delta)'), sg, 1) = \#NC(st(\mu, K(\partial \Delta)'), sg, -1)$. Next assume that $q \le k 4$. By Lemma 4.3,

$$(NC(st(\mu, K(\partial \Delta)'), sg, 1) \cup NC(st(\mu, K(\partial \Delta)'), sg, -1)) \cap K(\Delta_{ij}),$$

for $i \neq j$, is equal to the set of all (k-2)-simplexes in $\operatorname{st}(\mu, K(\partial \Delta)') \cap K(\Delta_{ij}) = \operatorname{st}(\mu, (K(\Delta_{ij}))')$ or empty. Since $q \leq k-4$, by using Lemma 4.5, we obtain that

$$\#(NC(st(\mu, K(\partial \Delta)'), sg, 1) \cap K(\Delta_{ij})) = \#(NC(st(\mu, K(\partial \Delta)'), sg, -1) \cap K(\Delta_{ij})).$$

Consequently, it follows that

$$\#NC(st(\mu, K(\partial \Delta)'), sg, 1) = \#NC(st(\mu, K(\partial \Delta)'), sg, -1).$$

5. Proof of Proposition 3.1.

Let sg be a signal on the barycentric subdivision $K(\partial \Delta)'$ of the boundary $K(\partial \Delta)$ of a k-simplex Δ . By a q-ball, we mean a topological space homeomorphic to a q-simplex. We decompose $\partial \Delta$ as the union of balls as follows. An element in $B(\partial \Delta, \operatorname{sg}, \varepsilon)$, for $\varepsilon = \pm 1$, is one of the following:

- (1) a (k-1)-simplex σ in $K(\partial \Delta)'$ such that $sg(\sigma) = \varepsilon$ and $sg(\tau) = -\varepsilon$ for any $\tau \in K(\partial \Delta)'^{(k-1)}$ such that $\sigma \cap \tau$ is a (k-2)-simplex,
- (2) the union $\sigma \cup \tau$ in $\partial \Delta$, where σ , $\tau \in K(\partial \Delta)^{\prime (k-1)}$ such that $sg(\sigma) = sg(\tau) = \varepsilon$ and $\sigma \cap \tau$ is a (k-2)-simplex.

Then an element in $B(\partial \Delta, \operatorname{sg}, \varepsilon)$ is a (k-1)-ball. From the definition of the signal, we obtain

$$\partial \Delta = \bigcup_{\rho \in B(\partial \Delta, sg, \pm 1)} \rho$$
.

Let $c\rho$ denote the cone of the (k-1)-ball ρ in $B(\partial \Delta, \operatorname{sg}, \varepsilon)$. Then $c\rho$ is a k-ball. If we identify $c\rho$ with the join of ρ with the barycenter b_{Δ} , we have

$$\Delta = \bigcup_{\rho \in B(\partial \Delta, \operatorname{sg}, \pm 1)} \rho$$
.

The cone $c\rho$ is either equal to a k-simplex $b_{A}*\sigma$ or equal to the union of two k-simplexes $b_{A}*\sigma$ and $b_{A}*\tau$. The boundary $\partial\rho$ is homeomorphic to the (k-2)-sphere and the cone $c\partial\rho$ is a (k-1)-ball. The boundary $\partial(c\rho)$ is equal to the union $c\partial\rho\cup\rho$. We write $\mathrm{Int}(c\partial\rho)$ for the space $c\partial\rho-\partial\rho$.

We have the set $A(K(\Delta)') = \{(x, \sigma) \in \Delta \times K(\Delta)'^{(k-1)} \mid x \in \sigma\}$ for $K(\Delta)'$ as is defined in Section 3. We say that an attachment signal

$$Asg: A(K(\Delta)') \longrightarrow \{1, 0, -1\}$$

is a standard extension of a signal $sg:(\partial \Delta)^{\prime(k-1)} \to \{-1, 1\}$ if the following conditions are satisfied,

SE1. Asg
$$(x, c\rho) = \varepsilon$$
 $x \in \text{Int } \rho$

SE2. Asg
$$(x, c\rho) = -\varepsilon$$
 $x \in Int(c\partial \rho)$

SE3. Asg
$$(x, c\rho) = 0$$
 otherwise.

Here, as before, we write $\operatorname{Asg}(x, c\rho) = \sum_{\mu} \operatorname{Asg}(x, \mu)$, where μ ranges over all (although one or two) k-simplexes in $c\rho$.

The standard extension is not unique. But it is obvious that, for any signal sg on $K(\partial \Delta)'$, there exists a standard extension Asg of sg.

PROPOSITION 5.1. Let Δ be a k-simplex and let sg be a signal of $K(\Delta)'$ such that the restriction of sg on $K(\Delta_i)'$ is a checker signal for each (k-1)-face Δ_i of Δ . Then the standard extension $Asg: A(K(\Delta)') \to \{1, 0, -1\}$ satisfies the following:

- (1) Asg $(x, K(\Delta)')$ = sg (τ) if $x \in \text{Int } \tau, \tau \in K(\partial \Delta)'^{(k-1)}$.
- (2) $\operatorname{Asg}(x, K(\Delta)') = \varepsilon$ if $x \in \operatorname{Int} \mu$, $\mu \in \operatorname{NC}(K(\partial \Delta)', \operatorname{sg}, \varepsilon)^{(k-2)}$.
- (3) Asg $(x, K(\Delta)') = 0$ otherwise.

PROOF. Let $\partial \Delta = \bigcup_{\rho \in B(\partial \Delta, sg, \pm 1)} \rho$ be the ball decomposition. By SE3 of the standard extension, $\operatorname{Asg}(x, K(\Delta)') = 0$ if x is neither contained in $\operatorname{Int} \rho$ nor contained $\operatorname{Int}(c\partial \rho)$ for any ball ρ in $\partial \Delta$. If x is contained in $\operatorname{Int} \rho$ for some $\rho \in B(\partial \Delta, sg, \varepsilon)$, then $x \in \operatorname{Int} \tau$ for some $\tau \in K(\partial \Delta)'^{(k-1)}$ with $\operatorname{sg}(\tau) = \varepsilon$ or $x \in \operatorname{Int} \mu$ for $\mu \in \operatorname{NC}(K(\partial \Delta)', sg, \varepsilon)^{(k-2)}$. In these cases, from SE1, we obtain that $\operatorname{Asg}(x, K(\Delta)') = \varepsilon$. This proves (1) and (2) of the proposition. Now assume that $x \in \operatorname{Int}(c\partial \rho)$ for some ρ . If $x = b_{\Delta}$, then by SE2,

Asg
$$(x, K(\Delta)') = \#B(K(\partial \Delta)', \text{sg}, -1) - \#B(K(\partial \Delta)', \text{sg}, 1)$$
.

From the definition of $B(K(\partial \Delta)', sg, \varepsilon)$, we obtain that

$$\#B(K(\partial \Delta)', \operatorname{sg}, \varepsilon) = \#\{\sigma \in K(\partial \Delta)'^{(k-1)} \mid \operatorname{sg}(\sigma) = \varepsilon\} - \#\operatorname{NC}(K(\partial \Delta)', \operatorname{sg}, \varepsilon).$$

Thus we have

$$\operatorname{Asg}(x,\ K(\varDelta)') = -\sum_{\sigma \in K\ (\varDelta)'\ (k-1)} \operatorname{sg}(\sigma) + \#\operatorname{NC}(K(\partial\varDelta)',\ \operatorname{sg},\ 1) - \#\operatorname{NC}(K(\partial\varDelta)',\ \operatorname{sg},\ -1).$$

The set of all (k-1)-simplexes in $K(\partial \Delta)'$ is equal to the set of all (k-1)-simplexes in $\bigcup_{i=0}^k \operatorname{st}(b_{\Delta_i}, K(\Delta_i)')$. By Lemma 4.5, $\sum \operatorname{sg}(\tau) = 0$, where τ runs over all (k-1)-simplexes in $\operatorname{st}(b_{\Delta_i}, K(\Delta_i)')$. From (2) of Lemma 4.6, we have $\sharp \operatorname{NC}(K(\partial \Delta)', \operatorname{sg}, 1) = \sharp \operatorname{NC}(K(\partial \Delta)', \operatorname{sg}, -1)$. Consequently, we obtain that $\operatorname{Asg}(x, K(\Delta)') = 0$. If $x \in \operatorname{Int}(c\partial \rho)$ and $x \neq b_{\Delta}$, then we can write $x \in \operatorname{Int}(b_{\Delta} * \mu)$ where $\mu \subset \partial \rho$, $\mu \in K(\partial \Delta)'$ and $\dim \mu \leq k-2$. By SE2,

$$\operatorname{Asg}(x, K(\Delta)') = \#B(\operatorname{st}(\mu, K(\Delta)'), \operatorname{sg}, -1) - \#B(\operatorname{st}(\mu, K(\Delta)', \operatorname{sg}, 1).$$

If $\mu \in K(\Delta_{ij})' = K(\Delta_i \cap \Delta_j)'$ and $\dim \mu = k-2$, then $\#B(\operatorname{st}(\mu, K(\Delta)'), \operatorname{sg}, 1) = \#B(\operatorname{st}(\mu, K(\Delta)', \operatorname{sg}, -1) = 1$. Hence we have $\operatorname{Asg}(x, K(\Delta)') = 0$. The remaining case is when $\mu \in K(\Delta_{ij})'$ and $\dim \mu \leq k-3$ or when $\mu \in K(\partial \Delta)' - \bigcup_{i \neq j} K(\Delta_{ij})'$ and $\dim \mu \leq k-2$. In these cases, we can apply (1) and (3) of Lemma 4.6. Using Lemma 4.5 as before, we obtain that

$$\begin{split} \operatorname{Asg}(x,\ K(\varDelta)') &= -\sum_{\sigma \in \operatorname{st}(\mu,\ K(\varDelta)')} \operatorname{sg}(\sigma) + \#\operatorname{NC}(\operatorname{st}(\mu,\ K(\varDelta)'),\ \operatorname{sg},\ 1) \\ &- \#\operatorname{NC}(\operatorname{st}(\mu,\ K(\varDelta)',\ \operatorname{sg},\ -1) \\ &= 0. \end{split}$$

This completes the proof.

Lemma 5.2. Let K be a k-dimensional pseudo-Euler complex. Then there exist signals $\operatorname{sg}^{\varDelta}$ of $K(\partial \varDelta)'$ for all k-simplexes \varDelta in K satisfying the following conditions:

P1. The restriction of $\operatorname{sg}^{\Delta}$ to $K(\Delta_i)'$ is a checker signal for each (k-1)-face Δ_i of Δ .

P2. Let K^{k-1} denote the (k-1)-dimensional skeleton of K. Then for each (k-1)-simplex σ in $(K^{k-1})'$, $\sum_{\Delta} \operatorname{sg}^{\Delta}(\sigma) = 0$, where Δ ranges over all k-simplexes in K such that $K(\Delta)' \ni \sigma$.

PROOF. Since K is a pseudo-Euler complex, to each (k-1)-simplex τ in K and to all k-simplexes μ_j such that $\mu_j > \tau$, we can give checker signals $\operatorname{sg}_{\tau}^{\mu_j}$ of $K(\tau)'$ such that $\sum_{\mu_j > \tau} \operatorname{sg}_{\tau}^{\mu_j}(\sigma) = 0$ for any (k-1)-simplex σ in $K(\tau)'$. Let Δ be a k-simplex in K and let σ be a (k-1)-simplex in $K(\partial \Delta)'$. Then there exists a (k-1)-simplex τ in K such that $\sigma \in K(\tau)'$. Define a checker signal $\operatorname{sg}^{\Delta}$ of $K(\partial \Delta)'$ by $\operatorname{sg}^{\Delta}(\sigma) = \operatorname{sg}^{\Delta}(\sigma)$. Then the collection $\{\operatorname{sg}^{\Delta}\}$ satisfies the conditions (1) and (2). This completes the proof

Now we are in a position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let $\operatorname{sg}^{\Delta}$ be the set of signals of $K(\partial \Delta)'$ for all k-simplexes Δ in K satisfying P1 and P2 of Lemma 5.2. Let $\operatorname{Asg}^{\Delta}$ be the standard extension of $\operatorname{sg}^{\Delta}$. We define an attachment signal Asg of K'

Asg:
$$AK = \{(x, \sigma) \in |K'| \times K'^{(k)} | x \in \sigma\} \longrightarrow \{-1, 0, 1\}$$

by $\operatorname{Asg}(x, \sigma) = \operatorname{Asg}^{\Delta}(x, \sigma)$ where $\sigma \in K(\Delta)'$. We now show that $\operatorname{Asg}(x, K(\Delta)') = 0$ for any x in |K|. By Proposition 5.1, it is sufficient to prove the following cases:

- (1) $x \in \text{Int } \tau$ for some (k-1)-simplex τ in $K(\partial \Delta)'$, $\Delta \in K^{(k)}$.
- (2) $x \in \text{Int } \mu$, $\mu \in \text{NC}(K(\partial \Delta)', \text{ sg, } \varepsilon)$, $\Delta \in K^{(k)}$.

In the case (1), we have $\operatorname{Asg}(x, K(\Delta)')=0$ by P2 of Lemma 5.2. Now we consider the case (2). By P1, $\mu \in K(\Delta_{ij})'$ and so $\mu \in K'^{(k-2)}$. Let σ be a k-simplex in K such that $K(\sigma)' \ni \mu$. We have two (k-1)-simplexes τ_+ and τ_- in $K(\partial \sigma)'$ such that $\tau_+ > \mu$ and $\tau_- > \mu$. If $\operatorname{sg}(\tau_+) \operatorname{sg}(\tau_-) = 1$, then $\mu \in \operatorname{NC}(K(\partial \sigma)', \operatorname{sg}, \varepsilon)$ and

$$\operatorname{Asg}(x, K(\sigma)') = \varepsilon = \frac{1}{2} (\operatorname{sg}^{\sigma}(\tau_{+}) + \operatorname{sg}^{\sigma}(\tau_{-})).$$

If $sg(\tau_+)sg(\tau_-)=-1$, then $Asg(x, K(\sigma)')=0=(1/2)(sg^{\sigma}(\tau_+)+sg^{\sigma}(\tau_-))$. Consequently,

we obtain that, if $x \in \text{Int } \mu$ for some (k-2)-simplex μ in K', then $\text{Asg}(x, K') = \sum (1/2)(\text{sg}^{\sigma}(\tau_+) + \text{sg}^{\sigma}(\tau_-))$, where σ runs over all k-simplexes in K such that $K(\partial \sigma)' \ni \mu$. Thus

$$\begin{aligned} \operatorname{Asg}(x, \ K') &= \frac{1}{2} \sum_{\sigma \in K(k)} \sum_{\tau \in K(\partial \sigma)'(k-1), \tau > \mu} \operatorname{sg}^{\sigma}(\tau) \\ &= \frac{1}{2} \sum_{\tau \in K'(k-1), \tau > \mu} \sum_{\sigma \in K(k), K(\partial \sigma)' \ni \tau} \operatorname{sg}^{\sigma}(\tau) \ . \end{aligned}$$

By P2 of Lemma 5.2,

$$\sum_{\sigma \in K^{(k)}, K(\partial \sigma)' \ni \tau} \operatorname{sg}^{\sigma}(\tau) = 0.$$

Hence we obtain that Asg(x, K')=0 in the case (2). The proof is complete.

6. Counterexamples to Halperin conjecture.

In order to explain Halperin's conjecture, we first give the definition of the normally nonsingular map according to [4]. For that, as in [4], we introduce the bivariant language.

We consider a simple situation. Let X and Y be compact polyhedra and let $f: X \rightarrow Y$ be a continuous map. Since X is embeddable as a closed subspace of \mathbb{R}^n for some n, there is a mapping $\phi: X \rightarrow \mathbb{R}^n$ such that $(f, \phi): X \rightarrow Y \times \mathbb{R}^n$ is a closed embedding. Write X_{ϕ} for the image of X in $Y \times \mathbb{R}^n$. Define $H^i(X \xrightarrow{f} Y)$ by

$$H^{i}(X \xrightarrow{f} Y) = H^{i+n}(Y \times \mathbb{R}^{n}, Y \times \mathbb{R}^{n} - X_{\phi}; \mathbb{Z}_{2}).$$

This definition is independent of the choice of ϕ . If f is the identity, we have the natural isomorphism

$$H^i(X \xrightarrow{\mathrm{id}} X) = H^i(X; \mathbf{Z}_2)$$
 ,

and if Y is the point, we have

$$H^{-i}(X \rightarrow \text{pt.}) = H_i(X; \mathbf{Z}_2)$$
.

If X is a subpolyhedron of Y, let (L, K) be a triangulation of (Y, X). Let N be the second derived neighborhood of K in L and let ∂N be its boundary. Then $H^i(X \xrightarrow{\iota} Y) = H^i(N, \partial N; \mathbf{Z}_2)$, where $\iota : X \to Y$ is the inclusion.

For continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ of compact polyhedra, the cup product defines the bilinear map

$$H^{i}(X \xrightarrow{f} Y) \times H^{j}(Y \xrightarrow{g} Z) \longrightarrow H^{i+j}(X \xrightarrow{gf} Z)$$

A map $f: X \rightarrow Y$ is called *homologically normally nonsingular* if there is an element θ in $H^d(X \xrightarrow{f} Y)$, for some $d \in \mathbb{Z}$, such that, for any compact polyhedron

W and a continuous map $g:W\to X$, the homomorphism

$$H^{i}(W \xrightarrow{g} X) \xrightarrow{\cdot \theta} H^{i+d}(W \xrightarrow{fg} Y)$$

is an isomorphism. We say that θ is a strong orientation with codimension d. In particular, if f has a normal bundle, the Thom class is a strong orientation. Remark that Fulton-MacPherson used the sheaf cohomology $R^i(\text{Hom}(Rf_!\mathbf{Z}_{2_X},\mathbf{Z}_{2_Y}))$. But the definitions agree since we work on the category of compact polyhedra [4, p. 86]. Note that θ is a strong orientation if the homomorphism θ is an isomorphism for any compact subpolyhedron θ in θ and the inclusion θ [4, p. 85].

If $f: X \rightarrow Y$ is a homologically normally nonsingular map, we have the Gysin map

$$f^!: H_i(Y, \mathbf{Z}_2) \longrightarrow H_{j-d}(X, \mathbf{Z}_2)$$

defined by $f^!(a) = \theta \cdot a$ for $a \in H_j(Y; \mathbf{Z}_2) = H^{-j}(Y \to \mathrm{pt.})$. The *i*-dimensional Stiefel-Whitney cohomology class $w^i(N_f)$ in $H^i(X; \mathbf{Z}_2)$ of the normal space of f $(i \ge 0)$ is defined by

$$w^{i}(N_{f}) = (\cdot \theta)^{-1} \operatorname{Sq}^{i}(\theta)$$
,

where Sq^i is the *i*-th squaring operation of Steenrod on $H^i(X \xrightarrow{f} Y)$. Put $w(N_f) = \sum_{i \geq 0} w^i(N_f)$. Since $w^0(N_f) = 1$, we have the inverse $w(N_f)^{-1}$ in $H^*(X; \mathbf{Z}_2)$.

Let X and Y be compact mod 2 Euler spaces and let $f: X \rightarrow Y$ be a homologically normally nonsingular map. Then Halperin's conjecture is the following equation:

(H)
$$s_*(X) = w(N_f)^{-1} \cap f! s_*(Y)$$
.

Now we give some simple examples where the relation (H) does not hold. We define a PL-manifold Z which is PL-homeomorphic to $D^2 \times S^1$ as follows. Put $Q = \{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| \leq 1\}$. Then Z is the quotient space of $Q \times [-1, 1] \subset \mathbb{R}^3$ under the identification $x \times \{-1\} \sim x \times \{1\}$ for $x \in Q$. Let σ^{\pm} be two 2-discs in $Q \times \{0\}$ defined by

$$\sigma^{+} = \{(x_1, x_2, x_3) \in Q \times \{0\} \mid x_1 \ge 0\}$$

$$\sigma^{-} = \{(x_1, x_2, x_3) \in Q \times \{0\} \mid x_1 \le 0\}.$$

Obviously $\sigma^+ \cup \sigma^- = Q \times \{0\}$ and $\sigma^+ \cap \sigma^-$ is a 1-disc. Further we have two 2-discs τ^\pm in Z defined by

$$\tau^{+} = \{(x_1, x_2, x_3) \mid x_1 = 0, 0 \le x_2 \le 1, 0 \le x_3 \le (1/10)x_2\}$$

$$\tau^{-} = \{(x_1, x_2, x_3) \mid x_1 = 0, 0 \ge x_2 \ge -1, 0 \ge x_3 \ge (1/10)x_2\}.$$

The intersection of σ^{\pm} or τ^{\pm} with ∂Z is a 1-disc such that

$$(\sigma^+ \cap \partial Z) \cap (\tau^+ \cap \partial Z) = \text{pt.}, \quad (\sigma^- \cap \partial Z) \cap (\tau^- \cap \partial Z) = \text{pt.}$$

We have two PL-homeomorphisms h^{\pm} from σ^{\pm} onto τ^{\pm} such that

$$h^{\pm} | \sigma^{\pm} \cap \tau^{\pm} = \text{identity}, \quad h^{\pm} (\sigma^{\pm} \cap \partial Z) = \tau^{\pm} \cap \partial Z.$$

Let Z_h and ∂Z_h be the quotient polyhedron of Z and ∂Z under the identification $x \sim h^{\pm}(x)$. Let $\pi: Z \to Z_h$ be the projection. Then π is a homotopy equivalence of pairs; $\pi: (Z, \partial Z) \to (Z_h, \partial Z_h)$. Let Y be the double of $Z_h: Y = Z_h \bigcup_{\partial Z_h} Z_h$. By the arguments in Section 2, Y is a mod 2 Euler space homotopy equivalent to $S^2 \times S^1$. The circle $\{0\} \times S^1 = \{(x_1, x_2, x_3) \mid x_1 = x_2 = 0\} / \sim$ in Z is mapped by π identically. We write X for $\{0\} \times S^1$ and also for the image $\pi(\{0\} \times S^1) \subset Z_h \subset Y$.

PROPOSITION 6.1. The inclusion $f: X \rightarrow Y$ is a homologically normally non-singular map.

PROOF. We give a homotopy inverse $\omega:(Z_h,\partial Z_h)\to(Z,\partial Z)$ as follows. Let A be the subspace of Z defined by

$$A = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| \le 1, |x_3| \ge 2/10\} / \sim.$$

Then A is a 3-disc and A is mapped by π identically. Let B be the subspace of ∂Z defined by

$$B = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| = 1, |x_3| \le 2/10\}.$$

Then B is a PL-manifold homeomorphic to $S^1 \times D^1$ and let ∂B be the boundary. Put $B_h = \pi(B)$ and $\partial B_h = \pi(\partial B)$. Since $\partial B \subset A$, we may identify ∂B with ∂B_h . By the construction, $\pi \mid B : (B, \partial B) \to (B_h, \partial B_h)$ is a homotopy equivalence. We have a map $\omega^B : B_h \to B$ such that $\omega^B \mid \partial B_h = \text{identity}$ and $\omega^B : (B_h, \partial B_h) \to (B, \partial B)$ is a homotopy inverse of $\pi \mid B : (B, \partial B) \to (B_h, \partial B)$. Put

$$E = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| \le 1, |x_3| = 2/10\}.$$

Then $E \subset A$ and E is homeomorphic to $D^2 \times S^0$. The union $E \cup B$ in Z is homeomorphic to S^2 and the union $E \cup B_h$ in Z_h is homotopy equivalent to S^2 . Let $C(E \cup B)$ and $C(E \cup B_h)$ denote their cones. Then we have

$$Z=A\cup_E C(E\cup B)$$
, $Z_h=A\cup_E C(E\cup B_h)$.

We define a map $\omega: Z_h \to Z$ by $\omega | A = \text{identity}$, $\omega | B_h = \omega^B$ and by the cone extension of (identity $\cup \omega^B$) on $C(E \cup B_h)$. Then $\omega | X$ is the identity. Since the inclusion $s: X \to Z$ is equal to the zero section of trivial D^2 -bundle, we have the strong orientation θ_0 in $H^2(Z, Z - X; \mathbf{Z}_s) = H^2(X \to Z)$. Put

$$\theta = \boldsymbol{\omega}^* \theta_0 \in H^2(Z_h, Z_h - X; \mathbf{Z}_2) = H^2(X \xrightarrow{f} Y).$$

To show that θ is a strong orientation, it is sufficient to take W to be an interval or the point in X containing O=(0, 0, 0). Notice that we can triangulate $C(E \cup B_h)$ by the cone extension of a triangulation of $E \cup B_h$. Consequently, we

have the natural isomorphism $H^i(O \xrightarrow{f \, g} Y) = H^i(C(E \cup B_h), E \cup B_h; \mathbf{Z}_2)$, where $g: O \to X$ is the inclusion. Since ω^* maps $H^i(C(E \cup B), E \cup B; \mathbf{Z}_2)$ isomorphically onto $H^i(C(E \cup B_h), E \cup B_h; \mathbf{Z}_2)$, we obtain that

$$H^i(W \xrightarrow{g} X) \xrightarrow{\cdot \theta} H^i(W \xrightarrow{f g} Y)$$

is an isomorphism for any i, if W=O. The proof is similar when W is an interval containing O. This completes the proof.

By the arguments in Section 2, we have $0 \neq s_2(Y) \in H_2(Y; \mathbb{Z}_2) \cong H_2(S^2 \times S^1; \mathbb{Z}_2)$ $\cong \mathbb{Z}_2$. The Gysin homomorphism $f^!$ maps $H_2(Y; \mathbb{Z}_2)$ onto $H_0(Y; \mathbb{Z}_2)$ isomorphically. Since $s_0(X) = s_0(S^1) = 0$ and $w(N_f)^{-1} = 1$, we obtain the following:

PROPOSITION 6.2. $s_0(X)$ is not equal to $w(N_f)^{-1} \cap f! s_2(Y)$.

This shows that Halperin's conjecture is not true in our case.

Our construction of Z_h can naturally be extended, for example, to constructions of mod 2 Euler spaces $Z^{p,q}$ homotopy equivalent to $S^p \times S^q$ if $p \ge 2$ and $q \ge 1$. We have the inclusion of S^q in $Z^{p,q}$ which is homologically normally nonsingular, but Halperin's equation (H) does not hold.

References

- [1] E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc., 205 (1975), 341-359.
- [2] J. Blanton and C. McCrory, An axiomatic proof of Stiefel's conjecture, Proc. Amer. Math. Soc., 77 (1979), 409-414.
- [3] J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, Topology of Manifolds, Markham Publ., Chicago, 1971, 470-471.
- [4] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., 243 (1981).
- [5] R. Goldstein, A Wu formula for Euler mod 2 spaces, Compositio Math., 32 (1976), 33-39.
- [6] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math., 96 (1972), 511-525.
- [7] S. Halperin and D. Toledo, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc., 48 (1975), 239-244.
- [8] A. Matsui, Stiefel-Whitney homology classes of \mathbb{Z}_2 -Poincaré-Euler spaces, Tôhoku Math. J., 35 (1983), 321-339.
- [9] D. Sullivan, Combinatorial invariants of analytic spaces, Proc. Liverpool Singularities I, Lecture Notes in Math., 192, Springer, 1971, 165-168.
- [10] L. Taylor, Stiefel-Whitney homology classes, Quart. J. Oxford, 28 (1977), 381-387.
- [11] D. Veljan, Axioms for Stiefel-Whitney homology classes of some singular spaces, Trans. Amer. Math. Soc., 277 (1983), 285-305.

Akinori MATSUI Ichinoseki Technical College Ichinoseki 021 Japan Hajime SATO Mathematical Institute Tôhoku University Sendai 980 Japan