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1. Introduction.

In this paper, we construct Euler spaces in fixed homotopy types such that
the Stiefel-Whitney homology classes are equal to given homology elements.
As a byproduct, we obtain counterexamples to Halperin’s conjecture (Fulton-
MacPherson [4].

Let X be a locally compact n-dimensional polyhedron. For a point x in X,
let 2(X, X—x) denote the Euler number of the pair (X, X—x). The polyhedron
X is called an integral Euler space (resp. mod 2 Euler space) if for each x in X,
XX, X—x)=(—D" (resp. X(X, X—x)=1 (mod2)) (Halperin and Toledo [6]).
Sullivan has shown that complex analytic spaces (resp. real analytic spaces)
are integral Euler spaces (resp. mod2 Euler spaces).

Let K’ denote the barycentric subdivision of a triangulation K of a polyhedron
X. If X is a mod2 Euler space, the sum of all k-simplexes in K’ is a mod2
cycle and defines an element s,(X) in Hy(X;Z,) (cf. [6]). Note that, if X is
not compact, we consider the homology of infinite chains. The element s,(X)
is called the k-th Stiefel-Whitney homology class of X. If X is connected and
compact, So(X) is the mod2 reduction of the Euler number X(X), where we
identify H((X;Z, with Z,. If X is a smooth manifold, PL-manifold, or Z,-
homology manifold, the class s,(X) is known to be equal to the Poincaré dual of
the Stiefel-Whitney cohomology class w™ *(X) (Cheeger [3], Halperin-Toledo [6],
Taylor [10], Blanton-McCrory [2], Veljan [1I], Matsui [8]). Consequently, for
such spaces, the Stiefel-Whitney homology classes s«(X) are homotopy type in-
variant. For further properties of Stiefel-Whitney homology classes, see [1], [7].

A polyhedron X is called purely n-dimensional if the union of all n-simplexes
in a triangulation of X is dense in X. We have the following concerning mod2
Euler spaces:

THEOREM 1. Let X be a purely n-dimensional mod2 Euler space and let a;,
for i=1, 2, ---, n—1, be elements in H{X;Z,. Then there exist a purely n-
dimensional mod2 Euler space Y and a homotopy equivalence h: X—Y such that
hla)=sY) for i=1, 2, -, n—1 and hxs,(X)=s,J").
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Let 8:H,(X;Z,)—H;_..(X;Z,; be the Bockstein homomorphism associated
with the exact sequence 0—Z,—Z,—Z,—0. For an integral Euler space X, we
have s;_,(X)=pBs;(X) if n—i is even (Halperin-Toledo [6]). Thus we have rela-
tions among the Stiefel-Whitney homology classes of an. integral Euler space.
In particular X(X)=0 for a compact integral Euler space X of odd dimension.

The following holds for integral Euler spaces:

THEOREM 2. Let X be a purely n-dimensional integral Euler space and let
a;, for i=1,2, -, n—2, be elements in H(X;Z,) such that a;.,=Ba; if n—i is
even. Then there exist a purely n-dimensional integral Euler space Y and a
homotopy equivalence h:X—=Y such that hy(a;)=s,Y) for i=1, 2, -, n—2,
hs($n-1(X))=8,-1(Y) and hu(s,(X))=s,(Y).

Note that, if X is an integral n-dimensional Euler space, and if n—#k is odd,
then we have the integral Stiefel-Whitney homology class S,(X) in H.(X;Z)
such that s,(X) is the mod2 reduction of S,(X). Let f:H(X;Z,)—~H,(X;Z)
be the Bockstein homomorphism associated with the exact sequence 0—Z—Z—
Z,—0. Then S,.«(X)=Fs:(X) ([4]. Thus, in we have also the
relation hy(Ba;-,)=S;(Y) if n—7 is even.

A special case of our result has been given by Goldstein [5].

In the book [4], Fulton and MacPherson defined the notion of a homologically
normally nonsingular map. As an analogy to the Riemann-Roch formula for
singular algebraic spaces, they introduced Halperin’s conjecture ([4, p. 112]):

If f:X-Y is a homologically normally nonsingular map of mod 2 Euler spaces,
then |

$x(X)=[wN 17N [f'sx(Y),

where [WN;]™! is the inverse of the Stiefel-Whitney cohomology class of the
normal space of f defined by Thom’s formula using the Steenrod squares.

Our construction gives examples where the relation does not hold.

Although the proofs of Theorems 1 and 2 are similar, we first give the proof
of Theorem 1 in Section 2, since it is much simpler. In Section 3, we give the
proof of Theorem 2 assuming Proposition 3.1. We prepare some elementary
lemmas in Section 4 and the proof of Proposition 3.1 is given in Section 5. In
Section 6, we explain Halperin’s conjecture and give concrete counterexamples
to this conjecture.

NOTATION AND PRELIMINARIES. If K is a simplicial complex, the underlying
topological space | K| is called a polyhedron, and K is said to be a triangulation
of X=|K|. We denote by K® the set of ;-simplexes in K and put K‘=\_);<; K.
By a simplex, we mean the closed one. We write Int¢ for the interior of a
simplex ¢ and put de=0¢—Inte. We write K(¢) for the simplicial complex con-
sisting of all faces of . For two simplexes ¢ and 7, the relation ¢<7 means
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that ¢ is a face of r and ¢<r means that ¢ is a proper face of z. We write
K(do) for the simplicial complex {r|cr<eo}. For a simplex ¢ in K, we define
st(e, K), lk(e, K), and 0dst(g, K) as follows;

st(o, K)={pe K| Ir>0, p<r},

k(o, K)={pc K| It>0, p<z, pNo=090},
dst(o, K)={pn=st(g, K)| ¢ is not a face of p}.

Let x be a point in the polyhedron X=|K|. There exists a simplex ¢ in
K such that xInte. Put p=dimension of ¢. Then dst(¢, K) is homeomorphic
to the join doxlk(e¢, K) and, for any ring A, we have the natural isomorphisms

Hl(X; X_.X ’ A>:Hz<5t<0r K)y aSt(UJ K) ’ A)
=0, @st(a, K); A)
=H, ,.(k(a, K); A).

LEMMA 1.1. Let ¢ be a p-simplex of a simplicial complex K and let x be a
point in X=|K| such that x<Inte. Then

X, X—x)=(-1)*(1-Xk(s, K)),
X, X—x)=14+X(k(s, K))  mod2.

In particular, X is a mod2 Euler space if and only if A(lk(g, K))=0 mod2 for
any x< X such that x<Intao.

By a p-disc, we mean a polyhedron homeomorphic to a p-simplex. If D is
a p-disc, the boundary 0D is homeomorphic to S?~'. For a simplex ¢, we denote
by b, the barycenter of o.

2. Proof of Theorem 1.

The construction of the mod2 Euler space Y is given by the repetition of
the following simple procedure. Let X be a polyhedron and let ¢ be a k-simplex
of a triangulation K of X. Choose a k-simplex 7 in K such that ¢Nz is a
vertex. Let f:o0—7 be a linear homeomorphism such that f|eNz is the identity.
We give an equivalence relation in X by f(x)~x and denote by X, the quotient
space. We denote by r, the projection X—X, Obviously we have the follow-
ing :

LEMMA 2.1. The projection n;: X— Xy is a homotopy equivalence.

By subdividing sufficiently finely, we may assume that there exists a triangula-
tion K; of X; and =, : K—K, is a simplicial map such that ¢ and z are sim-
plexes in K. For a simplex g such that p<¢, we denote by [¢] the simplex
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ws(p) in Kj.
LEMMA 2.2. The following holds:
(1 Wk(La], Kp)=X(k(g, K)+X(k(z, K)),
@ Xk([el, Kp))=Xk(g, K))+XAk(f(), K)—1  if p<o, p#FoNr,
3 Uk(Lent], Kp))=Xk(eNz, K))—1.
PROOF. This is easy by counting the number of simplexes in the links.

LEMMA 2.3. Let K be a purely k-dimensional locally finite simplicial complex.
For an i-simplex t in the barycentric subdivision K’ of K with i< k—2, the number
of k-simplexes ¢ in K’ such that >t is even.

ProoF. It is sufficient to prove the case where K is a k-simplex 4. We
prove it by an induction on the dimension of 4. If dim4=1, there is nothing
to prove. Suppose that the lemma holds for dim4<k. Let 4 be a k-simplex
and let by be the barycenter of 4. The barycentric subdivision K(4)" of K(4)
is equal to the cone b +xK(04)’. Note that, if 6>z, 0 K’, then oest(r, K'). If
7 is not contained in K(04)’, then there exists an (—1)-simplex g in K(d4)" such
that z=bs*p. The number of k-simplexes in st(z, K(4)’) is equal to the number
of (k—1)-simplexes in st(y, K(04)"), which is even by the induction hypothesis.
Now suppose that - is a simplex in K(@4)’. The number of k-simplexes in
st(z, K(4)") is equal to that of (k—1)-simplexes in st(z, K(04)’). If i=k—2, then
the number of (k—1)-simplexes in st(r, K(04)") is equal to two, since K(d4)’ is a
(k—1)-dimensional manifold. If ;/<%k—2, then, by the induction hypothesis, we
know that the number of (k—1)-simplexes in st(r, K(04)’) is even. This com-
pletes the proof.

LEMMA 2.4. Let h: X—Y be a PL-map of mod2 FEuler spaces X and Y.
Let K and L be triangulations of X and Y such that h is a simplicial map.
Let a be a homology class in Hy (X ; Z,) represented by a mod2 cycle c=23,0,,
where a, are k-simplexes in K. Suppose that h|(X—\U,Inte,—|K**]):
X—\UpInta,— |K*| - Y —|L* is abijection. Then hy:H(X;Z)—H Y ;Z,)
satisfies the relations hy(s;(X))=s;Y) for i>k and h(sp(X)—a)=s,(Y).

PrOOF. Consider the mod2 chain map h,:Ci(K")—C;(L’) associated with
h:K'—-L’. Then

he( 2 o)= 2

seK (D =L (1)

for :>k and
aGL'(k) TEL’(k)

he( 2 0—20)= X 7,
q

where 2,0, is the mod2 k-chain in K’ consisting of all k-simplexes in |c|=
\Uplapl. Hence hy(s;(X))=s,(Y) for i>k and h(sx(X)—a)=s.(Y).
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RROPOSITION 2.5. Let X be a purely n-dimensional mod2 |Euler space and let
a be an element in Hy(X; Z,) for 0<k<n. Then there exist a purely n-dimen-
sional mod2 Euler space Y and a homotopy equivalence h : X—Y such that hy(a)
=5;Y) and hy(si(X))=s,Y) for i>k.

PROOF. Let T be a triangulation of X. Let Xa, be a mod2 cycle which
represents s(X)—a, where a, are k-simplexes in 7. Let K be the simplicial
complex consisting of all faces of all a,. We subdivide 7 as follows. To each
p-simplex g of T’ (p=k+1), star p at the barycenter b,. Then K’ remains un-
changed under the subdivision. Repeating this subdivision twice, we get a sub-
division T, of T’ which satisfies the following. Corresponding to each k-sim-
plexes ¢; in K’, we can choose a k-simplex z; in T, such that

@O o;N\t; 1S a vertex, say v;,
(2) (ti—vdN(o;—v)=Q for all 7, 7,
B)  (mi—vI)N(—v)=@  for i#j.

Let f;:0;—7; be a linear homeomorphism such that f;(v;)=v;. Give an equivalence
relation in X by f,(x)~x for some ;. Let X, be the quotient space and let
o X—X, be the projection. We may assume that there exist a subdivision L
of T, and a triangulation L, of X, such that n,:L—L, is a simplicial map.
Since L is locally finite, the map =,:X—X, is a homotopy equivalence by
Lemma 2.1. Now we see that X, is a mod2 Euler space. Recall that X, is a
mod 2 Euler space if X(lk(o, L,))=0 (mod2) for any simplex ¢ in L,. From
and the fact that Ja, is a mod2 cycle, we infer that the number
of k-simplexes 7 in K’ such that z>¢ is even for any i-simplex ¢ in K’ if /<k.
If 0<dimo<k, from (2) of we see that

Wk([e], L)=¢{re K’ | dimz=*Fk, >0} (mod 2).
If dim =0, from (2) and (3) of we also have the equation
X(Uk([e], L)=%{re K’ | dimrc=*k, >0} (mod 2).

From (1) of we have A(k[¢], Lo)=0 (mod2) if dime=~F. Con-
sequently, we obtain that X, is a mod2 Euler space. By Lemma 2.4, h4(s;(X))
=3;(X,) for i<k and hyx(sp(X)—a)=s,(X,). Since s,(X)—a=a, putting Y =X,
and h=r,, we get a mod2 Euler space Y and a homotopy equivalence h: XY
satisfying the required properties. The proof is complete.

Using [Proposition 2.5, we easily get the proof of

ProOF OF THEOREM 1. By Proposition 2.5, we have a purely n-dimensional
mod 2 Euler space Y, and a homotopy equivalence 4; : X—Y; such that (A,)«(a,_.)
=5,-1(Y}) and (h)x(s.(X))=s,(Y,). Iterating this construction, we obtain purely
n-dimensional mod2 Euler spaces Y, Y, ---, Y,_, and homotopy equivalences
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hj:Y;.1—Y; 2=j=<n—1, such that
(hp)«(s(Y;))=s:(Y,)  i>n—j,
(hj>>k<(hj—1hj—2"'h1>*(an—j)>:Sn-j(Yj)-

Put Y:Yn_l and h=h, 1h, o---h;. Then the homotopy equivalence h:X—Y
satisfies the required properties. This completes the proof of [Theorem 1l

3. Proof of Theorem 2.

Let K be a locally finite z-dimensional simplicial complex. We say that K
is a k-dimensional pseudo-Euler complex if, for any (k—I1)-simplex ¢ in K,
lk(¢, K) is nonvoid and consists of even vertices. Note that a classical pseudo-
manifold is a complex K such that lk(g, K) consists of two vertices for any
(k—1)-simplex ¢ of K.

Let K be a k-dimensional pseudo-Euler complex. We define a set AK for K
by AK={(x, o) |K|xK® | x=¢}. A map Asg:AK—{—1, 0, 1} is called an
attachment signal of K, if for each k-simplex ¢ in K, there exist proper faces
7 and g of ¢ such that ¢=r*p satisfying the following conditions:

AS 1. Asg(x, )=0 for x in Into,
or x in |dst(z, do)|=|0st(y, do)|.

¢ for x in |st(r, do)|—|0st(z, do)],
AS2. Asg(x, a)z{
—e for x in |st(y, da)|—|0stly, do)],

where e=-+1.

Note that |st(z, dg)| and |[st(y, do)| are (k—1)-discs in do.

Let Asg be an attachment signal of a k-dimensional Euler complex K. For
a subcomplex L of K and a point x in |L|, we write Asg(x, L)=3 Asg(x, o),
where ¢ runs over all k-simplexes in L such that xeag.

We have the following proposition, whose proof is given in Section 5 after
preparations in Section 4.

PROPOSITION 3.1. Let K be a k-dimensional pseudo-Euler complex. Then
there exists an attachment signal Asg of the barycentric subdivision K’ satisfying
the relation

Asg(x, K) (= ¥ _ Asglx, 0) =0,

for all x in |K'].
In the rest of this section, we prove [Theorem 2 by assuming [Proposition 3.1

We need [Proposition 3.1 when we prove [Proposition 3.4
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Let X be a locally compact n-dimensional polyhedron. Let D and E be k-
discs in X such that DNE is a (k—1)-disc, and let f: D—E be a PL-homeomor-
phism such that f|DNE is the identity. We give an equivalence relation in X
by f(x)~x and denote by X, the quotient space. Let m,:X—X, be the pro-
jection. By subdividing sufficiently finely, we may assume that there exist
triangulations T and T, of X and X, such that =, is a simplicial map and that
D, E, and DNE are subpolyhedra in |T|. In the following, we also write D,
E, and DNE for the subcomplexes of T determining D, E, and DNE.

Obviously the following holds.

LEMMA 3.2. The projection m;: X—X, is a homotopy equivalence.
Denote by [x] the point n,(x) in X;. We have the following.

LEMMA 3.3. Assume that X(X, X—x)=(—1" for all x in E—-DNE. If n—k
is even, then

70 for xe€lntD,

(—1)* for x€dD—DNE,

l(_l)k_l for xeInt(DAE),
0 for x€d(DNE).

XXy, X;—[xD)—UX, X—x)=

PrROOF. Let ¢ be a simplex in D such that x€Inte¢ and put ;/=dime. Let
[¢] denote the /-simplex z,(¢) in T,. Since XX, X—x)=(—1)*(1—X(k(a, T))),
for any polyhedron X=|K| and i-simplex ¢ in X such that x=Inte, by Lemmal
1.1, we study lk(e, T) and lk([g], Ty). Firstly, assume that InteCD—DNE.
Then 1k([a], Ty) is equal to the union lk(e, T)UIk(f(e), T) under the identifica-
tion of lk(g, D) with lk(g, E). Noting that lk(e¢, D)N\lk(c, E)=Ilk(c, DNE)=Q,
we obtain that

X(k[a], Ty)—x(k(a, TYH=X(1k(f(a), T))—Ak(a, D)).

By the assumption (X, X—x)=(—1)" for x€e E—DNE, we have X(k(f(g), T)
=]1—(—1)""%, Obviously we have

1—(—=D** if IntecIntD,
L(lk(e, D))=
1 if Inte=oD—-DNE.

Applying [Lemma 1.1, we obtain the first and the second equations of the lemma.
Secondly, assume that ¢ DNE. Then lk([a], T;) is equal to the space made
from lk(e, T) under the identification of lk{o¢, D) with lk(¢, £). Noting that
Ik(e, D)Nlk(e, E)=Ilk(c, DNE), we obtain

X(1k([a], Ty)—X(k(e, T))=X(1k(s, DNE))—X(k(s, D)).

Since e DNEC0oD, we have X(k(e, D))=1 and
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1I—(—D** if IntesInt(DNE),

X(Ik(a, D(\E)):{
1 if Inte=d(DNE).

Applying Cemma 1.1, we obtain the third and the fourth equations of the lemma.
The proof is complete.

Assuming [Proposition 3.1, we have the following.

PROPOSITION 3.4, Let X be a purely n-dimensional integral Euler space and
let a be an element in H,(X;Z,). If n—Fk is even, k#0 and k+#mn, then there
exist a purely n-dimensional integral Euler space Y and a homotopy equivalence
h: XY such that hy(a)=s,Y) and h.(s;(X))=s;(Y) for i>k.

PROOF. Let a be the element s,(X)—a in H,(X;Z,) and let X,a, be a
mod2 cycle representing «, where a, are k-simplexes of a triangulation T of X.
Let K be the simplicial complex consisting of all faces of all @,. Since X,a,
is a mod2 cycle, K is a k-dimensional pseudo-Euler complex. By [Proposition 3.1,
there exists an attachment signal Asg of the barycentric subdivision K’ of K
such that Asg(x, K)=0 for all x in |K’|]. We construct an integral Euler space
X, according to the attachment signal Asg. To each k-simplex ¢; in K’, choose
a k-disc D; in X satisfying the following conditions:

1 g;ND; is a (k—1)-disc such that
Asg(x, 0;)=—1 for x<Int(e;ND),),
Asg(x, 0,)=1 for xeag;,—(0;ND)).
2) (6;—(a;ND)N(D;—(a:N\D)= for any j, 7.
@ Dy=(e;NDNNDi—(e:N\D)=@  for j#i.

Then there exists a PL-homeomorphism f;:a;—D; for each j such that f;|¢;N\D;
is the identity. We give an equivalence relation in X by x~f,(x) for some j.
Denote by X, the quotient polyhedron. By the projection 4 : X—X,
is a homotopy equivalence. For any x in X, denote by [x] the point A(x) in
X,.. From we obtain that

U Xay Xo—[x])—XX, X—x)=(—1)* Z Asg(x, a)),

where o¢; runs over all k-simplexes in K’ such that xeg; Then the equation
Asg(x, K)=0 implies that X, is an integral Euler space. By [Lemma 2.4, we
have hy(s;(X))=s:(X,) for i>k and h«(sp(X)—a)=s,(X,). Since a=s,(X)—a,
putting Y=2X,, we get an integral Euler space Y and a homotopy equivalence
h : X—Y satisfying the required properties. This completes the proof.

Using [Proposition 3.4, we can prove under the assumption of
[Proposition 3.1l
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PROOF OF THEOREM 2. Since we have the relation s, ,(Y)=gs,(Y) if n—;
is even, for n-dimensional integral Euler space Y, it is sufficient to construct a
purely n-dimensional integral Euler space Y and a homotopy equivalence 4 : X—Y
such that hy(a;)=s;(Y) for any />0 such that n—; is even. By [Proposition 3.4]
we have a purely n-dimensional integral Euler space Y, and a homotopy equiv
alence h, : X—Y; such that

(h)x(s(X))=s,(Yy)  for n=i>n-2,
(h)s(@p-2)=5,-2(Y).

Since a,-;=pa,-, we have (h)s(@y-3)=5,-5(Y). Iterating this procedure, we
obtain purely n-dimensional Euler spaces Y, Yi -+, Yi_1,2, and homotopy
equivalences h;:Y,;.,—Y; 2=;=[(n—1)/2]), such that

(hp)s(s:(Y;-0)=35:(Y) for n=i>n—2j,
(hJ')*((hj—lhj—Z"'hl>>k(ai>):5i(yj) for (=n—2j, n—25—1.

Put Y:Y[(n_l)/gj and h:h[(nﬂl)/{]h[(n—l),’22_1"'hl. Then the space Y and the
homotopy equivalence h:X—Y satisfy the required properties.

4. Signal and checker signal.

In order to prove [Proposition 3.1, we introduce a notion called signal. Let
M be a triangulation of a k-dimensional PL-manifold with or without boundary.
A map sg: M®—{—1,1} is a signal on M=M* if |sg(a)+sg(r)+sgp)|=1 for
each o, 7, ¢ in M® such that ¢z and Ny are (k—1)-simplexes in M.

Let W be a k-dimensional submanifold of M. Then there exist at most two
k-simplexes in st(g, W) for any (k—1)-simplex ¢ in W. For ¢e=:+1, denote by
NC(W, sg, ¢) the set of all (k—1)-simplexes ¢ such that #st(e, W)® =2 and
sg(t)=¢ for any r in st(g, W)®. We denote by #NC(W, sg, &) the number of
(k—1)-simplexes in NC(W, sg, ¢). A signal sg: M®—{—1, 1} is called a checker
signal if NC(M, sg, ¢) is empty for e=1 and —1.

We have the following three lemmas. The proofs are easy and omitted.

LEMMA 4.1. A checker signal is determined by the value on a k-simplex in
M*. Thus we have two checker signals on M if there exists one.

LEMMA 4.2. Let ¢ be a (k-+1)-simplex. Then there exists a checker signal
on the barycentric subdivision K(do)' of K(da).

LEMMA 4.3. Let 4 be a k-simplex and let sg be a checker signal of K(d)'.
Let by be the barycenter of 4 and let 4; be a (k—1)-facz of 4. Define a signal
sg; of K(4,)' by sgi(a)=sg(bsxa) for each (k—1)-simplex o in K(4;)'. Then sg;
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is a checker signal.
Let ¢ be a (k—3)-simplex and let S be a triangulation of the circle S
Then the join K(z)xS is a triangulation of a (2—1)-disc.

LEMMA 4.4. Let sg be a signal of K(z)*S such that 3 sg(e)=0, where ¢ runs
over all (k—1)-simplexes in K(z)xS. Then $NC(K(zr)*S, sg, 1)=#NC(K(7)xS, sg, —1).
PrOOF. Define a signal sg’ of S by sg’(u)=sg(r*u) for each 1l-simplex p¢ of
S. Then Xsg’(#)=0, where p runs over all l-simplexes in S. Obviously
ENC(S, sg’, e)=#NC(K(r)*S, sg, ) for e=+1. Since S is a triangulation of S,

#{plsg’ (=1} —#NC(S, sg’, D=#{p|sg’()=—1} —4NC(S, sg’, —1).

Thus we have $NC(S, sg’, 1)=#NC(S, sg’, —1) and #NC(K(z)xS, sg, 1) =#NC(K(7)*S,
sg, —1). This completes the proof.

LEMMA 4.5. Let 4 be a k-simplex and let sg be a checker signal of K(4)'.
Suppose that ¢ is an i-simplex in K(4)’ such that

1)  oc=KWd)—K@4)y, 0<i<k—1, or
@  e=KG4)Y, 0<i=k—2.

Then > sg(r)=0, where v runs over all k-simplexes in st(a, K(4)').
PrROOF. Easy, e.g., by induction.

LEMMA 4.6. Let sg be a signal of K(04)" such that the restriction of sg on
K(4)) is a checker signal for each (k—1)-face 4; of a k-simplex 4. Denote by 4;;
the (k—2)-simplex 4;N\4;. Then the following holds:

) If pis a g-simplex in K@4)'—\i.; K(4;;)" such that q=k—2, then
NC(st(y, K(@04)'), sg, €) is empty for e==+1.

(2) #NC(K(04)', sg, 1)=#NC(K(04)’, sg, —1).

) If pis a g-simplex in K(d;))" for i#j such that ¢=k—3, then

gNC(st(y, K(@4)"), sg, 1)=#NCl(st(g, K(@4)"), sg, —1).

ProoOF. (1) Since the restriction of sg on K(d4;) is a checker signal by
any simplex in NC(K(04)’, sg, ¢), for e==*1, is contained in K(4,;)
for some 7, j. Thus NC(st(y, 04), sg, €) is empty.

(2) From[Lemma 4.1, we deduce that #(NC(K(04)’, sg, 1) K(4,,))=#INC(K(@4)’,
sg, —1)NK(4;;) for i#j. Since #NC(K(04), sg, ¢)=2.,#(INC(K(@4)’, sg, e)N
K(4;;)) for e==1, we have ¥NC(K(d4)’, sg, 1)=¢NC(K(04)’, sg, —1).

(3) First suppose that ¢g=dimpg=%k—3. Then lk(y, K(d4)’) is a triangulation
of the circle S!. From it follows that #NC(st(y, K(04)"), sg, )=
ENC(st(y, K@4)), sg, —1). Next assume that ¢<k—4. By

(NC(st(y, K(04)"), sg, D\UNC(st(y, K(04)"), sg, —1))NK(4),
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for i#j, is equal to the set of all (k—2)-simplexes in st(y, K(04))N\K(d;;)=
st(y, (K(4;;)) or empty. Since ¢=k—4, by using we obtain that

#(NC(st(y, K(@4)"), sg, INK(4;;))=4%NC(st(g, K@4)"), sg, —1)NK(d:).
Consequently, it follows that

#NC(st(y, K@4)"), sg, 1)=#NC(st(p, K@4)"), sg, —1).

5. Proof of Proposition 3.1.

Let sg be a signal on the barycentric subdivision K(@04)’ of the boundary
K(@04) of a k-simplex 4. By a g-ball, we mean a topological space homeomorphic
to a ¢g-simplex. We decompose 04 as the union of balls as follows. An element
in B(04, sg, ¢), for e==1, is one of the following :

(1) a (k—1)-simplex ¢ in K(d4)’ such that sg(¢)=e¢ and sg(r)=—e for any
€ K(04)’**~? such that ¢\t is a (k—2)-simplex,

(2) the union ¢\Ur in 04, where g, € K(04)’**~" such that sg(e)=sg(z)=¢
and oNr is a (k—2)-simplex.

Then an element in B(d4, sg, ¢) is a (k—1)-ball. From the definition of the
signal, we obtain

04=
pEB(4, sg, £1)
Let cp denote the cone of the (k—1)-ball p in B(04, sg, ). Then cp is a k-
ball. If we identify cp with the join of p with the barycenter b, we have
A=
PEB@4,sg, x1)
The cone cp is either equal to a k-simplex by+¢ or equal to the union of two k-
simplexes bgxo and by#r. The boundary dp is homeomorphic to the (2—2)-sphere
and the cone cdp is a (k—1)-ball. The boundary d(cp) is equal to the union
cdp\Jp. We write Int(cdp) for the space cdp—adp.

We have the set AK(A))={(x, o)€dXKU)'*V | xeg} for K()' as is

defined in Section 3. We say that an attachment signal

Asg: A(K(4))—{1, 0, —1}

is a standard extension of a signal sg:(d4)’*-?—{—1, 1} if the following con-
ditions are satisfied,

SEl. Asg(x, cp)=¢ x<€Intp
SE2. Asg(x, cp)=—¢ x<Int(cdp)
SE3. Asg(x, cp)=0 otherwise.
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Here, as before, we write Asg(x, cp)=2>,Asg(x, p), where p ranges over all
(although one or two) k-simplexes in cp.

The standard extension is not unique. But it is obvious that, for any signal
sg on K(04)’, there exists a standard extension Asg of sg.

PROPOSITION 5.1.  Let 4 be a k-simplex and let sg be a signal of K(4) such that
the restriction of sg on K(4,) is a checker signal for each (k—1)-face 4; of A.
Then the standard extension Asg: A(K(4))—{l, 0, —1} satisfies the following :

(1) Asg(x, K(4)")=sg(r) if xe€lnte, TeK@4)'*v,
2 Asg(x, K(4))=e if xelntp, peNC(K@4), sg, e)* 2.
3) Asg(x, K(4))=0  otherwise.

PROOF. Let 04=\_,cp@4 sz, +1 o De the ball decomposition. By SE3,of the
standard extension, Asg(x, K(4)’)=0 if x is neither contained in Intp nor con-
tained Int(cdp) for any ball p in 04. If x is contained in Intp for some pe<
B(04, sg, ¢), then x<Intr for some r= K(04)'* P with sg(r)=¢ or x<Intp for
2 eNC(K(©04),sg,e)*~». In these cases, from SEI, we obtain that Asg(x, K(4)")
=¢. This proves (1) and (2) of the proposition. Now assume that x<Int(cdp)
for some p. If x=by then by SEZ,

Asg(x, K(4))=%B(K(04)', sg, —1)—$B(K(04)’, sg, 1).
From the definition of B(K(04)’, sg, &), we obtain that

£B(K(04)', sg, e)=8{a = K(@04) ¥V | sglo)=¢c} —4NC(K(04)’, sg, ¢).

Thus we have

Asg(x, K(4))=— > sg(a)+ENC(K(04)', sg, L—2NC(K(04)', sg, —1).

GEK () (k=1

The set of all (k—1)-simplexes in K(d4)’ is equal to the set of all (£ —1)-simplexes
in \UJi_ost(by, K(4:)). By > sg(r)=0, where ¢ runs over all (k—1)-
simplexes in st(by,, K(4,)"). From (2) of Lemma 4.6, we have 4NC(K(d4)’, sg, 1)
=#NC(K(04)’, sg, —1). Consequently, we obtain that Asg(x, K(4))=0. If xe
Int(cdp) and x+#by, then we can write x Int(bs#p) where pCdp, p=K(04) and
dimp<k—2. By SE2,

Asg(x, K(4))=#B(st(y, K(4)"), sg, —1)—%B(st(y, K(4)', sg, 1).

If peKd,;))=Kd;,n4; and dimp=~k—2, then £B(st(y, K(4)), sg, D=
£B(st(y, K(4)', sg, —1)=1. Hence we have Asg(x, K(4)')=0. The remaining
case is when p=K(4;;)’ and dimp<k—3 or when peK(©O4)'—\J;.;K(d;;)’ and
dimp=<k—2. In these cases, we can apply (1) and (3) of [Lemma 4.6l Using
as before, we obtain that
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Asg(x, K(4))=— > sg(a)+ENC(st(y, K(4)), sg, 1)

gEst(p, K(M")
—#NC(st(p, K(4)', sg, —1)
=0.

This completes the proof.

LEMMA 5.2. Let K be a k-dimensional pseudo-Euler complex. Then there
exist signals sg? of K(@4)' for all k-simplexes 4 in K satisfying the following
conditions:

Pl. The restriction of sg? to K(4;) is a checker signal for each (k—1)-face
4; of 4.

P2. Let K* ! denote the (k—1)-dimensional skeleton of K. Then for each
(k—1)-simplex o in (K*~1), 3 sg%(0)==0, where 4 ranges over all k-simplexes in
K such that K(4)'>g.

PROOF. Since K is a pseudo-Euler complex, to each (k—1)-simplex z in K
and to all k-simplexes p; such that p;>7, we can give checker signals sg.#/ of
K(z)’ such that 24> 88:(0)=0 for any (k—1)-simplex o in K(z)’. Letd be a
k-simplex in K and let ¢ be a (k—1)-simplex in K(©4)’. Then there exists a
(k—1)-simplex = in K such that ¢=K(z)’. Define a checker signal sg? of K(©4)
by sg?(¢)=sg4(s). Then the collection {sg?} satisfies the conditions (1) and (2).
This completes the proof

Now we are in a position to prove [Proposition 3.1l

PROOF OF PROPOSITION 3.1. Let sg? be the set of signals of K(d4) for all
k-simplexes 4 in K satisfying P1 and P2 of Let Asg? be the
standard extension of sg?. We define an attachment signal Asg of K’

Asg : AK={(x, o) |K'| xK'®|xea}—>{—1, 0, 1}

by Asg(x, a)=Asg(x, ¢) where = K(4)’. We now show that Asg(x, K(4))=0

for any x in |K|. By [Proposition 5.1, it is sufficient to prove the following
cases :

(1) x<lnte for some (k—1)-simplex ¢ in K(@04)', A€ K®,

(2) x<Intpy, peNC(K(@4), sg, e), deK®.
In the case (1), we have Asg(x, K(4))=0 by P2 of Now we con-
sider the case (2). By Pl, #=K(4;;)" and so p=K’* 2. Let ¢ be a k-simplex
in K such that K(s)’>p. We have two (k—1)-simplexes 7z, and z. in K(dg)’
such that z.>p and z_>p. If sg(ci)sg(r-)=1, then peNC(K(@0g)’, sg, ¢) and

Asglr, Klo))=e=-5(sg"(z.)sg?(c.)).

If sg(r.)sg(r.)=—1, then Asg(x, K(o))=0=(1/2)(sg(z;+)+sg(z_)). Consequently,
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we obtain that, if x<Intp for some (k—2)-simplex g in K’, then Asg(x, K')=
> (1/2)(sg?(74)+sg’(z.)), where ¢ runs over all k-simplexes in K such that K(da)’
Sp. Thus

1
Asg(x, K)=— sg(t
g( ’ ) 2 ae%)(k) TEK(aa);k—l),TZu g ( )
=L 5 S sl
2:€K k"D, r>p  ¢€K (B K (@a) 5

By P2 of
sg?(z)=0.

dEK (k) K@o)' o1

Hence we obtain that Asg(x, K’)=0 in the case (2). The proof is complete.

6. Counterexamples to Halperin conjecture.

In order to explain Halperin’s conjecture, we first give the definition of the
normally nonsingular map according to [4]. For that, as in [4], we introduce
the bivariant language.

We consider a simple situation. Let X and Y be compact polyhedra and let
f:X-Y be a continuous map. Since X is embeddable as a closed subspace of
R™ for some n, there is a mapping ¢: X—R" such that (f, ¢): X—=Y XR" is a

R
closed embedding. Write Xy for the image of X in Y XR". Define H(X—Y) by
H{(X 5 V) =H*"Y XR* Y xR~ X4; Zs).

This definition is independent of the choice of ¢. If f is the identity, we have
the natural isomorphism

id
HY{(X—X)=H"X;Z,),
and if Y is the point, we have
Hi (X —>pt)=H(X;Z,).

If X is a subpolyhedron of Y, let (L, K) be a triangulation of (¥, X). Let N be
the second derived neighborhood of K in L and let dNV be its boundary. Then

H{(X5Y)=Hi(N, 0N; Z,), where ¢: X—Y is the inclusion.
For continuous maps f: X—Y and g:Y—Z of compact polyhedra, the cup
product defines the bilinear map

o . . o
HxLvyxwy Lz —> uvix 7).
A map f:X—Y is called homologically normally nonsingular if there is an

s
element 4 in HY(X-Y), for some d=Z, such that, for any compact polyhedron
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W and a continuous map g :W—X, the homomorphism

) g -6 . rg
HW—>X) — H*YYW-Y)

is an isomorphism. We say that # is a strong orientation with codimension d.
In particular, if f has a normal bundle, the Thom class is a strong orientation.
Remark that Fulton-MacPherson used the sheaf cohomology R‘(Hom(Rf\Z:y, Z )
But the definitions agree since we work on the category of compact polyhedra
[4, p. 86]. Note that @ is a strong orientation if the homomorphism -4 is an
isomorphism for any compact subpolyhedron W in X and the inclusion g [4, p. 85].

If f:X-Y is a homologically normally nonsingular map, we have the Gysin
map

frrHY, Zy)— H;_ (X, Z,)

defined by f'(a)=60-a for acHY ; Z;)=H /(Y —pt.). The i-dimensional Stiefel-

Whitney cohomology class w*(N,) in H¥(X; Z,) of the normal space of f (7=0) is
defined by

wi(Ny)=(-6)"'Sq"(0),

. T

where Sq° is the i-th squaring operation of Steenrod on HY(X—Y). Put w(Ny)

=20 W (Ny). Since w'(N;)=1, we have the inverse w(N,)™! in H¥(X; Z,).
Let X and Y be compact mod2 Euler spaces and let f:X—Y be a homo-

logically normally nonsingular map. Then Halperin’s conjecture is the follow-
ing equation:

(H) Sx(X)=w(Ny) N fls(Y).

Now we give some simple examples where the relation (H) does not hold.

We define a PL-manifold Z which is PL-homeomorphic to D*X S* as follows.
Put Q={(x,, x»)=R?|[x,]+|x.|=1}. Then Z is the quotient space of QX
[—1, 1JCR® under the identification x X {—1}~xx {1} for x=Q. Let ¢* be two
2-discs in QX {0} defined by

at={(x,, x5, x5)€Q X {0} | x,=0}
0" ={(xy, x5, x5)€QX {0} |x,=0}.

Obviously ¢*Ue =Q X {0} and ¢*"No~ is a 1-disc. Further we have two 2-discs
7* in Z defined by

Th= {(xb Xgy X3) [ x1:0, 0§x2§1; 0§X3§(1/10)X2}
T_:{(xl, X2, x;;) [ x1:O, 02.7(22'_‘1, ng;;g(l/lo)xﬁ.
The intersection of ¢* or z* with 07 is a 1-disc such that

(@*NIZ)N(z*NIZ)=pt., (6" NIZ)N\(z-NIZ)=pt.
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We have two PL-homeomorphisms A* from ¢* onto = such that
h*|e*Nr*=identity, h*(e*M0Z)=t*NoZ.

Let Z, and 0Z, be the quotient polyhedron of Z and 0Z under the identification
x~h*(x). Let m:Z—Z, be the projection. Then z is a homotopy equivalence
of pairs; m:(Z, 02)—(Z;, 0Z,). Let Y be the double of Z,:Y=Z3\Usz, Zs-
By the arguments in Section 2, Y is a mod2 Euler space homotopy equivalent
to S*x S The circle {0} XS*={(xy, x5, x3)| x;=x,=0}/~ in Z is mapped by =
identically. We write X for {0} xS! and also for the image z({0} xSYcZ,CY.

PROPOSITION 6.1. The inclusion f: X—=Y is a homologically normally non-
singular map.

PrROOF. We give a homotopy inverse w:(Z,, 0Z,)—(Z, 0Z) as follows. Let
A be the subspace of Z defined by

A=A{(xy, x5 x3) | x|+ 1x:| =1, 1251 22/10} /~.

Then A is a 3-disc and A is mapped by = identically. Let B be the subspace
of 0Z defined by

B={(x1, x5, x5) | [x1]+]x:1=1, |x5]=2/10}.

Then B is a PL-manifold homeomorphic to S'x D! and let 6B be the boundary.
Put B,=z(B) and 0B,==(@B). Since 0BC A, we may identify ¢B with 0B;.
By the construction, = |B: (B, 0B)—(B,, 0B;) is a homotopy equivalence. We
have a map w?:B,—B such that w?|0B,=identity and w?:(B,, 0B,)—(B, 0B)
is a homotopy inverse of = |B: (B, 0B)—(B,, 0B). Put

E={(xy, xs, x2) | [x1]|+ x| =1, | x| =2/10}.

Then ECA and E is homeomorphic to D?*xS° The union EUB in Z is
homeomorphic to S* and the union E\UB, in Z, is homotopy equivalent to S%
Let C(E\UB) and C(E\UB,) denote their cones. Then we have

Z=AUgC(EUB), Zn=AUgC(E\UB,).

We define a map w:Z,—Z by w|A=identity, w|B,=w? and by the cone exten-
sion of (identity\Uw®) on C(E\UB;). Then w!|X is the identity. Since the inclu-
sion s: X—Z is equal to the zero section of trivial D-bundle, we have the

strong orientation 8, in HXZ, Z—X: Z,)=H%X->Z). Put
O=w*0,cHXZy, Zn—X: Z)=HX>Y).

To show that # is a strong orientation, it is sufficient to take W to be an in-
terval or the point in X containing O=(0, 0, 0). Notice that we can triangulate
C(E\UB,,) by the cone extension of a triangulation of E\UB,. Consequently, we
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7 X
have the natural isomorphism Hl(OjY):Hl(C(E‘uBh), EUB,; Z,), where g:
O—X is the inclusion. Since w* maps HY{(C(E\UB), E\UB ; Z,) isomorphically onto
H{(C(E\UBy), E\UB; ; Z,), we obtain that

. g .0 ) fg
HW—-X) — HW-Y)
is an isomorphism for any 7, if W=0. The proof is similar when W is an in-
terval containing 0. This completes the proof.
By the arguments in Section 2, we have 0% s,(Y)EH,(Y ; Z,) = H,(S*XSY; Z,)
=Z7,. The Gysin homomorphism f' maps H,(Y ; Z,) onto H\(Y ; Z,) isomorphic-
ally. Since so(X)=s,(5")=0 and w(N,)"'=1, we obtain the following:

PROPOSITION 6.2. s4(X) is not equal to w(N;) "N f's.(Y).

This shows that Halperin’s conjecture is not true in our case.

Our construction of Z, can naturally be extended, for example, to construc-
tions of mod2 Euler spaces Z?'? homotopy equivalent to S?xS? if p=2 and
g=1. We have the inclusion of S? in Z?? which is homologically normally
nonsingular, but Halperin’s equation (H) does not hold.
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