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§1. Introduction.

Among basic properties of the one-dimensional Brownian motion, we consider
the property of quadratic variation, nowhere differentiability, Lévy’s Holder con-
tinuity and the law of the iterated logarithm. We shall prove that these prop-
erties hold not only almost everywhere (a.e.) with respect to the Wiener measure
but also quasi everywhere (q.e.), namely, except on a polar set, with respect to
the Ornstein-Uhlenbeck process on the Wiener space. We shall also consider the
d-dimensional Brownian motion and establish g. e. statements of the unattainability
of a one point set (when d=5), the transience (when d=5) and the absense of
double points (when d=7).

Concerning the property of quadratic variation, D. Williams has obtained
such refinement from a.e. to g.e. by a direct consideration of the Ornstein-
Uhlenbeck process ([8]). In this paper, we instead make use of the estimates of
a capacity related to the Ornstein-Uhlenbeck operator. A useful means in carry-
ing out the computation of the estimates is a chain rule of the Dirichlet norm
for composite functions. The rule has been stated already in the context of the
Malliavin calculus (3], [8], [10]) and in relation to the Dirichlet forms (1], [6).

To be precise, let us consider the d-dimensional Wiener space (W, P) ; W=
W4e is the space of all continuous functions w : [0, co)—R?¢ satisfying w,=0 and
P is the Wiener measure on W. W is endowed with the topology of uniform
convergence on every finite interval. The expectation with respect to P is
denoted by E. The ¢-th coordinate of weW is designated by w, or b, (w) or
bt, w). {b,, t=0} performs the d-dimensional standard Brownian motion under
the law P. The inner product in L:=L2*V, P) is denoted by ( , ).

Let L= i B 7, be the Wiener-Ito decomposition, Z, being the space of n-
n=90
ple Wiener integrals. We consider a self-adjoint operator 4 on L? defined by

n

(L) A:“ni 2

P, (P, is the projection on Z,).

A is non-positive definite and consequently we may consider the associated closed
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symmetric form &€ on L%; & is given by

alel={ueL® : ¥ nPou, Pau)<oo}
(1.2) - -
&E(u, v)zfgon(Pnu, P.v).

The domain 9[£] of & will be denoted by F. As is well known, the semigroup
{T,=exp(tA), t>0} is realized by the transition function of the Ornstein-Uhlenbeck
process which is a diffusion process on W (see the paragraph containing formula
(1.9). Hence (4, &) is a Dirichlet space in the sense that

1.3) uceqd — v=0VuAleg, &, v)=e(u, u).

We introduce a capacity Cap(A) for all subsets A of W as follows; for an
open set ACW

Cap(A)=inf{&(u, u) : u€F, u=1 P-a.e. on A}
and for any set ACW
Cap(A)=inf{Cap(B) : B open, BDOA},

where &,(u, v)=&u, v)+(u, v), u, veF. Cap is a non-negative increasing set
function on W such that

(1.4) P(A)=Cap (A) for Borel A, Cap (V)=1
(15 Aal = Cap(\J Ax)=sup Cap (4,)
(1.6) Cap ( nQAn)g ﬁ’) Cap(A,).

Properties and (1.6) follow from property for open A,’s and the strong
subadditivity of Cap for open sets, which are in turn easy consequences of the
feature of the Dirichlet form ([1; §3.1]). A trivial but important observa-
tion we want to mention here is that the countable subadditivity (1.6) implies
the capacitary version of the first Borel Cantelli lemma

1.7 i Cap(Ay)<eo == Cap({im A,)=0

which will be repeatedly used in concluding our quasi-everywhere statements.
We use the term “quasi-everywhere” or “q.e.” to mean “except on a subset
of W of capacity zero”. We can now state our theorems. The first five theorems
concern the one dimensional Brownian motion.
THEOREM 1 (d=1, quadratic variation). Fix t>0 and consider a sequence 4,
of partitions of [0, t] : 0=t{™ <t{™ < --- <t{P=t, Idn[:mgx(t,ﬁn’-—t,ﬁ’li. We let
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Sa(w)=32 bW, w)—b#tM, w)?*,  weW.

If 14,1-0, n—oo, then S, converges to t in capacity* and a subsequence of S,

converges to t g.e. If Z}l |d,| <oo, then S, converges to t q.e.

THEOREM 2 (d=1, non-differentiability). b(t) is nowhere differentiable int q.e.
THEOREM 3 (d=1, Lévy’s Holder continuity).

|b(t,)—b(t)|

lim =1 q.e.

340 ?Efégﬁié (2tlog 1/1)V/2
THEOREM 4 (d=1, law of the iterated logarithm at 0).

i b(t)
tvo (2tlog,1/1)Y/?

THEOREM b (d=1, law of the iterated logarithm at o).

— b(t)
lzlfg (2t log, t)Y/2

=1 q.e.

=1 q.e.

The next three theorems concern higher dimensional Brownian motion.

THEOREM 6 (unattainability of a one point set). Let d=5. Fix any point
a=(a,, -+, ag)=R* and let oo(w)=Inf{t>0 : bt, w)=a} (inf @=co by conven-
tion). Then ois=00 gq.e.

THEOREM 7 (Transience). Let d=5. Then ltim |b(t)| =c0 g.e.

THEOREM 8 (Absence of double points). Let d=7. Then b(t) has no double
point gq. e.

In §2, we prove and then present three propositions concerning
some basic capacitary estimates. Other theorems will be proved in §3 and §4.
We will refer to McKean [7], Ito-McKean and Kakutani for the proof of
the classical a.e. statements. The idea is that our propositions of §2 together
with our version of the first Borel Cantelli lemma enable us to proceed along
the same lines as in and to our g.e. statements.

In the remainder of the introduction, we give some remarks on the prob-
abilistic and analytic significance of the W-set of zero capacity. Let us consider
the Ornstein-Uhlenbeck process (Y;, P) on W with initial (and stationary) dis-
tribution being the Wiener measure P. We have then the relation

(1.8) Cap(A)=0 & P(Y,=A for some t>0)=0.

In fact, a simple application of the optional sampling theorem to a supermar-

* lim Cap(|S,—t|>¢) =0 for any ¢>0.
>0
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tingale enables one to identify the capacitary potential of an open set A with the
l-order hitting probability of A with respect to the Ornstein-Uhlenbeck process
([1; Lemma 4.3.17). The implication “=" in [1.8) is immediate from this ([1;
Theorem 4.3.17). Since our space W is not locally compact, the argument of
does not work directly in obtaining the converse implication “&”. However, we
can show that the converse is also true by embedding W continuously onto a
dense Borel subset of a compact space and thus reducing the situation to the
standard setting of (11]. This method of embedding has been used by
Kusuoka in constructing a diffusion on a Banach space.

In view of [1.8)], we see that includes William’s result [8]
Moreover (1.8) allows us to translate each of our g.e. statements into an a.e.
statement concerning the “Brownian sheet”. Let W{(¢, z), t=0, =0, be a two
dimensional parameter Wiener process taking values in R? defined on a prob-
ability space (2, P) : W(t, o)=W'¢, 7), ---, W, 7)) possesses independent com-
ponents and each component Wi(t, z) is continuous, vanishing on axes and cen-
tered Gaussian with EWt, o)W/, /))=tAt'-tA’. W(t, z) is the so called
Brownian sheet. For each t=0 and wef, X (0)=W(t, -)w) takes value in W
and (2, P, X,) is a version of the Brownian motion on the space W. Following

Meyer [8], we let
(1.9) Yy=e Y w+Xet-), weW,

then Y? becomes a realization of the Ornstein-Uhlenbeck process on W starting
at w and indeed p.f(w)=E(f(Y?)) is a version of exp(t4)f(w) for the operator
A of (1.1) [8).

Let us use a convenient fact that, as a realization of the Ornstein-Uhlenbeck
process on W with initial distribution being the Wiener measure P, we may take

(1.10) Y, =e 'PW (e, -), t=0.

Consider a statement S concerning each element w<W and let A={welW : S(w)

is true}. We know from and that

Cap(4)>0
if and only if

(1.11) Ple~'?W(et, 7) satisfies S as a function of =0 for some ¢>0)>0.
Therefore the stronger assertion

“S is true q.e.”, namely, “Cap(A°)=0",
holds if and only if

(1.12) P(et*W(e*, 7) satisfies S as a function of z=0 for every :>0)=1.
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If S holds P-a.e., then
{1.13) Pe "W (e, 1) satisfies S as a function of z=0)=1 for each t>0,

because {e"**W(¢!, 7), z=0} is under P a Brownian motion for each ¢>0.
However (1.13) does not always imply (1.12). For instance, let d=1 and take as
S the statement “w;#0”. Then (1.13) is fulfilled but (1.12) is not because
{e~t?W (e, 1), t=0} is under P a one-dimensional Ornstein-Uhlenbeck process and
consequently hits the origin almost surely. In other words, the W-set

(1.14) A= {w,=0}

is P-negligible but of positive capacity. In the same way we can see that any
finite dimensional set which is of zero Lebesgue measure and yet of positive
Newtonian capacity always gives rise to a P-negligible W-set of positive capacity
{see the final remark in this section).

We exhibit a more interesting P-negligible W-set of positive capacity which
is not given by a finite dimensional projection as above. An intensive study of
the sample function behaviours of the Brownian sheet W(¢, ¢) has been given by
Orey-Pruitt [9] In particular, they proved that the P-measure of the Q-set

W, z)=a for some (¢, 7)=(0, o)X (0, <c)

is either 1 or 0 according as d<4 or d=4, where a is an arbitrarily fixed point
of R? Hence we see by (1.11) that the capacity of W-set

(1.15) A,={w.=0 for some >0}

is either positive or zero according as d<4 or d=4, where 0 is the origin of R¢.
When d=2 or 3, Cap(A4,)>0 but, as is well known, P(A,)=0.

Note that the statement Cap (A,)=0 for d =5 constitutes a part of our Theorem
6. We also note that the interpretation by (1.12) allows us to derive
{law of the iterated logarithm at oo) and (transience for d=5) from
the corresponding statements for the Brownian sheet by Zimmerman [12; (2.15)]
and by Orey-Pruitt [9; Theorem 3.17] respectively.

Finally we add a remark that our Dirichlet form & of is reduced by a
finite dimensional projection to a familiar expression

(1.16) e, =5 Fulvdy  wv=CsRY,

where dp=Q2xz) "2 1*"*2dx, --- dx,. In fact, let ay, a,, -, a, be elements of
W’ constituting an orthonormal system in L2[0, c0)) and let

Pal,m,an(w):({al, w}; ) {an’ LU})ER”, w=W

(see §2 for the definitions of W’ and {, }). Then we can see by of
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§ 2 that
(1.17) E(UePay s any V5 Pay ) =E€™ (u, v),  u, vECHR™).

€™ is a Dirichlet form on L*R"; ) and indeed associated with the Ornstein-
Uhlenbeck process on R*. We can also see that the Ornstein-Uhlenbeck process
on R™ with initial distribution g is realized by the projection Pa,,..,q«,(¥?).

The expression tells us that a set ECR" is of zero Newtonian capacity
if and only if £ has zero capacity with respect to £™, which is in turn equiv-
alent to the probabilistic condition that the process P,,,.. «,(Y;) does not hit E
almost surely. Therefore, in view of [1.8), we can conclude that ECR™ is of
zero Newtonian capacity if and only if the cylindrical W-set A=P;! .. . (E)
satisfies Cap(A)=0. In this sense, we may well claim that the present notion
of capacity is a natural extension of the classical Newtonian capacity on the n-
space toward the infinite dimensional space W.

§2. Basic estimates of capacity.

Denote by C(W) the totality of (not necessarily bounded) continuous functions
on W. Since the polynomials of the coordinate functions b()=(b*(t), b%(®), -+, b(1))
belongs to FNC(W) and &,-dense in &, we see in the same way asin [1;§3.1]
that each u= 9% admits a quasi-continuous version # and

@1 Cap<1a[>x)§%2-el(u, W, >0, ueg.

is a straightforward application of this estimate :
PROOF OF THEOREM 1. Suppose d=1. Since
Sn—tzgt(b(té"’)—b(tﬂi =t —tiM)]1EZ,,
we have from the expression (1.2
81(Sn_t; Sn'_'t):2“Sn“t”IZJZZZE((Sn_t)z)éC|Anl ‘.

Now and our capacitary version of the first Borel Cantelli lemma lead
us to [Theorem 1. g.e.d.

The proof of other theorems are not so simple and we must go a little beyond
the algebraic expression [1.2) and use a chain rule in computing the Dirichlet

norm. In what follows, we denote v/&(u, u) and v&:(u, u) by |ulle and |lulle,
respectively, us&.

Following Meyer [8], we denote by W’ the set of all functions
a : [0, o0) —R*

with finite variation and compact support. We define the pairing of W’ and W by
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{a; W}:_S:ws‘das, aEW’: ‘LUEW,

which is a version of the stochastic integral S:as-dbs(w) and belongs as a func-

tion of w to the space Z,C9D(A). We view W’ as a subspace of L*[0, co))=
L*([0, c0)—R?) with inner product

oa, ﬂ)zg:as- Buds .
LEMMA 1. Take ay, asy, -, a,€W’ and feCy(R"—RY). Then

f{{aly '}’ {a2: '}) ) {an) '})Eg
and

IfHas, -}, {as, <}, -, {an, -DIE

:_é_i,;LE:lE[f.‘ci({al, '}’ ) {an7 '})f:l:j({alx '}7 ) {any ‘}>:|(1<01i, aj)‘

ProOF. Consider functions FedD(A) (CF) satisfying F’eD(A), F, AF<
LYW, P). For such F and G, let

(F, Gy=A(FG)—(AF)-G—F-(AG) (e L*W; P)),
then

&(F, G)=5 E(F, 6)

because the both hand sides equal —E((AF)-G). Let Fy, F,, ---, F, be of the
above type and f be as in Lemma 1. Take quasi-continuous versions F; of F;
(€9). Then ﬁi(Yt) are continuous semimartingales and the Ito formula yields

the chain rule (8], [10]):
Ey Fay ooy Fa), Gr= 33 f 2 (Fyy Py o, FaXFy G

On the other hand, in view of the trivial actions of 4 on Z, and Z,, we readily
have

<{ai) '}7 {ah '}>ZQ(a'b aj)’
Since F is closed under the composition with a uniformly Lipschitz function, the
proof is complete. g.e.d.
For an interval I=(s, t)CR, we put
bt, w)—b(s, w)
Vi—s
PROPOSITION 1. For disjoint intervals I, I,, -, INCR and ai<bi, ¢i>0,
=12, ,N, j=1, 2, -+, d, we have

X (w)=

,  Xi(w)=XKw), -+, X{w)).
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d . . .
Cap () () {ai< Xj,<b})
i=1j=
Nd Nod oo o
< i pd J j i
(e +)P(0) N (ed—ct< Xt <bi+cly)
where ¢=min c¢l.
1,7
PrOOF. From [Lemma I
(2.2) WXLy ey X3 Xby ooy Xy ooy Kby ooy XEIIE

1 ~Nd ‘
:_é—kglE[ka(X}l’ T %_v)zj > feC3(RYE > R).

Fix 6>0. For each 1=/=<N and 1=<;=d, choose a C~-function fJ(x) on R such
that fi(x)=1 on (af, b)), fix)=0 outside (ai—ci, bi+c]), 0= fi(x)=1 and [(f)'(x)]
1 .
=5 Then put flx, -, xya)=/ix) ~ [Hxa)filxasn) - [f(xwa).  Since
Fw)=7(X}, -, X4,, X},, -, X4, )=F is equal to 1 on the open set B=

N a
ﬂl ﬂl {al< X},<bl}, we have, by the definition of Cap(B) and (2.2),
i=1j=

Cap(B)=&,(F, F)=|Flz+E(F?)

<(il )P0 (X, =(@d—c, bite}).  qed

(c—0)* i=1j=1

LEMMA 2. Let 0=s<t,<t,< -+ <t and put bss,..., =b(t:)—b(s), b(ty)—b(s),
<o, b(t)—b(s)) (eR™).  Suppose f<Hi, (R™) satisfies S s;tyt, ) ELXW ; P) and
Foylbs;tye))ELXW ; P), 1=k=nd, then f(bs;4,...,)EF and

<23> ||f(bs,zlln)”§’
1 = d
:E_l %):1 k};lE[fI(l—l)Mk(bs:t1-~tn)fr(m—1>d+k(b3;tl"'ﬁn)](tl_s)/\(tm_s)’

PROOF. When feC3(R"?), (2.3) follows from by setting

k
a(l—l)d-}-k(‘g):(o) T I[s,”](S), Ty O) .

Suppose next f< HY(R"?) is of compact support. Then the sum of the right
hand side of (2.3) and E(f(bs;¢,...t,)?) is dominated by

(5 Pltam )+ 1)@ 2= ) ta— ) (a7 fl

where | f;];,1=SRnd{|V FI*+fdx. Let p. be a mollifier. Then puf<Ci(R™%)

satisfies Lemma 2.2 and so does f because p.*xf converges as ¢ |0 to f in the
space H'(R™9).
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Now take any function f satisfying the condition of the lemma and let
fP=f.g® where g® is a C'-function such that g®=1 for |x|=<p, g®=0
for [x|=zp+1 and 0=g?®» =1 and |g{¥|=M for some M independent of x, p
and 2. Then f is a function of the preceding type and

B = D boren1IS8] (MEF0H+Fo (00 dpt), =0,

zp

where 4 is the distribution of b;,,,...,. Hence we have g.e.d.
For b(t)=(), ---, b%(t)), we put

M ;=max (b*(v)—bi(s)), 1=i<d, 0=s<t.

SEVsL

LEMMA 3. Let 1=i=d and 0=s<t. If u(x) is a non-negative non-decreasing
convex and -absolutely continuous function on R such that u(Mt,) and u'(M?,) are
in L*W ;P), then ulM: )=eF and

M 3= 15 B,

PrROOF. Take s<t,<t,< -+ <t,<t and let f(xy, -, xpa)=ulx;Vxgi;V -+
vx(n—l)d-(-i)- Then f(bs;tl-‘-tn>:uu»{§;tlu-tn> Where Mg;‘l"'tn:g?é (bl(tl)_bl(s)) It

is easy to see that f satisfies the condition of which implies
. L la o . . .
”U(A’H,tlzn)l\nglgE(u (ﬂfs;tl...cn)‘ ; A/[s;tl...gn:b1‘<t[)""bz(5))(tl—‘5)

i=s

E(uw'(ME,,.... (' (M3 2)?) -

In the present case, the cross terms of the right hand side of (2.3) vanish because
P(Mi, .. =b' ) —b"(s)=b(t,n) —b*(s) S P (t)—b'(tn)=0)=0, [+#m.

Let {t, t,, ---, to} increase to a countable dense subset of [s,t]. Then
u(Mt,q,...,) increases to u(M},). Since &rnorm of u(Mi,,...,) is uniformly
bounded by the above estimate, the Cesaro means of a subsequence are &,-con-
vergent to a function of & by virtue of the Banach-Saks theorem. The limit
function must coincide with w(M?: ;). g.e.d.

PROPOSITION 2. Let 1=i=<d and 0Zs<t. Then
i i a2<t—-S) —lll@
Cap (Ms,t— 2 (t—s)>ﬁ)§(T+2)e , a, f>0.

Proor. The right hand side equals

Cap (e(a/z)Mg, t> e(aﬁ(t—s)/4)+laﬁ/2)>£e—(n2/2) (t-8)-af Hemmm;,“%l by .

By virtue of we see
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“em/zmg,t||§l§(ﬁgﬁ§;_s)+l>E(eaM;‘_t)§(ﬁz<i4ﬁ +2)e(a2/2) @9 g.e.d

PROPOSITION 3. For 1=:=d, 0=s<t and 5>0

Cap (max| b(w)—b¥(s)| > 1) =( 4o

772
2(t—s)

i\ pi U —p2/(2(t-5))
Cap (max |b¥(1) b(v)|>7]>§(2(t—s) +4)e :

PrROOF. By letting a= ;

7 and =~ in Cap (MY, > 7)<
2

(4—“7-7_T)+2)e"12/ -9 Since still holds by replacing b()=
), -, bY@, -, b)) with —b(t), we get the first inequality. The second in-
equality also follows from an obvious modification of g.e.d.

§3. q.e. properties of the one dimensional Brownian motion.

We assume d=1 and prove Theorems 2, 3, 4 and 5 stated in §1.
[3.1] Nowhere differentiability (proof of Theorem 2).

Fix a positive integer / and let
()50l <

It suffices to prove Cap(lim B,)=0 ([7;p.9]). But, by Proposition 1, we have,
for ¢>0 e

B,=

1st<n-56 i<j§i+5{

Cap(B)= 'S Cap (N L, {N/W‘b (J 1)’<:1/1_711})
- R O R C SR )
< %ﬁ[prMl <1UA+0)F
q.e.d.

[3.2] Lévy’s Holder continuity (proof of Theorem 3).
Let us put

[b{t)—b(t))|
F (w)_?E?OJ&%SI @2t log 1/01% °

PROOF OF “F(w)=1 q.e.”. Let h(t)=(2tlog 1/t)*?, 0<9<1 and 0<¢< g, then



Brownian motion and Wiener space 171

by [Proposition T,
Cap (max [b(k27")—b((k—1)27")| =(1—)A2™"))

AG b(k2-M)—b((k—1)27") 5 Tog O
=(Geriogzr 1P| v =(—+0)VZIEZ'|

217.
<{___ = __9on@-0
:< 1on log 2 +1>exp( 2 )

the last inequality holding for sufficiently large »n according to [7; p.15]. Since
the sum in n of the last expression is finite, we have from (1.7

|b(k2™™)—b((k—1)27™)|

rilsagg hz™ >1—0 from some n on, q.e.,
which implies the desired inequality because 6 >0 is arbitrary. q.e.d.

PROOF OF “F(w)=1 q.e.”. By we have for ¢>0 and 0=s<t

Cap [1b(t)—b(s)| >(1+)h(t—3)1=((1+e)* log -—— +4)(—3) "

t—s

Hence, using the subadditivity of the capacity, we find

1b(j27™)—bG2™™)|
Cap [0<k$§ézn5 h(k2-™ _2_1+e]
0<ijs2m

1b(j2-")—b(i2"™)|
= s Cap( h(R2)

0olijs2em

zl+e)

2™ 2
<9n 2 = -n\(1+¢)
<2» 5 {i+eriog S +4f(e2)
§2n<1+a) {(1-{—6)271 log 2+4} 2-n(1-6)(1+e)2 .
Choose small 6>0 satisfying (1+0)<(1—d)(1+¢)?, then by again, we see
that, for q.e. weW, there exists m=m(w) such that for any n=m(w)

[b(j2-™)—b(127™) | <(1+e)h(k2™™), 0<i< =27, b=j—i=2"0.

But we have for such w F(w)<1+3e+42¢% ([7; p.16]). qg.e.d.
[3.3] Law of the iterated logarithm at 0 (proof of [Theorem 4).
Let us put
F(w)=Tim ———2

tvo (2tlog,1/8)Y% "
PROOF OF “F(w)=1 q.e.”. Let h(t)=(2tlog,1/t)'/* and take just as in



172 M. FuKuUsHIMA

[7; p.13] 0<0<], 0<6<], a=(140)0""h(0"), B=h(")/2, t=0""* and s=0 so
that

*(l—s)
<at45

is a general term of a convergent sum. By [Proposition 7 and 1.7y,
1—}—5
0<v<0n-1 (v) [ 20
The rest of the proof is the same as in [ 7]
PROOF OF “F(w)=1 q.e.”. We choose 0<#<1 and put é=logl/0, h(t)=
(2tlog,1/H)V2 and W= {b(0")—b(6*H=<(1—~/0)h(*)}. By
[ n b(GF)—b(GF) 1 i

O ety Sy @logsky ]

+2)e="#=Cy(log n+Con~+?

]h(&“) from some n on, q.e.

Cap

N
>q

(\We)=Ca

1—0)n [n b(O*)— b(()k“ 1—+b+c . ]
<{ "7 I /2
:<4c210g£§l DL V=g < vi—g 2lgsk) J
(=01 | \7 (1-0n 2
<4c11o T l)gu"m <4czlog’l r1)@“’( E;lk)'
exp(—c?/2) 1—+/0+4c
Here I, denotes the integral of —7;72—;[ dc on [,\7?,(9,, v2log £k, oo)
1—+/0+c
Choose ¢>0 so small that ~71;~;t0f'<1, then
n = n k—(1—~/§+c)2/<1—0) i -
Z p=C = log kb =C =09,
2
where £ is such that 1\/\1/04_ Q,,< <1, Hence

Cap (Ii\l”/k>§63p (éka)§C'n R | n—co.

Therefore Cap (lki_m W) =0, namely, b(6™)—b(@"*")>(1—+/ G)h(6™) infinitely often
g.e. The rest of the proof is again the same as in [7; p.14]. qg.e.d.

[3.4] Law of the iterated logarithm at oo (proof of [Theorem 5).

Trivial modifications of the proof of suffice. In fact, we let
h(t)=Q2tlog, )%, 6>1, 0<0<1, a=(1+0)08""h(0™), B=h(0")/2, t=0""" and s=0
in to get inequality “<”. To get the converse, we let 6>1,
E=log @ and W,={b(0*)—b(0*)<(1—1// 0)h(8**V)}. g.e.d.

REMARK. Here is another way to prove Note that we could
start with, instead of W=W¢, the space W:C((O, o0)—R%) and the Wiener
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measure P on W. Then Tw(t)=tw(l/t), t>0, defines a P-measure preserving
transform 7" on W which also preserves the associated capacity é?ﬁ) on W, because
the induced transform on LW, P) makes spaces Z, and consequently the Dirichlet
form [1.2] invariant. Hence (for W) follows from (for W)
directly. Now our space W is continuously embedded into W and P(W—Ww)=0.
This means that Cap(B)gcfa\lf)(B) for BCW (actually the equality holds by virtue
of the compactification argument ([11]) and we can recover qg.e. statements on
W from those on W. It may be also possible to derive the second inequality of
from the first one in a similar way.

§4. q.e. properties of higher dimensional Brownian motions.

As in §2, we write as b(t)=((@®), ---, b%(t)). We first note an obvious remark
that each component bi(t), 1=7/=d, satisfies the q.e. statements of Theorems 1
through 5. We shall now prove Theorems 6, 7 and 8 stated in § 1.

[4.1] Unattainability of a one point set (proof of Theorem 6).
Assume d=5. Fix a=(ay, -+, az)=R? and define as in [4; p.62]

bi<-§—)—ai

It suffices to show lim Cap (B,)=0, because, by virtue of Theorem 3 holding for

-

B,= 3@}.

n

{ <
ns kl2n 15isd

each component bi(t), we see that the set

{®@), -, b4)=(ay, -, aq) for some t<[1, 2)}
is contained q.e. in the set lim B,.

By Proposition 1, we have for each #,
Cap(@d { b —fl—)— <«/ Sl%g"})
:Cap[Qd{\/_ (\/ 3logn \/_ IJM/BIOgn }]

=(zeagn ) W—w =(gamwrrod e,

Voo M)]

IIA

2y e10gn T)VEFI(GEL )
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d/2) -
Hence Cap(Bn)§Cn<loin)( 7 1—»0, n— 00, q.e.d.

[4.2] Transience (proof of [Theorem 7).
Assume d=5. If we let, just as in [5] t,=+k*4 k=12, -+, and 7,=
Cap(|b*(t)| <M, 1=i=d, for some t<[t;, tiel]) for M>0, then

4.1) 7:=Cap (|bi(t,)| <2M, 1=i=d)

+Z)Cap( max | bit)—bits) | >M).
tpststpyq

The first term of the right hand side of [4.1}] equals

Cap( lb’<tk>|<—2—]‘{ 1<i<d)

= (aie ) (i 0001 < 15420

dt, 6M \¢ -3(d-2)/8

< 2 V<
(2M2 +1)(Vmr;) 2k

by virtue of [Proposition 1. By the second term of is

dominated by

M?2 M?
-_— < 1/4 1/4
d<2(tk+1_tk> +4> eXp( 2(tk+1~—tk)) C k eXp( Csk )

Foo
Hence kZ) 7r<co and we see from that, for q.e. weW, there exists k,=
=1
d
ko(w) and x/abf(t)2>M for any t>1,,. g.e.d.

[4.3] Absence of double points (proof of [Theorem 8).

Assume d=7. We still follow to consider disjoint intervals I=(s,, s;)
and J=(t,, t,) with s,<t, and let y=Cap (b*(s)=b%(¢), 1=i=d, for some s</] and
te]). Then, for >0,

(4.2) r=Cap (|bi(s))—b(ty) | <2%, i=1,2, -, d)

+ é Cap (max|b*(s)—b'(s)| > 77)+:21 Cap (max |b*(H)—b'(to) | >7)

d<to_31)+27] ( 76777, . >d
— 277 \/27'5(110‘31)

2

+d<*2§:7_—30)+4>exf)(— 2(5177*2—30) )

+d(2<z1—to> +4) (—*2‘(?:7—27:(»)’
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where we have used [Proposition 1, the second inequality of and
the first one of successively.

Divide I and J into p-subintervals of equal length:

I
]:éllk’ .]:kZZ)lfk, Ilkl:Ip_!, |]k|:l—p‘[l—, k=1,2, -, p.

Applying the above inequality to [/, and J;,, we get

r< kZi)l ;ﬁ)lCap(bf(s):b"(t), 1=/<d, for some s, and t=]))

I\

pg{ 6%(d(t,—s0)+27°) 77'1—24“05( by +4)

22r(ty—s,))%/? 2(s1—50)
_ pvz B p772 _ p772
xexp(— 5 Loy >+d(2<t1—to> +4)exp( 2(t:—t0) }
. . _ . 2 1
which tends to zero if we set »=p~? with ﬁ<”<7 and let p— oo,
g.e.d.
References

(1]
[2]

[3]
[4]

[5]
[6]

L7]
(8]
[9]
(10]
(11]
[12]

M. Fukushima, Dirichlet forms and Markov processes, North Holland and Kodansha,
1980.

M. Fukushima, Capacitary maximal inequalities and an ergodic theorem, Proceedings
of the 4-th USSR-Japan Symposium on Probability Theory and Mathematical Statistics,
Lecture Notes in Math., 1021, Springer, 1983.

N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes,
North Holland and Kodansha, 1981.

K. Ito and H. P. McKean, Diffusion processes and their sample paths, Springer,
1965.

S. Kakutani, On Brownian motion in n-space, Proc. Acad. Japan, 20(1944), 648-652.
S. Kusuoka, Dirichlet forms and diffusion processes on Banach spaces, J. Fac. Sci.
Univ. Tokyo Sect. IA, 29(1982), 79-95.

H. P. McKean, Stochastic integrals, Academic Press, 1969.

P. A. Meyer, Note sur les processus d’Ornstein-Uhlenbeck (Appendice: Un resultat
de D. Williams), Séminaire de Probabilités XVI 1980/81, Lecture Notes in Math.,
920, Springer, 1982.

S. Orey and W. Pruitt, Sample functions of the N-parameter Wiener process, Ann.
Probability, 1(1973), 138-163.

D. W. Stroock, The Malliavin calculus and its applications, Stochastic integrals,
Lecture Notes in Math., 851, Springer, 1981.

M. Takeda, (r,p)-capacity on the Wiener space and properties of Brownian motion,
to appear.

G. Zimmerman, Some sample function properties of the two-parameter Gaussian
process, Ann. Math. Statist, 43(1972), 1235-1246.



176

M. FukusHIMA

Masatoshi FUKUSHIMA

College of General Education
Osaka University

Toyonaka, Osaka 560

Japan



	\S 1. Introduction.
	THEOREM 1 ...
	THEOREM 2 ...
	THEOREM 3 ...
	THEOREM 4 ...
	THEOREM 5 ...
	THEOREM 6 ...
	THEOREM 7 ...
	THEOREM 8 ...

	\S 2. Basic estimates ...
	\S 3. $q.e$ . properties ...
	\S 4. $q.e$ . properties ...
	References

