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§1. Introduction.

Let M be a compact m-dimensional Riemannian manifold with or without

boundary. In [2], Yau defines an isoperimetric constant I(M) as follows:

i VOI@OM,OMy - -
I(M)=inf min (Vol My, Vol M)’ the infimum being taken over all decomposi-

tions M=M,JIM, with Vol(M,;N\M,)=0. By standard methods, Yau shows that
(1) ran=int{{, 1971 /int{ 17-p1 | recian}.

I(M) is useful for estimating eigenvalues of the Laplacian from below. In
this note we wish to investigate and clarify a geometric quantity w associated
to M (and defined below) that arises in trying to estimate I(M). At each
pe M, consider a subset R of TiM with the following property: The set of
all points of M reachable by minimal geodesics from p with initial direction
in & has volume equal to or greater than VolM/2. Then w, is equal to the
infimum of the (m—1)-dimensional areas of all such ® and w::piéllgwp. Let

& p-1=(m—1)-dimensional area of S™'CR™. Clearly 0<w/a,-,=<1/2 and for
M=S™, w=w,=an-1/2. One estimate we make is contained in the following
proposition.

PROPOSITON 1. Suppose the Ricci curvature of M 1is equal to or greater
than (m—1)a®. Then for all peM

wp/am—lzw/am-lg(l/z)v(a: d(M))—IVOI (M) .

Here V(a, p) is the volume of the solid ball of radius p in the space form of
constant curvature a?, (a may be a real positive or a purely imaginary number)
and d (M) is the diameter of M. The proof of follows in §3.

§2. To begin with, for pe M let (r, §) denote polar coordinates on T ,M;
0= TiM, r=0. For each € T)M, let »(f) be the distance to the cut locus of
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p in the direction 6. Let
Dy={(r, 0) 1 0€TiM, 0=r=r(0)}.

For a set ECT,M, define the following associated sets
Sp(E)Y={0TiyM | A7=r(0), =(7, )= E}
Cp(E)=A{(r, 0) | 0=S,(E), 0=r=r(0)}.

Within the set D,, C,(E) may be thought of as the cone over S,(E) and
Sp(E) itself is the set of directions in which points of E are first visible.
Let w,(E) denote the (m—1)-dimensional volume of S,(E)CT}M. Yau defines

o=inf{w,(E) | peM, Vol(exp,(E))=VolM/2}.
We note that in fact
w=Iinf{w,(C,(E)) | pEM, Vol(exp,(C,(E)=VolM/2}.
Therefore

0= in}f{a)p, where w,=inf{Vol,-i(R) | RCT}M, Vol (exp C,(R))=VolM/2}.
pE

Intuitively w,/an-, is the smallest proportion of the unit sphere of T, M neces-
sary to “view” at least half of M.
LEMMA 1. Let h be a C* function on M. If Vol(h~'(0))=VolM/2,

(2) [, 101=] 1901 (@/an 00,

ProoF. If we define (/1",\/0) :=exp,(r, 0), then formulae (6.9) and (6.10) of
page 502 combine to give

[, 1a1=(] 19a1)- sup ST%M [ s (expy,(h- (0N drdo .

peEM

Therefore

[, 14 g(SM VA l)(w/am_l)”g:w) drg(SM V81 )@/ @) a.e.d.

PROPOSITION 2. If M is compact and oM=0, then
A= inf ik 2)>1/4 m-1)2d(M)™2.
(ot (1o /1721740 - a)

PROOF. (Similar to [2], (5.5).) Given f=C* M), there always exists a con-
stant B, such that both Vol f~*([8,, )) and Vol f}(—oo, B,]) are equal to or
greater than VolM/2. By the previous lemma applied repeatedly to (f*)*and
()2, where
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FH(x)=max{f(x)—f,, 0}
S (x)=—min{f(x)—B,, 0},

we have

I+

M(

[ ==, o=
<(/an-)d(M)-2] FRITF 19|
=2(/an-)"dMD|_(F+FNT )]
=2(@/an-)dD| | 7= Bol 190/~ Bo)]
<2(w/an-)d00({, 17—801%) ([ 19717)".

Hence | 17—fil* /[, 1971 =4 (w/cn- a0y Butit | r=0, then | 17—pul*z

ngZ. g.e.d.

The calculations of the previous lemma and proposition imply the follow-
ing.
ProrosITION 3. (Yau) Let f=C{M), then

(1) =100 /([ 1-507) ",

where B, is as in the previous proposition.

§3. We now prove Proposition 1 Let RCTHM) satisfy VolM/2<

Vol (exp,(C,R)). If dV is the volume element of M, we mav write, in terms
of the coordinate system (7, ) D, — exp,(r, ),

dV=~/g,(r, ) r"'dr df .
Then

rd ——
VolM/2§SQSO( NSO ridr .

Since Ric M=(m—1)a?,

(3) Ve, D =|

sin ar ]m-l
>

where we use the complex extension of sin if ¢*<0, and consider (sinar)/ar=1
if a=0, (see pp. 253-257). Consequently,
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0

VolM/Zgggg

d<M>[ sin ar

]m—lrm‘ldr dé
ar

sin ar
ar

S(Volp-(R)/ am-1) am_lgod(m[ ]m_lrm”dr.

Therfore

sin ar
ar

(4) VolM/zgwp/am-l)am-lS:‘M’[ " rmtdr <@yl an-n) Vi, d(M).

COROLLARY 1. If M is a compact Riemannian manifold with oM=0 on
which Ric (M)=(m—1)a?, then

12~ (VolM/ V(a, d(MY)Pd(M)™.

If in addition the sectional curvature of M is bounded above by b?

1 ( Vb, r)

2
Ly Vo,n L _ ) .
A= 16 \'(a, d(M))> d(M)%, where r=maximum injectivity

radius of M.

§4. We conclude with a proposition which provides a lower bound for
I(M) in terms of d(M) and w. As a corollary to this proposition, we have a
Theorem of Yau giving a lower bound for /(M) on a closed manifold M with
Ricci curvature bounded from below.

PROPOSITION 4. Suppose M is compact without boundary. Then

(5) IM)zdM)™w/an-;.

CoROLLARY 2. (Yau). If M is as in Proposition 4 and also has Ricci cur-
vature bounded below by (m—1)a?, then

(6) I(M);VolM/Z[d(M) am_lgjm[iin ar ]"‘”dr]'l.

a

PrOOF. Let feC'(M) and choose B, as in the proof of

Then the functions

Sr=max{f(x)— B, 0}

and

Jm=—min{f(x)—f,, 0}
both satisfy the hypothesis of Lemma 1, namely

Vol((f*)"(0))= VolM/2

Vol((f)~%0))=VolM/2.

Moreover f* and f~ are C! except on a set of measure zero on which f* and
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f~ both vanish. The conclusion of clearly holds for these functions.
Now

f=Bo=F=F
= Bol =F+F =111+ 7|
|VF| =197 —=f | = |V 9

almost everywhere. By (2) together with the above equalities we have

[ lr—gor= 114 1

and

=([, 19714 1971) @/an-d1ainy

(191 @/am-ran).

Thus

(7) [ 1971/ (int |, 17=B1)z(@/an-) da) .
By using equation (1) we conclude that
IM)Zd(M) ™0/t

This proves the proposition. We now prove Corollary 2. If Ric(M)=(m—1)a?,
then estimate (3) holds and we may use the estimate (4) in the proof of

to conclude that

(8) m/am_leolM/Z[am-IS:(M)[ Sina‘” ]m" dr]" .

Combined with (5) this proves (6).
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