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Introduction.

Let S be a linear operator with domain D(S) and range R(S) in a Hilbert

space H. Assume that

(&) for all >0, (1+aS)* exists, R(1+aS)=H and there is a constant M>0
such that |(14+aS) <M.

The following three theorems are recently established by Professor T. Kato.

THEOREM 0.1. Let A be a linear accretive operator in H. Let S be a linear
operator in H, satisfying condition (&), with D(S)YCTD(A). Assume that there exist
nonnegative constants a and b such that for all us D(S),

0.1) Re(Au, Su)=—alul*—blSullllu] .

Then the closure A of A is m-accretive and D(S) is a core of A.
THEOREM 0.2. In Theorem 0.1 assume further that S is m-accretive, 1i.e.,

M=1 in condition (). Then for n=1, 2, ---, An:—i—S—l—A is also m-accretive and

(/~1+C)'1:s-lim(—i—S+A+C>_l, Re >0,

Furthermore, A, converges to A strongly in the generalized sense.

For the notion of generalized strong convergence of closed linear operators
we refer to Kato [11].

THEOREM 0.3. Let A be a linear accretive operator in H. Let S be a non-
negative selfadjoint operator in H, with D(S)CD(A). Assume that there is a
constant b=0 such that for all ues D(S),

Re(Au, Su)=—>b(u, Su).

Let 0<h=<1/2. Then D(S") is invariant under (A+&)-%, &€>2hb, and for all
ve D(S?), .
1S*(A+8) "l =(E—2hb)~ [ S™v] .

The purpose of this paper is to generalize the theorems stated above. In
81 we give a sufficient condition for the well-behaved singular perturbation of
linear operators in a Banach space. As a simple consequence we obtain a
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perturbation theorem of Chernoff and Okazawa [17]. §2 is concerned with
the regular perturbation of linear m-accretive operators in a Banach space.
We shall generalize the theorems in Yoshikawa and Okazawa [16], [18].
The result extends that of Gustafson [7]. Using the results in §1 and §2,
we shall prove in §3 two generalizations of [Theorem 0.2 to the case of Banach
space. To generalize the inequality we need the notion of duality map.
Let F be the duality map on a Banach space X to its adjoint X*. Roughly
speaking, we assume instead of

(0.2) Re(Au, F(Su)z —alul*—bISulllul,
or
(0.3) Re(Su, F(Au)=z—alull®—bl Aulllu] .

Since D(S) is included in D(A), (0.3) is weaker than [0.2) if X is a Hilbert
space, i.e.,, F is the identity. But, we can find the example in which
rather than is satisfied. The purpose of §4 is to give another proof of
and to show that A, converges to A strongly in the generalized
sense without assuming the m-accretiveness of S. The result is closely related
to a nice criterion for selfadjointness obtained by Faris-Lavine [6]. Assuming
slightly more, we can generalize a theorem in Okazawa [20]. As an applica-
tion we consider in §5 some differential operators in L? (1<p<o). In par-
ticular, we can treat the Legendre operator A in L*—1, 1)

Au (x):——dd—x[(l—x?)%]

with D(A)={ueHY -1, 1);1—x»u(x)e H¥—1, 1)}. We shall show that A is
the reasonable limit of a sequence of Sturm-Liouville operators

(—}z—S—I—A)u(x):—d—dx{(—}l——i—l—ﬂ)%], n=1,2, -,

where Su(x)=—u"(x) with D(S)={uesH*—1, 1);u/(—1)=u’(1)=0}. Here, it
should be noted that the following inclusion holds:

D(S)CD(A)C D(SV®)=HY—1, 1).

§6 is concerned with the regular perturbation of nonlinear m-accretive
operators in a real Banach space with uniformly convex dual. We shall
mention some criteria for the m-accretiveness of the sum of two m-accretive
operators. Finally, in §7 we shall try to generalize to the case
of nonlinear m-accretive A in a real Hilbert space. A simple example will be
given at the end of this section.

The writer would like to thank Professor T. Kato for giving him a chance
to learn the suggestive result before publication.
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§1. Singular perturbation of linear operators.

Let X be a Banach space and X* be the adjoint space of X. Let S be a
linear operator with domain D(S) and range R(S) in X. We denote by S* the
adjoint operator of S when D(S) is dense in X. Let A be a linear operator
in X, with D(A)DD(S).

Here we introduce two fundamental assumptions:

(I) There exists a complex number & such that

1
R(75+A+5)_X, n=1,2, ;
hence for every ve X there exists a sequence {u,} in D(S) such that
(1.1) inSun—i—Aun—]—Eun:v.

(I) For every veX both sequences {|u,ll} and {||Au,|} are bounded.
(Note that —L—S—I—A—FE is not necessarily invertible.)

Then we have

PROPOSITION 1.1. Let A be a linear operator in X. Let S be a densely de-
fined linear operator in X, with D(S)CD(A) and D(S*) dense in X*. Suppose
that two assumptions (1) and (II) are satisfied. Then R(A-+E) is dense in X.

ProorF. We shall show that (A+4&)D(S) is dense in X. To this end, let f
be an element in X* such that for all ueD(S), (A+8&)u, f)=0. Then it follows

from that
v, )=(—Sun, £)+(A+Eun, 1)

= (Sup N0 (o).

In fact, “—}Q—Sun

is also bounded by assumption (II) and for every feD(S¥*),

| (Stn, )| = 1, SN = = uallISH1.

Thus, we obtain (v, f)=0 for all v X and hence f=0. Q.E.D.
Now, a linear operator A in X is said to be accretive if

I(A+8ull =&l ull for all ueD(A) and £>0.

If in particular R(A+&)=X for some (and hence for every) £>0, we say that
A is m-accretive. Accordingly, an m-accretive operator is necessarily closed.
In this connection, let A be an arbitrary closed linear operator in X,
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Then a linear manifold D contained in D(A) is called a core of A if the closure
of the restriction of A to D is again A.

THEOREM 1.2. In Proposition 1.1 assume further that A 1is accretive and
E>0. Then A 1is closable and 1its closure A is m-accretive, and D(S) is a core
of A.

PrROOF. Since D(A) is dense in X, A is closable (see Lumer-Phillips [13],
Lemma 3.3) and R(;H—S) is a closed linear subspace in X. So, Proposition 1.]|
implies R(A+&=X. Namely, A is m-accretive. To see that D(S) is a core
of ﬁ, it suffices to show that (A+&)D(S) is dense in X (see Kato [11], III-
§5.3). But, this fact is the key point in the proof of Proposition 1.l

Q.E.D.

COROLLARY 1.3. In Theorem 1.2 assume further that for n=1, 2, .-,

%S—F/H—E is invertible. Then %—S-{-A converges to A strongly in the general-

1zed sense.
ProOOF. By the invertibility we obtain from

unZ(%S-i—/H-E)_lv.

Since ||u,|l is bounded, H(%SJer—E)_l“ is also bounded by the principle of
uniform boundedness. Therefore, 7S+A converges strongly to A in the gen-

eralized sense (see Kato [11], Theorem VIII-1.5). Q. E.D.

Let F be the duality map on X to X*, i.e, for each we X, F(w)={fe X*;
(w, f)=|w|*=|f1*}. Then a linear operator A in X is accretive if and only
if for every ueD(A) there is f€F(u) such that Re(Au, /)=0 (see [9]. In
this connection, we note that if A is m-accretive then Re(Au, f)=0 for all
feF(u).

Applying we obtain a result in and [17].

COROLLARY 14. Let S be a densely defined linear m-accretive operator in
X, with D(S*) dense in X*. Let B be a linear accretive operator in X, with
D(B)DD(S). Assume that there exists a constant a>0 such that for all us D(S),

IBul < allul+[Sull.

Then (S+ B)~ is also m-accretive.

PrROOF. Since S+ B is accretive, it suffices to show that two assumptions
(I) and (II) with A=S+ B are satisfied. Let t>0. Then we have

|Bull=allul+1+ ) A+ )Sul .

Since (14¢)'<1, it follows that (1+¢)S+B=tS+(S+ B) is also m-accretive (see
Gustafson [7]). Consequently, for every ve X there exists a family {u(¢)} in
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D(S) such that
tSu(t)4+(S+ B)u(t)+u(t)=v.
Now, in addition to |u(¢)|=|v], we have

lSu() =14 DI Su(t) = Su()|
=A+DISuI = Bu(®) —allw(®)l)
=1+ H)Su()+Bu(t)l+alw(@)ll
=lvl+A+a)llu()] .

Therefore, |(S+ B)u(t)| =4+ a)|v. Q.E.D.

REMARK 1.5. Starting from the m-accretiveness of S+¢B (0<t<1), we can
again obtain the same conclusion under the assumption that D(B¥*), rather than
D(S*), is dense in X*; see the proofs in and [17]. For the case of re-
flexive Banach space see below.

§2. Regular perturbation of linear m-accretive operators.

The result in this section will be used in the next section to show that
the assumption (I) in §1 is satisfied by the operators involved.

Let X be a Banach space and F be the duality map on X to X*

LEMMA 2.1. Let A be a linear accretive operator in X. Let S be a densely
defined linear m-accretive operator in X, with D(S)CD(A). Assume that for
every usD(S) there exists h€ F(Su) such that

2.1 Re(Au, h)z —alu|®,

where a=0 1is a constant. Then S+ A is also m-accretive.
ProoF. Since A is closable and D(A)DD(S), there exists a constant ¢>0
such that for all ueD(S),

FAul = c(llul+1Sul)

(see Kato IV-§1.1). Let [c] be the integral part of ¢, and set e=([c]+1)"".
Then we have

(2.2) leAu||Zcellull+celSul, ce<l.

Therefore, by the theorem of Gustafson quoted in the proof of [Corollary 1.4]
S+¢A is m-accretive.

Now we can prove that for all ue D(S),
[Sul =N(S+EkeAul+(kea)?|ul, k=12, .
In fact, we have by
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1Sull?2=(Su, h)<(Su, h)+Re(keAu, h)+kealul?
=Re((S+keA)u, h)+kealul?®
=(S+keAulllSul+kealul®.
So, we obtain from
(2.3) leAullZcellull+cell(S+EkeA)ull+(kea)/?|ull]
=ce[1+(kea) qull+cel|(S+EkeA)ul .
It follows from [2.3) with k=1 that (S+cA)+¢A=S+2¢A is m-accretive.
Thus, we can prove inductively that S-+keA is m-accretive. In particular,
S+ A=S+([c]+1)eA is m-accretive. Q.E.D.
Now, a perturbation theorem in and is generalized as follows:
THEOREM 2.2. Let A be a linear accretive operator in X. Let S be a densely

defined linear m-accretive operator in X, with D(S)YCTD(A). Assume that for
every us D(S) there exists h& F(Su) such that

(24) Re(Au, h)=—alull*—bllSul*,

where a and b<l are nonnegative constants. Then S+ A is also m-accretive,
PROOF. can be written as

2.5) Re((bS+ A)u, h)=—allul?®.
Multiplying by 1—b, we obtain

Re((bS+Au, h")z—(1—b)a|u|?,
where A’ F((1—b)Su). Since (1—b)S is m-accretive and bS+ A is accretive,
with D({(1—b)S)=D(bS+ A), it follows from Lemma 2.1 that (1—b)S+(bS+ A)=
S+ A is m-accretive. Q.E.D.

REMARK 2.3. Let A and S be as in Assume that there exist
nonnegative constants @, and b,<1 such that for all ue D(S),

fAull < a:flull+b.llSul .
Then holds, with b=b,+e<1. In fact, for every heF(Su),
Re(Au, Mz —[AullSullz—a,fullSull—b,|Sul*
= —Ccllull*—(bs+e)|Sull®.

Therefore, S+ A is m-accretive. This means that extends the
result of Gustafson [7].

PROPOSITION 24. Let A be a linear accretive operator in X. Let S be a
densely defined linear m-accretive operator in X, with D(S)CD(A). Assume that
D(A¥*) is dense in X* and that for every us D(S) there exists g F(Au) such that
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(2.6) Re(Su, g)=z—alul?,

where a=0 is a constant. Then S+ A is also m-accretive.

PrOOF. As in the proof of Lemma 2.1, S+e¢A is m-accretive when e=
(Ccd+1)

Instead of we can prove that for all ueD(S),

@.7) leAull=(ae)"*|ull+1(S+keA)ul,
where k=1, 2, ---. In fact, by the inequality we have
ellAul*=ke(Au, g)=(keAu, g)+Re(Su, g)+allul?
=Re((S+keAu, g)+alul?®
S(S+keDullll Aull+-allul®.

Solving this inequality, we obtain [2.7). Now, it follows from with k=1
that the closure of (S+¢eA)+¢cA is m-accretive (see [Corollary 1.4 and Remark

1.5). But, implies further that S+keA is closed for k=1, 2, ---. Thus,
we can prove inductively that S+%keA is m-accretive particularly when k=
Lc]+1. Q.E.D.

REMARK 25. When X is a Hilbert space, then is the same as [(2.1).
In this case we note that A(1+aS)*+aa is accretive (see below).

§3. Singular perturbation of linear m-accretive operators.

In this section we shall prove two theorems on the singular perturbation
of linear m-accretive operators in a Banach space.

Let X be a Banach space and F be the duality map on X to X*.

THEOREM 3.1. Let A be a linear accretive operator in X. Let S be a linear
m-accretive operator in X, with D(S)CTD(A). Assume that

(1) for every usD(S) there is heF(Su) such that

CRY) Re(Au, M)z —ai|ull*—clSullul,

where a, and ¢ are nonnegative constants;
(i) D(S) is dense in X and D(S*) is dense in X*.
Then the closure A of A is m-accretive and D(S) is a core of A. For

n=l1, 2, -, -711—S+A is m-accretive and

(32) (ﬁ—i—()“:s-nli?(—;—s—i—A—l—C)—l, Re >0,

1 ~ . )
Furthermore, —n-S—{—A converges to A strongly in the generalized sense.

If in particular X is reflexive, then condition (ii) is redundant.
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PrOOF. By we can find positive constants a, and b<1 such that for
n=l1l, 2, .-,

. Y
(33) Re(Au, bz —aul—(amnlul*+—-Sul?).
Multiplying (3.3) by n‘f, we obtain
Ns (1 :_p|| L “

Re(Au, i)z —(S=+a)lul—b|—-su|,
where h’EF<—}1—Su). So, it follows from [Theorem 22 that %S—I—A is m-
accretive :

R(L5+A+1):X, n=1,2, -
n
Let u, be a unique solution of the equation

(34) %Su,ﬁ—Aun—kun:v.
Then, in addition to ||u,[|=<||v], we can show that

(35) Hinsu 2§(2+C)H~-1n—5un

o+ ol

In fact, by virtue of there is h,€F(Su,) such that

(s )

< »%—Re ((%SJFA)un, hn)+%’rllunllz+c|!—1’; Su,

s

llual

| S|+ ot || S

loll .

Noting that li(—}{S—I—A)un <2|v|l, we obtain Solving the inequality

we have

| su

<[2+e+(2) "ot

/
and hence IIAunllg[zl—l—c—k<~(lni)1 2]“1}][. Thus, the conclusion follows from

[Theorem 1.2 and [Corollary 1.3 (for [(3.2) see Kato [11], VIII-§ 1).

The final assertion is a consequence of below. Q.E.D.

The following important lemma is due to Kato (see Yosida
VIII-§ 4).

LEMMA 3.2. Let S be a linear operator in a reflexive Banach space X,
satisfying
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@) for all a>0, (1+aS)™* exists, R(1+aS)=X and there is a constant M>0
such that |(1+aS) | =M.

Then D(S) is dense in X. Consequently, it follows from the closedness of S
that D(S*) is also dense in X* (see Kato [11], Theorem III-5.29).

THEOREM 3.3. Let A be a linear accretive operator in X. Let S be a linear
m-accretive operator in X, with D(S)CD(A). Assume that

(1) for every us D(S) there is g F(Au) such that

3.6) Re(Su, g)z—alul*—bl Aullllul,

where a and b are nonnegative constants;
(ii) D(S) is dense in X, and both D(S*) and D(A*) are dense in X*.
Then A is m-accretive and D(S) is a core ofA Furthermore, (3.2) holds and

-%S—{—A converges to A strongly in the generalized sense.

If in particular X is reflexive, then condition (ii) is redundant.

Proor. We see from that for any ¢>0 there is a constant C.>0
such that

(3.7) Re(Su, 9= —allul—(<
n
Multiplying by (1—¢)/n, we obtain

Re ((---5+e4)u, g/)=—~1—a)(-%+ 53 )lule,

where g’ F((1—e¢)Au). Since —TITS-I—eA is m-accretive (see Remark 2.3), it
follows from [Proposition 2.4 that (~}1—S+ eA)+(1—s)A:%S—I—A is me-accre-
tive.

It remains to show that || Au,|| is bounded, where u, is a unique solution
of (34). By virtue of there is g,€F(Au,) such that

”Aunllz“:(Aum gn)

<Re((—-S+A)un, g0)+ S lunli -2 Augll ]

<|(--5+4)u.

| At + -2 folt+ 2= ) Aua 101
n n

<(2+ 2 ) Aualliol -2 ol

Solving this inequality, we see that llAunHg[z-&—%—l—(%)l/z]uvll. Applying

Theorem 1.2 and |Corollary 1.3, we obtain the same conclusion as that of
Theorem 3.1. Q.E.D.
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Before concluding this section, we give a remark on the contraction
semigroups generated by —(—S—}-A) and —A.

Let A and S be as in [Theorem 3.1 (or Mheorem 33). Let U(t; ~~S+A)
and U(¢; A) be the semigroups generated by -—(us +A) and —A4, respectively.
Then, as is well known, U( ~S+A> converges strongly to U(¢; A).

~ . 1
. —a o >
U(t; Ay=s-lim U<t, . S—I—A), 1=0.
The convergence is uniform with respect to ¢ in each finite subinterval of
[0, o).
Now U(t;%S—I—A) is given by the Trotter product formula:

(s e )wm o sy )

(see e.g. Chernoff [4]). But since U(—% —%—S)zU(an;S) tends to the iden-

tity strongly as n—oo, it follows that

U ﬁ)z[U(% ; A)]"=sim [U(%; %S)U(% ;4)]7.

Thus, we obtain the equality:

stim(stim [0 595 A)))

=sim (stim [0 5-9)u( 5 A)])-

§4. Singular perturbation in a Hilbert space (linear case).

In this section we first consider a slightly more general class of linear
operators including the class of linear m-accretive operators.

Let H be a Hilbert space. Then we have

THEOREM 4.1. Let A be a linear accretive operator in H. Let S be a linear
operator in H, satisfying condition (£) in Introduction, with D(S)CD(A). Assume
that there exist nonnegative constants a and b such that for all us D(S),

4.1) Re(Au, Su)z—alull>—blSull[ull .

Then A is m-accretive and D(S) is a core of A. Furthermore, for sufficiently
large £>0,
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~ 1 -1
-1 M
(A+d —S-i}gl (”n S+A+$) )

and —%S—I—A converges to A strongly in the generalized sense.

The proof of this theorem is based on the following
LEMMA 4.2. Let e<(0, 1]. Then under the assumption of Theorem 4.1,

A(1+ %s)'1+(a+b>M2+bM, n=1,2, -

>

15 m-accretive.
ProoF. Since D(S) is dense in H (see Lemma 3.2), it follows that A is

€ -1,
closable (see Kato [1I], Theorem V-3.4). Consequently, A(1+~n-S) is a

bounded linear operator on H. So, it suffices to show that for all veH,
Re (A(14+-55) v, v)z—[(a+HM+bIMuI.
Since A is accretive, it follows from that
&€ & €
— >__ 7 2__ -
4.2) Re (Au, (1+-5 S)u)= = alulr——-blSuljul .
Let veH. Then un=(1+%s)”lve0(s>. Setting u=u, in we obtain
I3 -1
Re (A(1+ 75) v, v)

2—%a”(1+—%5>—1v

st ) 9

= —Malv|*—dM(1+M)v[?*,

where we have used condition (#) and e<n. Q.E.D.
PROOF OF THEOREM 4.1. Let §>[(a+bM+bIM. Taking e=&"!, we can
write

]. . I -1 e
7s+A+£-‘~[4—‘+A(1+75) ](1+—n—s).
Therefore, we see from condition (#) and that

R(%S+A+$>:H, n=1,2, .

Now, let u,(§) be a unique solution of the equation %Sun(f)—l—Aun(é)—l-Eun(E):v.
Then by the equality
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-17-1

<~%—S+A+5>_1:<1+%S)—I[E+A(1+-;—S) I
we obtain
lun(ON=MLE—(a+b)M>*—bM T || .

It remains to show that for every veH, ”%Sun(E)“ is bounded. By virtue of

we have

|5 sun®] "= Sunt®), - Sua®)
<Re ((~--5+A)un(®), - Sua@)+ - [un@ I+ 1Sun @M unt®)]

SCIl+E @I Sua(@)] + -2 @

This implies that
H—}[ Sun(§) “ <lvll+ [S%—b—}—(—z—)“j TRGIE

Thus, the conclusion follows from [Theorem 1.2 and Q.E.D.
REMARK 4.3. In order to see that A is m-accretive, it is easier to show

that A* is accretive (see [19], §1). In fact, it follows from that for all
ue D(S) and a>0,

Re (Au, 1+aS)u)z—aalul*—=blaSul|ul .
Setting u={14+aS) v, ve D(A*), we have
Re (1+aS) v, A*v)=—aall(14+aS)v|?
—bllv—=QA+aS) | A+aS) ] .

Going to the limit «— +0, we obtain Re(v, A*v)=0 for all ve D(A*).

Now, we give a generalization of an approximation theorem obtained in
[20].

THEOREM 4.4. Let A be a linear accretive operator in H. Let S be a non-
negative selfadjoint operator in H, with D(S)CD(A). Assume that

(1) there exist nonnegative constants a and b such that for all ueD(S) the
inequality (4.1) holds;

(i) D(A)CD(SY?), where S* denotes the square root of S.

Then, in addition to the conclusion of Theorem 3.1, for every { with Re(>0
there is a constant ¢({)>0 such that

43) [A+or—(-s+ar) =52, n-tz s
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hence the compactness of (% S—}-A—i{)_l implies that of (A+0)

PrROOF. Since S is m-accretive, the conclusion of [Theorem 3.1 follows from
condition (i). Let { be a complex number with Re{>0. Then for every veH
there are u(C)eD(A) and u, (&)= D(S) such that Au@)+Lu@)=v and

SO A O+ O=v,  n=1,2, .

Hence we can write

(@)~ un(©1= L Au(C)~ Aun @1+ Sua(0).

So, we have

Re {u()— un(OI*= - Re(Sux(0), u(0)—ua(0)

< IS Q= SO,

Now, by virtue of condition (ii) there is a constant ¢>0 such that for all
us D(A), |SY2ul=Zc(|ull+|Aull). Consequently, [|SV2u(l)| is estimated as fol-
lows:

1S 2@ < cllu@ll4-c|(A+i Im Qu@)ll+c | Im & (O]

<c(1+m D u@l+cl(A+Lu©)]

<e(1+- I E

c 1+ |Im |
Vit (U et

As is well known, a criterion for m-accretiveness includes a criterion for
selfadjointness. So, we can deduce from [Theorem 44 a generalization of a
result obtained by Faris-Lavine (see [6], Theorem 1). '

THEOREM 4.5. Let A be a (Hermitian) symmetric operator in H. Lel S be
a nonnegative selfadjoint operator in H, with D(S)YCTD(A). Assume that there
exist nonnegative constants a and b such that for all weD(S),

(4.4) +i[(Au, Sw)—(Su, Au)]=2a|ull*+2b[Suf/|ul .

Setting ¢({)=

), we obtain [4.3) Q.E.D.

Then A is essentially selfadjoint on D(S), i.e., A is selfadjoint and D(S) is a
core of A. ,

ProoF. It suffices to show that R(1+:A) are dense in H. The left-hand
side of is equal to l

(+1Au, Su)+(Su, +1Au)=2Re(*£iAu, Su).
So, we obtain from
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(4.5) Re(*+idu, Su)=—alu|®*—b|Sullllu]| .

Since +iA are accretive, it follows from [Theorem 4.4 that the closures of +iA4

are m-accretive. Namely, the closures of R(1+iA) are equal to H. Q.E.D.
REMARK 4.6. Let A and S be as in Then it follows from

that

g 1 R
Re (+i(—S+A)u, Su)z—alul*—blSullul.
Therefore, <—1Z—S+A>~' is also selfadjoint. Consequently, for every nonreal {,
~ 1 . i ~ -1
(A~Q*=s-lim [( - S+A4) —C] ,

1 ~ ~ . .
and (~»{S+A) converges to A strongly in the generalized sense (see Kato

[11], VII-§1).

§5. Applications.

This section is devided into three subsections.

5.1. A degenerate elliptic operator in L?(8), 1< p<co,

Let £ be a bounded domain in RY which lies locally on one side of its
boundary I, which we assume is a compact C~-manifold. We denote by
Wk 2() and Wi P(Q) the usual Sobolev spaces: W*?()=L?({2). But we re-
strict ourselves to the case of p&(1, o).

Let a(x)=0 be a function of class C*(2), and set

D(A)={ucW§?2); a(x)u(x)e W>?(Q)}.
Then we can define a linear operator A in X=L?(2) by
Aulx)=—a(x)Au(x), us D(A),

where A is the Laplacian. We want to show that A+(M/p) is accretive when
we set M=max {Aa(x); x2}.
To see this, we first note that the duality map F on L?(Q) is given by

F)=llul*Pu(x)|u(x)|?*, ueL?Q).
So, we have |

(Au, Fe)=—lul**| a(0AuCuln)|u(x)|?*dx

By a simple calculation we obtain
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1 ~
llw)?-% Re (Au, F(u))__ﬁ > S!J T | u(x)|Pd x
+ 3,00 |44 | 1uo1+ (-2 {Re g w1 )24

The second term on the right-hand side is obviously nonnegative for p=2.
If p<2 then it is larger than

N au 2 B
(3-1 33, a0 | 5| a1 72dx
Consequently, we obtain

Re (Au, F(u)=— Jﬂ;igg lu(x)| PAa(x)d x

;—;"gnun% weD(A).

Now let S be the minus Laplacian with Dirichlet condition: Su(x)=—Au(x)
for ue D(S) =W ?P(HN\WL?(2). Then, as was shown above, S is accretive and

it is well known that S is m-accretive in L?({). Furthermore, we see that
D(S)cD(A) and for all ueD(S),

Re (Au, F(Su)):SQ ()| Au(x)| Pdx=0.
So, we obtain

Re (Au+t i;u, F(Sw)z % Re(u, F(Sw)

g—%nunnwn.

Since X is reflexive, the assumption of is satisfied.

REMARK 5.1. The above fact is related to an observation stated in Shima-
kura [21].

5.2. An ordinary differential operator in L?(0, 1), 1< p<co,

It is easy to find the examples of ordinary differential operators satisfying
the assumption of

To do this, we choose two linear operators A and S in X=L?(0, 1) as
follows:

Au(x)=u'(x) with u(0)=u(1);

Su(x)=—u"(x) with 2#(0)=u(1) and #'(0)=u'(1).
Then both A and S are accretive, with D(S)CD(A). Furthermore, we have

Il Aul®? (1

Re(Su, F(Aw)=— 12410 () 2t (o) dx
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— HAu]llz—P S: ddx l4/(x)| Pd x=0.

Since S is m-accretive (see e.g. Martin [14]), the conclusion of [Theorem 3.3
holds good.

REMARK 5.2. If in particular p=2 in the above example, it can be shown
that for every { with Re{>0,

[a+0—~(-s+a+0) =0,  n—oo.

In fact, S=A*A in this case and so we can apply a result in [207].

5.3. A degenerate elliptic operator in L2(£).

Let 2 be a bounded domain in R¥ with smooth boundary I as in §5.1.
We shall use the abbreviation: H*(Q)=W*20), H:(Q)=W%, ¥ Q).

Let ¢(x)=0 be a function of class C*(2) such that ¢(x)=0 for x<I” and
therefore

G.1) %ﬁ(x)go for rel,
where v denotes the unit outward normal on /. Set

D(A)={ucs H (2); ¢(x)u(x)e H}(Q)} .

Then we can define a linear operator A in H=L¥£) by

Au== % ai,. [¢(")”§%]'

By assumption A is accretive and symmetric.

Now let S be the minus Laplacian with Neumann condition: Su(x)=—Au(x)
for ueD(S)={ucs H¥2);o0u/ov=00n I'}. Then S is a nonnegative selfadjoint
operator in H=L*Q), with D(S¥?)=H*(£2). Set

M:max{liﬁ-! xef, 1<i, jgN}.

0x;0x;
Since D(S)CD(A), we can show that for all ueD(S),
52) Re (Au, Su)g—%M(u, Su).

In fact, let u(x) be a function of class C%2) such that ou/dv=0 on I.
Then we have

0p ou

(Au, Su):gggs(x)lAu(x)]zcix—l—Sg jz_;”l 5 5 U
. b4 0°¢ ou ou
:SQ¢(X)|AM(X)‘ dx—i.él SQ 3xiax;j ax,- axi dx
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NSB(;S Pu  ou

2 aJCj axiaTXj ax,; dx.

i, =1

So, we obtain

N ) ou ou
> .
Re(Au, Su)z &= 1SQ 0x:0x; 0x; 0x; dx
1 ¢ X 0p 0 | ou |2
T2 £ 1&0; 1 0x; Ox; | 0x; ax
The second term on the right-hand side is equal to
1 X ou : 1 @ 3¢
2 §1SQA¢(x)l 0x; ‘ g gr oy ax, da
We see from that for all ue D(S),
y 0%¢ ou || ou
Re(Au Su)——1§S 5?;8; ij ax,; dx
1 X ou |2
—5 2,186 |75 | ax
(NM+ M) 3 S “dx.
=1 axi
Namely, (5.2) holds. Therefore, it follows from [Theorem 3.1 that A 1s m-

. . . .1 ~
accretive. Furthermore, since A is symmetric, —n~S+A (n=1,2,--)and A

are selfadjoint operators in H=L¥ Q).

In the rest of this subsection assume further that ¢(x)>0 for x=£ and
0¢/0v<0 on I Then A itself is a nonnegative selfadjoint operator in H= L% )
(see e. g. Baouendi-Goulaouic [1]). Consequently, we see that

D(A)=D(A)C D(S)=HY2).
Thus, the assumption of [Theorem 414 is satisfied.
Set ¢n(x)=% +¢(x) for x€2 (n=1). Then we have

1 N 0 ou
(G S+a)un=—32 P [#:() axj]
with Neumann condition. The properties of this operator are well known.

In particular, for every { with arg{=+0, (% S—I—A—I—C>_1 is compact. Consequently,

it follows from that (A+¢)! is also compact. Thus, A has a
discrete spectrum consisting entirely of nonnegative eigenvalues with finite

multiplicities.
Finally, let N=1, 2=(—1, 1) and ¢(x)=1—x% Then A becomes the Legendre
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operator in H=L%—1, 1). In this case, the above result is supported by the
well known fact that the spectrum of A consists of simple eigenvalues alone :
A=l(l+1), 1=0,1, 2, ---.

REMARK 5.3. Let ¢(x)=0 be a function of class C*2) such that dc/Gv=0
on I Then we define a linear operator B in H=L*{) by

Bu(x)=c(x)u(x), ue L¥90).

Obviously, B is a bounded accretive operator on L*2). Furthermore, for all
ue D(S) we have

(Bu, Su):—sgc(x)u(x)—Au(x)a’x

ou

:S.Q zé c(x)l o0u; e

2 N
dit], 3 g g lu)*dx

3Sr% |u()|*do—_1u(x)*Acx)dx .
Setting M,=max{Ac(x); x=2}, we obtain

Re(Bu, Su)=—M,|lu|?, ue D(S).
Therefore, it follows from (5.2) that for all ue D(S),

Re ((A+B)u, Su)z—-00 M(u, Su)—~Milul?.

If in particular ¢(x)>0 on £ then we have R(A+B)=H.

§6. Regular perturbation of nonlinear m-accretive operators.

First we give a definition of nonlinear (multi-valued) m-accretive operators
in a real Banach space X.

An operator A in X is said to be accretive if for each >0 and u, veD(A),
lx—yll=llu—vl| whenever xe(1+2Au, ye(l+i1Aw.

Let F be the duality map of X into its dual space X*. Then A is accretive
if and only if for each u, ve D(A) there exists f F(u—v) such that (x—y, f)=0
for each xe Au, y= Av. We say that an accretive operator A is m-accretive
if R(14+2A)=X for some (and hence for every) 2>0.

Now let A and B be two m-accretive operators in X. Let B, be the Yosida
approximation of B:

B.=e"'[1-(14¢B)™'], &>0.

Then it is well known that A+ B, is again m-accretive. Accordingly, for each
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ve X there exists a unique solution u, of the equation
(6.1) U+ yv.+Boau.=v, y.€Au,.

The following lemma is fundamental (see Barbu [2], I1I-§ 3.2, or Konishi [12]).

LEMMA 6.1. If D(A)N\D(B) is non-empty, then {|u.l} is bounded as ¢ — 0.
Assume further that X* is uniformly convex and that for each veX, {|B.u.|}
1s bounded as e—+0. Then A-+B is also m-accretive.

Next we give a simple sufficient condition for ||B.u.|| to be bounded.

LEMMA 6.2. Let X* be uniformly convex. Let A and B be m-accretive
operators in X, with D(A)ND(B) non-empty. Assume that there exist a non-
negative constant b<l and a nondecreasing function ¢(r)=0 of r=0 such that
for each us D(A),

(6.2) (y, F(Beuw)=—¢(lul)—blB.ull>  whenever yeAu.

Then A+ B 1is also m-accretive.
ProoF. It suffices by Lemma 6.1 to show that || B.u.| is bounded. It fol-
lows from and that

(v_ue: F(Bsue)):(ys: F(Beus»_{"“Bsuenz

== B.ul*—¢(lucl).
Thus, we obtain
A=) Beul*=(vl +NuDl Beuel +@(llu.l)
and hence

(A=) Beucll=lvl+lluel+LA—b)p(llu.l)]?.

Since |lu.| is bounded (see Lemma 6.1), so is ||B.u./, too. Q.E.D.

REMARK 6.3. Lemma 6.2 is a slight generalization of a result obtained by
Barbu (see [2], Theorem [I-3.6). If in particular A and B are linear m-accretive
operators in a Hilbert space, then we can mention about the case of b=1
(see [19], Theorem 2.1).

The following theorem will be used in the next section.

THEOREM 6.4. Let X* be uniformly convex. Let A be a nonlinear m-accretive
operator in X. Let S be a linear m-accretive operator in X, with D(S)CD(A).
Assume that there exist a nonnegative constant b<1 and a non-decreasing function
o(r) of r=0 such that for each ue D(S),

(6.3) (3, F(Su)=—¢(lul)—bllSull? whenever y<Au.

Then S+ A is also m-accretive.
ProoF. Let S, be the Yosida approximation of S. Then, since S is linear,
we have
S.=e [1—-(1+eS)1]=S1+eS)*.
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Now let u€D(A). Then for ye Au and z€ A(1+¢S)*u we can write
ey, F(Sau)=(y, F(eScu)=(y, F(u—(1+¢S)"'w))
=(y—z, Flu—1+eS)u)+(z, F(eS(1+eS) "))
=e(z, F(S(1+eS)'w)),
where we have used the accretiveness of A. By virtue of we obtain
(¥, F(Su)=(z, F(S(1+eS)™w))
= —P(I(A+eS) ul)—bI S(L+eS) " ull®
= —g(lul)—blISeull.

This is nothing but the inequality with B=S. Therefore, S+ A is m-

accretive by Lemma 6.2, Q.E.D.
REMARK 6.5. is a “semi-linear” version of

§7. Singular perturbation in a Hilbert space (semi-linear case).

Let H be a real Hilbert space. The following theorem is a semi-linear
version of

THEOREM 7.1. Let A be a nonlinear m-accretive opevator in H. Let S bea
nonnegative selfadjoint operator in H, with D(S)CD(A). Assume that there exist
a nonnegative constant b and a non-decreasing fnnction ¢(r)=0 of r=0 such that
for each ue D(S),

(7.1) (w, Su)z—¢(lul)—>b(u, Su) whenever weAu.

Then —i—S—i—A (n=1, 2, ---) is m-accretive and for A<b7}, [1—{—2(— };S—l—A)]_l

converges strongly to (14+4AA)™' as n—oo. Let SY% be the square root of S.
Then D(S'?) is invariant under (1+2A)7Y, bA<1. Furthermore, if {(r)=0, then
for each ve D(S'?),

7.2) 1S3 (1+24) | =(1—b2)7 SV

1 . .
PROOF. We see from [Theorem 64 that —ﬁ~S+A is m-accretive. Let u,
be a unique solution of the equation

(7.3) un—l-Z(LnSun—l—wn):v, w,Au,, bi<l,

where v D(S"?). Then by we have
(S'2, SY*up)=(v, Sun)
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=(Un, Sun)-l-l(—% Stun, Sun)H(wn, Suz)

=[SV U P —bA(n, Stn)—Ad(lluLl)
=1=0A)1 5" unl*—2g(lluxl) .
So, we obtain

(7.4 IS5 ual =225l [ D

39

Next we show that for each ve D(SV%), {u,} forms a Cauchy sequence. To

this end, we note that

lun—UmlPS(Un—thm AW — W), Up—Un)

= —-2(711*'51%— —;Z—Sum, un—um)

< A (=Sl (= YIS .

By virtue of (7.4) we see that for m=n,

(75) ol =(3) (G =) (iP5 )

and hence u=Ilim u, exists; note that [u,| is bounded.

n->c0

We want to show that u=(1+24)"*v. It follows from and that

(U"um %Sun>=2“%~5un 2+

2w, Su)
n

A

) s

So we obtain

A eS| "= A ga+ Ul +A =62l - Sua .
Consequently, I%Sun is bounded :
”—ln-Su <ALl A+ Q=2 | T Ll uall)/ T2

Now let feD(S). Then we have

| (St )] = 1t SHIS Il IS/ =0 (n—c0).

D—b2(sn, = Sus).

Since D(S) is dense in H, {—%Sun} converges to zero weakly. Noting that



40 N. Okazawa

wnzl'l(v—un)——inSun, we see that {w,} also converges to A (v—u) weakly.

Therefore, it follows from the demi-closedness of A that u= D(A) and 2" (v—u)
< Au (see Kato [10]). Namely, we have

u=(1+214)"v.

Since D(SV%) is dense in H, [1—{-2(%1—54—,4)]_1 converges to (14+4A4)* strongly ;

note that both [H—Z(%SqLA)]_l and (1+2A)"! are nonexpansive.

Finally, since S¥? is weakly closed, we see from (7.4) that u=(1+14)"'
€ D(SV*) and S'%u, converges to S'?*u weakly. Therefore, we have

1SV 2u || <lim inf||SY?u,| .
Now follows from (7.4). Q.E.D.

REMARK 7.2. If ¢(r) is a continuous function, then it follows from
that

(o) O+,

H [1+x(%1—s+A)]”u—<1+zA>-lu

lIA

Let A and S be as in [Theorem 7.1. Then %—S%—A (n=1, 2, ---) and A are
m-accretive. Let {U,(¢)} and {U(t)} be the contraction semigroups generated
by __(_17; S+A) and — A, respectively. Then, since [1—{—2(% S—{—A)]nl converges

strongly to (1+4A4)7}, it follows from the (nonlinear) Trotter-Kato theorem that
U.(t) converges strongly to U(t) (see e.g. Benilan or Miyadera [15]). In
this connection we have

THEOREM 7.3. In Theorem 7.1 assume further that ¢(r) is a continuous
Sfunction. Let {U,(t)} and {U(t)} be the contraction semigroups generated by

——(-»r—};S—l—A) and — A, respectively. Then for ve D(SY?) we have the estimate
(7.6) 1U(v—U ()|

=(-L) oIS+ 2] givswnas| ).

REMARK 7.4. [(7.6) is a semi-linear generalization of a rather restricted

result obtained in [20].
To prove we prepare two lemmas.

Let uo=D(S). Then u,(t)=U,(t)u, is a unique solution of the equation
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a7 u;,<t)+711—sun(t>e —Aul), aa 120,

with the initial condition %,(0)=wu, The following lemma is known in a more
general form (see e.g. Barbu [2], IV-§2). But we give a direct proof.

LEMMA 75. Let u,D(S) and T>0. Set u,()=U,()u,. Then |S¥2u,(1)|?
1S absolutely continuous on [0, T] and

(7.8) (d/d OS2 un()I?=2(ur(t), Sun(t)) a.e.on [0, T].

ProoF. Let S. be the Yosida approximation of S. Then we have
with S replaced by S.. Since both ||u,(?)| and |u,(¢)| are bounded a.e. on
[0, T, we see that for <7, '

(79) ISt — 1S uol=2{ (wis), Soun(s)ds .

Consequently, by the bounded convergence theorem we obtain with S,
replaced by S if |Su,(s)| is also bounded a.e. on [0, T]. But it follows from

and that a.e. on [0, T,
(7.10) (—-u;(S)* %Sun(S), Sun(S))z—sb(llun(s)ll)—b(un(S), Sua(s)).
Namely we have

—i;lISun(S)Ilzé(bun(S)—u:.(S), Sun(s)+gllua(s)l) .

Hence we can conclude that || Su,(s)| is bounded a.e. on [0, T7. Q.E.D.
By virtue of we can prove
LEMMA 7.6. D(SY?) is invariant under U(t), and for each ve D(SY?) the fol-
lowing estimate holds:

(7.11) Isvupl=e| 15vl+2] gl UG wias) .

PrOOF. Let u,(f) be as in Then it follows from (7.10) and
that for a.a. s=0,
(d/ds)|SY2un(s)]*—2b] S 2un()12=2¢([lun(I) .

Integrating this inequality, we have
e S (OIS S ual+-2{ Gllun(s)ds

Since the sequence {|u,(s)|} is bounded, we see that {SY?u,(t)} converges
weakly as n—oo, But since SY? is weakly closed, it follows that U(f)u,=
lim u,(t)e D(SY%) and SY2U(t)u, is equal to the weak limit of {S¥2u,(¢)}.
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Therefore, we obtain

1SY2T ()l < lim inf [ S¥2un(t)]) .
-0
By the bounded convergence theorem we see that
e S U (Ol S 1S ol +2{ U (s)uolds.

Noting further that D(S) is a core of S'2, we can obtain [7.11) Q.E.D.
PrROOF OF THEOREM 7.3. Since D(S) is a core of SV?, it suffices to show
that holds for each v in D(S).
Let u,=D(S). Then u(t)=U(t)u, is a unique solution of the equation

(7.12) w'(t)e—Au(t), a.a. t=0,

With the initial condition u(0)=1wu,. So, we see from [(7.7) and [(7.12) that
(d/ds)un(s)—u(*=—2(un(s)—u’(s), un(s)—u(s))

IA

—2(%’5 Un(S), un(s)— u(S))

<— 2 IS (S (s, SHeu(s))

1 1
= IST u()* = = 1S ua(l*,  a.a. s20.
Consequently, follows from Q.E.D.

ExXAMPLE 7.7. Let 2 be a bounded domain in R*® with smooth boundary. Let
S=—A (A=Laplacian)

with D(S)=H*2)NH{(2). Then S is a positive definite selfadjoint operator
in L*(Q), with D(SY*)=H}(£2). Now set

Au(x)=[u(x)]?, x€8,

for ue D(A)={u(x), [u(x)]*e L¥L2)}. Then A is a single-valued m-accretive
operator in L*f2). Also, we see from the Sobolev theorem that D(S) is in-
cluded in D(A4). Furthermore, we can prove (7.1) with b=0 and ¢(»)=0. In
fact, we have

(Au, Su):—SQ[u(x)TAu(x)dx

ou

axk

=3Sglu(x)|2 kz\ |2dxgo.

Thus, the conclusions of Theorems [7,1 and hold good. Roughly speaking,
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for every u,c HXQ2)NH{(£2) the solution of the partial differential equation

ou,
ot

un(x, 0)=1u(x)

Fluale, DF=-Au(x, 1), (x, HEQXO, ),

converges in L%(§2) to the solution of the ordinary differential equation

%tl_(_[u(x, $)]2=0, (x, H)e2Xx(0, ),

u(x, 0)=uq(x).
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