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1. Introduction.

Let T be the unit circle. Let L(T) be the Lebesgue space and M(T) the
set of all bounded regular Borel measures on 7. M(T) is a commutative
Banach algebra with the convolution product and the norm of total variation,
and contains L(T) as a closed ideal. The object of this paper is to investigate
the homomorphisms of M(T) which are different from the type given by W.
Rudin [6].

W. Rudin characterized the homomorphisms of L(T) into M(T) in the
following way. Let ¥ be a homomorphism of L(T) into M(T). Then for
every integer n the mapping f — (/)" (n) defines a multiplicative linear func-
tional on L(T), where " denotes the Fourier-Stieltjes transform. Thus there
exists a mapping ¢ of Z into Z\U {0} such that (@f)"(n)=f(¢(n)), n€Z, where
Z is the set of integers and oo means the trivial functional, that is, f(OO)ZO
for all f in L(T).

THEOREM A (W. Rudin [6], cf. [7; p. 95]). Let ¢ be a mapping of Z into
Z\J{o}. The mapping ¢ induces a homomorphism ¥ of L(T) into M(T) satisfy-
ing ¥f)'=foo if and only if

(i) the set P={n; ¢(n)#oo} belongs to the smallest ring of subsets of Z
containing all cosets in Z;

(ii) there exists a mapping ¢ of Z into Z and qEZ such that d(n)=¢(n)
for ne P except possibly a finite number of n’s and

p(n+q)+od(n—q)=2¢(n) for all neZ.

This theorem is extended by P.]. Cohen to the homomorphisms of
L(G,) into M(G,), where G, and G, are locally compact abelian groups. On
the other hand J. Inoue [5] proved that P.]J. Cohen’s characterization holds
good if we replace L(G,) by the smallest closed subalgebra of M(G,) contain-
ing all L(G?Y), where G} denotes the group G, with a locally compact topolo-

gical group topology = stronger than the original one of G, or equal to that
of G,. '
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Let ¥ be a homomorphism of L(T) into M(T). Then it is extended to a
homomorphism of M(T') into M(T). In fact let ¢ be the mapping of Z into
Z\U{co} such that (Tf)'=fo¢ for f in L(T) and define the mapping ¥ of
M(T) into M(T) by (T )" (n)=p(¢(n)) if ¢(n)#c0 and =0 otherwise. Then it
is a homomorphism of M(T) into M(T) and F=¥ on L(T) (see [6]). But the
extension of the homomorphism ¥ is not unique. We shall show in §2 that
there exists a non trivial homomorphism of M(T) into M(T) which vanishes
on L(T) (cf. and [7].

In this paper we shall obtain a sufficient condition for a mapping ¥ of
M(T) into M(T) to be a homomorphism. It coincides with the Rudin’s condi-
tions (i) and (ii) of Theorem A when we restrict the domain of mappings to

L(T). We shall also prove that our condition on ¥ in[Theorem J is necessary
in a sense when it is applied to a certain class of L-subalgebras of M(T),
which consist of singular measures (see [Theorem 3). Our theorems enable

us to treat homomorphisms of a subalgebra of M(T) into M(T) which is

essentially different from the algebra considered by J. Inoue (see Remark
in §3).

2. A sufficient condition.

DEFINITION. A subset N of M(T) is called an L-subalgebra if it has the
following properties:

(i) N is a closed subspace.

(ii) p*xveN for every p and v in N, where * denotes the convolution of
¢ and v.

(iii) g€ N and v< g, thatis, v is absolutely continuous with respect to g,
imply ve N.

We use the following representation of the maximal ideal space of an L-
subalgebra.

DEFINITION. Let N be an L-subalgebra of M(T). A system ¢={¢,; p< N}
of functions is called a generalized character if

(i) ¢.eL(d|pl) and s%p p-ess‘supjd;,,(t)l >0;
(i) ¢,=¢, v-a.e. if v<py;
(iif) Puals+H=¢(s)p, (@) for pXv-a.a. (s, 1).

Let 4(N) be the set of non-trivial multiplicative linear functional on N.
Then the set of generalized characters is identified with 4(N) by the bijection @

09)0)= gD, $=1g,}, veN.
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Thus we may use the notation 4(N) for the set of generalized characters and
denote (0¢)(v)=9(¢) without confusion.

For ¢={¢,} and ¢={¢,} in A(N) we define systems ¢¢, ¢ and |$| by
@D)=0uu (9)y=¢, and |[P|,.=|d,|, where these operations are defined
pointwise in L*(d|p|) for each p&N. These operations yield new elements
of 4(N). We denote the trivial linear functional by 0 (cf. Yu. A. Sreider [8).

When N=IL(T), the maximal ideal space of L(T) is identified with Z and
embedded in A(M(T)). We remark that if ¢=A(N)—Z, then f(gb)zO for all
FEL(T) (cf. J. L. Taylor [9]).

DEFINITION. Let N be an L-subalgebra of M(T). A mapping ¢(-) of Z
into A(N)Y\U {0} is said to satisfy the condition (C), C>0, if

At 0= 3 g(n, (e’
is a Fourier-Stieltjes series in & for v-a.a. t and

u-esstsupnly(t, My =C for all veN.

THEOREM 1. Let N be an L-subalgebra of M(T). Then a mapping ¥ of N
into M(T) is a homomorphism if and only if there exists a mapping () of Z
into ANYJ{0} and C>0 such that

(1) FTv)y (n)=90(¢p(n))  for every neZ,

(i) {¢P(n)} satisfies the condition (C).

PrOOF. Let ¥ be a homomorphism of N into M(T). Then for every =
in Z the mapping v — (¥v)"(n) defines a multiplicative linear functional. Thus
there exists ¢(n)ed(N)V {0} such that (Fv)'(n)=0(¢p(n)). Let p(@)=Xa,e*?
be a polynomial. Then

[, Saagm 00| =1 £ a T (fdvy ()
SIPLP SdM ey SW Bl

for every f=L(d]v|) such that Slfldlvlzl. Thus taking the supremum over

f, we have
v-ess sup| 2 a,d(n) O =171 pll-

for every polynomial p. Thus for v-a.a. t 2 ¢(n),()e"? is a Fourier-Stieltjes
series of a measure with norm=|¥| (cf. [7; p. 32]). Thus ¢(-) satisfies the
condition (|Z|).
From the above argument the if part of the theorem is obvious.
DEFINITION. Let N be an L-subalgebra of M(T) and ¢(-) be a mapping
of Z into 4(N)\J{0}. Suppose that there exist
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(i) positive integers [ and m, and a set R={#mni1, Nmse, =, #;} Of [—m
integers ;

(i) ¢, =)V (0} (=1, 2, -, I);

(ili) =;€dN)VA{0} (=1, 2, ---, m) such that |z;|’=|=x;];

(iv) mappings p,(-) of Z into AN)V {0} (j=1,2, -+, m) and a positive
constant C>0 such that p,(-) satisfies the condition (C) for each j and pj n)
=|p,(n)| for j=1, 2, ---, m and n&Z; and that ¢ has the following expression

¢<n>y<t>=§31 730 @100 (O mzes(n) (vEN)

for n& R and ¢(n)=¢; for n=n;& R, where k=[n/m] denotes the integral
part of n/m and Cg the characteristic function of the set E.

Then we call ¢ an almost piecewise affine mapping from Z into 4(N)\ {0}
or simply an almost piecewise affine mapping. Furthermore, if p,(n)={1}, the
constant systems, we call ¢ a picewise affine mapping from Z into 4(N)\J {0}
or simply a piecewise affine mapping.

We remark that the definition of the piecewise affine mappings given here
is essentially same to the Rudin’s one in when N=L(T) and the conditions
(i) and (ii) on ¢ in Theorem A imply that ¢ is a piecewise affine mapping
from Z into A(L(T))\J {0}.

THEOREM 2. Let N be an L-subalgebra of M(T). If a mapping ¢(-) of Z
into AIN)\J{0} is almost piecewise affine, then the mapping ¥ defined by

@)y (n)=95(¢(n)) (neZ)

is a homomorphism of N into M(T).
REMARK. If a mapping ¢(:) of Z into A(N)\ {0} satisfies

v-esstsup{ ;i? |p(n), (@))% 12=C for all yveN,

then the series X ¢(n),(f)e'? is a Fourier series with norm <C for every ve N
and v-a.a. t by the Riesz-Fischer theorem. Thus it satisfies the condition (C).
Therefore our theorem may not be relevant in this case.

PrOOF. Assume that ¢(-) is an almost piecewise affine mapping and use
the notations in By it suffices to prove that ¢(-)
satisfies the condition (C’) for some positive constant C’. We many assume
that the set R is empty, since a change of finite number of ¢(n)’s does not
affect our conclusion.

{Cnzejn): neZ} and {z,()*: ke Z}(j=1, 2, -, m) are the sequences of
Fourier-Stieltjes coefficients of measures with norms =<1 for all v N and v-a. a.
t. Thus by a simple computation, {m;(t)"'™Cnhzssn): neZ} is the sequence
of Fourier-Stieltjes coefficients of a measure with norm <1. Thus ¢(-) satisfies
the condition (C”) with C'=mC.
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There exist non-trivial homomorphisms of M(T), which vanish on L(T)
(see W. Rudin [7; p. 78] and R.E. Edwards [4; p. 8]). Here we shall con-
struct such a homomorphism of a different type. We remark also that our
method is applied to get the examples cited above.

Let =, p and ¢ be elements of 4(M(T)). Assume |z|*=|x| and p=|p]|.
Put ¢(n)=zn"p'"'¢. Then ¢(-) satisfies the condition (C) with C=1. Thus the
mapping ¥ defined by (i) in is 2 homomorphism of M(T) into M(T).

Let ¢ be a measure in M(T) such that every Fourier-Stieltjes coefficient
is real, that is, p¢ is hermitian and such that

{£.@); E=1{8) e AM(T))} ={ae™; acC, |a| <1, neZ}

(cf. for example G. Brown [1]). Let 0<r<1 and ¢, be a real number such
that ¢, divided by 2z is irrational. Choose generalized characters «, p and ¢
such that z,=e'°, p,=7 and ¢,=1i. :

Then the homomorphism ¥ defined by ¢(n)==n"p'"'¢ has the property that
¥ maps the singular hermitian measure g to the absolutely continuous meas-
ure ¥(p) whose Fourier-Stieltjes coefficients are not real. On the other hand
¥ vanishes on L(T). In fact ¢(n)eMM(T)—Z. Thus f(¢(n))=0 for all f in
L(T) and n in Z (cf., for example, [9; p. 187]).

3. Homomorphisms of N(y) into M(T).

Let N be an L-subalgebra of M(T) and ¥ be a homomorphism of N into
M(T). Let ¢ be the mapping of Zinto 4(N)\ {0} defined by (¥'v)"(n)=59(¢(n))
for all v in N and n in Z. If N=L(T), then 4(N) is identified with {e'**; n
eZ}. Thus if ¥ is a homomorphism of L(T) into M(T), then it induces a
(almost) piecewise affine mapping of Z into 4(L(T))\Y {0} by Theorem A.

In this section we restrict our attention to a class of L-subalgebras which
consist of singular measures and are defined later. We shall show in
3 that the converse of is true in a sense, that is, the mapping ¢
of Z into 4A(N)\J {0} is piecewise affine under a condition for such an L-
subalgebra N.

For a measure g in M(T), N(p) will denote the smallest L-subalgebra
which contains p. We use the following properties of A(N()).

LocALiZATION LEMMA (cf. G. Brown and W. Moran [2]). For peM(T),
A(N(p)) is identified with

S(p=1{u; =16} AN}

Let &, ¢ and X be elements in A(N(w). If &,, ¢, 1,€S5() and &,=¢.X,,
then £=¢X by the localization lemma. We remark also that if g is a measure
such that p” (n=1, 2, ---) are mutually singular and ¢c=S(g) is a constant func-
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tion, then {c,} €4(N(y)) is defined by
' c,=c" pt-a.e.
Now we specify the measure p as follows. Let {a,; n=1} be a sequence

of integers such that ¢,=2. Let dn:2n‘InI a;' and define the Bernoulli con-
r=1

volution product
= 1
p= * 5 [30)+d(d.)],

where d6(a) is the Dirac measure concentrated on {a}. We remark that the
infinite product of convolution converges in the weak*-topology and it defines
a positive measure with norm 1.

Denote by B’ the class of the measures as is obtained above with a,>2
for infinitely many »n. The measures in B’ are continuous and singular.
Furthermore y*, n=1, 2, ---, are mutually singular (cf. [2]).

For pu= :1%[5(0)%—5(@)] in B’ let D be the subgroup of 7' generated by
n=
{d,; n=1, 2, ---} with the discrete topology. Put

and
D,:{nélsndn; e,=0 or 1}.

We recallthe following properties of the measures in B’.
THEOREM B ([2]). Let p= 3 %[5(0)—%5((1”)] be a measure in B’. Then
n=1

we have

(i) for every X,=S(p) and n=1, 2, ---, there exists a unique element 7(X,)
in D, the dual group of D, such that

1) L(d+D=BAN )  for p,-a.a t and deD,

where B=7(X,),

(ii) the mapping v of S(p) to D defined by (1) is a continuous semigroup
homomorphism, and _

(iii) if B=Image of 1, then r"(B)={af; acC, 0<|a| =1}, where [ is a
member of S(u) with constant unit modulus which is a pointwise limit point of
the sequence {déZ‘Dn B(d)C,(d)}, C,(d) being the characteristic function of the inter-
val [d, d+d.,).

THEOREM 3. Let p be a measure in B'. Let ¥ be a homomorphism of N(p)
into M(T) and ¢(-) be the mapping of Z into A(N(p))\J {0} defined by ¥.
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Suppose that |Pp(n)|*=|d(n)| for all n. Then the mapping () is piecewise

affine.

Proor. By Theorem B (iii) |¢u(n)|=1 p-a.e.or 0. Put P={neZ; |, (n)|
=1}, and B(n)=7(¢.(n)) for n=P and = the unit of D otherwise, where 7 is
the mapping given by The first step of our proof is to show
that the mapping n — B(n) of Z into D defines a homomorphism of L(D) into

M(T).
By [I'heorem 1

@) Wit 0= 3 gmune
is a Fourier-Stieltjes series for v-a.a. t and [A(v; ¢, Hxm=|¥| for every

ve N(y). Now put y=uy*v,* -+ %v,, where v;=0 and v;e N(p) (=1, 2, ---, k).
Then, by (2)

(3) 2(‘); Lyttt - i, 0): ng}_wgb(n)v(tl—}_tz‘*" e +tk>ein0

is the Fourier-Stieltjes series of a measure with norm=<|¥| for y; Xv, X +++ Xy,-

a. a. (tly tyy -o2, tk)-
Let » be a positive integer. For k elements d?, d?, ---, d* in D, put

”jsa(dj)*#r (J‘_—l; 29 R k)-

Then y;<p. Thus y;e N(¢). By the property of the generalized characters
and Theorem B, we have

G (A1 +1)=B(n)d)) fn)ult)  prace. in

for every neZ and j=l1, 2, ---, k. Thus by (3), the multiplicative property
of the generalized characters and Theorem B,

@) $ LT Bln)(d?) H P(n)(t,)]ei0

n=-o0 j=1

is the Fourier-Stieltjes series of a measure with norm<|¥|| for u, X g, X =+ X i,
a. a. (tb tZ: Tty tk) .

By the same way for k2 convolution products pf=p,* .-+ %y, we have

(5) 2(#&: t1+t2+ +tky 0): i [ﬁQ/b(n)y(tj)]eino

n=-00 j=1

and HZ(#?: t1+t2+ +tk: * )”M(T)é”wﬂ for I"TXIUTX o X‘Ur'a- a. (t1, gy =o* ) tk)-
Since |¢(n),(t)|=1 or 0 by our assumption, the composition of the series (4)
and the series of A(u*; t,+t,+ -+ +t,, —6)
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6) 5 LTI B(n)(d)1Ce(n)ein?

n=-00 j=1

is the Fourier-Stieltjes series of a measure with norm <|¥|?2
Since d;+(a,a, -+ a;—1)=0 mod 2x,

D={Xnd;; n;eZ, n;=0 and n;=0 except a finite number of 7’s}
1=1

Thus by (6), X B(n)(d)e"? is the Fourier-Stieltjes series of a measure with
norm <|¥||? for every d in D. Thus the mapping

0 f(0)= ni [dgf(d)ﬂ(n)(d)]Cp(n)e”” for feL(D)
defines a homoemorphism of L(D) to M(T). Thus by P.J. Cohen’s theorem [3],
P belongs to the coset ring of Z and the mapping n — p(n) of Z to D is
piecewise affine. Thus there exist a positive integer m, a finite subset R
={Nm+1, Nm+s, ===, 1;} of Z and j, meﬁ (j=1, 2, ---, m) such that

™) B(n)= 33 Ly Cousa ()

for ne P—R with k=[n/m] and (P—R)\UF is periodic with the period m
for some finite set F.

To complete the proof we pull back the relation (7) to another relation
involving {¢(n)}. For each j in [(P—R)VF]N{l, 2, ---, m} choose 7, and
¢; in A(N(p)) such that y(z;,)=(;, r(¢))=79; and |m,;|=1, |¢,;|=1. Then by
Theorem B (iii) there exist unitary constants ¢, such that

®) Gun)=cn i 7561 Conz 1)

for ne P—R with k=[n/m]. For je[(P—R)VF], 1=j<m, let ¢; be the
zero system, that is, the trivial functional. Then (8) holds for n=eZ—R,

Put a,=c, for ne P—R and =1 for n&« P—R. Let ¢,=¢(n) for n=n;R.
Then we have

©) ()= % 71023, Comzs ()

for ne R with k=[n/m] and ¢,(n)=¢,, for n=n;eR.
We denote by a(n) the generalized character of 4(N(y)) such that a,(n)

=a,. The final step of the proof is to show that {a(n)} is expressed in the
form

(10) aln)="3 1)} Conr 21 (n)
J=1
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outside a finite set R’, where m’ is a positive integer, k=[n/m’] and =}, ¢}
eA(N(w), j=1, 2, -+, m’. Then our theorem follows from (9) and [10) replac-
ing m by mm’ and R by R\JR’. Furthermore, z; and ¢; are replaced by the
generalized characters of the form #%z’% and ¢!¢’% respectively.

Put ¢’(n)=¢(n) for n= R and

¢/(}’L>: }i::l ﬁj¢_jC7n2+j(n)

for n& R with k=[n/m]. Then by {¢’(n)} defines a homomorphism.
We have ¢(n)¢’(n)=a(n) for all n except a finite number of n’s, so that {a(n)}
defines a homomorphism in the obvious way. Let ¢>0 be the norm of that
homomorphism. Then | X a,(n)e™?|| yry=c for every v=p*, k>0. As we have
mentioned in the section 2, a,(n)=a,* for y=p*, k>0 and |a,(n)|=1. Thus

| Zake™ |y =c

for all keZ. This implies, by the theorem in [7; p. 93], that the mapping
n—a, of Z to T is piecewise affine. Thus we get Thus our proof is
complete.

REMARK. Let N be the smallest closed subalgebra of M(T) which contains
all L(T*), where T7 is the group T with a locally compact topological group
topology t stronger than the original one or equal to that of 7. Since the
discrete topology and the natural one are only such topologies, N=L(T)+
L(T?%), where d is the discrete topology on 7. Thus N contains no continuous

singular measures. On the other hand the algebras N(g) in [Theorem 3 consist
of continuous singular measures.
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