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1. Introduction.

Let $T$ be the unit circle. Let $L(T)$ be the Lebesgue space and $M(T)$ the
set of all bounded regular Borel measures on T. $M(T)$ is a commutative
Banach algebra with the convolution product and the norm of total variation,
and contains $L(T)$ as a closed ideal. The object of this paper is to investigate
the homomorphisms of $M(T)$ which are different from the type given by W.
Rudin [6].

W. Rudin characterized the homomorphisms of $L(T)$ into $M(T)$ in the
following way. Let $\Psi$ be a homomorphism of $L(T)$ into $M(T)$ . Then for
every integer $n$ the mapping $f\rightarrow(\Psi f)^{\wedge}(n)$ defines a multiplicative linear func-
tional on $L(T)$ , where $\wedge$

denotes the Fourier-Stieltjes transform. Thus there
exists a mapping $\psi$ of $Z$ into $Z\cup\{\infty\}$ such that $(\Psi f)^{\wedge}(n)=\hat{f}(\psi(n)),$ $n\in Z$, where
$Z$ is the set of integers and $\infty$ means the trivial functional, that is, $\hat{f}(\infty)=0$

for all $f$ in $L(T)$ .
THEOREM A (W. Rudin [6], cf. [7; p. 95]). Let $\psi$ be a mapPing of $Z$ into

$Z\cup\{\infty\}$ . The maPping $\psi$ induces a homomorPhism $\Psi$ of $L(T)$ into $M(T)$ satisfy-
ing $(\Psi f)^{\wedge}=f\circ\psi$ if and only if

(i) the set $P=\{n;\psi(n)\neq\infty\}$ belongs to the smallest ring of subsets of $Z$

containing all cosets in $Z$;
(ii) there exists a maPping $\phi$ of $Z$ into $Z$ and $q\in Z$ such that $\psi(n)=\phi(n)$

for $n\in P$ except possibly a finite number of $n’ s$ and

$\phi(n+q)+\phi(n-q)=2\phi(n)$ for all $n\in Z$ .
This theorem is extended by P. J. Cohen [3] to the homomorphisms of

$L(G_{1})$ into $M(G_{2})$ , where $G_{1}$ and $G_{2}$ are locally compact abelian groups. On
the other hand J. Inoue [5] proved that P. J. Cohen’s characterization holds
good if we replace $L(G_{1})$ by the smallest closed subalgebra of $M(G_{1})$ contain-
ing all $L(G_{1}^{\tau})$ , where $G_{1}^{r}$ denotes the group $G_{1}$ with a locally compact topolo-
gical group topology $\tau$ stronger than the original one of $G_{1}$ or equal to that
of $G_{1}$ .
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Let $\Psi$ be a homomorphism of $L(T)$ into $M(T)$ . Then it is extended to a
homomorphism of $M(T)$ into $M(T)$ . In fact let $\psi$ be the mapping of $Z$ into
$Z\cup\{\infty\}$ such that $(\Psi f)^{\wedge}=\hat{f}\circ\psi$ for $f$ in $L(T)$ and define the mapping $\tilde{\Psi}$ of
$M(T)$ into $M(T)$ by $(\tilde{\Psi}\mu)^{\wedge}(n)=\hat{\mu}(\psi(n))$ if $\psi(n)\neq\infty$ and $=0$ otherwise. Then it
is a homomorphism of $M(T)$ into $M(T)$ and $\tilde{\Psi}=\Psi$ on $L(T)$ (see [6]). But the
extension of the homomorphism $\Psi$ is not unique. We shall show in \S 2 that
there exists a non trivial homomorphism of $M(T)$ into $M(T)$ which vanishes
on $L(T)$ (cf. [4] and [7]).

In this paper we shall obtain a sufficient condition for a mapping $\Psi$ of
$M(T)$ into $M(T)$ to be a homomorphism. It coincides with the Rudin’s condi-
tions (i) and (ii) of Theorem A when we restrict the domain of mappings to
$L(T)$ . We shall also prove that our condition on $\Psi$ in Theorem 2 is necessary
in a sense when it is applied to a certain class of L-subalgebras of $M(T)$ ,

which consist of singular measures (see Theorem 3). Our theorems enable
us to treat homomorphisms of a subalgebra of $M(T)$ into $M(T)$ which is
essentially different from the algebra considered by J. Inoue [5] (see Remark
$\ln$ \S 3).

2. A sufficient condition.

DEFINITION. A subset $N$ of $M(T)$ is called an L-subalgebra if it has the
following properties:

(i) $N$ is a closed subspace.
(ii) $\mu*\nu\in N$ for every $\mu$ and $\nu$ in $N$, where $*denotes$ the convolution of

$\mu$ and $\nu$ .
(iii) $\mu\in N$ and $\nu\ll\mu$ , that is, $\nu$ is absolutely continuous with respect to $\mu$ ,

imply $\nu\in N$.
We use the following representation of the maximal ideal space of an L-

subalgebra.
DEFINITION. Let $N$ be an L-subalgebra of $M(T)$ . A system $\psi=\{\psi_{\mu} ; \mu\in N\}$

of functions is called a generalized character if

(i) $\psi_{\mu}\in L^{\infty}(d|\mu|)$ and $\sup_{\mu}\mu- ess\sup\iota|e_{\angle}^{r_{J_{l}}},(t)|>0$ ;

(ii) $\psi_{\mu}=\psi_{\nu}$ v-a. $e$ . if $\nu\ll\mu$ ;

(iii) $\psi_{\mu*\nu}(s+t)=\psi_{\mu}(s)\psi_{\nu}(t)$ for $\mu\times\nu- a$ . $a$ . $(s, t)$ .

Let $\Delta(N)$ be the set of non-trivial multiplicative linear functional on $N$.
Then the set of generalized characters is identified with $\Delta(N)$ by the bijection $\theta$ ;

$(\theta\psi)(v)=\int_{T}\psi_{\nu}(t)dv(t)$ , $\psi=\{\psi_{\mu}\}$ , $v\in N$ .
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Thus we may use the notation $\Delta(N)$ for the set of generalized characters and
denote $(\theta\psi)(\nu)=v\wedge(\psi)$ without confusion.

For $\phi=\{\phi_{\mu}\}$ and $\psi=\{\psi_{\mu}\}$ in $\Delta(N)$ we define systems $\phi\psi,\overline{\phi}$ and $|\phi|$ by
$(\phi\psi)_{\mu}=\phi_{\mu}\psi_{\mu},$ $(\overline{\phi})_{\mu}=\overline{\phi}_{\mu}$ and $|\phi|_{\mu}=|\phi_{\mu}|$ , where these operations are defined
pointwise in $L^{\infty}(d|\mu|)$ for each $\mu\in N$. These operations yield new elements
of $\Delta(N)$ . We denote the trivial linear functional by $0$ (cf. Yu. A. \v{S}reider [8]).

When $N=L(T)$ , the maximal ideal space of $L(T)$ is identified with $Z$ and
embedded in $\Delta(M(T))$ . We remark that if $\psi\in\Delta(N)-Z$, then $\hat{f}(\psi)=0$ for all
$f\in L(T)$ (cf. J. L. Taylor [9]).

DEFINITION. Let $N$ be an L-subalgebra of $M(T)$ . A mapping $\psi(\cdot)$ of $Z$

into $\Delta(N)\cup\{0\}$ is said to satisfy the condition $(C),$ $C>0$, if

$\lambda_{\nu}(t, \theta)=\sum_{n=-\infty}^{\infty}\psi(n)_{\nu}(t)e^{in\theta}$

is a Fourier-Stieltjes series in $\theta$ for v-a. $a$ . $t$ and

$v- ess\sup\Vert\lambda_{\nu}(tt )\Vert_{M(T)}\leqq C$ for all $v\in N$ .

THEOREM 1. Let $N$ be an L-subalgebra of $M(T)$ . Then a maPping $\Psi$ of $N$

into $M(T)$ is a homomorphism if and only if there exists a mapping $\psi(\cdot)$ of $Z$

into $\Delta(N)\cup\{0\}$ and $C>0$ such that
(i) $(\Psi v)^{\wedge}(n)=v\wedge(\psi(n))$ for every $n\in Z$ ;
(ii) $\{\psi(n)\}$ satisfies the condition $(C)$ .
PROOF. Let $\Psi$ be a homomorphism of $N$ into $M(T)$ . Then for every $n$

in $Z$ the mapping $v\rightarrow(\Psi\nu)^{\wedge}(n)$ defines a multiplicative linear functional. Thus
there exists $\psi(n)\in\Delta(N)\cup\{0\}$ such that $(\Psi v)^{\wedge}(n)=\nu\wedge(\psi(n))$ . Let $p(\theta)=\sum a_{n}e^{in\theta}$

be a polynomial. Then

$|\int_{T}\sum a_{n}\psi(n)_{\nu}(t)f(t)d\nu(t)|=|\sum a_{n}\Psi(fd\nu)^{\wedge}(n)|$

$\leqq\Vert p\Vert_{\infty}\Vert\Psi(fd\nu)\Vert_{M(T)}\leqq\Vert\Psi\Vert\Vert p\Vert_{\infty}\Vert\nu\Vert_{M(T)}$

for every $f\in L(d|\nu|)$ such that $\int|f|d|v|=1$ . Thus taking the supremum over
$f$, we have

$\nu- ess\sup|\sum a_{n}\psi(n)_{\nu}(t)|\leqq\Vert\Psi\Vert\Vert p\Vert_{\infty}t$

for every polynomial $p$ . Thus for $\nu- a$ . $a$ . $t\sum\psi(n)_{\nu}(t)e^{in\theta}$ is a Fourier-Stieltjes
series of a measure with $norm\leqq\Vert\Psi\Vert$ (cf. [7; p. 32]). Thus $\psi(\cdot)$ satisfies the
condition $(\Vert\Psi\Vert)$ .

From the above argument the if part of the theorem is obvious.
DEFINITION. Let $N$ be an L-subalgebra of $M(T)$ and $\psi(\cdot)$ be a mapping

of $Z$ into $\Delta(N)\cup\{0\}$ . Suppose that there exist
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(i) positive integers 1 and $m$ , and a set $R=\{n_{m+1}, n_{m+2}, \cdots , n_{l}\}$ of $l-m$

integers;
(ii) $\phi_{j}\in\Delta(N)\cup\{0\}(j=1,2, \cdots , 1)$ ;
(iii) $\pi_{j}\in\Delta(N)\cup\{0\}$ ($j=1,2,$ $\cdots$ , m) such that $|\pi_{j}|^{2}=|\pi_{j}|$ ;
(iv) mappings $\rho_{j}(\cdot)$ of $Z$ into $\Delta(N)\cup\{0\}$ ($j=1,2,$ $\cdots$ , m) and a positive

constant $C>0$ such that $\rho_{j}(\cdot)$ satisfies the condition $(C)$ for each $j$ and $\rho_{j}(n)$

$=|\rho_{j}(n)|$ for $j=1,2,$ $\cdots$ $m$ and $n\in Z$ ; and that $\psi$ has the following expression

$\psi(n)_{\nu}(t)=\sum_{j=1}^{m}\pi_{j\nu}(t)^{k}\phi_{j\nu}(t)\rho_{j}(n)_{\nu}(t)C_{mZ+j}(n)$ $(\nu\in N)$

for $n\not\in R$ and $\psi(n)=\phi_{j}$ for $n=n_{j}\in R$ , where $k=[n/m]$ denotes the integral
part of $n/m$ and $C_{E}$ the characteristic function of the set $E$ .

Then we call $\psi$ an almost Piecewise affine mapping from $Z$ into $\Delta(N)\cup\{0\}$

or simply an almost piecewise affine mapping. Furthermore, if $\rho_{j}(n)=\{1\}$ , the
constant systems, we call $\psi$ a Picewise $aJfine$ mapping from $Z$ into $\Delta(N)\cup\{0\}$

or simply a piecewise affine mapping.
We remark that the definition of the piecewise affine mappings given here

is essentially same to the Rudin’s one in [7] when $N=L(T)$ and the conditions
(i) and (ii) on $\psi$ in Theorem A imply that $\psi$ is a piecewise affine mapping
from $Z$ into $\Delta(L(T))\cup\{0\}$ .

THEOREM 2. Let $N$ be an L-subalgebra of $M(T)$ . If a maPping $\psi(\cdot)$ of $Z$

into $\Delta(N)\cup\{0\}$ is almost piecewise affine, then the mapping $\Psi$ defined by

$(\Psi v)^{\wedge}(n)=v\wedge(\psi(n))$ $(n\in Z)$

is a homomorphism of $N$ into $M(T)$ .
REMARK. If a mapping $\psi(\cdot)$ of $Z$ into $\Delta(N)\cup\{0\}$ satisfies

$v- esssupt$
$\{ \sum_{n=-\infty}^{\infty}|\psi(n)_{\nu}(t)|^{2}\}^{1/2}\leqq C$ for all $v\in N$ ,

then the series $\sum\psi(n)_{\nu}(t)e^{in\theta}$ is a Fourier series with norm $\leqq C$ for every $\nu\in N$

and v-a. $a$ . $t$ by the Riesz-Fischer theorem. Thus it satisfies the condition $(C)$ .
Therefore our theorem may not be relevant in this case.

PROOF. Assume that $\psi(\cdot)$ is an almost piecewise affine mapping and use
the notations in Definition. By Theorem 1 it suffices to prove that $\psi(\cdot)$

satisfies the condition $(C^{\prime})$ for some positive constant $C^{\prime}$ . We many assume
that the set $R$ is emPty, since a change of finite number of $\psi(n)s$ does not
affect our conclusion.

$\{C_{mZ+j}(n):n\in Z\}$ and $\{\pi_{j\nu}(t)^{k} : k\in Z\}(j=1,2, \cdots m)$ are the sequences of
Fourier-Stieltjes coefficients of measures with norms $\leqq 1$ for all $v\in N$ and v-a. $a$ .
$t$ . Thus by a simple computation, $\{\pi_{j\nu}(t)^{[n/m]}C_{mZ+j}(n):n\in Z\}$ is the sequence
of Fourier-Stieltjes coefficients of a measure with norm $\leqq 1$ . Thus $\psi(\cdot)$ satisPes
the condition $(C^{\prime})$ with $C^{\prime}=mC$ .
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There exist non-trivial homomorphisms of $M(T)$ , which vanish on $L(T)$

(see W. Rudin [7; p. 78] and R. E. Edwards [4; p. 80]). Here we shall con-
struct such a homomorphism of a different type. We remark also that our
method is applied to get the examples cited above.

Let $\pi,$ $\rho$ and $\phi$ be elements of $\Delta(M(T))$ . Assume $|\pi|^{2}=|\pi|$ and $\rho=|\rho|$ .
Put $\psi(n)=\pi^{n}\rho^{|n|}\phi$ . Then $\psi(\cdot)$ satisfies the condition $(C)$ with $C=1$ . Thus the
mapping $\Psi$ defined by (i) in Theorem 1 is a homomorphism of $M(T)$ into $M(T)$ .

Let $\mu$ be a measure in $M(T)$ such that every Fourier-Stieltjes coefficient
is real, that is, $\mu$ is hermitian and such that

$\{\xi_{\mu}(t);\xi=\{\xi_{\nu}\}\in\Delta(M(T))\}=\{ae^{int} ; a\in C, |a|\leqq 1, n\in Z\}$

(cf. for example G. Brown [1]). Let $0<r<1$ and $t_{0}$ be a real number such
that $t_{0}$ divided by $ 2\pi$ is irrational. Choose generalized characters $\pi,$ $\rho$ and $\phi$

such that $\pi_{\mu}=e^{it_{0}},$
$\rho_{\mu}=r$ and $\phi_{\mu}=i$ .

Then the homomorphism $\Psi$ defined by $\psi(n)=\pi^{n}\rho^{1n1}\phi$ has the property that
$\Psi$ maps the singular hermitian measure $\mu$ to the absolutely continuous meas-
ure $\Psi(\mu)$ whose Fourier-Stieltjes coefficients are not real. On the other hand
$\Psi$ vanishes on $L(T)$ . In fact $\psi(n)\in\Delta(M(T))-Z$. Thus $\hat{f}(\psi(n))=0$ for all $f$ in
$L(T)$ and $n$ in $Z$ (cf., for example, [9; p. 187]).

3. Homomorphisms of $N(\mu)$ into $M(T)$ .
Let $N$ be an L-subalgebra of $M(T)$ and $\Psi$ be a homomorphism of $N$ into

$M(T)$ . Let $\psi$ be the mapping of Zinto $\Delta(N)\cup\{0\}$ defined by $(\Psi v)^{\wedge}(n)=v\wedge(\psi(n))$

for all $\nu$ in $N$ and $n$ in $Z$. If $N=L(T)$ , then $\Delta(N)$ is identified with { $e^{int}$ ; $n$

$\in Z\}$ . Thus if $\Psi$ is a homomorphism of $L(T)$ into $M(T)$ , then it induces a
(almost) piecewise affine mapping of $Z$ into $\Delta(L(T))\cup\{0\}$ by Theorem A.

In this section we restrict our attention to a class of L-subalgebras which
consist of singular measures and are defined later. We shall show in Theorem
3 that the converse of Theorem 2 is true in a sense, that is, the mapping $\psi$

of $Z$ into $\Delta(N)\cup\{0\}$ is piecewise affine under a condition for such an L-
subalgebra $N$.

For a measure $\mu$ in $M(T),$ $N(\mu)$ will denote the smallest L-subalgebra
which contains $\mu$ . We use the following properties of $\Delta(N(\mu))$ .

Let $\xi,$ $\phi$ and $\chi$ be elements in $\Delta(N(\mu))$ . If $\xi_{\mu},$ $\phi_{\mu},$ $\chi_{\mu}\in S(\mu)$ and $\xi_{\mu}=\phi_{\mu}x_{\mu}$ ,
then $\xi=\phi\chi$ by the localization lemma. We remark also that if $\mu$ is a measure
such that $\mu^{n}(n=1, 2, )$ are mutually singular and $c\in S(\mu)$ is a constant func-

LOCALIZATION LEMMA (cf. G. Brown and W. Moran [2]). For $\mu\in\Lambda l(T)$ ,
$\Delta(N(\mu))$ is identified with

$S(\mu)=\{\xi_{\mu} ; \xi=\{\xi_{\nu}\}\in\Delta(N(\mu))\}$ .
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tion, then $\{c_{\nu}\}\in\Delta(N(\mu))$ is defined by

$c_{\nu}=c^{n}$ $\mu^{n}- a$ . $e$ .
Now we specify the measure $\mu$ as follows. Let $\{a_{n} ; n\geqq 1\}$ be a sequence

of integers such that $a_{n}\geqq 2$. Let $d_{n}=2\pi\prod_{r=1}^{n}a_{r}^{-1}$ and define the Bernoulli con-

volution product

$\mu=*\frac{1}{2}[\delta(0)+\delta(d_{n})],n=1\infty$

where $\delta(a)$ is the Dirac measure concentrated on $\{a\}$ . We remark that the
infinite product of convolution converges in the weak*-topology and it defines
a positive measure with norm 1.

Denote by $B^{\prime}$ the class of the measures as is obtained above with $a_{n}>2$

for infinitely many $n$ . The measures in $B^{\prime}$ are continuous and singular.
Furthermore $\mu^{n},$ $n=1,2,$ $\cdots$ are mutually singular (cf. [2]).

For $\mu=*\frac{1}{2}n=1\infty[\delta(0)+\delta(d_{n})]$ in $B^{\prime}$ let $D$ be the subgroup of $T$ generated by

$\{d_{n} ; n=1, 2, \}$ with the discrete topology. Put

$\mu_{r}=*\frac{1}{2}[\delta(0)+\delta(d_{n})]n\Rightarrow r+1\infty$

and

$D_{r}=\{\sum_{n=1}^{r}\epsilon_{n}d_{n}$ ; $\epsilon_{n}=0$ or $1\}$ .

We $recal1_{\iota}^{r}the$ following properties of the measures in $B^{\prime}$ .
THEOREM B ([2]). Let $\mu=\infty*\underline{1}[\delta(0)+\delta(d_{n})]$ be a measure in $B^{\prime}$ . Then

$n=12$

we have
(i) for every $\chi_{\mu}\in S(\mu)$ and $n=1,2,$ $\cdots$ there exists a unique element $\gamma(\chi_{\mu})$

in $D$ , the dual group of $D$, such that

(1) $\chi_{\mu}(d+t)=\beta(d)\chi_{\mu}(t)$ for $\mu_{n}- a$ . $a$ . $t$ and $d\in D_{n}$

where $\beta=\gamma(\chi_{\mu})$,
(ii) the mapping $\gamma$ of $S(\mu)$ to $D$ defined by (1) is a continuous semigroup

homomorphism, and
(iii) if $\beta\in Image$ of $\gamma$, then $\gamma^{-1}(\beta)=\{af;a\in C, 0<|a|\leqq 1\}$ , where $f$ is a

member of $S(\mu)$ with constant unit modulus which is a p0intwise limit point of
the sequence $\{ \sum_{d\in Dn}\beta(d)C_{n}(d)\},$

$C_{n}(d)$ being the characteristic function of the inter-

val $[d, d+d_{n}$).

THEOREM 3. Let $\mu$ be a measure in $B^{\prime}$ . Let $\Psi$ be a homomorphism of $N(\mu)$

into $M(T)$ and $\psi(\cdot)$ be the mapping of $Z$ into $\Delta(N(\mu))\cup\{0\}$ defined by $\Psi$ .
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SuPpose that $|\psi(n)|^{2}=|\psi(n)|$ for all $n$ . Then the maPping $\psi(\cdot)$ is piecewise
affine.

PROOF. By Theorem $B$ (iii) $|\psi_{\mu}(n)|=1\mu- a$ . $e$ . or $0$ . Put $P=\{n\in Z;|\psi_{\mu}(n)|$

$=1\}$ , and $\beta(n)=\gamma(\psi_{\mu}(n))$ for $n\in P$ and $=$ the unit of $D$ otherwise, where $\gamma$ is
the mapping given by Theorem B. The first step of our proof is to show
that the mapping $n\rightarrow\beta(n)$ of $Z$ into $D$ defines a homomorphism of $L(D)$ into
$M(T)$ .

By Theorem 1

(2) $\lambda(\nu;t, \theta)=\sum_{n=-\infty}^{\infty}\psi(n)_{\nu}(t)e^{in\theta}$

is a Fourier-Stieltjes series for v-a. $a$ . $t$ and $\Vert\lambda(\nu;t, )\Vert_{M(T)}\leqq\Vert\Psi\Vert$ for every
$\nu\in N(\mu)$ . Now put $\nu=v_{1}*\nu_{2}*\cdots*v_{k}$ , where $v_{j}\geqq 0$ and $v_{j}\in N(\mu)(j=1,2, \cdots k)$ .
Then, by (2)

(3) $\lambda(v;t_{1}+t_{2}+\cdots+t_{k}, \theta)=\sum_{n=-\infty}^{\infty}\psi(n)_{\nu}(t_{1}+t_{2}+\cdots+t_{k})e^{in\theta}$

is the Fourier-Stieltjes series of a measure with $norm\leqq\Vert\Psi\Vert$ for $\nu_{1}\times\nu_{2}\times\cdots\times v_{k^{-}}$

$a$ . $a$ . $(t_{1}, t_{2}, t_{k})$ .
Let $r$ be a positive integer. For $k$ elements $d^{1},$ $d^{2},$ $\cdots$ , $d^{k}$ in $D_{r}$ put

$v_{j}=\delta(d^{j})*\mu_{r}(j=1,2, \cdots k)$ .

Then $ v_{j}\ll\mu$ . Thus $v_{j}\in N(\mu)$ . By the property of the generalized characters
and Theorem $B$, we have

$\psi(n)_{\mu}(d^{j}+r_{j})=\beta(n)(d^{f})\psi(n)_{\mu}(t_{j})$
$\mu_{r^{-}}a$ . $e$ . in $t_{j}$

for every $n\in Z$ and $j=1,2,$ $\cdots$ , $k$ . Thus by (3), the multiplicative property
of the generalized characters and Theorem $B$,

(4) $\sum_{n=-\infty}^{\infty}$ $[ \prod_{j=1}^{k}\beta(n)(d^{j})\prod_{j=1}^{k}\psi(n)_{\mu}(t_{j})]e^{in\theta}$

is the Fourier-Stieltjes series of a measure with $norm\leqq\Vert\Psi\Vert$ for $\mu_{\gamma}\times\mu_{r}\times\cdots\times\mu_{r^{-}}$

$a$ . $a$ . $(t_{1}, t_{2}, t_{k})$ .

By the same way for $k$ convolution products $\mu_{r}^{k}=\mu_{r}*\cdots*\mu_{r}$ we have

(5) $\lambda(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+t_{k}, \theta)=\sum_{n=-\infty}^{\infty}[\prod_{j=1}^{k}\psi(n)_{\mu}(t_{j})]e^{in\theta}$

and $\Vert\lambda(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+r_{k}, \cdot)\Vert_{M(T)}\leqq\Vert\Psi\Vert$ for $\mu_{r}\times\mu_{r}\times\cdots\times\mu_{r^{-}}a$ . $a$ . $(t_{1}, t_{2}, \cdots , t_{k})$ .
Since $|\psi(n)_{\mu}(t)|=1$ or $0$ by our assumption, the composition of the series (4)
and the series of $\overline{\lambda}(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+t_{k}, -\theta)$
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(6) $\sum_{n=-\infty}^{\infty}$ $[\prod_{f=1}^{k}\beta(n)(d^{j})]C_{P}(n)e^{in\theta}$

is the Fourier-Stieltjes series of a measure with norm $\leqq\Vert\Psi\Vert^{2}$ .
Since $d_{i}+(a_{1}a_{2}\cdots a_{i}-1)\equiv 0$ mod $ 2\pi$ ,

$D=$ { $\sum_{i=1}^{\infty}n_{i}d_{\dot{t}}$ ; $n_{t}\in Z,$ $n_{i}\geqq 0$ and $n_{i}=0$ except a finite number of $i’ s$}

Thus by (6), $\sum\beta(n)(d)e^{in\theta}$ is the Fourier-Stieltjes series of a measure with
norm $\leqq\Vert\Psi\Vert^{2}$ for every $d$ in $D$ . Thus the mapping

$\Phi f(\theta)=\sum_{n=-\infty}^{\infty}[\sum_{d\in D}f(d)\beta(n)(d)]C_{P}(n)e^{in\theta}$ for $f\in L(D)$

defines a homomorphism of $L(D)$ to $M(T)$ . Thus by P. J. Cohen’s theorem [3],
$P$ belongs to the coset ring of $Z$ and the mapping $n\rightarrow\beta(n)$ of $Z$ to $D$ is
piecewise affine. Thus there exist a positive integer $m$ , a finite subset $R$

$=\{n_{m+1}, n_{m+2}, \cdots n_{l}\}$ of $Z$ and $\zeta_{j},$ $\eta_{j}\in D(j=1,2, \cdots m)$ such that

(7) $\beta(n)=\sum_{j=1}^{m}\zeta_{j}^{k}\eta {}_{j}C_{mZ+j}(n)$

for $n\in P-R$ with $k=[n/m]$ and $(P-R)\cup F$ is periodic with the period $m$

for some finite set $F$.
To complete the proof we pull back the relation (7) to another relation

involving $\{\psi(n)\}$ . For each $j$ in $[(P-R)\cup F]\cap\{1,2, \cdots m\}$ choose $\pi_{j}$ and
$\phi_{j}$ in $\Delta(N(\mu))$ such that $\gamma(\pi_{j})=\zeta_{j},$ $\gamma(\phi_{j})=\eta_{j}$ and $|\pi_{j}|=1,$ $|\phi_{j}|=1$ . Then by
Theorem $B$ (iii) there exist unitary constants $c_{n}$ such that

(8) $\psi_{\mu}(n)=c_{n}\sum_{f=1}^{m}\pi_{j\mu}^{k}\phi_{j\mu}C_{mZ+j}(n)$

for $n\in P-R$ with $k=[n/m]$ . For $j\not\in[(P-R)\cup F],$ $1\leqq j\leqq m$ , let $\phi_{j}$ be the
zero system, that is, the trivial functional. Then (8) holds for $n\in Z-R$ .

Put $a_{n}=c_{n}$ for $n\in P-R$ and $=1$ for $n\not\in P-R$ . Let $\phi_{j}=\psi(n)$ for $n=n_{j}\in R$ .
Then we have

(9) $\psi_{\mu}(n)=\sum_{j=1}^{m}\pi_{j\rho z}^{k}a_{n}\phi_{j\mu}C_{mZ+j}(n)$

for $n\not\in R$ with $k=[n/m]$ and $\psi_{\mu}(n)=\phi_{j\mu}$ for $n=n_{j}\in R$ .
We denote by $\alpha(n)$ the generalized character of $\Delta(N(\mu))$ such that $\alpha_{\mu}(n)$

$=a_{n}$ . The final step of the proof is to show that $\{\alpha(n)\}$ is expressed in the
form

(10) $\alpha(n)=\sum_{j=1}^{m^{\prime}}\pi_{j}^{\prime k}\phi_{j}^{\prime}C_{m^{\prime}Z+j}(n)$
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outslde a finite set $R^{\prime}$ , where $m^{\prime}$ is a positive integer, $k=[n/m^{\prime}]$ and $\pi_{j}^{\prime},$ $\phi_{j}^{\prime}$

$\in\Delta(N(\mu)),$ $j=1,2,$ $\cdots$
$m^{\prime}$ . Then our theorem follows from (9) and (10) replac-

lng $m$ by mm and $R$ by $R\cup R^{\prime}$ . Furthermore, $\pi_{j}$ and $\phi_{j}$ are replaced by the
generalized characters of the form $\pi_{l}^{p}\pi_{\iota^{\prime}}^{\prime p^{\prime}}$ and $\phi_{\iota}^{q}\phi_{\iota^{\prime}}^{\prime q^{\prime}}$ respectively.

Put $\psi^{\prime}(n)=\overline{\psi(n)}$ for $n\in R$ and

$\psi^{\prime}(n)=\sum_{J^{\Rightarrow 1}}^{m}\overline{\pi}_{j}^{k}\overline{\phi}{}_{J}C_{mz+j}(n)$

for $n\not\in R$ with $k=[n/m]$ . Then by Theorem 2 $\{\psi^{\prime}(n)\}$ defines a homomorphism.
We have $\psi(n)\psi^{\prime}(n)=\alpha(n)$ for all $n$ except a finite number of $n’ s$ , so that $\{\alpha(n)\}$

defines a homomorphism in the obvious way. Let $c>0$ be the norm of that
homomorphism. Then $\Vert\sum\alpha_{\nu}(n)e^{in\theta}\Vert_{M(T)}\leqq c$ for every $v=\mu^{k},$ $k>0$ . As we have
mentioned in the section 2, $\alpha_{\nu}(n)=a_{n}^{k}$ for $v=\mu^{k},$ $k>0$ and $|\alpha_{\nu}(n)|=1$ . Thus

$\Vert\sum a_{n}^{k}e^{in\theta}\Vert_{M(T)}\leqq c$

for all $k\in Z$. This implies, by the theorem in $[7; P\cdot 93]$ , that the mapping
$n\rightarrow a_{n}$ of $Z$ to $T$ is piecewise affine. Thus we get (10). Thus our proof is
complete.

REMARK. Let $N$ be the smallest closed subalgebra of $M(T)$ which contains
all $L(T^{\tau})$ , where $T^{\tau}$ is the group $T$ with a locally compact topological group
topology $\tau$ stronger than the original one or equal to that of $T$. Since the
discrete topology and the natural one are only such topologies, $N=L(T)+$
$L(T^{d})$ , where $d$ is the discrete topology on $T$. Thus $N$ contains no continuous
singular measures. On the other hand the algebras $N(\mu)$ in Theorem 3 consist
of continuous singular measures.
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