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1. Introduction.

In this paper we shall study some class of hyperbolic differential operators
with variable multiple characteristics. Under a generalized condition of Lax
type, we shall establish the well posedness of the Cauchy problem for our
class of hyperbolic operators. Reducing a higher order single equation to a
first order system and showing an energy inequality, we prove the well posed-
ness for the considered operators.

E. E. Levi [9] first investigated the solvability of the Cauchy problem for
non-linear hyperbolic differential operators on $R^{2}$ with constant multiple char-
acteristic roots, in which he imposed some conditions on the lower order terms.
This condition was called Levi condition by Mizohata-Ohya [11]. For a dif-
ferential operator on $R^{n}$ the relation between a well posedness and the Levi
condition was studied by many authors [1], [2], [8] and [11]. In [2] Flaschka
and Strang found some necessary conditions for the well posedness of the
Cauchy problem for operators of constant multiple characteristics and Chazarain
[5] proved that their conditions are equivalent to the Levi condition under
the hypothesis of the existence of an influence domain and that it is also a
sufficient condition for the well posedness of the Cauchy problem for hyper-
bolic differential operators with constant multiple characteristics.

Recently many authors studied hyperbolic differential operators with vari-
able multiple characteristics. Using cleverly nonnegative characteristic form,
Oleinik [13] studied the well posedness of the Cauchy problem for second
order hyperbolic differential operators. In her paper she did not assume that
the characteristic roots are smooth. On the other hand in [7], [10], [12] and
[15] they assumed that the characteristic roots are smooth. Following the
idea by E. E. Levi and Mizohata-Ohya [11], they proved the well posedness
for hyperbolic differential operators whose characteristic roots have the multi-
plicities not greater than 3.
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In Theorem 1 of this paper we shall prove an analogous result for a rather
general class of hyperbolic operators. Our conditions on the lower order terms
seem natural extension of the condition of Lax type $(c. f. [16])$ .

If the Poisson bracket of two characteristic roots satisfies some condition,
then Theorem 1 is valid for a more general class of hyperbolic operators. In
[14] and [18] they proved the well posedness of the Cauchy problem for some
class of hyperbolic operators. In Theorem 2 of this paper we shall state their
results under a more delicate condition. For some special example of hyPer-
bolic differential operators our condition is necessary and sufficient. Of course
Theorem 2 is a generalized result of Theorem 1, if the characteristic roots
satisfy some conditions with respect to the Poisson bracket. This fact is
verified in this paper.

In section 2 we shall state our assumptions and results precisely. In
$-section3$ we state the equivalent condition to our generalized condition of

Lax type. Using this equivalent condition, in section 4 we shall reduce our
operator to a first order system and show the existence of a symmetrizer
with a singularity at $t=0$ . Showing energy inequalities for our operators, we
shall prove Theorems 1 and 2 in Sections 5 and 6, respectively.

In section 7 we shall state some necessary conditions of the well posedness
of the Cauchy problem. By the theorem of [6], for some special example of
hyperbolic differential operators of $R^{2}$ our generalized condition of Lax type
is necessary and sufficient condition of the well posedness of the Cauchy
problem in the sense of [6].

2. Statements of the results.

We shall consider the following differential operator;

(2.1) $P(t, x, D_{t}, D_{x})=\sum_{|a|\leqq m}a_{\alpha}(t, x)D_{t}^{a_{0}}D_{x}^{a^{i}}$ ,

where $(t, x)\in\Omega=[0, T]\times R^{n}(0<T<\infty),$ $D_{t}=-i\partial/\partial t,$ $D_{x_{j}}=-i\partial/\partial x_{j}$, and $D_{t}^{a_{0}}D_{x}^{a^{l}}$

$=D_{l}^{a_{0}}D_{x_{1}}^{a_{1}}\cdots D_{x_{n}}^{a_{n}}$ . We assume that $a_{m.0\ldots..0}(t, x)=1$ and $a.(t, x)$ belongs to $\mathcal{B}(\Omega)$ ,
which consists of all functions whose arbitrary derivatives are bounded in $\Omega$ .
Let $(\tau, \xi)$ be the covariable of $(t, x)$ . Then we define the following symbols;

$p_{k}(t, x, \tau, \xi)=\sum_{|a|=k}a_{a}(t, x)\tau^{\alpha_{0}}\xi^{\alpha^{r}},$ $(k=0, \cdots m)$ .
Throughout this paper except $t^{-l}(1>0)$ all functions on $\Omega\times R^{n+1}$ or $\Omega\times R^{n}$

are elements of $\mathcal{B}(\Omega\times S^{n})$ or $\mathcal{B}(\Omega\times S^{n-1})$ if $(\tau, \xi)\in S^{n}$ or $\xi\in S^{n-1}$ respectively.
Here $S^{n}$ is the unit sphere of $R^{n+1}$ . For functions $a(t, x, \xi)$ and $b(t, x, \xi),$ $a\equiv 0$

mod $t^{-l}b$ means that there exists a function $c(t, x, \xi)$ such that $a=c(t^{-l}b)$ . All
pseudo-differential operators $Q(t, x, D_{t}, D_{x})$ in this paper are differential opera-
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tors with respect to $t$ . Therefore we say that $Q(t, x, D_{t}, D_{x})$ is of order $m_{0}$

if $Q$ have the following form

$Q(t, x, D_{t}, D_{x})=\sum_{j=0}^{m_{0}}A_{j}(t, x, D_{x})D_{t}^{m_{0}-j}$ ,

where $A_{j}$ is of order $j$ .
First we shall consider the differential operator (2.1) satisfying the follow-

ing three conditions;
(A.1) The principal symbol of $P$ is denoted by

$p_{m}(t, X, T, \xi)=\sum_{j=1}((\tau-\lambda_{j})^{m_{j}}(\tau-\lambda_{s+f}))\prod_{j=2s+1}^{m-N+s}(\tau-\lambda_{j})$ ,

where the positive constant integers $m_{j}$ satisfy that $m_{1}\geqq\ldots\geqq m_{s},$ $N=\sum_{j=1}^{s}m_{j}$

and $\lambda_{j}(t, x, \xi)(j=1, \cdots , m-N+s)$ is real homogeneous of degree 1 with respect
to $\xi$ and belongs to $\mathcal{B}(\Omega\times S^{n-1})$ if $\xi\in S^{n-1}$ ,

(A.2) For any couple $(i, j)\neq(k, s+k)(k=1, \cdots, s)$ we suppose the following;

$|(\lambda_{i}-\lambda_{j})(t, x, \xi)|>\delta$ $(t, x, \xi)\in\Omega\times S^{n-1}$ ,

where $\delta$ is a positive constant.
For the lower order terms of $P(t, x, D_{t}, D_{x})$ we assume the following;
(A.3) For any $k$ ( $k=1,$ $\cdots$ , s) we assume $P(t, x, D_{t}, D_{x})$ has the following

form;

(2.2) $P(t, x, D_{t}, D_{x})=\sum_{l=0}^{m_{k}}Q_{k.l}(\Lambda_{k})^{m_{k}- l}(t, x, D_{t}, D_{x})$ ,

where $\Lambda_{k}$ is the pseudo-differential operator defined by the symbol $\tau-\lambda_{k}(t, x, \xi)$

and $Q_{k,l}(t, x, D_{t}, D_{x})(l=0, \cdots , m_{k})$ is a pseudo-differential operator of degree
$m-m_{k}$ . Furthermore the principal symbol $q_{k.l}(t, x, \tau, \xi)$ of $Q_{k,l}$ has the fol-
lowing property;

(2.3) $q_{k.l1\tau=\lambda_{k}}\equiv 0$ $mod t^{-\iota}(\lambda_{k}-\lambda_{s+k})$ .
In the following theorem we use the function space $C^{\infty}([0, T] ; H_{\infty}(R^{n}))$ .

A function $u(t, x)$ belongs to $C^{\infty}([0, T];H_{\infty}(R^{n}))$ if $D^{J_{t}}u(t)(j=0, 1, )$ exists in

$H_{\infty}(R^{n})=\bigcap_{s=0}^{\infty}H_{s}(R^{n})$ and is continuous in the topology of $H_{\infty}(R^{n})$ in $[0, T]$ ,

where $H_{s}(R^{n})$ is the Sobolev space.
THEOREM 1. Let $P(t, x, D_{t}, D_{x})$ be a differential operatOr with the form

(2.1). If $P$ satisfies the assumptions (A.1), (A.2) and (A.3), then the Cauchy
probIem $Pu=f$ in $\Omega,$ $D^{J_{t}}u_{1t=0}=g_{j}$ $(j=0, \cdots , m-1)$ is well pOsed in $C^{\infty}([0, T]$ ;
$H_{\infty}(R^{n})),$ $i$ . $e.$ , for any data $f(t, x)\in C^{\infty}([0, T]jH_{\infty}(R^{n}))$ and $g_{j}(x)\in H_{\infty}(R^{n})(j=0$,
... , $m-1$) there exists a unique solution $u(t, x)\in C^{\infty}([0, T];H_{\infty}(R^{n}))$ .
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REMARK 1.1. In the assumption (A.3) we do not assume that $(\lambda_{k}-\lambda_{s+k})t^{-i}$

is smooth at $t=0$ . Of course if $q_{k,l1\tau=\lambda_{k}}\equiv 0$ mod $(\lambda_{k}-\lambda_{s+k})$ , then (2.3) holds
clearly. Thus Theorem 1 is a generalization of [17]. If $\lambda_{k}(t, x, \xi)=\lambda_{s+k}(t, x, \xi)$ ,
then (2.2) becomes to the following;

(2.4) $P(t, x, D_{t}, D_{x})=\sum_{l=0}^{m_{k+1}}R_{k,l}(\Lambda_{k})^{m_{k}+1- l}(t, x, D_{t}, D_{x})$ ,

where $R_{k,l}(t, x, D_{t}, D_{x})$ is of order $m-m_{k}-1$ . This is the condition of Lax
type. When $m_{j}=1$ $(j=1, \cdots , s)$ , our theorem coincides formally with those of
[10] and [12].

In the assumptions (A.1) and (A.3) if the commutator $[\Lambda_{k}, \Lambda_{s+k}]$ satisfies
the condition (2.5) below, then (A.2) is relaxed. Thus Theorem 1 holds for a
more general class of hyperbolic operators.

Now we shall study the differential operator (2.1) which satisfies the fol-
lowing assumptions;

(H.1) The principal symbol $p_{m}(t, x, \xi, \tau)$ does not depend on $x$ if $|x|$ is
sufficiently large. $p_{m}(t, x, \xi, \tau)$ is factorized by

$p_{m}(t, x, \tau, \xi)=\prod_{j=1}^{m}(\tau-\lambda_{j}(t, X, \xi))$ ,

where $\lambda_{j}(t, x, \xi)$ ($j=1,$ $\cdots$ , m) is infinitely differentiable, real and positively
homogeneous of degree 1.

(H.2) The maximal multiplicity of the characteristic roots $\{\lambda_{j}(t, x, \xi)\}_{j=1\ldots..m}$

over $\Omega\times S^{n-1}$ is equal to $r$ . For any couple $(i, j)$ ( $i,$ $j=1,$ $\cdots$ , m) we assume

(2.5) $\{\tau-\lambda_{i}, \tau-\lambda_{j}\}(t, X, \xi)\equiv 0$ mod $t^{-1}(\lambda_{i}-\lambda_{j})$ ,

where $\{$ , $\}$ is the Poisson bracket.
(H.3) The operator $P(t, x, D_{t}, D_{x})$ takes the following form;

(2.6) $P(t, x, D_{t}, D_{x})=\Lambda_{1}\cdots\Lambda_{m}+\sum_{0\leqq k<m}t^{k- m}\gamma_{t_{1}\cdots t_{k}}\Lambda_{t_{1}}\cdots\Lambda_{i_{k}}$

$+P_{m-r}(t, XD_{t}, D_{x})$ ,

where $\{i_{1}, \cdots , i_{k}\}$ is a subset of $\{$ 1, $\cdots$ , $m\},$ $\gamma_{i_{1}\cdots i_{k}}(t, x, D_{x})$ is a pseudo-differen-
tial operator of order $0$ and $p_{m-\gamma}$ is of order $m-r$ . For simplicity if $\{i_{1}, \cdots, i_{k}\}$

$=\emptyset$ , then we put $k=0$ and $\Lambda_{i_{1}}\cdots\Lambda_{\iota_{k}}=1$ .
REMARK 1.2. The differential operator satisfying the conditions (A.1), (A.2)

and (A.3) is written in the form (2.6). This is proved in Corollary 6.3. There-
fore the following Theorem 2 is a generalization of Theorem 1 if $\lambda_{j}(t, x, \xi)$

and $\lambda_{s+j}(t, x, \xi)$ ($j=1,$ $\cdots$ , s) satisfies the condition (2.5).

Under the above three assumptions we get the following;
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THEOREM 2. Let $P(t, x, D_{t}, D_{x})$ be a differential $oPerator$ of (2.1) and satisfy
the assumpti0n (H.1), (H.2) and (H.3). Then the Cauchy pr0blem $Pu=f$ in $\Omega$,
$D^{J_{t}}u_{1t=0}=g_{j}$ $(j=0, \cdots , m-1)$ is well posed in $C^{\infty}([0, T];H_{\infty}(R^{n}))$ .

REMARK 1.3. We shall state a few remarks with respect to (H.1), (H.2)
and (H.3).

i) For simplicity we assume $p_{m}(t, x, \tau, \xi)=p_{m}(t, \tau, \xi)$ when $|x|$ is suffi-
ciently large. Taking care of coincidences of the characteristic roots $\lambda_{j}$ at
infinite points of $x$ , we can relax this condition. In that case $r$ in (H.3) may
be greater than the maximal multiplicity of the characteristic roots.

ii) In the condition (2.5) we do not assume $t^{-1}(\lambda_{i}-\lambda_{j})\in C^{\infty}(\Omega\times(R^{n}\backslash 0))$ . Thus
Theorem 2 is a generalization of [14] and [18]. If $|\lambda_{i}-\lambda_{j}|>\delta|\xi|$ then (2.5)
is clearly valid.

iii) In the summation terms of the right hand side of (2.6), each term
may be singular at $t=0$, however we assume that the sum of each term has
a meaning at $t=0$ . In condition (H.3) we do not impose any condition in
$p_{j}(t, X, \tau, \xi)(j\leqq m-r)$ .

The final part of this paper, when $\lambda_{j}(t, x, D_{t}, D_{x})$ is a special differential
operator on $R^{2}$ , we show that (A.3) and (H.3) is necessary for the well posed-
ness using the Theorem 4.1 of [6]. Thus our condition is necessary and
sufficient for some special example of hyperbolic operators in $R^{2}$ .

3. The equivalent conditions of (A.3).

In this section we shall state a few equivalence of (A.3).
Taking care of multiplicity of the roots $\lambda_{j}(j=1, \cdots, s)$ , we denote $p_{m}(r, X, \tau, \xi)$

by
$(\tau-\lambda_{m-N+s})\cdots(\tau-\lambda_{s+1})\varphi_{\mu^{\beta}}^{n}\cdots\varphi_{1}^{n_{1}}$ ,

where $\varphi_{\nu}(t, x, \tau, \xi)(\nu=1, \cdots , \mu)$ is equal to $\prod_{j=1}^{s_{\nu}}(\tau-\lambda_{j}(t, x, \xi))$ and $ m_{s_{\nu-1+1}}=\ldots$

$=m_{s_{\nu}}$ $(\nu=1, \cdots , \mu)$ . Remark that $s_{1}<s_{2}<\ldots<s_{\mu}=s$ and $m_{1}=\sum_{v=1}^{\mu}n_{\nu}$ and denote

N. by $s_{\nu}n_{\nu}$ , where $\sum_{\nu=1}^{\mu}N_{\nu}=N$. We introduce a product pseudo-differential opera-

tor $\Phi_{\nu}(t, x, D_{t}, D_{x})=(\Lambda_{s_{v}}\cdots\Lambda_{1})(t, x, D_{t}, D_{x})$ . Then we denote $\Delta_{j}(r, x, D_{t}, D_{x})$

of order $j$ ($j=0$ , – , m) by

$\Delta_{0}=1,$ $\Delta_{1}=\Lambda_{1},$ $\cdots$ $\Delta_{j},$ $\cdots$ $\Delta_{N}=\Phi_{u^{\mu}}^{n}\cdots\Phi_{1}^{n_{1}},$ $\cdots$

$\Delta_{N+k}=\Lambda_{s+k}\cdots\Lambda_{s}\Delta_{N},$ $\cdots$ $\Delta_{m}=\Lambda_{m-N+s}\cdots\Lambda_{s+1}\Delta_{N}$

where $\Delta_{j}=\Lambda_{\delta}\cdots\Lambda_{1}\Phi_{\nu}^{\sigma}\Phi_{\nu-1}^{n_{\nu-1}}\cdots\Phi_{1}^{n_{1}}$ if $ j=N_{1}+\cdots+N_{\nu-1}+\sigma s_{\nu}+\delta(0\leqq\sigma\leqq n_{\nu}-1,0\leqq\delta$

$\leqq s_{\nu}-1)$ . Moreover we define a pseudo-differential operator $(\Delta_{j}/\Delta_{i})(t, x, D_{t}, D_{x})$,
where $j=N_{1}+\cdots+N_{\nu-1}+\sigma s_{\nu}+\delta>i=N_{1}+\cdots+N_{\nu^{\prime}-1}+\sigma^{\prime}s_{\nu^{\prime}}+\delta^{\prime}$ , by
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$\Lambda_{\delta}\cdots\Lambda_{1}\Phi_{\nu}^{\sigma}\Phi_{\nu 1}^{n_{\underline{\nu}-1}}\cdots\Phi_{\nu^{J}+1}^{n_{\nu^{J}+1}}\Phi_{\nu^{t}}^{n_{\nu^{\prime}}-\sigma^{l}- 1}\Lambda_{s_{\nu^{\prime}}}$ $\Lambda_{\delta^{\prime}+1}$ .
Clearly we see that $(\Delta_{j}/\Delta_{i})\Delta_{t}=\Delta_{j}$ .

First we shall state a few lemmas with respect to a commutator of
pseudo-differential operators.

LEMMA 3.1. Let $A(t, x, D_{t}, D_{x})$ and $B(t, x, D_{t}, D_{x})$ be pseudo-differential
operators of order 1 and $b$ respectively. Then we have

(3.1) $A^{m}B^{m}=(AB)^{m}+\sum_{j=0}^{m-1}C_{j}B^{j}$ ,

(3.2) $=(AB)^{m}+\sum_{j=0}^{m-1}D_{j}A^{j}$ ,

where $C_{j}(t, x, D_{t}, D_{x})$ and $D_{j}(t, \chi D_{t}, D_{x})$ are of order $m+(b-1)(m-j)$ and
$mb$ respectively.

PROOF. (3.1) and the following (3.3) are proved by the double induction
with respect to $m$ at the same time.

(3.3) $[A, (AB)^{m}]=\sum_{J=0}^{m-1}\tilde{C}_{j}B^{j}$ ,

(3.4) $=\sum_{j=0}^{m-1}\tilde{D}_{j}A^{j}$ ,

where $\tilde{C}_{j}(t, x, D_{t}, D_{x})$ and $\tilde{D}_{j}(t, x, D_{t}, D_{x})$ are of order $m+(b-1)(m-j)+1$ and
$mb$ respectively. (3.2) and (3.4) is also proved at the same time by the double
induction with respect to $m$ .

The following two lemmas are obvious.
LEMMA 3.2. Let $A(t, x, D_{t}, D_{x})$ and $B(t, x, D_{t}, D_{x})$ be a pseudo-differential

operat0rs of order $a$ and $b$ respectively. Then we have

$[A, B^{m}]=\sum_{j=0}^{m-1}C_{j}B^{j}$ ,

where $C_{j}(t, x, D_{t}, D_{x})$ is of order $a+(b-1)(m-j)$ .
LEMMA 3.3. Let $A(t, x, D_{t}, D_{x}),$ $B_{j}(t, x, D_{t}, D_{x})$ ($j=1,$ $\cdots$ , m) and $C(t,$ $x,$ $D_{t}$ ,

$D_{x})$ be pseudo-differentjal operat0rs of order 1, $b_{j}$ and $c$ respectively. Then we
have

$\prod_{j=1}^{m}(B_{j}AC)=\sum_{j=0}^{m}D_{j}A^{j}$ ,

where $D_{j}(t, x, D_{t}, D_{x})$ is of order $(b_{1}+\cdots+b_{m})+mc$ .
Using these lemmas, we shall prove the following
PROPOSITION 3.4. Let $P(t, x, D_{t}, D_{x})$ be a differential operat0r which satisfies

the conditions (A.1) and (A.2). Then the condition (A.3) is equivalent to the
following statement; we can write $P$ by
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(3.5) $P(t, x, D_{t}, D_{x})=\sum_{i=0}^{m_{1}}Q_{i}(t, x, D_{t}, D_{x})\Delta_{a(i)}$ ,

where if $i=n_{\mu}+\cdots+n_{\nu+1}+\sigma(0\leqq\sigma\leqq n_{\nu})$ , then $\alpha(\iota)=N_{1}+\cdots+N_{\nu}-s_{\nu}\sigma$ and $Q_{i}(i=0$,
, $m_{1}$) is a Pseudo-differential operator of order $M_{i}=m-i-\alpha(l)$ and is a dif-

ferential operatOr with respect to $t$. Moreover the PrinciPal symbol $q_{i}(t, x, \tau, \xi)$

of $Q_{i}$ satisfies the following condition;

(3.6) $q_{i1\tau=\lambda_{k}}\equiv 0$ mod $t^{-i}(\lambda_{k}-\lambda_{s+k})$ , for $1\leqq k\leqq s_{\nu}$ .
PROOF. First we shall show that (A.3) implies the condition (3.5) and (3.6).

From (2.2) and (2.3) we shall show that

(3.7) $P(t, x, D_{t}, D_{x})=\sum_{l=0}^{m_{2}}R_{l}(\Lambda_{2}\Lambda_{1})^{m_{2}-l}(\Lambda_{1})^{m_{1}-m_{2}}$

$+\sum_{\iota=m_{2}+1}^{m_{1}}S_{l}(\Lambda_{1})^{m_{1}-l}$ ,

where $R_{l}(t, x, D_{t}, D_{x})$ and $S_{l}(t, x, D_{t}, D_{x})$ is of order $m-m_{1}-m_{2}+l$ and $m-m_{1}$

respectively. Moreover the principal symbols $r_{l}(t, x, \tau, \xi)$ and $s_{l}(t, x, \tau, \xi)$ of
$R_{l}$ and $S_{l}$ respectively, have the property (2.3) putting $q_{k.l}=r_{l}$ and $k=1,2$

and $q_{k,l}=s_{l}$ and $k=1$ , respectively. Comparing the principal symbols of (2.2)
as $k=1$ with as $k=2$ , we have

(3.8) $q_{1.0}(\Lambda_{1})^{m_{1}}(t, x, \tau, \xi)=q_{2.0}(\Lambda_{2})^{m_{2}}(t, x, \tau, \xi)$ .
By (A.2), (2.3) and (3.8) we can write

(3.9) $q_{1.0}=r_{0}(\Lambda_{2})^{m_{2}}$ , $q_{2.0}=r_{0}(\Lambda_{1})^{m_{1}}$ ,

where $r_{0}(t, x, \tau, \xi)$ is positively homogeneous of degree $m-m_{1}-m_{2}$ and satisfies
the condition (2.3) putting $q_{k.l}=r_{0}$ and $k=1,2$ . Let $R_{0}(t, x, D_{t}, D_{x})$ be a pseudo-
differential operator with the principal symbol $r_{0}(t, x, \tau, \xi)$ . By (3.1) we see that

$P=R_{0}(\Lambda_{2}\Lambda_{1})^{m_{2}}(\Lambda_{1})^{m_{1}- m_{2}}+\sum_{l=1}^{m_{1}}\tilde{Q}_{1.l}(\Lambda_{1})^{m_{1}-l}$ ,

where $\tilde{Q}_{1,l}(t, x, D_{t}, D_{x})$ has the same properties as $Q_{1.l}$ . By Lemma 3.2 and
(3.2) we have

$P=R_{0}(\Lambda_{2}\Lambda_{1})^{m_{2}}(\Lambda_{1})^{m_{1}- m_{2}}+\sum_{l=1}^{m_{2}}\tilde{Q}_{2,l}(\Lambda_{2})^{m_{2}- l}$ ,

where $\tilde{Q}_{2.l}(t, x, D_{t}, D_{x})$ has the same properties as $Q_{2.l}$ . Thus repeating the
same arguments for

$P-R_{0}(\Lambda_{2}\Lambda_{1})^{m_{2}}(\Lambda_{1})^{m_{1}- m_{2}},$ $P-R_{0}(\Lambda_{2}\Lambda_{1})^{m_{2}}(\Lambda_{1})^{m_{1}- m_{2}}-R_{1}(\Lambda_{2}\Lambda_{1})^{m_{2}- 1}(\Lambda_{1})^{m_{1}- m_{2}},$ $\cdots$

we have (3.7). Adding $\sum_{l=0}^{m_{3}}Q_{3.l}(\Lambda_{3})^{m_{3}-l}$ to (3.7), we have
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$P=\sum_{\iota=0}^{m_{3}}T_{l}(\Lambda_{3}\Lambda_{2}\Lambda_{1})^{m_{3}-l}(\Lambda_{2}\Lambda_{1})^{m_{2}-m_{3}}(\Lambda_{1})^{m_{1}-m_{2}}$

$+\sum_{l=m_{3}+1}^{m_{2}}V_{\iota}(\Lambda_{2}\Lambda_{1})^{m_{2}-l}(\Lambda_{1})^{m_{1}-m_{2}}+\sum_{l=m_{2+1}}^{m_{1}}W_{l}(\Lambda_{1})^{m_{1}-l}$ ,

where $T_{l}(t, x, D_{t}, D_{x}),$ $V_{l}(t, x, D_{t}, D_{x})$ and $W_{l}(t, x, D_{t}, D_{x})$ are of order $m-m_{1}$

$m_{2}-m_{3}+2l,$ $m-m_{1}-m_{2}+l$ and $m-m_{1}$ pespectively and have the property
(3.6) putting $k=1,2,3,$ $k=1,2$ and $k=1$ respectively. Repeating the same
arguments, we have the desired properties (3.5) and (3.6).

Conversely if $P$ satisfies the condition (3.5) and (3.6), then $P$ has the
condition (A.3). This fact is easily derived from Lemma 3.2 and 3.3. This
completes the proof of Proposition 3.4.

For any pseudo-differential operator $Q(t, x, D_{t}, D_{x})$ of order $m-k$ , which
is a differential operator of $t$, we can express $Q$ by

$Q(t, x, D_{t}, D_{x})=\sum_{j=0}^{m-k}Q_{j}(t, x, D_{x})(\Delta_{j+k}/\Delta_{k})$ ,

where $Q_{j}$ is of order $m-k-j$ . Thus we have the following;
PROPOSITION 3.5. Let $P$ be a differential operat0r satisfying the condition

(A.1) and (A.2). Then the condition (A.3) is equivalent to the following;

(3.10) $P(t, x, D_{t}, D_{x})=\sum_{i=0}^{m_{1}}\sum_{j=0}^{M_{i}}R_{i,j}(t, x, D_{x})\Delta_{a(t)+j}$ ,

where $R_{i.j}$ is of order $M_{i}-j$, whose principal symbols $r_{i.j}(t, x, \xi)$ have the fol-
lowing property;

(3.11) $\sum_{j=0}^{k-1}r_{i,j}\Lambda_{j}\cdots\Lambda_{11\tau=\lambda_{k}}\equiv 0$ mod $t^{-i}(\lambda_{k}-\lambda_{s+k})$ .

Here $k\leqq s_{\nu}$ if $i=n_{\mu}+\cdots+n_{\nu+1}+\sigma(1\leqq\sigma\leqq n_{\nu})$ .
We can express (A.3) by the conditions with respect to $p_{k}$ when $m_{k}=1,2$ .

For simplicity we identify $(t, \tau)$ with $(x_{0}, \xi_{0})$ in the following Remark.
REMARK (see Proposition 4.1 in [17]). We have the following;
i) When $m_{k}=1$ , the condition (A.3) is equivalent to the following;

$p_{m-1}^{s}+(i/2)r_{0}\{\Lambda_{s+k}, \Lambda_{k}\}_{1\tau=\lambda_{k}}\equiv 0$ mod $t^{-1}(\lambda_{k}-\lambda_{s+k})$ ,

where $p_{m-1}^{s}(r, \chi\tau, \xi)$ is the subprincipal symbol of $P$ and $r_{0}(t, x, \tau, \xi)=p_{m}/$

$(\tau-\lambda_{k})(\tau-\lambda_{s+k})$ .
ii) When $m_{k}=2$, if the following three conditions hold, then (A.3) is

valid;
$p_{m-1}^{s}(t, X, \lambda_{k}(t, X, \xi), \xi)=0$ ,

$\partial p_{m-1}^{s}/\partial\tau_{1\tau=\lambda_{k}}\equiv\{\Lambda_{s+k}, \Lambda_{k}\}_{1\tau=\lambda_{k}}\equiv 0$ mod $t^{\rightarrow 1}(\lambda_{k}-\lambda_{s+k})$ ,
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$p_{m-2}-\sum_{j=0}^{n}p_{m-1,j}^{(j)}/2+\sum_{l,j=0}^{n}p_{m,lj}^{(lj)}/8$

$-\sum_{j=0}^{n}r_{0}(\{\Lambda_{s+k}^{(j)}, \Lambda_{k}\}\Lambda_{k,j}-\{\Lambda_{s+k.j}, \Lambda_{k}\}\Lambda_{k}^{(j)})/4$

$\equiv 0$ mod $t^{-2}(\lambda_{k}-\lambda_{s+k})$ ,

where $f_{\beta}^{(a)}(x, \xi)=((iD_{\xi})^{\alpha}D_{x}^{\beta}f)(x, \xi)$ and $r_{0}(t, x, \tau, \xi)=p_{m}/(\tau-\lambda_{k})^{2}(\tau-\lambda_{s+k})$ .

4. Reduction to a first order system and existence of the symmetrizer.

In this section using conditions (3.10) and (3.11), we show that $P$ is reduced
to a first order system whose principal symbol has a symmetrizer with a
singularity at $t=0$ .

Throughout this section we denote a column vector $U$ by the following
form;

$U={}^{t}(u_{0}, ’ u_{m-1})={}^{t}({}^{t}U_{0}, \cdots {}^{t}U_{m_{1}})$ .
Here if $j=n_{1}+\cdots+n_{v-1}+\sigma(0\leqq\sigma<n_{\nu})$ , then $U_{j}={}^{t}(u_{\beta^{(j)}}, \cdots , u_{\beta(j)+s\nu-1})$ , where
$\beta(j)=N_{1}+\cdots+N_{\nu-1}+\sigma s_{\nu}$ and if $j=m_{1}$ , then we put $U_{m_{1}}={}^{t}(u_{N}, \cdots , u_{m-1})$ and
$\beta(m_{1})=N$. Moreover for simplicity the number of components of $U_{j}$ is denoted
by $\gamma_{j}$ . Let $V(t, x)$ be a vector function

(4.1) ${}^{t}(\Delta_{0}u, \cdots \Delta_{m-1}u)={}^{t}({}^{t}V_{0}, \cdots {}^{t}V_{m_{1}})$ ,

where $u(t, x)$ is smooth function on $\Omega$, and $\Lambda(D_{x})$ be a pseudo-differential
operator defined by the symbol $|\xi|$ . Then we define a $\gamma_{j}\times\gamma_{j}$ matrix $E_{j}(D_{x})$

$(j=0, \cdots m_{1})$

$E_{j}(D_{x})=(\Lambda^{e_{j}}(D_{x})0\Lambda^{e_{j^{-1}}}(D_{x}).$
$\Lambda^{e_{j}-\gamma}(D_{x})o_{J^{+1}}]$

where $e_{j}=m-m_{1}-1+j-\beta(j)$ if $j=n_{1}+\cdots+n_{\nu-1}+\sigma(0\leqq\sigma<n_{\nu})$ and $e_{m_{1}}=m-N$.
We define the column vector function $U(t, x)$

(4.2) ${}^{t}({}^{t}(E_{0}V_{0}), {}^{t}(E_{m_{1}}V_{m_{1}}))(t, x)$ .
Then we have the following;

LEMMA 4.1. The equation $Pu=f$ is reduced to a first order system

(4.3) $LU(t, x)=(D_{t}-A(t, x, D_{x})U(t, x)=I\lambda t, x)$ .
Here $F=(0, 0, f)$ and $A$ has the following form;
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(4.4) $A(t, x, D_{x})=(A_{0}B_{0}C_{0}0$

.
$\cdot$

$C_{m_{1}-1}A_{m_{1}}B_{m_{1}-1}0)(t, x, D_{x})$

where $A_{j}(t, x, D_{x})(j=0, \cdots , m_{1})$ is a $\gamma_{j}\times\gamma_{j}$ first order system, $B_{f}(t, x, D_{x})$

$(j=0, \cdots , m_{1}-1)$ is a $\gamma_{j}\times\gamma_{j-1}$ matrix of order $0$ and $C_{j}(t, x, D_{x})(j=0, \cdots , m_{1}-1)$

is a $(m-N)\times\gamma_{j}$ first order system. Moreover the principal symbol of $A_{j},$ $C_{j}$ is
the following;

(4.5) $A_{j}^{0}(t, X, \xi)=[\lambda_{1}(t, x_{0}, \xi)$

if $j=n_{1}+\cdots+n_{\nu-1}+\sigma(0\leqq\sigma<n_{\nu})$,

$|\xi|$

$\lambda_{s_{\nu}}(t,x|\xi|0\xi))$

(4.6) $A_{m_{1}}^{0}(t, x, \xi)=\left(\begin{array}{lllllll}\lambda_{s+1}(t,. & x, & \xi) & |\xi| & 0 & & \\ & & & & |\xi| & & \\0 & & & & \lambda_{m-N+s}(t, & X & \xi)\end{array}\right)$

and

(4.7) $C_{j}^{0}(t, x, \xi)=[-\tilde{r}_{m_{1}-j.0}|\xi|$ . . $0-\tilde{r}_{m_{1}-j,s_{\nu}- 1}|\xi|]$

where $\tilde{r}_{m_{1}-j.l}(t, x, \xi)=r_{m_{1}-1.l}(t, x, \xi/|\xi|)(l=0, \cdots , s_{\nu}-1)$ .
PROOF. Since $e_{j}-\gamma_{j}+1=e_{j+1}$ , the order of $B_{j}$ is $0$ . Thus we prove pro-

perties with respect to $C_{j}(t, x, D_{x})$ and $A_{m_{1}}(t, x, D_{x})$ . Other properties are
obvious. It is clear that if $j+i=m_{1}$ , then $\beta(j)=\alpha(i)$ . Therefore by (3.10) we
have

(4.8) $Pu=\sum_{j\Leftarrow 0}^{m_{1}}\sum_{k=0}^{M_{m_{1}-j}}R_{m_{1}- j.k}(t, x, D_{x})\Delta_{\beta^{(j)+k}}u$ .

We shall write $j=n_{1}+\cdots+n_{\nu-1}+\sigma(0\leqq\sigma<n_{\nu}),$ $k=(n_{\nu}-\sigma)s_{\nu}+N_{\nu+1}+\cdots+N_{\nu^{\prime}-1}$

$+n_{\nu^{\prime}}\sigma^{\prime}+\delta^{\prime}(0\leqq\sigma^{\prime}<n_{\nu},, 0\leqq\delta^{\prime}<s_{\nu},)$ and $j^{\prime}=j+(n_{\nu}-\sigma)+\cdots+n_{\nu^{\prime}-1}+\sigma^{\prime}$ . Then $\beta(j)$

$+k=\beta(j^{\prime})+\delta^{\prime}$ . Since $\Delta_{\beta^{(j)+k}}u$ is the $(\delta^{\prime}+1)$-th component of $U_{j^{\prime}}(t, x)$,

$R_{m_{1}- j.k}\Delta_{\beta(j)+k}u=R_{m_{1}-j.k}\Lambda^{-(e_{j^{;-\delta\prime})}}u_{\beta^{(j)+k}}$ .
$We^{-}shal1$ compute the order $r$ of $R_{m_{1}-j,k}\Lambda^{-(e-\delta;}j^{\prime}$

) We have
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$ r=m-(m_{1}-j)-\alpha(m_{1}-j)-k-(m-m_{1}-1+j^{\prime}-\beta(j^{\prime}))+\delta$

$=1+(j-j^{\prime})\leqq 1$ ,

where if $j=j^{\prime},$ $i.e.,$ $k=0,$ $\cdots,$
$s_{\nu}-1$ , then $r=1$ . Thus $C_{j}(t, x, D_{x})(j=0, \cdots, m_{1}-1)$

has the desired property (4.7). Second we shall consider a case $j=m_{1}$ in (4.8).

Since $R_{0.k}(t, x, D_{x})$ is of order $m-N-k$ , the order $R_{0,k}\Lambda^{-(m-N-k)}$ is $0$ . It
implies that $A_{m_{1}}(t, x, D_{x})$ is the desired property (4.5). This completes the
proof of Lemma 4.1.

We shall show the existence of a symmetrizer of $A(t, x, D_{x})$ .
PROPOSITION 4.2. There exists a $m\times m$ matrix $M(t, x, \xi)$ such that
i) $M(t, x, \xi)$ is denoted by $TM^{0}(t, x, \xi)$ , where the comp0nents of $M^{0}(t, \chi, \xi)$

are p0sitively homogeneous functions of degree $0$ , det $M^{0}(t, x, \xi)=1$ and

$T=(t^{m_{1}}I_{0}0$
$tI_{m_{I_{m_{1}}}}o_{1^{-1}}]$

where $I_{j}$ is the $\gamma_{j}\times\gamma_{j}$ identity matrix.
ii) Let $A^{0}(t, x, \xi)$ be the principal symbol of A. Then we have the following;

(4.9) $M^{-1}A^{0}M(t, x, \xi)$

is a real diagonal matrix.
PROOF. Clearly eigen values of $\tilde{A}^{0}(t, x, \xi)=A^{0}(t, x, \xi/|\xi|)$ are $\tilde{\lambda}_{1}(t, x, \xi),$ $\cdots$ ,

$\lambda_{s}(t, x, \xi),\tilde{\lambda}_{s+1}(t, x, \xi),$ $\cdots$ , $\tilde{\lambda}_{m- N+s}(t, x, \xi)$ with multiplicities $m_{1},$
$\cdots$ , $m_{s},$ $1,$ $\cdots$ , 1

respectively, where $\tilde{\lambda}_{j}(t, x, \xi)=\lambda_{j}(t, x, \xi/|\xi|)(j=1, -- , m-N+s)$ . We shall
seek an eigen vector $N={}^{t}(n_{0}, \cdots , n_{m_{1}})={}^{t}({}^{t}N_{0}, \cdots , {}^{t}N_{m_{1}})$ . The equation

$(\mu I_{m}-\tilde{A}^{0})(t, x, \xi)N=0$

is equivalent to the following;

$(\mu I_{0}-\tilde{A}_{0}^{0})N_{0}=0,$ $\cdots$ , $(\mu I_{m_{1}-1}-\tilde{A}_{m_{1}-1}^{0})N_{m_{1^{-1}}}=0$ ,

$-\sum_{j=0}^{m_{1}-1}\tilde{C}_{j}^{0}N_{j}+(\mu I_{m_{1}}-\tilde{A}_{m_{1}}^{0})N_{m_{1}}=0$ ,

where $\tilde{A}_{j}^{0}(t, x, \xi)=A_{j}^{0}(t, x, \xi/|\xi|)$ and $\tilde{C}_{j}^{0}(t, x, \xi)=C_{j}^{0}(t, x, \xi/|\xi|)$ .
We shall define

$M(t, x, \xi)=(N^{0}(t, x, \xi), \cdots , N^{m-1}(t, x, \xi))$ ,

where $N^{f}(t, x, \xi)$ is an eigen column vector of $\lambda_{\delta+1}(t, x, \xi)$ if $j=N_{1}+\cdots+N_{\nu-1}$

$+\sigma s_{\nu}+\delta(0\leqq\sigma<n_{\nu}, 0\leqq\delta<s_{\nu})$ and of $\lambda_{s+k+1}(t, x, \xi)$ if $j=N+k$ . Let $ j^{\prime}=n_{1}+\cdots$
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$+n_{\nu-1}+\sigma$ if $ j=N_{1}+\cdots+N_{\nu-1}+\sigma s_{\nu}+\delta$ and $j^{\prime}=m_{1}$ if $j\geqq N$. Then we seek
$N^{j}(t, x, \xi)$ as the vector $(N^{j})_{l}(t, x, \xi)=0$ if $l\neq j^{\prime},$ $m_{1}$ . First we consider the
case $ j=N_{1}+\cdots+N_{\nu-1}+\sigma s_{\nu}+\delta$ . For simplicity we drop the above index $j$ .
The equation $(\tilde{\lambda}_{\delta+1}I_{j^{\prime}}-\tilde{A}_{J^{\prime}})N_{J^{\prime}}=0$ is equivalent to the following;

(4.10) $(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{1})n_{\beta^{(j^{\prime})}}-n_{\beta^{(j^{\prime})+1}}=0,$ $\cdots$

$(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s_{\nu}-1})n_{\beta^{(}J^{\prime})+s_{\nu}-2}-n_{\beta(j^{\prime})+s_{\nu}-1}=0$ ,

$(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s_{\nu}})n_{\beta(j^{r})+s_{\nu}-1}=0$ .
By (4.6) and (4.7) $-\tilde{C}_{j}^{0}N_{J^{\prime}}+(\tilde{\lambda}_{\delta+1}I_{m_{1}}-A_{m_{1}}^{0})N_{m_{1}}=0$ becomes to the following;

(4.11) $(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s+1})n_{N}-n_{N+1}=0,$ $\cdots$

$(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{m-N+s-1})n_{m-2}-n_{m-1}=0$ ,

(4.12) $\sum_{k=0}^{s_{\nu}-1}7_{m_{1}- j^{\prime}}kn_{\beta(j^{\prime})+k}+(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{m-N+S})n_{m-1}=0$ .

From (4.10) we have $n_{\beta(j^{\prime})+k}=0$ if $ k>\delta$ and can inductively determine
$n_{\beta^{(j^{\prime})+k}}(k<\delta)$ as $n_{\beta(j^{\prime})+\delta}=t^{m_{1}-j^{\prime}}$ . Thus (4.12) is denoted by

\langle 4.13) $(7_{m_{1}-j^{\prime}.0}+\sum_{k=1}^{\delta}\tilde{r}_{m_{1}-j^{\prime}.k}(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{k})\cdots(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{1}))n_{\beta(j^{\prime})}$

$+(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{m-N+s})n_{m-1}$

$=S_{J^{\prime n}\beta^{(j^{\prime})}}+(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{m-N+s})n_{m-1}=0$ ,

where first equality is a definition of $S_{J^{\prime}}(t, x, \xi)$ . By (A.2), (4.11), and (4.13)

we can easily determine $n_{N+k}$ if $k>\delta+1$ . When $k=\delta+1$ , we see that

$(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s+\delta+1})n_{N+\delta}$

$=-S_{J^{\prime}}n_{\beta(j^{i})}(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s+\delta+2})^{-1}\cdots(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{m-N+s})^{-1}$ .
Since by (3.11) $S_{j^{\prime}}n_{\beta^{(j^{\prime})}}\equiv 0$ mod $(\tilde{\lambda}_{\delta+1}-\tilde{\lambda}_{s+\delta+1})$ , the function $n_{N+\delta}$ is well defined.
Inductively by (4.11) we can define $n_{N+k}$ if $k<\delta+1$ .

Second we shall construct an eigen vector $N^{j}(t, x, \xi)(j=N+k)$ of $\tilde{\lambda}_{s+k+1}$ .
In this case we put $N_{l}^{j}=0$ if $l<m_{1}$ . Thus we have $n_{N+i}^{j}=0$ if $i>k$ . Putting
$n_{N^{j}+k}=1$ , we can determine inductively $n\sqrt{}+i(i<k)$ .

Therefore $M(t, x, \xi)$ has the following form;

$M(t, X, \xi)=\left\{\begin{array}{llll}t^{m_{1}}M_{0}^{0}. & & 0 & \\ & 0 & tM_{m_{1}- 1}^{0} & \\D_{0} & & D_{m_{1}-1} & M_{m_{1}}^{0}\end{array}\right\}(t, X, \xi)$
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where $M_{j}^{0}$ is a $\gamma_{j}\times\gamma_{j}$ triangular matrix whose determinant is 1 and $D_{j}$ is $N\times\gamma_{j}$

matrix. This matrix has the desired properties i) and ii). This completes the
proof of Proposition 4.2.

Let $M^{0}(t, x, D_{x})$ be a pseudo-differential operator defined by the symbol
$M^{0}(t, x, \xi)$ . Then there exists a pseudo-differential operator $(M^{0})^{-1}(t, x, D_{x})$

such that

$M^{0}(M^{0})^{-1}(t, X, D_{x})=(M^{0})^{-1}M^{0}(t, X, D_{x})=I_{m}$ .

Put $M^{-1}(t, x, D_{x})=(M^{0})^{-1}T^{-1}(t, x, D_{x})$ . Then we have the following;
PROPOSITION 4.3. Let $\tilde{U}(t, x)=M^{-1}(t, x, D_{x})U$ and $\tilde{F}(t, x)=M^{-1}(t, x, D_{x})F$.

Then the first order system $LU=F$ becomes to

(4.14) $\tilde{L}(t, X, D_{t}, D_{x})C=(D_{t}-(\tilde{A}+t^{-1}\tilde{B}))C=F$ .

Here $\tilde{A}(t, x, D_{x})$ is of order 1 and $(\tilde{A}-\tilde{A}^{*})(t, x, D_{x})$ , where $\tilde{A}^{*}$ is the adjoint

of $\tilde{A}$ and $\tilde{B}(t, x, D_{x})$ are of order $0$ .
PROOF. Let $A^{0}(t, x, D_{x})$ be a pseudo-differential operator defined by the

symbol $A^{0}(t, x, \xi)$ and put $B(t, x, D_{x})=(A-A^{0})(t, x, D_{x})$ . Then

$\tilde{L}0=(D_{t}-M^{-1}(A^{0}+B)M+M^{-1}(D_{t}M))\tilde{U}=B$ .

By (4.4) the components of $T^{-1}A^{0}T$ are smooth in $\Omega\times(R^{n}\backslash 0)$ and $T^{-1}BT$

$+T^{-1}(D_{t}T)$ is denoted by $t^{-1}\tilde{B}^{\prime}$ , where the symbol of $\tilde{B}^{\prime}$ is smooth in $\Omega\times(R^{n}\backslash 0)$ .
This completes the proof of Proposition 4.3.

5. Energy inequality and existence theorem.

In this section we derive the energy inequality for (4.3) from Proposition
4.3. Using the energy inequality for adjoint system of (4.3), we obtain a
existence theorem of our considered operator. The operators with the analo-
gous property to (4.14) are studied by many authors (see [10] and [12]).

For non-negative integer $k$ and $s\in R$ we use the following norm;

$\Vert|u(t)\Vert|_{k,s}^{2}=\sum_{j=0}^{k}\Vert D_{t}^{j}u(t)\Vert_{s+k-j}^{2}$ ,

where $\Vert\cdot\Vert_{s+k-j}$ is the usual norm of $H_{s+k-j}(R^{n})$ . The following lemmas are
easy.

LEMMA 5.1. Let $L(t, x, D_{t}, D_{x})U=(D_{t}-A(t, \chi, D_{x}))U=F$ be a first order
system such that $(A-A^{*})(t, x, D_{x})$ is of order $0$ . Then we have

(5.1) $|D_{t}(\Vert|U(t)\Vert|_{k.s})|\leqq C(\Vert|U(t)\Vert|_{k.s}+\Vert|F(t)\Vert|_{k.s})$ ,

where $C$ does not depend on $U$ and $F$.
LEMMA 5.2. Let $\Phi(t)$ be a real valued function of $C^{1}(0, T$]. Then we have
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the following two statements.
i) If $\Phi(t)$ satisfies the conditions $\Phi(t)=O(t^{C_{0}+1})$ and

(5.2) $t(\partial\Phi/\partial t)(t)\leqq C_{0}\Phi(t)+C_{1}t\Phi(t)+C_{2}\Psi(t)$ ,

where $\Psi(t)$ is real, then we have

(5.3) $\Phi(t)\leqq C_{3}\int_{0}^{t}\tau^{-(C_{0}+1)}\Psi(\tau)d\tau$ .
ii) If $\Phi(t)$ satisfies the condition;

(5.4) $-t(\partial\Phi/\partial t)(t)\leqq C_{4}\Phi(t)+C_{5}t\Phi(t)+C_{6}\Psi(t)$ ,

then we have

(5.5) $ t^{C_{4}}\Phi(t)\leqq C_{7}t^{c_{4}}\Phi(T)+C_{8}\int_{t}^{T}\tau^{C_{4}-1}\Psi(\tau)d\tau$ .

Now we shall examine the energy inequality of $L(t, x, D_{t}, D_{x})$ of (4.3).

PROPOSITION 5.3. Let $\tilde{L}0=P$ be a first order system of (4.14). If $C(t)$

$=O(t^{N_{1}})$ , where $N_{1}$ is sufficiently large, then for any non-negative integer $k$ and
$s\in R$ there exists a positive constant $N_{2}$ depending on $k$ and $s$ such that

(5.6) $\Vert|O(t)\Vert|8_{s}\leqq C\int_{0}^{t}\tau^{-N_{2}}\Vert|F(\tau)\Vert|_{k,s}^{2}d\tau$ .

PROOF. Applying Lemma 5.1 to $L=D_{t}-\tilde{A}(t, x, D_{x})$ as $U(t)=\tilde{U}(t)$ and $F(t)$

$=\tilde{F}(t)+t^{-1}\tilde{B}\tilde{U}(t)$ , by (5.1) we have

(5.7) $\partial(\Vert|\prod(t)\Vert|_{j,s}^{2})/\partial t$

$\leqq C(\Vert|O(t)\Vert|_{js}^{2}+\sum_{l=0}^{j}\Vert|U(t)\Vert|_{j-l,s}^{2}/t^{2l+1}+\Vert|f\chi t)\Vert|_{js}^{2})$ .
Multiply $(5.7)_{j}$ by $t^{-2(k-j)}$ and add them from $j=0$ to $j=k$ . Then we have

(5.8) $t(\partial\Phi_{k,s}/\partial t)(t)\leqq C_{0}\Phi_{k,s}(t)+C_{1}t\Phi_{k,s}(t)$

$+C_{2}t^{-2k}\Vert|F(t)\Vert|_{k,s}^{2}$

where $\Phi_{k,s}(t)=\sum_{l=0}^{k}\Vert|U(t)\Vert|_{k-l,s}^{3}t^{-(2l+1)}$ . Therefore by (5.3) we have (5.6) if

$2(N_{1}-k)\geqq C_{0}+2$ . This completes the proof of Proposition 5.3.
By this proposition we have the following
THEOREM 5.4. Let $P(t, x, D_{t}, D_{x})$ be our considered differential operat0r

satisfying conditions (A.1), (A.2) and (A.3). Then for the Cauchy pr0blem
$Pu=f,$ $D_{t}^{j}u=g_{j}$ $(j=0, \cdots , m-1)$ we have the following inequality; For any non-
negative integer $k$ and $s\in R$ there exists $N$ depending on $k$ and $s$ such that
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(5.9) $\Vert|u(t)\Vert|_{k+m-m_{1}-1.s}^{2}\leqq C(\sum_{j=0}^{m-1}\Vert g_{j}\Vert_{s+k+N+m-j}^{2}$

$+\Vert|f(0)\Vert|_{NK+s}^{2}+\int_{0}^{t}\Vert|D_{t}^{N}f(\tau)\Vert|\not\in,$ $ sd\tau$).

PROOF. Let $\hat{U}(t, x)=U(t, x)-\sum_{j=0}^{N}(it)^{j}(D_{t}^{j}U)(0, x)/j$ ! and $\hat{F}(t, x)=L\hat{U}(t, x)$

$=F(t, x)-\sum_{j=0}L((it)^{j}(DU)(0Nx))/j$ !. Put $\tilde{U}(t, x)=M^{-1}(t, x, D_{x})\hat{U}$ and $\tilde{F}(t, x)=M^{-1}$

$(t, x, D_{x})\hat{F}$ . Then we have $LU(t, x)=F(t, x)$ . Since $F(t, x)=O(t^{N})$ , by the
Taylor expansion we see that

(5.10) $\int_{0}^{t}\tau^{-N_{2}}\Vert|F(\tau)\Vert|_{k,s}^{2}d\tau\leqq C\int_{0}^{t}\Vert|D_{t}^{N}F(\tau)\Vert|_{k.s}^{2}d\tau$ ,

if $N$ is sufficiently large. Thus by (5.6), (5.10) and the definition of $\hat{U}(t, x)$ and
$\hat{F}(t, x)$ we obtain

(5.11) $\Vert|U(t)\Vert|_{k.s}^{2}\leqq C(\Vert|U(0)\Vert|_{N+1.k+s}^{2}+\int^{t}\Vert|D_{t}^{N}F(\tau)\Vert|_{k.s}^{2}d\tau)0$

On the other hand we have

(5.12) $\Vert|u(t)\Vert|_{k.s}\leqq C_{1}\Vert|U(t)\Vert|_{k-m+m_{1}+1,S}$

$\leqq C_{2}\Vert|u(t)\Vert|_{k+m_{1}.s}$ .

Thus by (5.11) and (5.12) we have the desired estimate (5.9). This completes
the proof of Theorem 5.4.

REMARK. Instead of (2.3) if we assume that

$q_{k.l\{\tau=\lambda_{k}}\equiv 0$ mod $\lambda_{k}-\lambda_{s+k}$ ,

then we have the following estimate (see [17]); For an integer $k\geqq 0$

$\Vert|u(t)\Vert|_{k+m-m_{1}-1.s}^{2}\leqq C(\sum_{j=0}^{m-1}\Vert g_{j}\Vert_{s+k+m-j-1}^{2}$

$+\Vert|f(0)\Vert|_{k-1,s}^{2}+\int_{0}^{t}\Vert|f(\tau)\Vert|_{k.s}^{2}d\tau)$ ,

where if $k=0$, then $\Vert|f(0)\Vert|_{k-1}^{2}$ , , does not appear, $i$ . $e.,$ $\Vert|f(0)\Vert|_{-1,s}=0$ .
To prove the existence of a solution for the Cauchy problem

$L(t, x, D_{t}, D_{x})U(t, x)=F(t, x)$ , $U(O, x)=0$

we shall consider the adjoint Cauchy problem

$L^{*}(t, x, D_{t}, D_{x})V(t, x)=G(t, x)$ , $V(T, x)=0$ .

The following lemma is derived from an integration by parts (see (33) in [13]).

LEMMA 5.5. Let $N$ be a non-negative integer. Then we have
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(5.13) $\int_{0}^{T}\Vert|V(t)\Vert|_{k,s}^{2}dt\leqq C\int_{0}^{T}t^{2N}\Vert|D_{\iota}^{N}V(t)\Vert|_{k,s}^{2}dt$ .

Since $L^{*}(t, x, D_{t}, D_{x})$ is noncharacteristic with respect to $t$ , we have the fol-
lowing

LEMMA 5.6. Let $V(t, x)$ be a solution of $(L^{*}V)(t, x)=G(t, x)$ and $N$ a non-
negative integer. Then we have

(5.14) $\Vert|D_{t}^{N}V(t)\Vert|_{k,s}^{2}\leqq C(\Vert|V(t)\Vert|_{k,s+N}^{2}+\Vert|G(t)\Vert|_{k+N-1,s}^{2})$ .

On the energy inequality for the Cauchy problem of $L^{*}$ with zero data we
have the following

PROPOSITION 5.7. Let $V(t, x)\in T([0, T];H_{\infty}(R^{n}))$ with supp $V\subset(-\infty, T$]
$\times R^{n}$ . Then there exists $N>0$ depending on $s$ and $k$ such that

(5.15) $\int_{0}^{T}\Vert|V(t)\Vert|3_{s-N}dt\leqq C\int_{0}^{T}\Vert|L^{*}V(t)\Vert|_{k+N,s-N}^{2}dt$ .

PROOF. Since $L$ is transformed into $\tilde{L}$ by $M(t, x, D_{x}),$ $L^{*}$ is transformed
into the operator $\tilde{L}^{*}$ , which has same properties as $L$ , by $(M^{*})^{-1}(t, x, D_{x})$ .
Let $\tilde{V}(t, x)=M^{*}(t, x, D_{x})V$ and $\tilde{G}(t, x)=M^{*}L^{*}V(t, x)$ . Then we have $\tilde{L}^{*}V(t, x)$

$=\tilde{G}(t, x)$ . Applying ii) of Lemma 5.2 to the analogous inequality to (5.8), whose
the left hand side is $-t(\partial\Phi_{k.s}/\partial t)(t)$ , we see that

$ t^{N_{1}}\Vert|V(t)\Vert|_{k.s}^{2}\leqq C\int_{t}^{T}\tau^{N_{1}-1-2k}\Vert|\tilde{G}(\tau)\Vert|_{k,s}^{2}d\tau$ .

Our desired estimate (5.15) follows from (5.13), (5.14) and (5.16). This completes
the proof of Proposition 5.7.

We put

$\Vert V\Vert_{k.s}^{2}=\int_{0}^{T}\Vert|V(t)\Vert|_{k,s}^{2}dt$ .

Then the space completed by this norm is denoted by $H_{k.s}(\Omega)$ . When $\Omega=$

$\overline{R}_{n+1}^{+}$ , for any $k,$ $s\in R$ this space is also defined in Definition 2.5.1 of [3]. By
(3.15) with $k=0$ we have

$|(F, V)|=|\int_{0}^{T}\int_{R^{n}}FVdxdt|\leqq C\Vert L^{*}V\Vert_{N,s-N}$ ,

where $F\in C^{\infty}([0, T];H_{\infty}(R^{n})),$ $suppV\subset(-\infty, T$] $\times R^{n}$ and $N$ depends on $s$ .
Thus by Theorem 2.5.1 of [3] there exists $U(t, x)\in H_{-N,-s+N}(\overline{R}_{n+1}^{\tau})$ such that
for all $V\in C^{\infty}([0, T];H_{\infty}(R^{n}))$ with supp $V\subset(-\infty, T$] $\times R^{n}$

$(F, V)=(U, L^{*}V)$ .
The function $U$ is therefore a distribution solution of $LU=F$. Since $F\in C^{\infty}$

$([0, T];H_{\infty}(R^{n}))$ , by Theorem 4.3.1 of [8] we see that for any $k\in R,$ $U\in H_{k.-s-k}$
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$(\overline{R}_{n+1}^{+})$ . Therefore by Green’s theorem we see that $U(t, x)$ is a smooth solu-
tion of the Cauchy problem $LU=F,$ $U(O, x)=0$ . This completes the proof of
Theorem 1.

6. The proof of Theorem 2.

In this section using lemmas in Section 5 and a few propositions, we shall
prove the well posed of the Cauchy problem for the operators satisfying the
conditions (H.1), (H.2) and (H.3).

We shall start from the following
PROPOSITION 6.1. Let $I=\{i_{1}, \cdots , i_{k}\}$ be a subset $ofJ=\{1, \cdots , m\}$ . We assume

that the maximal multiplicity of $\{\lambda_{j}(t, x, \xi)\}_{j\in J\backslash I}$ is $r_{1}$ . Let $A(t, x, D_{t}, D_{x})$ be a
pseudo-differential oPerator of order $m-k-r_{1}$ which is a differential oPerator
with resPect to $t$ . Then we have

(6.1) $A(t, x, D_{t}, D_{x})=\sum_{l=0}^{m-k- r_{1}}\gamma_{j_{1}\cdots j_{l}}\Lambda_{j_{1}}\cdots\Lambda_{J\iota}$ ,

where $\gamma_{J_{1}\cdots J\iota}(t, x, D_{x})$ is of order $0$ and $\{j_{1}\cdots j_{l}\}\subset J\backslash I$ .
PROOF. First we shall prove the lemma when $A$ is a pseudo-differential

operator of $x$ with a parameter $t$ . By the partition of unity we may assume
that $ J\backslash I=J_{1}\cup$ $\cup J_{\mu}$ and $\lambda_{i}(t, x, \xi)\neq\lambda_{j}(t, x, \xi)$ if $i\in J_{a},$ $j\in J_{\beta}$ and $\alpha\neq\beta(1\leqq\alpha,$ $\beta$

$\leqq\mu)$ . We denote the number of $\lambda_{j}(t, x, \xi)$ belonging to $j\in J_{a}$ by $J_{\alpha}|$ and
assume $r_{1}\geqq|J_{1}|\geqq\ldots\geqq|J_{\mu}|$ . Let $J^{\prime}=J_{1}^{\prime}\cup\ldots\cup J_{\mu}^{\prime}$ be a subset of $J\backslash I$ , where $J_{a}^{\prime}$

is also a subset of $J_{a}$ . If $|J^{\prime}|\leqq(m-k-r_{1})-1\leqq|J\backslash I|-|J_{1}|-1$ , then there exists
$\alpha,$ $\beta(1\leqq\alpha<\beta\leqq\mu)$ such that $\alpha\neq\beta$ and $J_{\alpha}\backslash J_{a}^{\prime}$ and $J_{\beta}\backslash J_{\beta}^{\prime}$ are not empty. Therefore
since $|(\lambda_{i}-\lambda_{j})(t, x, \xi)|>\delta|\xi|$ if $i\in J_{\alpha}$ and $j\in J_{\beta}$ , we have $A=A_{1}(\Lambda_{i}-\Lambda_{j})+A_{2}$ ,

where $A_{l}(t, x, D_{x})(1=1,2)$ is of order $m-k-r_{1}-1$ . Thus we have (6.1) when
$A=A(t, X, D_{x})$ .

We define $\mu_{j}(t, x, \xi)(j=1, \cdots , m-k)$ as the following; $\{\mu_{j}\}_{j=1,\ldots,m- k}$ equal
to $\{\lambda_{j}(t, X, \xi)\}_{J\in J\backslash I}$ and if $j=|J_{1}|+\cdots+|J_{a-1}|+\sigma(1\leqq\sigma\leqq|J_{a}|)$ then $\mu_{j}\in\{\lambda_{j}\}_{j\in J_{a}}$ .
Denote a pseudo-differential operator defined by the symbol $\cdot$

$\tau-\mu_{j}(t, x, \xi)$ by
$\tilde{\Lambda}_{j}(t, x, D_{t}, D_{x})$ Then we have

$A(t, x, D_{t}, D_{x})=A_{0}+\sum_{j=1}^{m-k-r_{1}}A_{j}\tilde{\Lambda}_{1}\cdots\tilde{\Lambda}_{j}$ ,

where $A_{j}(t, x, D_{x})(j=0, \cdots , m-k-r_{1})$ is of order $m-k-r_{1}-j$ . Since $m-k$

$-r_{1}-j\leqq m-k-j-\max$ $(|J_{a+1}|, J_{a}|-\sigma)$ , by the result of the first half we
obtain (6.1). This completes the proof of Proposition 6.1.

By this lemma we get the following two corollaries.
COROLLARY 6.2. Let $P(t, x, D_{t}, D_{x})$ be a differential operatOr satisfying the

conditions (H.1), (H.2) and (H.3). Then we have
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$P=\Lambda_{1}\cdots\Lambda_{m}+\sum_{0\leqq k<m}t^{-(m-k)}\gamma_{1}\ldots\iota_{k}\Lambda_{i_{1}}\cdots\Lambda_{i_{k}}$ ,

where $\{i_{1}, \cdots , i_{k}\}$ is a subset of $\{$ 1, $\cdots$ , $m\}$ and $\gamma_{i_{1}\cdots i_{k}}(t, x, D_{x})$ is of order $0$ .
Now we shall prove the statement mentioned in Remark 1.2.
COROLLARY 6.3. Let $P(t, x, D_{t}, D_{x})$ be a differential operat0r which satisfies

the conditions (A.1), (A.2) and (A.3). Then we can write $P$ by the form (2.6).
PROOF. From (A.2) we can apply Proposition 6.1 to $\lambda_{j}(t, x, \xi)$ . We use

the notation in (3.5). If $i=n_{\mu}+\cdots+n_{\nu+1}+\sigma(\sigma\neq 0)$ , by the proof of Proposition
6.1 it follows that

$Q_{i}(t, x, D_{t}, D_{x})=Y,$ $Q_{i}$
$\Lambda_{i_{1}}\cdots\Lambda_{i_{s_{\nu}}- 1}+Q_{i.0}I$

where $I=\{i_{1}, \cdots , i_{s_{\nu}-1}\}$ is a subset of $\{$ 1, $\cdots$ , $s_{\nu}\},$ $Q_{i.I}(t, x, D_{t}, D_{x})$ is of order
$m-i-\alpha(i)-s_{\nu}+1$ and $Q_{i,0}(t, x, D_{t}, D_{x})$ is of order $m-i-\alpha(i)-1$ . Furthermore
by (3.6) we have

$t^{i}Q_{i}(t, x, D_{t}, D_{x})=\sum_{J}Q_{iJ}\Lambda_{j_{1}}\cdots\Lambda_{Js_{\nu}}+Q_{i,0}^{\prime}$ ,

Here $J=\{j_{1}, \cdots , j_{s_{\nu}}\}$ is equal to $\{$ 1, $\cdots$ , $s_{\nu}\}$ or $\{s+i_{s_{\nu}}\}\cup I$, where $\{i_{s_{\nu}}\}\cup I=\{1,$ $\cdots$ ,
$s_{\nu}\},$ $Q_{i.J}(t, x, D_{t}, D_{x})$ is of order $m-i-\alpha(i)-s_{\nu}$ and $Q_{i,0}^{\prime}(t, x, D_{t}, D_{x})$ is of
order $m-i-\alpha(i)-1$ . Thus by Proposition 6.1 $Q_{i}\Delta_{\alpha(i)}$ is denoted by the desired
form. When $i=0$, we have $Q_{0}\Delta_{\alpha(i)}=\Delta_{m}+R_{0}\Delta_{N}$ , where $R_{0}(t, x, D_{t}, D_{x})$ is of
order $m-N-1$ . Using Proposition 6.1 again as $A=R_{0}$ , we have Corollary 6.3.

About the permutation of $\Lambda_{1},$ $\cdots$ , $\Lambda_{m}$ we have the following
LEMMA 6.4. Let $\{i_{1}, \cdots , i_{m}\}$ be a permutation of $\{$ 1, $\cdots$ , $m\}$ . Then we have

(6.2) $\Lambda_{i_{1}}\cdots\Lambda_{\iota_{m}}=\Lambda_{1}\cdots\Lambda_{m}+\sum_{0\leqq k<m}t^{-(m-k)}\gamma_{i_{1}\cdots i_{k}}\Lambda_{i_{1}}\cdots\Lambda_{\iota_{k}}$ ,

where $\gamma_{i_{1}\cdots i_{k}}(t, x, D_{x})$ is of order $0$ and $\{i_{1}, \cdots , i_{k}\}$ is a subset of $\{1, \cdots m\}$ .
PROOF. We may consider the case $\{i_{1}, \cdots , i_{m}\}=\{1,$ $\cdots$ , $j-1,$ $j+1,$ $j,$ $j+2$ ,

, $m$ }. We have

$\Lambda_{1}\cdots\Lambda_{f-1}\Lambda_{j+1}\Lambda_{j}\Lambda_{j+2}\cdots\Lambda_{m}$

$=\Lambda_{1}\cdots\Lambda_{m}+\Lambda_{1}\cdots\Lambda_{j-1}[\Lambda_{j+1}, \Lambda_{j}]\Lambda_{j+2}\cdots\Lambda_{m}$ .

By (H.2) we have $[\Lambda_{j+1}, \Lambda_{j}]=t^{-1}\gamma_{1}(\Lambda_{j}-\Lambda_{j+1})+t^{-1}\gamma_{2}$ , where $\gamma_{l}(t, x, D_{x})(l=1,2)$

is of order $0$ . Since $[\Lambda_{i}, t^{-k}\gamma_{3}]=t^{-k- 1}\gamma_{4}$ , where $\gamma_{l}(t, x, D_{x})(1=3,4)$ is of order
$0$, we have the desired (6.2). This completes the proof of Lemma 6.4.

Now we shall start from the proof of Theorem 2.
THEOREM. 6.5. Let $P(t, x, D_{t}, D_{x})$ be a differential oPerator satisfying the

conditions (H.1), (H.2) and (H.3). Then for any $s\in R$ and a non-negative integer
$k$ there exists $N$ such that
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(6.3) $\Vert|u(t)\Vert|_{k+m-r,s}^{\eta}\leqq C\{\sum_{j=0}^{m-1}\Vert g_{j}\Vert_{s+k+m+N-j}^{2}$

$+\Vert|f(0)\Vert|_{N-m.k+s+m}^{2}+\int_{0}^{t}\Vert|D^{N-m}f(\tau)\Vert|_{k.s}^{2}d\tau\}$ ,

where $Pu=f,$ $D_{t}^{j}u_{1t=0}=g_{j}$ $(j=0, \cdots , m-1)$ and $u\in C^{\infty}([0, T];H_{\infty}(R^{n}))$ .
PROOF. Let $I=(i_{1}, \cdots , i_{l})$ be a subset of $\{$ 1, $\cdots$ , $m\}$ with the length $|I|=l$ .

Then we put
$(A_{I}v)(t, x)=t^{-(m-k)}\Lambda_{i_{1}}\cdots\Lambda_{\iota_{l}}v(t, x)$ ,

where if $ I=\emptyset$, then we put $|I|=0$ and $A_{I}v=t^{-m}v$ . If $I^{\prime}=(i_{0}, I)$ , we see that

$\Lambda_{i_{0}}(A_{I}v)(t, x)=-(m-k)t^{-1}(A_{I}v)+t^{-1}(A_{I^{\prime}}v)$ .
By the same computation in the proof of Proposition 5.3, we obtain

(6.4) $t(\partial\Phi_{I}/\partial t)(t)\leqq C\{\Phi_{I}(t)+t\Phi_{I}(t)+\Phi_{I^{\prime}}(t)\}$ ,

where $\Phi_{I}(t)=\sum_{J=0}^{k}(\Vert|A_{I}v(t)\Vert|_{k-j,s}^{2}/t^{2j+1})$ . Add $(6.4)_{I}$ from $|I|=0$ to $|I|=m-1$ .

By Corollary 6.2 and Lemma 6.4 then we have

$t(\partial\Phi/\partial t)(t)\leqq C\{\Phi(t)+t\Phi(t)+t^{-2k-1}\Vert|Pv(t)\Vert|_{k.s}^{2}\}$ ,

where $\Phi(t)=\sum_{|I|\cong m-1}\Phi_{I}(t)$ . Therefore if $\iota$)$(t, x)=O(t^{N+1})$, where $N$ is sufficiently

large, by i) of Lemma 5.2 and the Taylor expansion of $Pv(t, x)$ we get

(6.5) $\sum_{|I|\leqq m-1}\Vert|t^{-(m-\downarrow)}\Lambda_{i}$
... $\Lambda_{\iota_{l}}v(t)\Vert|8_{s}$

$\leqq C\int_{0}^{l}\Vert|D^{lV-m}(Pv)(\tau)\Vert|_{k,s}^{2}d\tau$ .

Since $(1+|D_{x}|^{2})^{(m-r-l)/2}D_{t}^{l}(l=0, \cdots , m-r)$ is of order $m-r$, we get by Proposi-
tion 6.1 and (6.5)

(6.6) $\Vert|v(t)\Vert|_{k+m-r,s}\lrcorner\leqq C\int_{0}^{t}\Vert|D_{t}^{N-m}(Pv)(\tau)\Vert|_{k.s}^{2}d\tau$ .

Put $v(t, x)=u-\sum_{j=0}^{N}(it)^{j}(D_{\iota}^{j}u)(0, x)/j!$ in (6.6). Then we get the desired (6.3).

This completes the proof of Proposition 6.5.
Since $P^{*}(t, x, D_{l}, D_{x})$ satisfies the condition (H.1), (H.2) and (H.3) if

$P(t, x, D_{t}, D_{x})$ has the same those, we have the following;
PROPOSITION 6.6. Let $P(t, x, D_{t}, D_{x})$ be a differential operat0r satisfying

the conditions (H.1), (H.2) and (H.3) and $P^{*}(t, x, D_{t}, D_{x})$ be the adjoint operat0r

of P. Then for $k\geqq m-1$ and $s\in R$ there exists $N$ such that

(6.7) $\int_{0}^{T}\Vert|v(t)\Vert|_{k,s- N}^{2}dt\leqq C\int_{0}^{T}\Vert|P^{*}v(t)\Vert|_{k+N.s- N}^{2}dt$ .
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where $v(t, x)\in C^{\infty}([0, T];H_{\infty}(R^{n}))$ with supp $v\subset(-\infty, T$] $\times R^{n}$ .
PROOF. We use the same notation as those in the proof of Proposition

6.5. By the same computation we have

$-t(\partial\Phi/\partial t)(t)\leqq C\{\Phi(t)+t\Phi(t)+t^{-2k- 1}\Vert P^{*}v(t)\Vert_{k.s}^{2}\}$ .

Using ii) of Lemma 5.2 instead of i), we see that

$ t^{2N}\Vert|v(t)\Vert|_{k,s}^{2}\leqq C\int_{0}^{T}\Vert|P^{*}v(\tau)\Vert|_{k.s}^{2}d\tau$ .

By Lemma 5.5 and 5.6 as $L^{*}=P^{*}$ when $k\geqq m-1$ we have the desired (6.7).

This completes the proof of Proposition 6.6.
By the same argument as that in Section 5 we can show the existence

of a smooth solution for the Cauchy problem $Pu=f$ in $\Omega,$ $D^{j_{t}}u_{1t=0}=0(j=0,$ $\cdots$ ,
$m-1)$ . This completes the proof of Theorem 2.

7. Some necessary condition and examples.

In this section we call $P(t, x, D_{l}, D_{x})$ to be uniformly well posed if the
Cauchy problem $Pu=f$ in $\Omega_{t_{0}},$ $D^{J_{t}}u_{1t\subset t_{0}}=g_{j}$ $(j=0, \cdots , m-1)$ , where $0\leqq t_{0}<T$

and $\Omega_{\iota_{0}}=[t_{0}, T]\times R^{n}$ , has the unique solution for every $i_{0}\in[0, T$) and a local
uniqueness property or $P(t, x, D_{l}, D_{x})$ satisfies the condition (E) of Definition
1 and the condition $(U_{\Gamma^{(}\eta)})$ of Definition 2 in [6].

Necessary condition with respect to a multiplicity of $\lambda_{k}$ in Theorem 1 is
the following

REMARK 7.1. Let $P(t, x, D_{l}, D_{x})$ satisfy the conditions (A.1) and (A.2).

Moreover if $P$ is uniformly well posed, then there exist $Q_{k.l}(f, \chi D_{t}, D_{x})$

of order $m-m_{k}$ such that

$P(t, X, D_{l}, D_{x})=\sum_{l=0}^{m_{k}}Q_{k,l}(\Lambda_{k})^{m_{k}-l}$ .

Moreover if $(t, x, \xi)$ is an interior point of $N_{k}=\{(t, x, \xi);\lambda_{k}=\lambda_{k+s}\}$ , then
$q_{k,l1\tau=\lambda_{k}}=0$, where $q_{k,l}$ is the principal symbol of $Q_{k.l}$ . Since the proofs of
the statement in [2] and Theorem 2.10 in [1] are done microlocally, this
remark is clear when $(t, x, \xi)$ is an interior point of $N_{k}$ or belongs to the
complementary set of $N_{k}$ . Therefore by a limit process we obtain Remark 7.1.

Next we consider a differential operator on $[0, T]\times R^{1}$ . We assume that
the characteristic roots $\lambda_{k}(t, x, \xi)=f_{k}(t, x)\xi(k=1, \cdots , m-N+s)$ and a difference

$(f_{k}-f_{k+s})(t, x)=t^{j}G_{k}(t, x)^{n}A_{k}(t, x)$ .

Here $A_{k}\neq 0,$ $j>m_{k}$ and $G_{k}(t, x)$ is the inverse function of $x=g_{k}(t, y)$ in a
neighbourhood of $t=0$, where $g_{k}$ is the solution of the characteristic $e(luation$
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$\partial g_{k}/\partial t=-f_{k}(t, g_{k}),$ $g_{k}(0, y)=y$ . Then we have the following
EXAMPLE 7.2. Let $P(t, x, D_{t}, D_{x})$ be a differential operator satisfying

(A.1), (A.2) and the above conditions. If $P$ is uniformly well posed, then (A.3)
is valid.

PROOF. We consider the coordinate transform $t=s,$ $x=g_{k}(s, y)$ . Then by
Remark 7.1 we have

$P(s, y, D_{s}, D_{y})=\sum_{l=0}^{m_{k}}R_{k.l}(s, y, D_{s}, D_{y})D_{s}^{m_{k^{-l}}}$

where $R_{k.l}$ is of order $m-m_{k}$ , whose principal symbol is $r_{k,l}(s, y, \sigma, \eta)$ . The
condition (A.3) is equivalent to

(7.1) $r_{k,l}(s, y, 0, \eta)=s^{f- l}y^{n}B_{k.l}(s, y)\eta^{m-m_{k}}$ ,

where $B_{k.l}(s, y)$ is some smooth function. The Theorem 4.1 of [6] implies
(7.1). Now we shall examine the condition (H.3).

EXAMPLE 7.3. We shall consider the following;

$P(t, x, D_{t}, D_{x})=(D_{t}-t^{l}x^{n}D_{x})^{2}(D_{t}+t^{l}x^{n}D_{x})^{2}$

$+P_{3}(t, X, D_{t}, D_{x})$ ,

where $1>3$ and $P_{3}(t, \chi, D_{t}, D_{x})$ is of order 3. Then by the same reason as
the proof of Remark 7.1 we have

$P_{3}=(aD_{t}+bD_{x})(D_{t}-t^{l}x^{n}D_{x})(D_{t}+t^{l}x^{n}D_{x})$

$+cD_{t}^{2}+dD_{t}D_{x}+eD_{x}^{2}+fD_{t}+gD_{x}+h$ .

By Theorem 4.1 of [6] we get that $b=t^{l-1}x^{n}b^{\prime},$ $d=t^{l-2}x^{n}d^{\prime},$ $e=t^{2(l-1)}x^{2n}e^{\prime}$ and
$g=t^{l-3}x^{n}g^{\prime}$ . This is the condition (H.3).
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