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§ 1. Introduction.

Let R be an open Riemann surface and P a density on R, that is, a non-
negative Holder continuous function on R which depends on the local parameter
z=x-+1iy in such a way that the partial differential equation

(L1) du=Pu, A=8°/0x*+82/3y*,

is invariantly defined on R. A real valued function fis said to be a P-harmonic
function in an open set U of R, if f has continuous partial derivatives up to
the order 2 and satisfies the equation (1.1) on U. The totality of bounded P-
harmonic functions on R is denoted by PB(R). Then, PB(R) is a Banach space
with the uniform norm

(1.2) | fll=sup,ezl f(2)| .

H.L. Royden studied the comparison problem of Banach space structures of
PB(R) for different choices of densities P on a hyperbolic Riemann surface R
and proved the following comparison theorem: If P and Q are non-negative
densities on R such that there is a constant ¢=1 with

(1.3) cCMR=EP=cQ

outside some compact subset of R, then the Banach spaces PB(R) and QB(R)
are isomorphic. On the other hand, concerning this comparison problem
M. Nakai gave a different criterion for PB(R) and QB(R) to be isomorphic
and proved the following theorem: If two densities P and Q on R satisfy the
condition

(14) [1P@—Q@I(G" e, w)+ 6%, wo) dxdy < +oo

for some points w, and w; in R, where G?(z,w) and G%z, w) are Green’s
functions of R associated with and the equation Ju=Qu respectively, then
Banach spaces PB(R) and @ B(R) are isomorphic.
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A. Lahtinen considered the equation for densities P which he called
acceptable densities. Acceptable densities can also have negative values, and so,
P-harmonic functions do not obey the usual maximum principle. Lahtinen gave
generalizations of Nakai’s comparison theorem for acceptable densities and also
showed, in Lahtinen [2], that for non-negative densities Royden’s condition
is a special case of Nakai’s condition Recently, M. Nakai and
M. Glasner gave, simultaneously, a necessary and sufficient condition for the
existence of an isomorphism 7T between P B(R) and QB(R) such that | f—T(f)|
is bounded by a potential on R.

PX(R) is the space consisting of P-harmonic functions f on R with a
certain boundedness property X. As for X we can take D to mean the finite-
ness of the Dirichlet integral

D=1 {(G) + (55 ) Jasar<-ven,
E the finiteness of the energy integral
E(/)=D()+{ 1) Ple)dxdy<+oo,

B the finiteness of the supremum norm and their non-trivial combinations
BD and BE. In the connection with Royden’s comparisori theorem, Nakai
discussed whether the condition is also sufficient for PX(R) and QX(R) to
be isomorphic for X=D, E, BD and BE, and he actually showed that the
answer to this question is affirmative.

In this paper we consider the equation [I.I] with P=£0 on R, and give a
new boundedness property H, (1<p<4o0) to P-harmonic functions so that the
space PH,(R), which consists of P-harmonic functions with this boundedness
property, may have the comparison theorem. Hardy spaces on Riemann sur-
faces have been studied by M. Parreau [1], and in the general context of
harmonic spaces by L.L. Naim [1]. The Hardy space for the equation
which is denoted by PH,(R) in this paper, falls within the framework of
Naim [1]. By Naim, a P-harmonic function f belongs to the Hardy space
PH,(R) for the equation [(1.1), if and only if |f|? has a P-harmonic majorant
on R. We denote by ,f the smallest P-harmonic majorant of |f|? on R, and
take H, to mean the finiteness of the expression

1 1/p
15) I75=supuer] o » Gz, w)PGIdxdy}",

where GP(z, w) is the Green function of the equation on R. Then, we
have that, for 1=p<+co,
PB(R)CPH,(R)YCPH,R).
In §2, we show that, for 1<p<-+oo, PH,(R) is a Banach space under the
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norm and, in §3, that PH,(R) is determined by the behavior of the
density P near the ideal boundary of R. In §4, it is proved that the condition
is also sufficient for PH)R) and QH/(R) to be isomorphic.

For the properties of P-harmonic functions we refer to Myrberg’s funda-
mental works (Myrberg [1], [2]), and for the theory of Green potentials with
kernel G(z, w) to Nakai [2].

§2. Definition of the Banach spaces PH,(R).

Let R be a connected Riemann surface and let N be the set {0,1,2,--:}.
By {R.} .cy we denote an exhaustion of R, which has the following properties:
(1) R, is a regular region, that is, an open set whose closure R, is compact
and whose relative boundary 0R, consists of a finite number of closed analytic
curves, (2) R,CR,,, for neN, (3) R=U,R,. By the solvability of Dirichlet
problem on the regular region R, with continuous boundary values, for any
continuous function f on dR, there exists a unique continuous function P} on
R, such that P3=f on 0R, and P% is a P-harmonic function on R,. Let z,
be a fixed point on R,. Since the mapping f— P7%z,) of the space of all finitely
continuous functions f on 0R, is a non-negative linear functional on this space
of functions on 0R,, there exists a non-negative Radon measure p%,, on 0R,
such that

| Fdpdhey=P3a0)

for all finitely continuous functions f on 0R,. This measure is the P-harmonic
measure on 0R, relative to z,&R, and R,.

DEFINITION 2.1. A P-harmonic function f on R belongs to the space PH,(R),
1=p<+oo, if and only if there exists a constant m(z,) independent of neN
such that

I FlI5.n(z0)=m(20)
for all neN, where z,€ R and

1715 e ={| 1717 deto

This space PH,(R) has been studied in the general context of harmonic
spaces by Lumer-Naim [1]. Hence the results contained therein may be appli-
cable to our studies of the space PH,(R). For convenience, some results of
Naim are quoted in the following. A P-harmonic function f belongs to the
space PH,(R), 1=p<+co, if and only if |f|? has a P-harmonic majorant on
R. By this proposition the definition of PH,(R) is independent of the choice
of z,& R and the particular exhaustion {R,} of R. Any P-harmonic function
fePH,(R) is the difference of two positive P-harmonic functions in PHy(R),

1/p
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1=p<+-oco, and conversely. For 1=<p<+co, PH,(R) is a Banach space under
the norm

I fI5=suPsen| flif(20) .

This norm equals {,f(z,)}/?, where ,f denotes the smallest P-harmonic major-
ant of | f|? in R.

In the theory of PH,(R) we admit the case P=0, but we assume P=%0 on
R in the following. The P-Green function for R, is an extended real valued
function G*(R,,z, w) on R,X R, such that for each weR,, (1) G*(R,,z, w) is
P-harmonic on R,—{w}; 2) GF(R,, z, w)+log |w—z| is bounded in a neighbor-
hood of w; (3) lim,.,GF(R,, z, w)=0 for every b€dR,. The increasing sequence
{GP(R,, z, w)} converges uniformly on every compact subset of R to a function
G*(z, w) which we call the P-Green function on R. GF(z, w) is the smallest
function of u(z, w) such that (1) u(z, w) is a non-negative P-harmonic function
on R—{w}; (2) u(z, w)-+log|z—w| is bounded in a neighborhood of w. For
these and other properties of the P-Green function we refer to Myrberg
and [2]. An inequality which is a result of Myrberg is quoted here as it
is useful in the following :

2.1) SRGP(Z, w)P(2)dxdy<2z

for every weR.

Now, we make some preliminaries on P-superharmonic functions. For any
disk V on R we have the P-harmonic measure pf*V on the boundary oV of V
with respect to ze V satisfying

Pia=\ fdpr

for any continuous function f on 0V, where P¥ is a continuous function on the
closure ¥ of V such that PY=f on 8V and P% is P-harmonic on V. A P-
superharmonic function s on an open set of R is then defined as a function
with the following properties :

a) s(z)>—co at each z&S; s+ on any component of S;

b) s is lower semi-continuous on S;

¢) For any disk V such that VCS,

s(z)gg sdpbv

for all ze V.

If s and —s are P-superharmonic on an open set S of R, then s is P-
harmonic on S.

If —s is P-superharmonic on S, then s is said to be P-subharmonic on S.
For example, if f is P-harmonic on an open set S of R, then |f|?, 1=p<+oo,
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is P-subharmonic on S, and max(f,0), —min(f, 0) are P-subharmonic on S. The
following well-known fact is called the maximum principle and used repeatedly
in proofs in this paper. Let u be a P-subharmonic function on G, and f a
P-harmonic function on G with continuous boundary values. If G is a relative
compact set of R and

lim sup,.,u(2)=lim,.; f(2)

for all b€0G, then u<f on G or u=f on G. This principle is a consequence
of the general theory on harmonic space. In the case of a continuous P-sub-
harmonic function it is given in Myrberg [3].

DEFINITION 2.2. A P-harmonic function f on a connected Riemann surface
R belongs to the space PH/(R), 1< p< oo, if and only if there exists a constant
M independent of n=N such that

| (1711 7G Ry, 2, ) P@Axdy=M, weR,,

for all neN.

We shall see that this space PH,(R) is independent of the exhaustion {R,}
of R.

From now on in this section we shall give properties of our space PH,(R)
of P-harmonic functions on a connected Riemann surface R.

THEOREM 2.1. A P-harmonic function f on R belongs to the space PH,(R),
1=p<+oo, if and only if | f|? has a P-harmonic majorant u on R such that

2.2) SRu(z)GP(z, w)P(2)dxdy<M

for every we R, where M 1s a positive constant.
PrRooOF. If such a majorant u does exist on R, then for each neN

1715 ={ 17172}
< {Pyz)}»

={u(z)}'?, zeR,,

that is, fe PH,(R). Furthermore,

[ 71,12 G7 (R, 2, w)P(2)dxdy

<( u26"(Ry, 2, w)P(dxdy

IIA

SRu(z)GP(z, w)P(z)dxdy

A

M, weR,,
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for all ne N, from which it follows that f is in the space PHy(R).
Next, let fePH/(R). Since the sequence {(|f|5.)?}rexr of P-harmonic
functions is increasing, and Harnack’s principle imply that

23) limpsu{ll fI5(2)}?,  2zER,

is P-harmonic by Beppo-Levi’s theorem, which is denoted by u. The maximum
principle gives that

| f(2)|? = Py p(2)
=1 flI5A(2))

from which it follows that u is a P-harmonic majorant of |f|? on R. Since
there exists a constant M independent of n=N such that

| (1715428 767 (Ry, 2, ) PR)Axdy =M, weR,,
n
for all n= N, it follows from Beppo-Levi’s theorem, that

SRu(z)GP (z, w)P(z)dxdy

=limpse {1715 PGF(R, 2, w)P(2)dxdy
=M, weR. Q.E.D.

THEOREM 2.2, Every fe PH/(R) is the difference of two positive P-harmonic
Sfunctions in PH{(R), and conversely.

ProOF. Let fe PH{(R). By [Theorem 2.1, there is a P-harmonic majorant
u of |f| on R such that

SRu(z)G‘P (z, w)P(z)dxdy=M

<+o0
for all we R. The sequences

{S max( f, 0)d y,’,’,z}
and
{{—min(£, 0)dper..}

are monotone increasing by the maximum principle and bounded as n increases.
Then, we can define

fi@)=limy oo max(f, 0t

and
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FAD=limyo| —min(,0dpf,  zER.

Here, we have, for i=1,2,

SRfi(z)GP(z, w)P(z)dxdy

égRu(z)GP(z, w)P(2)dxdy

=M< Hoo, weR,
and

fley=lim,..| faps,

=f(z)—f2), zER.

Next, we assume that

f(Z):fl(Z)_“fz(Z) s

where f, and f, are positive P-harmonic functions in PH/(R). Let u; be the
P-harmonic majorant of f; on R, i=1,2, such that, for weR,

[ w67, wPExdy=M,
< +co, 1=1,2.

Then,
| f(2)| = fi(2)+f2)
suy(2)+tulz), zER,
and
[, 1)+ 1) 67z, w)P)dxdy
=M,+M,,
for all weR, which implies, by [Theorem 2.1, that fe PH/(R). Q.E.D.

We denote by PB(R) the space consisting of P-harmonic functions on R
with finite supremum norms:

I/l z=sup.er| f(2)].
THEOREM 2.3. For any finite 1=p=gq, we have the inclusions
PB(R)YCPH(R)CPH,(R)CPH/(R).
ProOF. Let fePB(R). Since

70z a={ {1 F1odpr ™
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<Is1af{ der.}”
<Ifle  zERs,

we have that fePH,(R). Moreover, the inequality implies that, for all
neN,

[, U120 GF (R 2, w)P(2)dxdy

<(IF187|, G*(Ray 2, w)P(2)dxdy

=2z([| fllr)?, wER,.

And so, we have fe PH/(R), that is, PB(R)C PH,(R).
Next, we assume that 1<p=q. From the inequality

la|?=1+]al?
for a real number «, it follows that

(£ 2= (1 717 dpt

S1+{ F15(2)1Y
and that

[ (1542 GP (R, 2, w) Py
=\ "Ry, 2, w)P@)dxdy
[, A1V GCA(Ra, 2, w)P()dxdy

<2n+{ (17182 GF(Ra, 2, 0)P()dxdy,  weR.

Therefore, we have
PH(R)CPH,R). Q.E.D.

THEOREM 24. Any f in PHXR) is the difference of two positive P-harmonic
Sfunctions in PHy(R), and conversely.

ProOF. We consider the same functions f, and f, on R as that in the
proof of [Theorem 2.2, that is,

Fl)=limyo max(f, 0)dse,

fz(Z)zlimnams—min(f, 0)dyZ,
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for zeR. Since fePH,(R), there exists a P-harmonic majorant u of |f|?
satisfying in [Theorem 2.1. Then, Hélder’s inequality gives that, for p and
g satisfying 1<p<+4o0, 1<g<+o0 and 1/p+1/¢=1,

[ max(7, 0)dze.
<[ tmaxts 0 7a) (] )

=({ max(7, 07dut.)"”

S
< {u()} 7,

that is, fi(z)?<u(z) on R. And, similarly, we have f,(z)?<u(z) on R. Then,
we complete the proof of the first assertion.
Let f=/f,—/f, where f, and f, are positive P-harmonic functions in PH,(R).
By [Theorem 2.1 there exists P-harmonic majorants u; and u, of £, and f,? on
R, respectively, which satisfy the condition in [Theorem 2.1. Then, the
inequality
(a+b)P=27(a?+b?), 1=p<+o0,

gives
1P =(fit /)P
=22(f,P+1.P)
=27(u;+ Us) s
and

SR(M(ZH‘ us(2)GF(z, w)P(2)dxdy<M+M

for all we R, where M is a constant independent of we R. Therefore,
2.1 implies fe PH,(R). Q.E.D.

THEOREM 2.5. Let R be a connected Riemann surface on which P=£0. And,
let

@8 IIE=suDuer{lime w1 AAEI G R, 2, w)Pxey}

for feRHR). Then, for 1=p<-+oo, PH)R) is a Banach space under the norm
WAB, fe PH(R). This norm equals

(25) Suuer| 5| (2672, w)PE)xdy)

where ,f denotes the smallest P-harmonic majorant of |f|? in R.
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ProOOF. The function u defined by in the proof of [Theorem 2.1, that
is,
wz)=limyro{l 152N ?,  zER,

is the smallest P-harmonic majorant of |f]? in R, since, for any P-harmonic
majorant s of |f|? in R, we have

{I S5 (2} P=P" 112(2)
=PNz)=s(z), zE€R,,

which gives u(z)<s(z) on R. By and ,f=u, Lebesgue’s monotone
convergence theorem shows that

| o 1@GH(, w)P@dxdy

iy ey | (71520 PGP (R, 2, w)P(xdy
T JRp

from which the expression of ||l flI5 follows.

Next, we have to show that PH,(R), 1=p<+oco, is a vector space with
respect to the usual definitions of addition and scalar multiplication of real
numbers, and that the non-negative real valued function (2.4) is a norm on
PHJ/(R). Minkowski’s inequality gives that, for f and g in PH,R),

[SRn {“ f+g”£'"(z)} pGP(Rnr Z, w)P(Z)dXdy]”p
< [S (171542} 2G7 (R, 2, w) Py

|1, g1} 267 (Ra, 2, w)P@dxdy]
which implies that f+g< PH,(R) and
L+ gliz =I5+ Nlghs -
It is clear that, for fe PH,(R) and a real number «, afe PH/(R) and

Nl fliz=lal 1117 -

If fe PH/(R) satisfies the condition [|f||5=0, then the smallest P-harmonic
majorant ,f of f satisfies that ,f=0 everywhere on R, since P=0 on R. So,
f=0 everywhere on R.

To prove that PH,(R) is complete with respect to the norm (2.4), let {f;}
be a Cauchy sequence in PH,(R) with respect to the norm (2.4). Then, we can
find a subsequence {fju}, j(1)<j(2)<--:, of {f;} such that

I ficen—Fiwll5<1/2¢, 1=1,2, -
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Holder’s inequality and the inequality give that, for p>1,

*21?SR (o ficesn =10 )@} PGPz, w)P(2)dxdy

= {_Zl;gﬁp(fj(iﬂ) —fj(i))(Z)GP<Z’ w>P<Z)dxdy}1/p

:mfj(iﬂ)_fj(i)m}; s

which is evident for p=1. Therefore, since

~217&3 ;’: {o(ficien = L)@} PGz, w) P(2)dxdy

< ?_3:1/2%1

for every positive integer k, Lebesgue’s monotone convergence theorem implies
that the series

(2.6) 21 {(ficen—SFi 1P

converges almost everywhere on the support of P.
Let z, be a point of the support of the density P at which converges.
Then, from the inequality

I Fio—Frooli=1 Z Urcerm—Fro)l

A

2 1 fscern—Frcol}

s —Fro)a) 7

for k<, it follows that the sequence {fju} is a Cauchy sequence in PH,(R),
for the series converges at z,. So, there exists a function f in PH,(R)
such that ’

limyasell 0 —f15=0,

which implies that the sequence {f;«} converges, uniformly on every compact
subset of R, to f (L.L. Naim [I].
We now have to prove that f is contained in PHy(R) and

limj.1oll f;—1I5=0.
Since

k-1
fj(k): tz::l (fj(i+1)—fj(i)>+fj(1) ’

Fatou’s lemma gives that
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[—ZL{SR,, U/ =Fia 3@} P GH(Ry, 2, w)P(z)dxdyT/p
<|lim infk“*“—Zln-SRn{” fico—Siw 52} ?

XGF(R,, z, w)P(z) dxdy]””

slim inf,gell o —fials

< S ssn—Sfrcoll}
< %1/2i:1/21-1,
and so,
2.7) I f—FrellE<1/2+1.

We can conclude from this inequality that f—f;u, is in PH)R). Hence, f is
in PH,(R), since

f:(f—fj<z>)+fj(z> .
And, furthermore it follows, from that

liml#w]llf—fj(z)mﬁ:() ’
which gives that

limj el f=FillZ=0,

for {f;} is a Cauchy sequence in PH,(R). Q.E.D.

It will be necessary to consider a disconnected Riemann surface in §3 and
§4. Let

R= U wt
k=1

be the decomposition of R into connected components WF* of R. We can
assume, without loss of generality, that the density P on R satisfies P==0 on
Wi we, ., Wi, 1SL<K, and P=0 on W+, Wi+ ... WX, Since P=0 on W*,
L<k=K, PH,(W*), L<kZK, is the space of harmonic functions on W* such
that | f|? has a harmonic majorant on W*, that is, PH,(W*), L<k<K, is the
Hardy space of harmonic functions on W¥*. This space of harmonic functions
on W* is denoted by H,(W*). It is a result of Parreau that the space
H,(W*) is a Banach space under the norm

1A lp={pfz)} /P, fEH (W),

where z, is a point in W*. Now, we define the space PH,(R) for the discon-
nected Riemann surface R as follows.
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DEFINITION 2.3. A P-harmonic function f on the disconnected Riemann
surface R belongs to the space PH,(R), 1= p<+oo, if and only if each restric-
tion f|W* to W* of f belongs to PH(W*) or H,(W*) according as 1<k=L or
L<k<K.

THEOREM 2.6. Let R be the disconnected Riemann surface on which p=£0.
And, let

(28) 1A= = AW+ 3 171w,

k=L+1

for fe PH)(R). Then, for 1=p<4oo, PHR) is a Banach space under the
norm (2.8). This norm equals

2 1 k P(TIE 1p
S supuew{5—| AW HRGHW*, 2, w)P(2)dxdy)

E=1
+ 3 AW,

where H(fIW?F), 1=k=<K, denotes the smallest P-harmonic majorant of |f|W¥*|?
on W* and z*, L<k=K, is a point in W&,
ProOOF. This is clear by the preceding lemma. Q.E.D.
In the following of this section we consider the relation between two
Banach spaces PH,(R) and PH,(R) under the assumption that the density P
vanishes outside a compact subset of the connected Riemann surface R.
LEMMA 2.7. If the density P vanishes outside a compact subset of R, then
PH(R)=PH,(R) and there exists a positive constant C such that

liAZ=CIfI%
for every fe PH,(R).
ProOF. We assume that P vanishes outside a compact subset K of R. Let
2z, be a point of R with z,& K. Then, there exists, by Harnack’s theorem
(Myrberg [1]), a constant ¢ such that

p (@)= X p f(20)
for every ze K and every fe PH,(R). Therefore, the inequality gives that
| 1
5| R)G (2, w)P()dxdy
1 P
=\ /&G (2, w)P(e)dxdy

é—iﬂ;c X p (ZQ)SRGP(z, w)P(z)dxdy

2
ScXpfz0),
and so,
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IAE=V? X1 FI7,

which completes the proof. Q.E.D.
THEOREM 2.6. If the density P vanishes outside a compact subset of R, then
the Banach space (PH}(R), lI-I5) is isomorphic to the Banach space (PH,(R),
I+ 115
Proor. The identity map of (PH,(R), [-lI5) onto (PH)(R), |I-]I5) is a one-
to-one continuous linear transformation and so must be an isomorphism by the
open mapping theorem. Q.E.D.

§3. The structure of PH/(R).

Let W be a connected or disconnected open subset of R whose complement
is a regular region. Hereafter we always use W for such a subset of R. To
show that the Banach space structure of PH,(R) is determined by the behavior
of the density P on a neighborhood of the ideal boundary of R, we define the
subset PH(W; oW) of PH,(R) as follows.

DEFINITION 3.1. PH (W ;0W), 1=p<4oo, is the class of all functions f in
PH)(W) such that there exists a continuous extension of f to the closure W of
W whose restriction to the boundary oW of W vanishes.

Then, PH,(W; 0W) is a vector space with respect to the usual definitions
of addition and scalar multiplication of real numbers. And, PH, (W ;0W) is a
subspace of the Banach space PH) (W) with the norm in [Theorem 2.6:

THEOREM 3.1. PH(W;0W) is a closed linear subspace of PHW).

PrROOF. Let fe PH/(W) be the limit of a sequence {f,} in PH)W;oW):

limysef| f— f3ll5=0.

It is sufficient to show that f|W* has a continuous extension to W* whose
restriction to 0W* vanishes for each connected component W#* of W. If P=£0
on W¥#, then there exists a subsequence {f,} of {f.} which converges, uni-

formly on every compact subset of W*, to f, by the proof of If
P=0 on W¥#, the existence of such a subsequence {f,u} follows from the fact

limp ol fIW*—fa| WF|5=0.

Let G* be a regular region which contains the boundary of W*, and let w
be a continuous function on the closure of G*\W#* such that w is P-harmonic
on G¥~\W* and w have w|oG*=m?*, w|oW¥# =0, where

mE=sup,eerawr| fIW*(z)|+1.

Then, by the maximum principle we have that

| fra@) | Sw(z), zeG*n\W*
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for sufficiently large 1N, and so,

| f(2)| =lim; oo | frcis(2) |
=w(z), zeGInW*,

This shows that lim,., f(z)=0 for all b0W*, that is, if we extend f on oW*
so that f(b)=0 for b=dW*, then f belongs to PH,(W;dW), which complets the
proof. Q.E.D.

LEMMA 3.2. Let f be in PH)W;oW). Then, the smallest P-harmonic
majorant of of |fl® has a continuous extension to W whose restriction to OW
vanishes.

Proor. It is sufficient to prove only that ,f|W* have this property. The
sequence {(]| fl W*||5.(2))?}, which is a monotone increasing sequence of P-har-
monic functions on R,N\W*, converges to ,f| W* Harnack’s principle implies
that the convergence is locally uniform in W*. Let G* be the same subset of R
as that in and let w be the P-harmonic function on G*~\W?* which
have a continuous extension to the closure of G¥*\W* such that w|oW*=0
and w|0G*=1. Then, by the same way as that in the proof of [Theorem 3.1,
we can show that

A IWHIE(2 P = B*w(z), zeWFNGH,

for sufficiently large n< N, where

ﬁk:SUPzeaGknwk 2 J(2).
Therefore,

2SIWHR)Z B w(z), ze WrENG?,

which implies the conclusion. Q.E.D.

In Rodin and Sario they discussed the problem of finding on a given
harmonic space a harmonic function which imitates the behavior of a given
harmonic function on a neighborhood of the ideal boundary of the harmonic
space. We quote from Chapter VI of Rodin and Sario the method of find-
ing a P-harmonic function which imitates the behavior of a given P-harmonic
function on a neighborhood of the ideal boundary of the connected Riemann
surface R. This problem of finding such a P-harmonic function on R can be
stated as the following: Given a continuous function f on the closure W of
W which is P-harmonic on W, find a P-harmonic function F on R with

supsew|F(z)—f(2)] <40,

where W is a neighborhood of the ideal boundary of R: in particular, an open
subset of K whose complement is a regular region of R.

Let {R,} be an exhaustion of R with oR,C(W—0oW). Then, we can find
a unique continuous function B,(f) on the closure of R,n(W—0W) which is
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P-harmonic on R,N\(W—0W) and which takes the boundary values f and 0 on
the boundaries oW and 90R,, respectively. Since lim,_..B,(f) exists, an oper-
ator f—B(f) from the space of all continuous functions on 0W into the space
of continuous functions on W which is P-harmonic on W—aW is defined by

B(f)=limy.4eBa(f).
The operator B has the following properties :

(BL) B(f+g)=B(f)+B(g), Blcf)=cB(f),

(B2) B(f)|oW=/,

(B3) min(0, mingy f)=<B(f)=max(0, maxsy 1),
where f and g are continuous functions on oW and ¢ is a real number.

Since the density P of our equation does not vanish constantly, the
harmonic space defined by the equation [(1.I) is hyperbolic, that is, B(1)z1 for
some choice of WCR, or there is an open set in K on which the constant
function 1 is not P-harmonic. Therefore, as a special case of principal func-
tion problem solved by Nakai, we have the following existence theorem ; Let
f be a continuous function on W which is P-harmonic on W. Then there
always exists a unique (f, B)-principal function, that is, a P-harmonic function
F on R with

B(F|oW—f|oW)=F|W—f on W.

By reformulation this theorem we obtain the complete solution of the above
problem.

To show that the Banach spaces PH,(R) and PH)W ;0W) are isomorphic
we define an operator A} as follows. Let P(R) be the space of all P-harmonic
function on K. And, consider the linear space P(W;oW) of continuous func-
tions on W which are P-harmonic on W and whose restriction to W vanish
constantly.

DEFINITION 3.2. We define an operator A% by

RE()=limp 1P}

for fe P(W; dW) which is the difference of two non-negative functions in P(W;
oW), where P} is the solution of Dirichlet problem of the equation (1.1) with
the boundary value f on 0R,.

To see that the operator 2} is well-defined for such a f in P(W;oW), let

f=fHi—fo i P(W;0W), fi20, i=1,2.

We can find, by the existence theorem of the principal function problem, P-
harmonic functions F,, F, defined on R satisfying

SUp;ew I Fi(z)—fi(z)] < +OO’ 7':1; 2.

These supremums are denoted by m, and m,, respectively. Since
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Fi—{—miZP}i on Rn (1:1,2)

for every neN and the sequences {P%} and {P},} are monotone increasing
sequences of P-harmonic functions, the lim,...P%, (1=1,2) is a P-harmonic
function by Harnak’s theorem. Therefore, we have

lim, 4o Pi=lim 1P}, —limy. 1P}, ,

that is, AZ(f) is well-defined for any difference f=f,—f, of two non-negative
functions in P(W;0W) and is a P-harmonic function on R.

This operator A% is referred to as the canonical extension, and was defined
by Nakai [3] on the smaller domain than that of our definition. The domain
in his definition was the class PB(W ;W) of bounded continuous functions on
W P-harmonic on W and vanishing on oW.

Since the P-Green function G¥(z, W) is strictly positive, symmetric and con-
tinuous on RXR and is finite unless z=w, G¥(z, w) is taken as a kernel in the
sense of potential theory. If g is a measure on R and

G™(e, )= Gz, w)dpu(w)

is P-superharmonic on R, then G¥(z, u) is called the P-Green potential of p.
The P-Green potentials are quite similar to the harmonic Green potentials.
Since the potential theoretic method is a powerful tool for the study of the
operator A¥ and is extensively used in this section, we list some important
potential theoretic principles in the following. The theory of P-Green poten-
tials is developed in Nakai [2].

FROSTMAN’s MAXIMUM PRINCIPL. If the inequality G™(z, ¢)=<1 holds on the
compact support S, of yx, then the same inequality holds on the whole space R.

EEQUILIBRIUM PRINCIPLE. For an arbitrary compact subset K of R there
always exists a unique measure called equilibrium measure of K satisfying S,CK
and G¥(z, #)=1 on K except for a subset of 0K of capacity zero and G¥(z, 1)=<1
on R.

To show that the range AF(PH, (W ;dW)) of A¥ is contained in PHJ(R),
we shall prepare three lemmas.

LEMMA 3.3. Let S and T be open subsets of R and H a non-negative func-
tion on SXT. If (a) for each weT, H( - ,w) is continuous on S, (b) for each
zeS, H(z, -) is P-harmonic on T and (c)

hw)={_Hez, w)dp(z)<+o0

for each weT, then h is P-harmonic on T.
PrOOF. It can be shown that H(z, w) is a non-negative measurable func-
tion on SXT to which Fubini’s theorem can be applied. Then, for any disk
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V such that VT

=] [ et

where p57 is the P-harmonic measure with respect to V and weV. This
shows that % is P-harmonic on 7. Q.E.D.

The following lemma gives a relation between P-Green’s potentials for
different regions, when one is a subset of the other. For the harmonic case,
this fact is stated in Helmes [1]. So we only restate it for our case.

LEMMA 34. Let S and T be regular regions such that SDT, and let p be
a measure on S such that p(S—T)=0 and G*(S,z,u) is a finite P-Green’s
potential. Then, there is a non-negative P-harmonic function h on T which
satisfies

G*(S, z, p)=G*(T, z, p| T)+h(z)

on T, where p|T is the restriction of p on T and G¥(S,z, w) is the P-Green’s
Sunction of S.
Proor. For z,weT with z+w, let

H(z, w)=G*(S, z, w)—G*(T, z, w),

which is positive. Then, for each zeT, H(z, w) is a P-harmonic function on
T, since z is a removable singular point, and so, H(z, - ) is a continuous func-
tion for each zeT. Also, H( -, w) is a P-harmonic function for each weT, for
H(z,w) is symmetric. Since G*(S,z, 0)=G*(T,z,¢|T) on T by G%S,z,w)=
G¥T,z,w) on TXT,

G?(S, z, 1) —G™(T, z, | T):STH(Z, w)d p(w)< +o00

where the last integral is a P-harmonic function on 7 by the preceding lemma.
Q.E.D.
Let W be an open subset of R whose complement is a regular region. We
assume that P=%0 on W?* W2 ... , WL (1=L<K) and P=0 on Wi Wk+2 ...,
WX, where

K
W=\ w?*
1=1
is the decomposition of W into connected components W?, W2, ... K WX,

LEMMA 35. If a nonnegative P-harmonic function f in P(W; W) satisfies
that, for every i, 1=1=<L,

supwers], S WHGHW, 2, w)P(R)dxdy< +o0,

wi

then
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supuer] AH(FXEGHz, w)PE)drdy<+o0.

Proor. Let {R,} be an exhaustion of R such that dR,CW. Then, since
the sequence {P}} converges increasingly to A%(f) on R, the maximum principle
gives that

Pr=maxpwAZ()+f

on R,nW? for each nN. Therefore, for 1=i=<L,

SRnﬁWiP";{(Z)GP(Ien‘r\VVi’ Z, u))P(Z)dxdy
=masoy 1/ )XSR o GFRuNW', 2, w) Pl2)dxdy
P i
+Sknnwif(z)G (R.N\W*, 2z, w)P(z)dxdy

<27 % maXawz;Y(f)JrsupwemS A2)GP(W', z, w)P(2)dxdy

wi
<400,
Let

3.1) M i:SUpweWiSWng (DIWH2)GH(W?, z, w)P(2)dxdy .
Then, Lebesgue’s monotone convergence theorem gives that

[, EDIW @G WY, 2, w)P()dxdy
:“m”*wgg _ PIOGH R WY, 2, w)P()dxdy

=2z X maxawll(f)%-supwewigwi FIWH2)GE(W?, z, w)P(2)dxdy ,

from which it follows that M*<+4oo, 1=i<L.
To show that the integral

(3.2) [ @67 w PRy
is a P-Green’s potential, that is, =400, let « be a number such that

SupzeaRoGP(Z) w0)< @,
and let
ﬁi:infzeaRoﬂWiGP(Wi) Z, wO) ’

where w, is a fixed point in (Wi—0W?")~\R,. Since the sequence {G(R,, z, w)}
converges increasingly to G¥(z, w) on R, we have



300 T. SATO

Sup,esr, G (Rp, 2z, wo)< a
for every neN. Then, the maximum principle gives that
GP(Ry, z, W) S0 GE(W*, z, w,)
on (R,—R)NW?, where 6*=a/B'. So, we have
3.3) Gz, wo)=lim,_1GF(R,, 2, W,)
<O'GE(WH, z, w,)
on (R—R,)NW?* Since and give that

[ B DG, w PN

éaiXSUpwewi\‘ .
JR-RpyNW

AE(f)2)GEW?, z, wo) P(2)dxdy
<OtMi< +oo,

which shows that

AF(f NGz, w)P(z)dxdy, 1=i=L,

g (R-Rpynwi

is a P-Green potential. Then,

SR_ROR}Y(f)(Z)GP(z, w)P(z)dxdy

™

i

AE(/)2)G(z, w)P(z)dxdy

1 S(R~R0>nWi

J

is a P-Green potential. And, since

[ D67, wP@dxdy

Ssups, (/)X | Gz, w)P(2)dxdy
=27 XsupzAF (/)
< + S s

the integral |(3.2) is a P-Green potential.
To show that the P-Green potential is finite everywhere on R, let w

be any point in R, and let V be a disc with center at w. Then, since the P-
Green potential

SR_VJ?:' (fX2)G*(z, w)P(z)dxdy

is P-harmonic on V: continuous on V, the inequality
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[, (@67, wPE)dxdy

<suppa (/) x| 67z, w)P()dxdy

<2z Xsuppdf(f)
<+

implies that the P-Green potential is finite everywhere on R.
The integral

[ ro NG Ry 2, PRIy, 1SISE,

is a finite P-Green potential on R,,,, for this integral is smaller than the
integral [3.2). So, implies that there exists a P-harmonic function
ut, on W*~\R,,, such that

(3.4) F()2)G(R i, 2, w)P(z)dxdy

S(Rn—Romwi

AENN @GR v NW?, 2, w) P(2)dxdy+ui(w)

S (Rp-RpNW?t

for we W*n\R,4+:. Since ul|0R, . ,N\W'=0 and, for any w,s0W?,

ub(wo)=| REI NG (Russ, 2, wP(@)dxdy

(Rp-RppNWt
<supueaws|, | B(/))GH (2, w)P(R)dxdy

<400,
denoting by ¢ the above supremum the maximum principle gives
ut<e' on R, . ,NW*. ]
Since, by and the Lebesgue’s’ monotone convergence theorem implies
that

AE(f)N2)G*(z, w)P(z)dxdy

S(R-Rgmwi

AE()@)GH (R4, 2, w)P(2)dxdy

=1imn_.+“,s
(Rp-Rpnw't

AE()2)GEW?, z, w)P(2)dxdy-+1im, . oui(w)

S(R—Romwi
‘ ) .
=Mi4-et, weWt,

the Frostman’s maximum principle shows that the inequality
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AE(f)2)G (2, w)P(z)dxdy

ScR—Romwi
=Mi4¢t

holds on R, for the support of the measure of the P-Green potential

AE(fN&)G (2, w)P(z)dxdy

S(R—Ro)ﬂWi

is contained in W% Therefore, we have

[ 26, w)P)dxdy

t~

= AE(f NG (2, w)P(z)dxdy

i=1 ScR-Romwi

\|

+ |, @Gz, w)Pl)dxdy

Mo

< 3 (Mi+eh)+2x Xsupg,AE(f)

1

for every we R, which completes the proof. Q.E.D.
THEOREM 3.6. AZ(PH, (W ; oW))CPH(R), 1=p<+oco,
PROOF. Let f be in PHYW ;oW). states that the smallest
P-harmonic majorant ,(f|W®) of |f|W?*|? on W' satisfies

(35) supwews| (S WG, 2, w)P()dxdy< +o,

for i, 1<i<L. By Definition 3.2 and Lemma 3.2, the maximum principle shows
that

W1z, on W.

Then, since {A¥(,/f)}¥? is a P-superharmonic function on R by Holder’s in-
equality, we have

| PH = {2E( /)17 on R,,
from which it follows that
| ZE(H)P=[limp.1P}|?
=2%(,f) on R.

That is, 2%(,f) is a P-harmonic majorant of |AZ(f)|? on R. And, by
shows that

sup el W, NGz, w)P@)dxdy< +oo

Therefore, by Theorem 2.1, 2%(f) belongs to the space PH(R). Q.E.D.
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Let {R,} be an exhaustion such that R,D0W. For a given function g on
W, let g, be a function defined on dR,\JoW such that

gn.|0W=0 and g,|0R,=g.

If g is a non-negative P-harmonic function on R, the sequence {PE""} is a
monotone decreasing sequence of P-harmonic functions. Then,

1 R,NW
limy,.40Pgn

exists and is a P-harmonic function on R. Now, if g is the difference of two
non-negative P-harmonic functions, then we can define an operator p¥, which
was referred to as the canonical restriction by Nakai ([3], [4]), as follows:

DEFINITION 3.3. For ge P(R) which is the difference of two non-negative
P-harmonic functions on R,

ﬂg(g>:limn-»+wP§ZﬂW .

THEOREM 3.7. pl-A¥ is the identity mapping on PHW ; oW).
Proor. Let f be in PH (W ;0W), and suppose f=0 on W. Since
Rp\W R,NW
P(A}!’(f))n ! +P(A}.I’(f>—f)n
and

0= PFalw
GE =

< PEn
W1

=2(f)—Pf on R.NW,

we have, by A¥(f)=lim,_...P%, that

(3.6) LB AF()=pEE(f))
—1; R,NW
hm"%wpu}l’(f»n
=f
for every fe PH)(W ;W) with f=0 on W. From the linearity of 2% andlu¥,
follows for any fe PH) (W ;oW). Q.E.D.
LEMMA 38.

pE(PHR)CPH(W; oW).

PRrOOF. It is sufficient to prove this lemma only for a non-negative g in
PH,R). Then, from
gz PIgEZﬂW

on R,n\W, it follows that
pgz lgl?
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= |limy_ o P3| P

=|uE(g)|?

on W, that is, ,g|W is a P-harmonic majorant of |¢¥(g)|? on W. Furthermore,
shows that

SuPwer| 5 8(2)G (2, w)P()dxdy<+o0,

which implies, by [Theorem 2.1, that u¥(g)e PH)W) for every g in PH)(R).
And, it is shown that pZ(g) has a continuous extension to the closure W of
W whose restriction to W vanishes. That is, p¥(g)e PH (W ; oW).
Q.E.D.

A P-potential on R is a non-negative P-superharmonic function on R whose
greatest P-harmonic minorant is non-positive. As in the case of classical Green
potentials, we can show that any P-harmonic minorant of a P-Green potential
is non-positive. Then, a P-Green potential is a P-potential. It is useful to
modify a terminology and a lemma which was stated in Nakai {3]. A func-
tion f on R will be referred to as a quasi P-potential if |f| is majoranted by a
P-potential.

LEMMA 39. If f is a continuous quasi P-potential such that —|f| is P-
superharmonic on R, then f=0 on R.

PrROOF. Assume that |f| is majorated by a P-potential ». Since

0=1/1

R, R,
=Pl <P

)

from
lim, . 0PB=0
it follows that f=0 on R. Q.E.D.
THEOREM 3.10. 2AF-ul is the identity mapping on PHR).
Proor. For fe PH/(R), let f, and f, be functions on 0R,\JoW such that

and
fal0R,=0,  faldW=F.

If /=0 on R, by the equilibrium principle, there exists a P-Green potential
G*(z, pt) such that
» GP(Z) H)ésupR—Wf; ZER;

GF(z, p)=supr-wf, z€ER—-W,
and the support of g is contained in R—W. Since

0= f(z)— PR (z)
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=PhW()=Gz, p), z€R.NW,

for every ne N, it follows that

0=/(2)—pE(f)2)
=f(2)—liMp1ePT""(2)
§GP(Z, ﬂ)’ rAS W’

which shows that the function f—pZ(f) is a quasi P-potential on W.
Next, let g=A¥-u¥(f), which is contained in PH,R). By

uBE(f)—2Ep(f)=pE(g)—g,
the above discussion shows that the function
wr(f)—AFpE(f)

is also a quasi P-potential for a non-negative function fin PH,(R). Therefore,
from

| =2 p BN = = pB (O + | pE())—2E - pE ()],

the P-harmonic function f—A¥.uf(f) is a quasi P-potential on W, which shows
that f=a%-uZ(f) by And, it is evident that this equality holds
for any f in PH,(R), since A¥ and u¥ are linear. Q.E.D.

COROLLARY 3.11. u¥ is a one-to-one map of PHYR) onto PHW;dW),
and

A¥: PH)(W;dW)—PH,R)

is the inverse of p¥.

Proor. This corollary follows easily from [Theorem 3.7 and [Theorem 3.10.

Q.E.D.

THEOREM 3.12. The mapping
p¥ . PHR)—PH W ;W)

is an isomorphism, that is, PH}(R) and PHKXW ; dW) are isomorphic.
PrROOF. It is clear that p¥ is linear on PHy(R). Since

RyNW | p << PRNW
IPgn | =P(lgll’)n

for ge PH)(R), as n—-co it is shown that ,g|W is a P-harmonic majorant of
|pE(g)|? on W for ge PH,(R). So,

28|\ W=,(pE(2),
by which and Definition 2.6 imply that
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gz N2 (&I -

Therefore, ¥ is a continuous mapping of PH,(R).

Since p¥ is a continuous linear one-to-one mapping of the Banach space
PH)R) onto the Banach space PHy (W ; 0W), the open mapping theorem gives
that ¢¥ is an open mapping, that is,

plf : PHYR)—PHYW ; 3W)
is an isomorphism. Q.E.D.
COROLLARY 3.13. If P and Q are two densities on R such that P=Q outside
a compact subset of R, then PH)(R) and QH/(R) are isomorphic.
PrROOF. Assume that P=Q on WCR. The Banach spaces PH;(R), QH,(R)
are isomorphic with the Banach space PH (W ;oW )=QH, (W ;oW). Q.E.D.

§4. The comparison theorem.

In the first part of this section we assume R to be connected, and let P
and Q be two densities on . We shall prove that the spaces PH/(R) and
QH)R) (1=p<+o0) are isomorphic providing the existence of a constant ¢=1
such that

cQ=P=c0Q
on R.

LEMMA 4.1. Let P and Q be densities on R which are not identically zero.

If there exists a constant c¢=1 such that

4.1) c'Q=P=cQ
on R, then we have
@) G w)=Ge w5 (PO—QEGUC, WG, dzdy

for every z,we R with z#w, where {=§+17.
Proor. The Green’s formula implies that, for z, we R, with z#+w,

(4.3) G¥R,, 2z, w)=G (R, z, w)
| (PO~ Q@IGRA, L )G (R L, e,

where {=&+17.
Let
Fz, w,0)=|PO—QDIGUEL, w)G(E, 2).

To prove we show that, if z#w, the integral

[ Few,0dzdn
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is finite. Let U and V be disks with centers z and w, respectively, such that
VNU=0. Then, since [(4.1) implies that

|P—Ql=cP, |P—Q|=cQ
on R, and the maximum principle gives that

SupCEaUGP(C) 2)2 GP(C; 2)1 c € V}

and
SupZEBVGQ<C) w)% GQ(C; 'LU), C ER— V7
we have
SvF(z, w,{)dEdn =supeeav GT(E, 2) X SR | P(Q)— Q)| G4, w)d&dy
<supceaG7(C, 2) X e| GAC, w)QQdedy
=2mc Xsupgear GF(L, 2)< o0
and
[, Fe w,0dedy Zsupecan GG, wi x| POGHE 2)d5dy
=2me Xsupear GUE, w)< oo
Therefore,

| e w,0dgan={ Fz,w,0deay+( _ Fz,w,0)dgdn<+oo

for z#w in R.
Since the sequences {G%R,,z, w)} and {G"(R,,z, w)} converge increasingly
to Gz, w) and G?(z, w), respectively, we have

limg o PQO)—QEGUR,, &, w)GH(R, E, 2)
=(PO)— QG w)GHE, 2)

and
| PQ)—QQIGUR,, &, w)GP(R,,{, 2)=F(z, w,{)

for each neN. The Lebesgue’s theorem of dominated convergence implies
that, if z+w,

limn»mSRn(P(C)—Q(C))GQ(R 2 & w)GH(R,, €, 2)dEdy

=[ (PO—-0ceC wier e, 2dzay.

Therefore, follows from Q.E.D.
LEMMA 4.2. Let P and Q be densities on R which are not identically zero
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on R and which satisfies (4.1) on R. Jf a continuous function f on R satisfies
the condition

4 Supuerl , |/(2) Gz, w)Qe)dxdy< +o0,
then f also satisfies
Supwen| | P(2)—Q(2)] Gz, w)| A(2)| dxdy< +oo.

And, in this case we have

5)  Supuer] | P@)— Q)| Gz, w)] f2)] dxdy

= c(e+D)Xsubues| |2)] Gz, w)Q)dxdy .

R

ProOOF. Since the inequality gives
4.6) |P—Q|=cP, cQ on R,
from [Lemma 41 it follows that
4.7 Gz, w)SG¥(z, w)+76n—SRQ(C)GQ(C, w)GH((,2)dédy .
Then, by the inequalities and
[ 1P@)- 0169, w)l 72)] dxdy

= Q)G w1 f2) dudy
=, 06 (2, w1 f2) | dxdy
+5= Q@17 [ QO w)GHC. dzdn}dady

Sc(c+ D) Xsupuerl | A2)|G¥(z, w)Q()dxdy

This inequality completes our proof. Q.E.D.
We define an auxiliary transformation T%, of real valued continuous func-
tions f defined on the closure R, of R, as follows:

T =1 )+ 5] (PE—~QE)C Ry, 2, w) )y

LEMMA 4.3. If f is continuous on R, and P-harmonic on R,, then Tpy(f)
is Q-harmonic on R, and is a continuous function on R, such that
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PrROOF. The Green’s formula and the properties of Green’s function
G%R,,z, w) imply that Ty(f) is the solution of Dirichlet problem with respect
to the equation Ju=Qu and the domain R, with the boundary value f on oR,
(see, for example, Nakai [1]).

DEFINITION 4.1. For a real-valued continuous function f defined on the
connected Riemann surface R satisfying the condition (4.4) in Lemma 4.2, we
define a transformation 7 pq(f) as follows:

T oo )= | (P~ QE)Ge, wiftedxdy,

which is well defined by Lemma 4.2.

LEMMA 44. Let P and Q be densities on R which are not identically zero,
and assume that there is a constant ¢ satisfying (4.1). If a continuous function
f on R satisfies the condition (4.4) in Lemma 4.2, then

Tog A)=limpaThe( ).
PROOF. Let a be the function
2=¢{QEIGHz, )] &)+ 5% Q)1 A2 x| QOIGE, WIGTE, 2)dédr,
which satisfies that
@8 | a@ixdyscctnxsupuca| 110167, w)QEMxdy<+oo

Since

im e P(2) — Q@) GUR ,, 2, w) f(2)=(P(2)—Q(2)) Gz, w)f(2)
and, by and the inequality
| P(2)—Q(2)| G¥(R,, z, w)| flz2)| =cQ(2)G%z, w)| f(2)| Salz),

Lebesgue’s theorem on dominated convergence implies, by (4.8), that

limn»mS o (P@)—Q@)GHRy, 2, w)f(2)dxdy

=| (P©-0@)6%, wif)xdy,
from which it follows that

limpreTre( )W)=Tpe(/Nw), weR.
Q.E.D.

LEMMA 4.5. Under the assumption of Lemma 4.4, Tpo(f) is a Q-harmonic
function on R.

PROOF. Since a sequence {f;} of Q-harmonic functions on a domain U of
R such that |f,| =M< +co has a subsequence which converges uniformly on
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each compact subset of U to a Q-harmonic function on R (refer to Myrberg
[1D, it is sufficient to show that the sequence {T%,(f)} of Q-harmonic functions

is uniformly bounded on a neighborhood V of any weR. shows
that

I TH )| Ssupaer{ A1+, 1 P@=QE)IG(R 2, w) )] ddy)
supucr| /14 subuer |, | PG)— Q@) Gz, w)] fi2)| dxdy

<Sup ey | /] +ele+1)/27 Xsupuer] || ¥, w)Q(@)dxdy

<Hoo, weV.
Q.E.D.

LEMMA 4.6. Let P and Q be densities on R which are not identically zero,
and assume that there exists a constant ¢=1 satisfying the inequality (4.1) on R.
If fisin PHYR) (1=p<+oc0), then Tpe(f) is contained in the space QHy(R).

PrROOF. From it follows that a function fin PH,(R) satisfies
the condition in Theorem 4.2, that is, Tpo(f) is defined for f in PH,(R). Also,
Tro(pf) is defined by

Since it is evident that

| Tr(N)P=1f17=p [=The(nf)

on 0R, for every neN, the Q-subharmonic function |7T%¢(f)|? is dominated;by

the Q-harmonic function T%¢(,f) on R, for each neN. Thus,
shows that

| Tpe(N)IP=Tro(5 /)

on R, that is, Tpe(,f) is a Q-harmonic majorant of |Tpe(f)|? on R.
To prove Tro(f)=QHHR), it is sufficient, by [Theorem 2.1, to show that

subuer| TralyN2)Ge, w)QMrdy<+o0.
By Definition 4.1], this integral equals to

49) [, 206 wQExy+{ {5 (PO-00)6e 2

X o F(Q)d2dn} Gz, w)Q)dxdy .
The first term of is dominated by

SR 2 J(2)GF(z, w)Q(2)dxdy

+{, »r@{ 5= 1 PO-e@ice w
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XGH(, 2)dédn | Q2)dxdy
<1+ 1 PO-Q©)I6%¢ wyazdn)
Xsupea|  »/2)G7(z, w)Q(E)dxdy

=1+ 0XSUPucr| »/2)G7(e, W)P()dxdy,

where the inequality |P—Q|<c¢Q on R and were used. The in-
equality (4.5) in Lemma 42 shows that the second term of is dominated
by

et DX SuPucr] 5 MO QO dEd7 | Gz, wQdxdy

S e+ D XsuPuer| 5 A2)GH(, WIPEdxdy |
R
Therefore, we have

subwer] Tralp NGz, w)Q)dxdy

Sc(c+ 1P Xsupuen| o f(2)G(z, w) P(@)dxdy

<Aoo, Q.E.D.

LEMMA 4.7. Let P and Q be densities which arve not identically zero on the
connected Riemann surface R. If theve exists a constant c¢=1 satisfying the
inequality (4.1) on R, then Tpq is a bounded linear transformation from PHy(R)
into QH)(R), and Tgp is a bounded linear transformation from QH,(R) into
PHyR).

PRrROOF. Since shows that Tpo(f) is well-defined and is con-
tained in the space QHy(R) for every fePH,(R), it is clear that Tpq is a
linear mapping of PH,(R) into QH (R).

Since Tpo(p,f) is a @Q-harmonic majorant of |Tpe(f)|? on R (this was
shown in the proof of Lemma 4.6), by (4.10) in the proof of and
we have that

T2 a NG P =Sy ATral DG, )QEdxdy
Ssubueiy— | Trels NG w)Q)dxdy

< e+ 1supveng—| Gz, w)P(Hdxdy



312 T. SaTo

=c(c+1* XAl fIIZ}?,
that is

(4.11) IT pe(NlI$= {c(c+ 172X F1IZ

for every fe PH)(R). This shows that the mapping Tpo is a bounded linear
transformation from PH (R) into QH,(R). By changing the roles of P and Q
we can see that Tgp is a bounded linear transformation from QH,(R) into
PH,R). Q.E.D.

LEMMA 48. If P and Q satisfy the same assumption as that in Theorem
4.7, then TopeTpq is the identity on PHYR), and TpgoTep is the identity on
QHy(R).

PrROOF. Since PH,(R)CPH/(R) (1=p<+o0), any function f in PH,R)
satisfies that

| 172167, w)Q@)dxdy
< 17@1 67z, w)P(a)dxdy

=, 1 /262, w)P@)dxdy
<2z x|Iflf<+c0, weR,

which implies, by that
SquERSR| P(2)—Q(2)| Gz, w)| f(z)|dxdy<+oo.
Therefore, the last function of the inequality
[(Q(2)— P(2)GT(Ry, 2, w)The( f)(2)]

<c{ PRIGA(z, W) f2)| + 5= PGz, w)
x{ , IPO=QOICR,, &, 2)| Q)| dédn)
gc{P(z)GP(z, W) £(2)] +*—217r*P(z)GP(Z, w)

<[ | PO-0@I6o¢ 21 /)] dédy}

is integrable for any fixed weR,, where this inequality is obtained by the
definition of T%4(f) and |P—Q|=<cP on R. Since
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limp..o(Q(2)— P(2)G"(Ra, 2, w)Th( f)(2)
=(Q(2)—P(2)G™(z, w)Tre( f)2) ,

Lebesgue’s theorem on bounded convergence gives that

1imn-+ooSRn(Q(z)_P(z))GP (R, 2, w)The(fN2)dxdy

={ (@@~ P@)G* w)Teo Pl2)xdy,
from which it follows that
limy T 8pe T f)=Tqpr Tro(f)

on R for fe PH/)(R). On the other hand, the maximum principle shows, by
that
6r°Th(f)=f on Ry,
for every neN, and so,
TopeTre(f)=f on R,
for any fe PH)R).
By changing the roles of P and Q we have also that

TpeoTorg)=g on R,
for ge QHyR). Q.E.D.
THEOREM 4.9. Under the same assumption as that in Lemma 4.8, Tpq is
an isomorphism between PHR) and QHy(R). And, T¢p is the inverse of Tpq.
Proor. This follows from and 4.8. Q.E.D.
Now, let R be a disconnected Riemann surface, and let

e
R=\ W*
k=1

be the decomposition of R into connected components W*, k=1,2,---, K, of R.
If the densities satisfy the relation

(4.12) c'Q=P=cQ on R (cz1),

then we can assume that W? W2, ... , WL (1=ZL<K) are connected components
of R on which Pz=0 and Qz0, and that WZI+, Wi+? ... WX are connected
components of R on which P=0 and Q=0.

DEFINITION 4.2. If the relation (4.12) holds on the disconnected Riemann
surface R, we define the function Tpe(f) on R for fe PH)(R) as follows:

Teo NIW*=Tpo(f/IW*), 1=k=L,
and
Tpo( )| WE=fIWF, L<RZK.
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By changing the roles of P and Q we define also Tg(g) for g QH,(R).
THEOREM 4.10. Let R be a Riemann surface which may be disconnected,
and assume (4.12). Then, Tpq is an tsomorphism between PH,(R) and QHy(R).
And, Tgop is the inverse of T pg.
PrROOF. Lemma 4.9 gives this theorem. Q.E.D.
Let R be a connected hyperbolic Riemann surface and let P and @ be two
densities on R. In the following, we prove the order comparison theorem: If
there exists a constant ¢=1 such that

(4.13) cQ=P=cQ

on R except possibly for a compact subset K of R, then PHy(R) and QH/(R)
are isomorphic.

Let W be an open subset of R such that R—W>DK and R—W is a regular
region. Then, since is valid on the whole W, which may be considered a
Riemann surface, Lemma 4.10 states that there is the isomorphism between
PH W) and QHy W), which is denoted by T%, in the following.

LEMMA 4.11. If the inequality (4.13) holds on W, then TP%, may be consid-
ered an isomorphism of PH W ;0W) onto QH W ;oW).

PrOOF. Since PH (W ;0W) and QH, (W ;0W) are closed subspaces of PH,
(W) and QH,(W), respectively, it is necessary only to prove that T¥(f)=sQH,
(W;0W) for fe PH W ;dW).

Let {R,} be an exhaustion of R such that R,DR—W, n=0,1,2,---, and let

a=SUDyecar, | Tg@(f)(w) B

We denotes by w the continuous function on R, W such that w is Q-harmonic
on RynW and w|oW=0, w|dR,=1.
Since states that

limy s T7a(f)=TEL(f) on W,

where T 2’5 is defined for a continuous function on R, W which is Q-harmonic
on WNR,, for any ¢>0 there exists n,&/N such that

| Tha()w)| =(a+e)o(w), weWNR,

for n>n,. So, as n—-+oo0, we have

| T2 (W) =(a+e)w(w), weWNR,,
from which
Po(N)oW=0,
that is,
P NEQHL W ; oW)
follows. Q.E.D.
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THEOREM 4.12 (THE ORDER COMPARISON THEOREM). Let P and Q be two
densities on a connected Riemann surface. If there exists a constant c=1 such that

c'Q=P=cQ

on R except possibly for a compact subset K of R, then PH,R) and QH,(R) are
isomorphic.

PROOF. Let W be the same open subset of R as that defined before
4.11. Then, by and Lemma 4.1, the mapping

28 TEpe ¥ : PHYR)—-QHKR)
is an isomorphism. Q.E.D.
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