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\S 1. Introduction.

Let $R$ be an open Riemann surface and $P$ a density on $R$ , that is, a non-
negative H\"older continuous function on $R$ which depends on the local parameter
$z=x+iy$ in such a way that the partial differential equation

(1.1) $\Delta u=Pu$ , $\Delta=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}$ ,

is invariantly defined on $R$ . A real valued function $f$ is said to be a P-harmonic
function in an open set $U$ of $R$ , if $f$ has continuous partial derivatives up to
the order 2 and satisfies the equation (1.1) on $U$ . The totality of bounded P-
harmonic functions on $R$ is denoted by $PB(R)$ . Then, $PB(R)$ is a Banach space
with the uniform norm

(1.2) $\Vert f\Vert=\sup_{z\in R}|f(z)|$ .
H. L. Royden [1] studied the comparison problem of Banach space structures of
$PB(R)$ for different choices of densities $P$ on a hyperbolic Riemann surface $R$

and proved the following comparison theorem: If $P$ and $Q$ are non-negative
densities on $R$ such that there is a constant $c\geqq 1$ with

(1.3) $c^{-1}Q\leqq P\leqq cQ$

outside some compact subset of $R$ , then the Banach spaces $PB(R)$ and $QB(R)$

are isomorphic. On the other hand, concerning this comparison problem
M. Nakai [1] gave a different criterion for $PB(R)$ and $QB(R)$ to be isomorphic
and proved the following theorem: If two densities $P$ and $Q$ on $R$ satisfy the
condition

(1.4) $\int_{R}|P(z)-Q(z)|\{G^{P}(z, w_{1})+G^{Q}(z, w_{0})\}$ $ dxdy<+\infty$

for some points $w_{0}$ and $w_{1}$ in $R$ , where $G^{P}(z, w)$ and $G^{Q}(z, w)$ are Green’s
functions of $R$ associated with (1.1) and the equation $\Delta u=Qu$ respectively, then
Banach spaces $PB(R)$ and $QB(R)$ are isomorphic.
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A. Lahtinen [1] considered the equation (1.1) for densities $P$ which he called
acceptable densities. Acceptable densities can also have negative values, and so,
P-harmonic functions do not obey the usual maximum principle. Lahtinen gave
generalizations of Nakai’s comparison theorem for acceptable densities and also
showed, in Lahtinen [2], that for non-negative densities Royden’s condition
(1.3) is a special case of Nakai’s condition (1.4). Recently, M. Nakai [4] and
M. Glasner [1] gave, simultaneously, a necessary and sufficient condition for the
existence of an isomorphism $T$ between $PB(R)$ and $QB(R)$ such that $|f-T(f)|$

is bounded by a potential on $R$ .
$PX(R)$ is the space consisting of P-harmonic functions $f$ on $R$ with a

certain boundedness property $X$. As for $X$ we can take $D$ to mean the finite-
ness of the Dirichlet integral

$ D(f)=\int_{R}\{(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2}\}dxdy<+\infty$ ,

$E$ the finiteness of the energy integral

$ E(f)=D(f)+\int_{R}f^{2}(z)P(z)dxdy<+\infty$ ,

$B$ the finiteness of the supremum norm (1.2), and their non-trivial combinations
$BD$ and $BE$ . In the connection with Royden’s comparison theorem, Nakai [3]

discussed whether the condition (1.3) is also sufficient for $PX(R)$ and $QX(R)$ to
be isomorphic for $X=D,$ $E,$ $BD$ and $BE$ , and he actually showed that the
answer to this question is affirmative.

In this paper we consider the equation (1.1) with $P\not\equiv O$ on $R$ , and give a
new boundedness property $H_{p}^{\prime}(1\leqq p<+\infty)$ to P-harmonic functions so that the
space $PH_{p}^{\prime}(R)$ , which consists of P-harmonic functions with this boundedness
property, may have the comparison theorem. Hardy spaces on Riemann sur-
faces have been studied by M. Parreau [1], and in the general context of
harmonic spaces by L. L. Naim [1]. The Hardy space for the equation (1.1),
which is denoted by $PH_{p}(R)$ in this Paper, falls within the framework of
Naim [1]. By Naim, a P-harmonic function $f$ belongs to the Hardy space
$PH_{p}(R)$ for the equation (1.1), if and only if $|f|^{p}$ has a P-harmonic majorant
on $R$ . We denote by $pf$ the smallest P-harmonic majorant of $|f|^{p}$ on $R$ , and
take $H_{p}^{\prime}$ to mean the finiteness of the expression

(1.5) $\Vert|f\Vert|_{p}^{P}=\sup_{w\in R}\{\frac{1}{2\pi}\int_{R^{p}}f(z)G^{P}(z, w)P(z)dxdy\}^{1/p}$ ,

where $G^{P}(z, w)$ is the Green function of the equation (1.1) on $R$ . Then, we
have that, for $ 1\leqq p<+\infty$ ,

$PB(R)\subset PH_{p}^{\prime}(R)\subset PH_{p}(R)$ .
In \S 2, we show that, for $1\leqq p<+\infty,$ $PH_{p}^{\prime}(R)$ is a Banach space under the
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norm (1.5), and, in \S 3, that $PH_{p}^{\prime}(R)$ is determined by the behavior of the
density $P$ near the ideal boundary of $R$ . In \S 4, it is proved that the condition
(1.3) is also sufficient for $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$ to be isomorphic.

For the properties of P-harmonic functions we refer to Myrberg’s funda-
mental works (Myrberg [1], [2]), and for the theory of Green potentials with
kernel $G^{P}(z, w)$ to Nakai [2].

\S 2. Definition of the Banach spaces $PH_{p}^{\prime}(R)$ .
Let $R$ be a connected Riemann surface and let $N$ be the set $\{0,1,2, \cdots\}$ .

By $\{R_{n}\}_{n\in N}$ we denote an exhaustion of $R$ , which has the following properties:
(1) $R_{n}$ is a regular region, that is, an open set whose closure $R_{n}$ is compact
and whose relative boundary $\partial R_{n}$ consists of a finite number of closed analytic
curves, (2) $\overline{R}_{n}\subset R_{n+1}$ for $n\in N,$ (3) $R=U_{n=0}^{\infty}R_{n}$ . By the solvability of Dirichlet
problem on the regular region $R_{n}$ with continuous boundary values, for any
continuous function $f$ on $\partial R_{n}$ there exists a unique continuous function $P_{f}^{n}$ on
$\overline{R}_{n}$ such that $P_{f}^{n}=f$ on $\partial R_{n}$ and $P_{f}^{n}$ is a P-harmonic function on $R_{n}$ . Let $z_{0}$

be a fixed point on $R_{n}$ . Since the mapping $f\rightarrow P_{f}^{n}(z_{0})$ of the space of all finitely
continuous functions $f$ on $\partial R_{n}$ is a non-negative linear functional on this space
of functions on $\partial R_{n}$ , there exists a non-negative Radon measure $\mu_{n,z_{0}}^{P}$ on $\partial R_{n}$

such that

$\int fd\mu_{n.z_{0}}^{P}=P_{f}^{n}(z_{0})$

for all finitely continuous functions $f$ on $\partial R_{n}$ . This measure is the P-harmonic
measure on $\partial R_{n}$ relative to $z_{0}\in R_{n}$ and $R_{n}$ .

DEFINITION 2.1. A P-harmonic function $f$ on $R$ belongs to the space $PH_{p}(R)$,
$ 1\leqq p<+\infty$ , if and only if there exists a constant $m(z_{0})$ independent of $n\in N$

such that
$\Vert f\Vert_{p,n}^{P}(z_{0})\leqq m(z_{0})$

for all $n\in N$, where $z_{0}\in R$ and

$\Vert f\Vert_{n,z_{0}}^{P}(z_{0})=\{\int|f|^{p}d\mu_{n.z_{0}}^{P}\}^{1/P}$

This space $PH_{p}(R)$ has been studied in the general context of harmonic
spaces by Lumer-Naim [1]. Hence the results contained therein may be aPpli-
cable to our studies of the space $PH_{p}(R)$ . For convenience, some results of
Naim [1] are quoted in the following. A P-harmonic function $f$ belongs to the
space $PH_{p}(R),$ $ 1\leqq p<+\infty$ , if and only if $|f|^{p}$ has a P-harmonic majorant on
$R$ . By this proposition the definition of $PH_{p}(R)$ is independent of the choice
of $z_{0}\in R$ and the particular exhaustion $\{R_{n}\}$ of $R$ . Any P-harmonic function
$f\in PH_{p}(R)$ is the difference of two positive P-harmonic functions in $PH_{p}(R)$,
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$ 1\leqq p<+\infty$ , and conversely. For $1\leqq p<+\infty,$ $PH_{p}(R)$ is a Banach space under
the norm

$\Vert f\Vert_{p}^{P}=\sup_{n\in N}\Vert f\Vert_{p,n}^{P}(z_{0})$ .
This norm equals $\{_{p}f(z_{0})\}^{1/p}$ , where $pf$ denotes the smallest P-harmonic major-
ant of $|f|^{p}$ in $R$ .

In the theory of $PH_{p}(R)$ we admit the case $P\equiv 0$, but we assume $P\not\equiv O$ on
$R$ in the following. The P-Green function for $R_{n}$ is an extended real valued
function $G^{P}(R_{n}, z, w)$ on $R_{n}\times R_{n}$ such that for each $w\in R_{n},$ (1) $G^{P}(R_{n}, z, w)$ is
P-harmonic on $R_{n}-\{w\}$ ; (2) $G^{P}(R_{n}, z, w)+\log|w-z|$ is bounded in a neighbor-
hood of $w;(3)\lim_{z\rightarrow b}G^{P}(R_{n}, z, w)=0$ for every $b\in\partial R_{n}$ . The increasing sequence
$\{G^{P}(R_{n}, z, w)\}$ converges uniformly on every compact subset of $R$ to a function
$G^{P}(z, w)$ which we call the P-Green function on R. $G^{P}(z, w)$ is the smallest
function of $u(z, w)$ such that (1) $u(z, w)$ is a non-negative P-harmonic function
on $R-\{w\}$ ; (2) $u(z, w)+\log|z-w|$ is bounded in a neighborhood of $w$ . For
these and other properties of the P-Green function we refer to Myrberg [1]

and [2]. An inequality which is a result of Myrberg [2] is quoted here as it
is useful in the following:

(2.1) $\int_{R}G^{P}(z, w)P(z)dxdy\leqq 2\pi$

for every $w\in R$ .
Now, we make some preliminaries on P-superharmonic functions. For any

disk $V$ on $R$ we have the P-harmonic measure $\mu_{z}^{P,V}$ on the boundary $\partial V$ of $V$

with respect to $z\in V$ satisfying

$P_{f}^{V}(z)=\int fd\mu_{z}^{P,V}$

for any continuous function $f$ on $\partial V$, where $P_{f}^{V}$ is a continuous function on the
closure $\overline{V}$ of $V$ such that $P_{f}^{V}=f$ on $\partial V$ and $P_{f}^{V}$ is P-harmonic on $V$. A P-
superharmonic function $s$ on an open set of $R$ is then defined as a function
with the following properties:

a) $ s(z)>-\infty$ at each $ z\in S;s\not\equiv+\infty$ on any component of $S$ ;
b) $s$ is lower semi-continuous on $S$ ;
c) For any disk $V$ such that $\overline{V}\subset S$ ,

$s(z)\geqq\int sd\mu_{z}^{P,V}$

for all $z\in V$ .
If $s$ and $-s$ are P-superharmonic on an open set $S$ of $R$ , then $s$ is P-

harmonic on $S$ .
If $-s$ is P-superharmonic on $S$, then $s$ is said to be P-subharmonic on $S$ .

For example, if $f$ is P-harmonic on an open set $S$ of $R$ , then $|f|^{p},$ $ 1\leqq p<+\infty$ ,
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is P-subharmonic on $S$, and $\max(f, 0),$ $-\min(f, 0)$ are P-subharmonic on S. The
following well-known fact is called the maximum principle and used repeatedly
in proofs in this paper. Let $u$ be a P-subharmonic function on $G$ , and $f$ a
P-harmonic function on $G$ with continuous boundary values. If $G$ is a relative
compact set of $R$ and

$\lim\sup_{z\rightarrow b}u(z)\leqq\lim_{z\rightarrow b}f(z)$

for all $b\in\partial G$ , then $u<f$ on $G$ or $u\equiv f$ on $G$ . This principle is a consequence
of the general theory on harmonic space. In the case of a continuous P-sub-
harmonic function it is given in Myrberg [3].

DEFINITION 2. 2. A P-harmonic function $f$ on a connected Riemann surface
$RbelongstothespacePH_{p}^{\prime}(R),$ $ 1\leqq P<+\infty$ , if and only if there existsa constant
$M$ independent of $n\in N$ such that

$\int_{R_{n}}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy\leqq M$, $w\in R_{n}$ ,

for all $n\in N$.
We shall see that this space $PH_{p}^{\prime}(R)$ is independent of the exhaustion $\{R_{n}\}$

of $R$ .
From now on in this section we shall give properties of our space $PH_{p}^{\prime}(R)$

of P-harmonic functions on a connected Riemann surface $R$ .
THEOREM 2. 1. A P-harmonic function $f$ on $R$ belongs to the space $PH_{p}^{\prime}(R)$,

$ 1\leqq p<+\infty$ , if and only if $|f|^{p}$ has a P-harmonic majorant $u$ on $R$ such that

(2.2) $\int_{R}u(z)G^{P}(z, w)P(z)dxdy\leqq M$

for every $w\in R$ , where $M$ is a positive constant.
PROOF. If such a majorant $u$ does exist on $R$ , then for each $n\in N$

$\Vert f\Vert_{p,n}^{P}(z)=\{\int|f|^{p}d\mu_{n.z}^{p}\}^{1/p}$

$\leqq\{P_{u}^{n}(z)\}^{1/p}$

$=\{u(z)\}^{1/p},$ $z\in R_{n}$ ,

that is, $f\in PH_{p}(R)$ . Furthermore,

$\int_{R_{n}}\{\Vert f\Vert_{p.n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq\int_{R_{n}}u(z)G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq\int_{R}u(z)G^{P}(z, w)P(z)dxdy$

$\leqq M$, $w\in R_{n}$ ,
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for all $n\in N$, from which it follows that $f$ is in the space $PH_{p}^{\prime}(R)$ .
Next, let $f\in PH_{p}^{\prime}(R)$ . Since the sequence $\{(\Vert f\Vert_{p,n}^{P})^{p}\}_{n\in N}$ of P-harmonic

functions is increasing, Definition 2.2 and Harnack’s principle imply that

(2.3) $\lim_{n\rightarrow+\infty}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}$ , $z\in R$ ,

is P-harmonic by Beppo-Levi’s theorem, which is denoted by $u$ . The maximum
principle gives that

$|f(z)|^{p}\leqq P_{|f|}^{n}p(z)$

$=(\Vert f\Vert_{p.n}^{P}(z))^{p}$ ,

from which it follows that $u$ is a P-harmonic majorant of $|f|^{p}$ on $R$ . Since
there exists a constant $M$ independent of $n\in N$ such that

$\int_{R_{n}}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy\leqq M$, $w\in R_{n}$ ,

for all $n\in N$, it follows from Beppo-Levi’s theorem, that

$\int_{R}u(z)G^{P}(z, w)P(z)dxdy$

$=\lim_{n\rightarrow+\infty}\int_{R_{n}}\{\Vert f||_{p.n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq M$, $w\in R$ . Q. E. D.

THEOREM 2.2. Every $f\in PH_{1}^{\prime}(R)$ is the difference of two positive P-harmonic
functions in $PH_{1}^{\prime}(R)$, and conversely.

PROOF. Let $f\in PH_{1}^{\prime}(R)$ . By Theorem 2.1, there is a P-harmonic majorant
$u$ of $|f|$ on $R$ such that

$\int_{R}u(z)G^{P}(z, w)P(z)dxdy\leqq M$

$<+\infty$

for all $w\in R$ . The sequences

$\{\int\max(f_{J}0)d\mu_{n.z}^{p}\}$

and

$\{\int-\min(f, 0)d\mu_{n.z}^{P}\}$

are monotone increasing by the maximum principle and bounded as $n$ increases.
Then, we can define

$f_{1}(z)=\lim_{n\rightarrow+\infty}\int\max(f, 0)d\mu_{n.z}^{P}$

and
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$f_{2}(z)=\lim_{n\rightarrow+\infty}\int-\min(f, 0)d\mu_{n,z}^{P}$, $z\in R$ .

Here, we have, for $i=1,2$ ,

$\int_{R}f_{i}(z)G^{P}(z, w)P(z)dxdy$

$\leqq\int_{R}u(z)G^{P}(z, w)P(z)dxdy$

$\leqq M<+\infty$ , $w\in R$ ,
and

$f(z)=\lim_{n\rightarrow+\infty}\int fd\mu_{z,n}^{P}$

$=f_{1}(z)-f_{2}(z)$ , $z\in R$ .
Next, we assume that

$f(z)=f_{1}(z)-f_{2}(z)$ ,

where $f_{1}$ and $f_{2}$ are positive P-harmonic functions in $PH_{1}^{\prime}(R)$ . Let $u_{i}$ be the
P-harmonic majorant of $f_{i}$ on $R,$ $i=1,2$, such that, for $w\in R$ ,

$\int_{R}u_{i}(z)G^{P}(z, w)P(z)dxdy\leqq M_{i}$

$<+\infty$ , $i=1,2$ .
Then,

$|f(z)|\leqq f_{1}(z)+f_{2}(z)$

$\leqq u_{1}(z)+u_{2}(z)$ , $z\in R$ ,
and

$\int_{R}\{u_{1}(z)+u_{2}(z)\}G^{P}(z, w)P(z)dxdy$

$\leqq M_{1}+M_{2}$ ,

for all $w\in R$ , which implies, by Theorem 2.1, that $f\in PH_{1}^{\prime}(R)$ . Q. E. D.
We denote by $PB(R)$ the space consisting of P-harmonic functions on $R$

with finite supremum norms:
$\Vert f\Vert_{R}=\sup_{z\in R}|f(z)|$ .

THEOREM 2.3. For any finite $1\leqq p\leqq q$ , we have the inclusions

$PB(R)\subset PH_{q}^{\prime}(R)\subset PH_{p}^{\prime}(R)\subset PH_{1}^{\prime}(R)$ .
PROOF. Let $f\in PB(R)$ . Since

$\Vert f\Vert_{q,n}^{P}(z)=\{\int|f|^{q}d\mu_{n.z}^{P}\}^{1/q}$
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$\leqq\Vert f\Vert_{R}\{\int d\mu_{n,z}^{P}\}^{1/q}$

$\leqq\Vert f\Vert_{R}$, $z\in R_{n}$ ,

we have that $f\in PH_{q}(R)$ . Moreover, the inequality (2.1) implies that, for all
$n\in N$,

$\int_{R_{n}}$ $\{I f\Vert_{q.n}^{P}(z)\}^{q}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq(\Vert f\Vert_{R})^{q}\int_{R_{n}}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq 2\pi(\Vert f\Vert_{R})^{q}$, $w\in R_{n}$ .
And so, we have $f\in PH_{q}^{\prime}(R)$, that is, $PB(R)\subset PH_{q}^{\prime}(R)$ .

Next, we assume that $1\leqq p\leqq q$ . From the inequality

$|a|^{p}\leqq 1+|a|^{q}$

for a real number $a$ , it follows that

$\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}=\int|f|^{p}d\mu_{n.z}^{P}$

$\leqq 1+\{\Vert f\Vert_{q.n}^{P}(z)\}^{q}$,
and that

$\int_{R_{n}}\{\Vert f\Vert_{p.n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq\int_{R_{n}}G^{P}(R_{n}, z, w)P(z)dxdy$

$+\int_{R_{n}}\{\Vert f\Vert_{q,n}^{P}(z)\}^{q}G^{P}(R_{n}, z, w)P(z)dxdy$

$\leqq 2\pi+\int_{R_{n}}\{\Vert f\Vert_{q,n}^{P}(z)\}^{q}G^{P}(R_{n}, z, w)P(z)dxdy$ , $u\in R$ .

Therefore, we have
$PH_{q}^{\prime}(R)\subset PH_{p}^{\prime}(R)$ . Q. E. D.

THEOREM 2.4. Any $f$ in $PH_{p}^{\prime}(R)$ is the difference of two pOsitive P-harmonic
functions in $PH_{p}^{\prime}(R)$ , and conversely.

PROOF. We consider the same functions $f_{1}$ and $f_{2}$ on $R$ as that in the
proof of Theorem 2.2, that is,

$f_{1}(z)=\lim_{n\rightarrow+\infty}\int\max(f, 0)d\mu_{n,z}^{P}$ ,

$f_{2}(z)=\lim_{n\rightarrow+\infty}\int-\min(f, 0)d\mu_{n,z}^{P}$
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for $z\in R$ . Since $f\in PH_{p}^{\prime}(R)$ , there exists a P-harmonic majorant $u$ of $|f|^{p}$

satisfying (2.2) in Theorem 2.1. Then, H\"older’s inequality gives that, for $P$ and
$q$ satisfying $ 1<P<+\infty$ $ 1<q<+\infty$ and $1/p+1/q=1$ ,

$\int\max(f, 0)d\mu_{n,z}^{P}$

$\leqq[\int\{\max(f, 0)\}^{p}d\mu_{n,z}^{P}]^{1/p}(\int d\mu_{n,z}^{P})^{1/q}$

$\leqq(\int\max(f, 0)^{p}d\mu_{n,z}^{P})^{1/p}$

$\leqq(\int ud\mu_{n.z}^{P})^{1/p}$

$\leqq\{u(z)\}^{1/p}$ ,

that is, $f_{1}(z)^{p}\leqq u(z)$ on $R$ . And, similarly, we have $f_{2}(z)^{p}\leqq u(z)$ on $R$ . Then,
we complete the proof of the first assertion.

Let $f=f_{1}-f_{2}$ , where $f_{1}$ and $f_{2}$ are positive P-harmonic functions in $PH_{p}^{\prime}(R)$ .
By Theorem 2.1 there exists P-harmonic majorants $u_{1}$ and $u_{2}$ of $f_{1}^{p}$ and $f_{2}^{p}$ on
$R$ , respectively, which satisfy the condition (2.2) in Theorem 2.1. Tben, the
inequality

$(a+b)^{p}\leqq 2^{p}(a^{p}+b^{p}),$ $ 1\leqq P<+\infty$ ,
gives

$|f|^{p}\leqq(f_{1}+f_{2})^{p}$

$\leqq 2^{p}(f_{1}^{p}+f_{2}^{p})$

$\leqq 2^{p}(u_{1}+u_{2})$ ,
and

$\int_{R}(u_{1}(z)+u_{2}(z))G^{P}(z, w)P(z)dxdy\leqq M+M$

for all $w\in R$ , where $M$ is a constant independent of $w\in R$ . Therefore, Theorem
2.1 implies $f\in PH_{p}^{\prime}(R)$ . Q. E. D.

THEOREM 2.5. Let $R$ be a connected Riemann surface on which $P\not\equiv O$ . And,
let

(2.4) $\Vert|f\Vert|_{p}^{P}=\sup_{w\in R}\{\lim_{n\rightarrow+\infty}\frac{1}{2\pi}\int_{R_{n}}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy\}^{1/p}$

for $f\in RH_{p}^{\prime}(R)$ . Then, for $1\leqq P<+\infty,$ $PH_{p}^{\prime}(R)$ is a Banach $sPace$ under the norm
$\Vert|f\Vert|_{p}^{P},$ $f\in PH_{p}^{\prime}(R)$ . This norm equals

(2.5) $\sup_{w\in R}\{\frac{1}{2\pi}\int_{R^{p}}f(z)G^{p}(z, w)P(z)dxdy\}^{1/p}$ ,

where $pf$ denotes the smallest P-harmonic majorant of $|f|^{p}$ in $R$ .
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PROOF. The function $u$ defined by (2.3) in the proof of Theorem 2.1, that
is,

$u(z)=\lim_{n\rightarrow+\infty}\{\Vert f\Vert_{p.n}^{P}(z)\}^{p}$ , $z\in R$ ,

is the smallest P-harmonic majorant of $|f|^{p}$ in $R$ , since, for any P-harmonic
majorant $s$ of $|f|^{p}$ in $R$ , we have

$\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}=P_{|f|}^{n}p(z)$

$\leqq P_{s}^{n}(z)=s(z)$ , $z\in R_{n}$ ,

which gives $u(z)\leqq s(z)$ on $R$ . By Definition 2.2 and $pf=u$ , Lebesgue’s monotone
convergence theorem shows that

$\frac{1}{2\pi}\int_{R^{p}}f(z)G^{P}(z, w)P(z)dxdy$

$=\lim_{n\rightarrow+\infty}\frac{1}{2\pi}\int_{R_{n}}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy$ ,

from which the expression (2.5) of $\Vert|f\Vert|_{p}^{P}$ follows.
Next, we have to show that $PH_{p}^{\prime}(R),$ $ 1\leqq p<+\infty$ , is a vector space with

respect to the usual definitions of addition and scalar multiplication of real
numbers, and that the non-negative real valued function (2.4) is a norm on
$PH_{p}^{\prime}(R)$ . Minkowski’s inequality gives that, for $f$ and $g$ in $PH_{p}^{\prime}(R)$ ,

$[\int_{R_{n}}\{\Vert f+g\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy]^{1/p}$

$\leqq[\int_{R_{n}}\{\Vert f\Vert_{p,n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy]^{1/p}$

$+[\int_{R_{n}}\{\Vert g\Vert_{p.n}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy]^{1/p}$ ,

which implies that $f+g\in PH_{p}^{\prime}(R)$ and

$\Vert|f+g\Vert|_{p}^{P}\leqq\Vert|f\Vert|_{p}^{P}+\Vert|g\Vert|_{p}^{P}$ .
It is clear that, for $f\in PH_{p}^{\prime}(R)$ and a real number $\alpha,$ $\alpha f\in PH_{p}^{\prime}(R)$ and

$\Vert|\alpha f\Vert|_{p}^{P}=|\alpha|\Vert|f\Vert|_{p}^{P}$ .
If $f\in PH_{p}^{\prime}(R)$ satisfies the condition $\Vert|f\Vert|_{p}^{P}=0$, then the smallest P-harmonic
majorant $pf$ of $f$ satisfies that $pf=0$ everywhere on $R$ , since $P\not\equiv O$ on $R$ . So,
$f=0$ everywhere on $R$ .

To prove that $PH_{p}^{\prime}(R)$ is complete with respect to the norm (2.4), let $\{f_{j}\}$

be a Cauchy sequence in $PH_{p}^{\prime}(R)$ with respect to the norm (2.4). Then, we can
find a subsequence $\{f_{J^{(i)}}\},$ $ j(1)<j(2)<\cdots$ , of $\{f_{j}\}$ such that

$\Vert|f_{J^{(i+1)}}-f_{J^{(i)}}\Vert|_{p}^{P}<1/2^{i}$ , $i=1,2,$ $\cdots$ .
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H\"older’s inequality and the inequality (2.1) give that, for $p>1$ ,

$\frac{1}{2\pi}\int_{R}\{p(f_{j(i+1)}-f_{J^{(i)}})(z)\}^{1/p}G^{P}(z, w)P(z)dxdy$

$\leqq\{\frac{1}{2\pi}\int_{R^{p}}(f_{J^{(i+1)}}-f_{J^{(i)}})(z)G^{P}(z, w)P(z)dxdy\}^{1/p}$

$=\Vert|f_{J^{(i+1)}}-f_{J^{(i)}}\Vert|_{p}^{P}$ ,

which is evident for $p=1$ . Therefore, since

$\frac{1}{2\pi}\int_{R}\sum_{i=1}^{k}\{_{p}(f_{J^{(i+1)}}-f_{J^{(i)}})(z)\}^{1/p}G^{P}(z, w)P(z)dxdy$

$\leqq\sum_{i=1}^{k}1/2^{i}<1$

for every positive integer $k$ , Lebesgue’s monotone convergence theorem implies
that the series

(2.6) $\partial_{=1}\infty\{_{p}(f_{J^{(i+1)}}-f_{J^{(i)}})\}^{1/p}$

converges almost everywhere on the support of $P$ .
Let $z_{0}$ be a point of the support of the density $P$ at which (2.6) converges.

Then, from the inequality

$\Vert f_{J^{(l)}}-f_{J^{(k)}}\Vert_{p}^{P}=\Vert\sum_{i=k}^{l- 1}(f_{J^{(i+1)}}-f_{J^{(i)}})\Vert_{p}^{P}$

$\leqq\sum_{i=h}^{l-1}\Vert f_{J^{(i+1)}}-f_{J^{(t)}}\Vert_{p}^{P}$

$=\sum_{i\Rightarrow k}^{l-1}\{p(f_{J^{(i+1)}}-f_{J^{(t)}})(z_{0})\}^{1/p}$

for $k<l$, it follows that the sequence $\{f_{J^{(l)}}\}$ is a Cauchy sequence in $PH_{p}(R)$,
for the series (2.6) converges at $z_{0}$ . So, there exists a function $f$ in $ PH_{p}(R\rangle$

such that
$\lim_{i\rightarrow+\infty}\Vert f_{J^{(i)}}-f\Vert_{p}^{P}=0$ ,

which implies that the sequence $\{f_{j^{(i)}}\}$ converges, uniformly on every compact
subset of $R$ , to $f$ (L. L. Naim [1]).

We now have to prove that $f$ is contained in $PH_{p}^{\prime}(R)$ and

$\lim J\rightarrow+\infty\Vert|f_{j}-f\Vert|_{p}^{P}=0$ .
Since

$f_{J^{(k)}}=\sum_{i=1}^{k-1}(f_{J^{(i+1)}}-f_{J^{(t)}})+f_{J^{(1)}}$ ,

Fatou’s lemma gives that
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$[\frac{1}{2\pi}\int_{R_{n}}\{\Vert f-f_{J^{(l)}}\Vert_{p}^{P}(z)\}^{p}G^{P}(R_{n}, z, w)P(z)dxdy]^{1/p}$

$\leqq[\lim\inf_{k\rightarrow+\infty}\frac{1}{2\pi}\int_{R_{n}}\{\Vert f_{J^{(k)}}-f_{J^{(l)}}\Vert_{p}^{P}(z)\}^{p}$

$\times G^{P}(R_{n}, z, w)P(z)dxdy]^{1/p}$

$\leqq\lim\inf_{k\rightarrow+\infty}\Vert|f_{J^{(k)}}-f_{J^{(l)}}\Vert|_{p}^{P}$

$\leqq\sum_{i=l}^{\infty}\Vert|f_{J^{(i+1)}}-f_{J^{(i)}}\Vert|_{p}^{P}$

$\leqq\sum_{i=l}^{\infty}1/2^{\ell}=1/2^{l-1}$ ,

and so,

(2.7) $\Vert|f-f_{J^{(l)}}\Vert|_{p}^{P}<1/2^{l-1}$ .
We can conclude from this inequality that $f-f_{j(l)}$ is in $PH_{p}^{\prime}(R)$ . Hence, $f$ is
in $PH_{p}^{\prime}(R)$, since

$f=(f-f_{J^{(l)}})+f_{J^{(l)}}$ .
And, furthermore it follows, from (2.7), that

$\lim_{l\rightarrow+\infty}\Vert|f-f_{J^{(l)}}\Vert|_{p}^{P}=0$ ,
which gives that

$\lim J\rightarrow+\infty\Vert|f-f_{j}\Vert|_{p}^{P}=0$ ,

for $\{f_{j}\}$ is a Cauchy sequence in $PH_{p}^{\prime}(R)$ . Q. E. D.
It will be necessary to consider a disconnected Riemann surface in \S 3 and

\S 4. Let

$R=k=1UKW^{k}$

be the decomposition of $R$ into connected components $W^{k}$ of $R$ . We can
assume, without loss of generality, that the density $P$ on $R$ satisPes $P\not\equiv O$ on
$W^{1},$ $W^{2},$

$\cdots,$
$W^{L},$ $1\leqq L\leqq K$, and $P\equiv 0$ on $W^{L+1},$ $W^{L+2},$

$\cdots,$
$W^{K}$ . Since $P\equiv 0$ on $W^{k}$ ,

$L<k\leqq K,$ $PH_{p}(W^{k}),$ $L<k\leqq K$, is the space of harmonic functions on $W^{k}$ such
that $|f|^{p}$ has a harmonic majorant on $W^{k}$ , that is, $PH_{p}(W^{k}),$ $L<k\leqq K$, is the
Hardy space of harmonic functions on $W^{k}$ . This space of harmonic functions
on $W^{k}$ is denoted by $H_{p}(W^{k})$ . It is a result of Parreau [1] that the space
$H_{p}(W^{k})$ is a Banach space under the norm

$\Vert f\Vert_{p}=t_{p}f(z_{0})\}^{1/p}$ , $f\in H_{p}(W^{k})$ ,

where $z_{0}$ is a point in $W^{k}$ . Now, we define the space $PH_{p}^{\prime}(R)$ for the discon-
nected Riemann surface $R$ as follows.
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DEFINITION 2.3. A P-harmonic function $f$ on the disconnected Riemann
surface $R$ belongs to the space $PH_{p}^{\prime}(R),$ $ 1\leqq P<+\infty$ , if and only if each restric-
tion $f|W^{k}$ to $W^{k}$ of $f$ belongs to $PH_{p}^{\prime}(W^{k})$ or $H_{p}(W^{k})$ according as $1\leqq k\leqq L$ or
$L<k\leqq K$.

THEOREM 2.6. Let $R$ be the disconnected Riemann surface on which $p\not\equiv O$ .
And, let

(2.8) $\Vert|f\Vert|_{p}^{P}=\sum_{k=1}^{L}$ $||f|$ $W^{k}\Vert|_{p}^{P}+\sum_{k=L+1}^{K}\Vert f|W^{k}\Vert_{p}$

for $f\in PH_{p}^{\prime}(R)$ . Then, for $1\leqq p<+\infty,$ $PH_{p}^{\prime}(R)$ is a Banach $sPace$ under the
norm (2.8). This norm equals

$\sum_{k=1}^{L}\sup_{w\in W^{k}}\{\frac{1}{2\pi}\int_{W^{k^{p}}}(f|W^{k})(z)G^{P}(W^{k}, z, w)P(z)dxdy\}^{1/p}$

$+\sum_{k=L+1}^{K}t_{p}(f|W^{k})(z^{k})\}^{1/p}$ ,

where $p(f|W^{k}),$ $1\leqq k\leqq K$, denotes the smallest P-harmonic majorant of $|f|W^{k}|^{p}$

on $W^{k}$ and $z^{k},$ $L<k\leqq K$, is a Point in $W^{k}$ .
PROOF. This is clear by the preceding lemma. Q. E. D.
In the following of this section we consider the relation between two

Banach spaces $PH_{p}(R)$ and $PH_{p}^{\prime}(R)$ under the assumption that the density $P$

vanishes outside a compact subset of the connected Riemann surface $R$ .
LEMMA 2.7. If the density $P$ vanishes outside a comPact subset of $R$ , then

$PH_{p}^{\prime}(R)=PH_{p}(R)$ and there exists a positive constant $C$ such that

$\Vert|f\Vert|_{p}^{P}\leqq C\Vert f\Vert_{p}^{P}$

for every $f\in PH_{p}(R)$ .
PROOF. We assume that $P$ vanishes outside a compact subset $K$ of $R$ . Let

$z_{0}$ be a point of $R$ with $z_{0}\not\in K$. Then, there exists, by Harnack’s theorem
(Myrberg [1]), a constant $c$ such that

$pf(z)\leqq c\times pf(z_{0})$

for every $z\in K$ and every $f\in PH_{p}(R)$ . Therefore, the inequality (2.1) gives that

$\frac{1}{2\pi}\int_{R^{P}}f(z)G^{P}(z, w)P(z)dxdy$

$=\frac{1}{2\pi}\int_{K^{p}}f(z)G^{P}(z, w)P(z)dxdy$

$\leqq\frac{1}{2\pi}c\times pf(z_{0})\int_{R}G^{P}(z, w)P(z)dxdy$

$\leqq c\times pf(z_{0})$ ,
and so,
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$1Ilfll1_{p}^{P}\leqq(c)^{1/p}\times\Vert f\Vert_{p}^{P}$ ,

which completes the proof. Q. E. D.
THEOREM 2.6. If the density $P$ vanishes outside a $comPact$ subset of $R$ , then

the Banach sPace $(PH_{p}^{\prime}(R), \Vert|\cdot\Vert|_{p}^{P})$ is isomorPhic to the Banach sPace $(PH_{p}(R)$ ,
$\Vert\cdot\Vert_{p}^{P})$ .

PROOF. The identity map of $(PH_{p}(R), \Vert\cdot\Vert_{p}^{P})$ onto $(PH_{p}^{\prime}(R), \Vert|\cdot\Vert|_{p}^{P})$ is a one-
to-one continuous linear transformation and so must be an isomorphism by the
open mapping theorem. Q. E. D.

\S 3. The structure of $PH_{p}^{\prime}(R)$ .

Let $W$ be a connected or disconnected open subset of $R$ whose complement
is a regular region. Hereafter we always use $W$ for such a subset of $R$ . To
show that the Banach space structure of $PH_{p}^{\prime}(R)$ is determined by the behavior
of the density $P$ on a neighborhood of the ideal boundary of $R$ , we define the
subset $PH_{p}^{\prime}(W;\partial W)$ of $PH_{p}^{\prime}(R)$ as follows.

DEFINITION 3.1. $PH_{p}^{\prime}(W;\partial W),$ $ 1\leqq P<+\infty$ , is the class of all functions $f$ in
$PH_{p}^{\prime}(W)$ such that there exists a continuous extension of $f$ to the closure It’ of
$W$ whose restriction to the boundary $\partial W$ of $W$ vanishes.

Then, $PH_{p}^{\prime}(W;\partial W)$ is a vector space with respect to the usual definitions
of addition and scalar multiplication of real numbers. And, $PH_{p}^{\prime}(W;\partial W)$ is a
subspace of the Banach space $PH_{p}^{\prime}(W)$ with the norm (2.8) in Theorem 2.6:

THEOREM 3.1. $PH_{p}^{\prime}(W;\partial W)$ is a closed linear subspace of $PH_{p}^{\prime}(W)$ .
PROOF. Let $f\in PH_{p}^{\prime}(W)$ be the limit of a sequence $\{f_{n}\}$ in $PH_{p}^{\prime}(W;\partial W)$ :

$\lim_{n\rightarrow+\infty}\Vert|f-f_{n}\Vert|_{p}^{P}=0$ .
It is sufficient to show that $f|W^{k}$ has a continuous extension to $\overline{W}^{k}$ whose

restriction to $\partial W^{k}$ vanishes for each connected component $W^{k}$ of $W$. If $P\not\equiv O$

on $W^{k}$ , then there exists a subsequence $\{f_{n(t)}\}$ of $\{f_{n}\}$ which converges, uni-
formly on every compact subset of $W^{k}$ , to $f$, by the proof of Theorem 2.5. If
$P\equiv 0$ on $W^{k}$ , the existence of such a subsequence $\{f_{n(i)}\}$ follows from the fact

$\lim_{n\rightarrow+\infty}\Vert f|W^{k}-f_{n}|W^{k}\Vert_{p}^{P}=0$ .

Let $G^{k}$ be a regular region which contains the boundary of $W^{k}$ , and let $w$

be a continuous function on the closure of $G^{k}\cap W^{k}$ such that $w$ is P-harmonic $-$

on $G^{k}\cap W^{k}$ and $w$ have $w|\partial G^{k}=m^{k},$ $w|\partial W^{k}=0$, where

$m^{k}=\sup_{z\in G^{k}\cap Wk}|f|W^{k}(z)|+1$ .
Then, by the maximum principle we have that

$|f_{n(t)}(z)|\leqq w(z)$ , $z\in G^{k}\cap W^{k}$
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for sufficiently large $i\in N$, and so,

$|f(z)|=\lim_{i\rightarrow+\infty}|f_{n(i)}(z)|$

$\leqq w(z)$ , $z\in G^{k}\cap W^{k}$

This shows that $\lim_{z\rightarrow b}f(z)=0$ for all $b\in\partial W^{k}$ , that is, if we extend $f$ on $\partial W^{k}$

so that $f(b)=0$ for $b\in\partial W^{k}$ , then $f$ belongs to $PH_{p}^{\prime}(W;\partial W)$ , which complets the
proof. Q. E. D.

LEMMA 3.2. Let $f$ be in $PH_{p}^{\prime}(W;\partial W)$ . Then, the smallest P-harmonic
majorant $pf$ of $|f|^{p}$ has a continuous extension to $\overline{W}$ whose restriction to $\partial W$

vanishes.
PROOF. It is sufficient to prove only that $pf|W^{k}$ have this property. The

sequence $\{(\Vert f|W^{k}\Vert_{p,n}^{P}(z))^{p}\}$ , which is a monotone increasing sequence of P-har-
monic functions on $R_{n}\cap W^{k}$ , converges to $pf|W^{k}$ . Harnack’s principle implies
that the convergence is locally uniform in $W^{k}$ . Let $G^{k}$ be the same subset of $R$

as that in Theorem 3.1, and let $w$ be the P-harmonic function on $G^{k}\cap W^{k}$ which
have a continuous extension to the closure of $G^{k}\cap W^{k}$ such that $w|\partial W^{k}=0$

and $w|\partial G^{k}=1$ . Then, by the same way as that in the proof of Theorem 3.1,
we can show that

$\{\Vert f|W^{k}\Vert_{p,n}^{P}(z)\}^{p}\leqq\beta^{k}w(z)$ , $z\in W^{k}\cap G^{k}$ ,

for sufficiently large $n\in N$, where

$\beta^{k}=\sup_{z\in\partial G^{k}\cap W^{k}}pf(z)$ .
Therefore,

$pf|W^{k}(z)\leqq\beta^{k}w(z)$, $z\in W^{k}\cap G^{k}$ ,

which implies the conclusion. Q. E. D.
In Rodin and Sario [1] they discussed the problem of finding on a given

harmonic space a harmonic function which imitates the behavior of a given
harmonic function on a neighborhood of the ideal boundary of the harmonic
space. We quote from Chapter VI of Rodin and Sario [1] the method of find-
ing a P-harmonic function which imitates the behavior of a given P-harmonic
function on a neighborhood of the ideal boundary of the connected Riemann
surface $R$ . This problem of finding such a P-harmonic function on $R$ can be
stated as the following: Given a continuous function $f$ on the closure $\overline{W}$ of
$W$ which is P-harmonic on $W$, find a P-harmonic function $F$ on $R$ with

$\sup_{z\in W}|F(z)-f(z)|<+\infty$ ,

where $W$ is a neighborhood of the ideal boundary of $R$ : in particular, an open
subset of $R$ whose complement is a regular region of $R$ .

Let $\{R_{n}\}$ be an exhaustion of $R$ with $\partial R_{n}\subset(W-\partial W)$ . Then, we can find
a unique continuous function $B_{n}(f)$ on the closure of $R_{n}\cap(W-\partial W)$ which is
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P-harmonic on $R_{n}\cap(W-\partial W)$ and which takes the boundary values $f$ and $0$ on
the boundaries $\partial W$ and $\partial R_{n}$ , respectively. Since $\lim_{n\rightarrow+\infty}B_{n}(f)$ exists, an oper-
ator $f\rightarrow B(f)$ from the space of all continuous functions on $\partial W$ into the space
of continuous functions on $\overline{W}$ which is P-harmonic on $W-\partial W$ is defined by

$B(f)=\lim_{n\rightarrow+\infty}B_{n}(f)$ .
The operator $B$ has the following properties:

(B1) $B(f+g)=B(f)+B(g),$ $B(cf)=cB(f)$ ,
(B2) $B(f)|\partial W=f$,
(B3) $\min(O, \min_{\partial W}f)\leqq B(f)\leqq\max(0, \max_{\partial W}f)$ ,

where $f$ and $g$ are continuous functions on $\partial W$ and $c$ is a real number.
Since the density $P$ of our equation (1.1) does not vanish constantly, the

harmonic space defined by the equation (1.1) is hyperbolic, that is, $B(1)\not\equiv 1$ for
some choice of $W\subset R$ , or there is an open set in $R$ on which the constant
function 1 is not P-harmonic. Therefore, as a special case of principal func-
tion problem solved by Nakai, we have the following existence theorem; Let
$f$ be a continuous function on $\overline{W}$ which is P-harmonic on $W$. Then there
always exists a unique $(f, B)$-principal function, that is, a P-harmonic function
$F$ on $R$ with

$B(F|\partial W-f|\partial W)=F|W-f$ on $W$.
By reformulation this theorem we obtain the complete solution of the above
problem.

To show that the Banach spaces $PH_{p}^{\prime}(R)$ and $PH_{p}^{\prime}(W;\partial W)$ are isomorphic
we dePne an operator $\lambda_{P}^{W}$ as follows. Let $P(R)$ be the space of all P-harmonic
function on $R$ . And, consider the linear space $P(W;\partial W)$ of continuous func-
tions on $\overline{W}$ which are P-harmonic on $W$ and whose restriction to $\partial W$ vanish
constantly.

DEFINITION 3.2. We define an operator $\lambda_{P}^{W}$ by

$\lambda_{P}^{W}(f)=\lim_{n\rightarrow+\infty}P_{f}^{n}$

for $f\in P(W;\partial W)$ which is the difference of two non-negative functions in $P(W$ ;
$\partial W)$, where $P_{f}^{n}$ is the solution of Dirichlet problem of the equation (1.1) with
the boundary value $f$ on $\partial R_{n}$ .

To see that the operator $\lambda_{P}^{W}$ is well-defined for such a $f$ in $P(W;\partial W)$, let

$f=f_{1}-f_{2},$ $f_{i}\in P(W;\partial W),$ $f_{i}\geqq 0$ , $i=1,2$ .
We can find, by the existence theorem of the principal function problem, P-
harmonic functions $F_{1},$ $F_{2}$ defined on $R$ satisfying

$\sup_{z\in W}|F_{i}(z)-f_{i}(z)|<+\infty$ , $i=1,2$ .
These supremums are denoted by $m_{1}$ and $m_{2\prime}$ respectively. Since
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$F_{i}+m_{l}\geqq P_{f_{i}}^{n}$ on $R_{n}(i=1,2)$

for every $n\in N$ and the sequences $\{P_{f_{1}}^{n}\}$ and $\{P_{f_{2}}^{n}\}$ are monotone increasing
sequences of P-harmonic functions, the $\lim_{n\rightarrow+\infty}P_{f_{i}}^{n}(i=1,2)$ is a P-harmonic
function by Harnak’s theorem. Therefore, we have

$\lim_{n\rightarrow+\infty}P_{f}^{n}=\lim_{n\rightarrow+\infty}P_{f_{1}}^{n}-\lim_{n\rightarrow+\infty}P_{f_{2}}^{n}$ ,

that is, $\lambda_{P}^{W}(f)$ is well-defined for any difference $f=f_{1}-f_{2}$ of two non-negative
functions in $P(W;\partial W)$ and is a P-harmonic function on $R$ .

This operator $\lambda_{P}^{W}$ is referred to as the canonical extension, and was defined
by Nakai [3] on the smaller domain than that of our dePnition. The domain
in his definition was the class $PB(W;\partial W)$ of bounded continuous functions on
$\overline{W}$ P-harmonic on $W$ and vanishing on $\partial W$.

Since the P-Green function $G^{P}(z, W)$ is strictly positive, symmetric and con-
tinuous on $R\times R$ and is finite unless $z=w,$ $G^{P}(z, w)$ is taken as a kernel in the
sense of potential theory. If $\mu$ is a measure on $R$ and

$G^{P}(z, \mu)=\int_{R}G^{P}(z, w)d\mu(w)$

is P-superharmonic on $R$ , then $G^{P}(z, \mu)$ is called the P-Green potential of $\mu$ .
The P-Green potentials are quite similar to the harmonic Green potentials.
Since the potential theoretic method is a powerful tool for the study of the
operator $\lambda_{P}^{W}$ and is extensively used in this section, we list some important
potential theoretic principles in the following. The theory of P-Green poten-
tials is developed in Nakai [2].

FROSTMAN’S MAXIMUM PRINCIPL. If the inequality $G^{P}(z, \mu)\leqq 1$ holds on the
compact support $S_{\mu}$ of $\mu$ , then the same inequality holds on the whole space $R$ .

EEQUILIBRIUM PRINCIPLE. For an arbitrary compact subset $K$ of $R$ there
always exists a unique measure called equilibrium measure of $K$ satisfying $S_{\mu}\subset K$

and $G^{P}(z, \mu)=1$ on $K$ except for a subset of $\partial Kof$ capacity zero and $G^{P}(z, \mu)\leqq 1$

on $R$ .
To show that the range $\lambda_{P}^{W}(PH_{p}^{\prime}(W;\partial W))$ of $\lambda_{P}^{W}$ is contained in $PH_{p}^{\prime}(R)$ ,

we shall prepare three lemmas.
LEMMA 3.3. Let $S$ and $T$ be oPen subsets of $R$ and $H$ a non-negative func-

tion on $S\times T$. If $(a)$ for each $w\in T,$ $H$( , w) is continuous on $S,$ $(b)$ for each
$z\in S,$ $H(z, \cdot)$ is P-harmonic on $T$ and $(c)$

$ h(w)=\int_{s}H(z, w)d\mu(z)<+\infty$

for each $w\in T$ , then $h$ is P-harmonic on $T$.
PROOF. It can be shown that $H(z, w)$ is a non-negative measurable func-

tion on $S\times T$ to which Fubini’s theorem can be applied. Then, for any disk



298 T. SATO

$V$ such that VcT

$\int hd\mu_{\omega}^{P.V}=\int_{s}\{\int_{\partial V}H(z, \cdot)d\mu_{w}^{P.V}\}d\mu(z)$ ,

where $\mu_{w}^{P,V}$ is the P-harmonic measure with respect to $V$ and $w\in V$. This
shows that $h$ is P-harmonic on $T$. Q. E. D.

The following lemma gives a relation between P-Green’s potentials for
different regions, when one is a subset of the other. For the harmonic case,
this fact is stated in Helmes [1]. So we only restate it for our case.

LEMMA 3.4. Let $S$ and $T$ be regular regions such that $S\supset T$, and let $\mu$ be
a measure on $S$ such that $\mu(S-T)=0$ and $G^{P}(S, z, \mu)$ is a finite P-Green’s
pOtential. Then, there is a non-negative P-harmonic function $h$ on $T$ which
satisfies

$G^{P}(S, z, \mu)=G^{P}(T, z, \mu|T)+h(z)$

on $T$, where $\mu|T$ is the restriction of $\mu$ on $T$ and $G^{P}(S, z, w)$ is the P-Green’s
function of $S$.

PROOF. For $z,$ $w\in T$ with $z\neq w$ , let

$H(z, w)=G^{P}(S, z, w)-G^{P}(T, z, w)$ ,

which is positive. Then, for each $z\in T,$ $H(z, w)$ is a P-harmonic function on
$T$, since $z$ is a removable singular point, and so, $H(z, \cdot)$ is a continuous func-
tion for each $z\in T$ . Also, $H(\cdot, w)$ is a P-harmonic function for each $w\in T$, for
$H(z, w)$ is symmetric. Since $G^{P}(S, z, \mu)\geqq G^{P}(T, z, \mu|T)$ on $T$ by $ G^{P}(S, z, w)\geqq$

$G^{P}(T, z, w)$ on $T\times T$,

$ G^{P}(S, z, \mu)-G^{P}(T, z, \mu|T)=\int_{T}H(z, w)d\mu(w)<+\infty$ ,

where the last integral is a P-harmonic function on $T$ by the preceding lemma.
Q. E. D.

Let $W$ be an open subset of $R$ whose complement is a regular region. We
assume that $P\not\equiv O$ on $W^{1},$ $W^{2},$

$\cdots,$
$W^{L},$ $(1\leqq L\leqq K)$ and $P\equiv 0$ on $W^{L+1},$ $W^{L+2},$ $\cdots$ ,

$W^{K}$ , where

$W=\bigcup_{i=1}^{K}W^{i}$

is the decomposition of $W$ into connected components $W^{1},$ $W^{2},$
$\cdots,$

$W^{K}$ .
LEMMA 3.5. If a nonnegative P-harmonic function $f$ in $P(W;\partial W)$ satisfies

that, for every $i,$ $1\leqq i\leqq L$,

$\sup_{w\in W^{i}}\int_{W^{i}}f|W^{i}(z)G^{P}(W^{i}, z, w)P(z)dxdy<+\infty$ ,

ihen
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$\sup_{w\in R}\int_{R}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy<+\infty$ .
PROOF. Let $\{R_{n}\}$ be an exhaustion of $R$ such that $\partial R_{0}\subset W$. Then, since

the sequence $\{P_{f}^{n}\}$ converges increasingly to $\lambda_{P}^{W}(f)$ on $R$ , the maximum principle
gives that

$P_{f}^{n}\leqq\max_{\partial W}\lambda_{P}^{W}(f)+f$

on $R_{n}\cap W^{i}$ for each $n\in N$. Therefore, for $1\leqq i\leqq L$,

$\int_{R_{n}\cap W^{i}}P_{f}^{n}(z)G^{P}(R_{n}\cap W^{i}, z_{f}w)P(z)dxdy$

$\leqq\max_{\partial W}\lambda_{P}^{W}(f)\times\int_{R_{n}\cap W^{i}}G^{P}(R_{n}\cap W^{i}, z, w)P(z)dxdy$

$+\int_{R_{n}\cap W^{i}}f(z)G^{P}(R_{n}\cap W^{i}, z, w)P(z)dxdy$

$\leqq 2\pi\times\max_{\partial W}\lambda_{P}^{W}(f)+\sup_{w\in W^{i}}\int_{W^{i}}f(z)G^{P}(W^{i}, z, w)P(z)dxdy$

$<+\infty$ .
Let

(3.1) $M^{i}=\sup_{w\in W^{i}}\int_{W^{i}}\lambda_{P}^{W}(f)|W^{i}(z)G^{P}(W^{i}, z, w)P(z)dxdy$ .
Then, Lebesgue’s monotone convergence theorem gives that

$\int_{W^{i}}\lambda_{P}^{W}(f)|W^{i}(z)G^{P}(W^{i}, z, w)P(z)dxdy$

$=\lim_{n\rightarrow+\infty}\int_{R_{n}\cap W^{i}}P_{f}^{n}(z)G^{P}(R_{n}\cap W^{i}, z, w)P(z)dxdy$

$\leqq 2\pi\times\max_{\partial W}\lambda_{P}^{W}(f)+\sup_{w\in W^{i\int_{W^{i}}f|W^{i}(z)G^{P}(W^{i},z,w)P(z)dxdy}}$ ,

from which it follows that $M^{i}<+\infty,$ $1\leqq i\leqq L$ .
To show that the integral

(3.2) $\int_{R}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

is a P-Green’s potential, that is, $\not\equiv+\infty$ , let $\alpha$ be a number such that

$\sup_{z\in\partial R_{0}}G^{P}(z, w_{0})<\alpha$ ,
and let

$\beta^{i}=\inf_{z\in\partial R_{0}\cap W^{i}}G^{P}(W^{i}, z, w_{0})$ ,

where $w_{0}$ is a fixed point in $(W^{i}-\partial W^{i})\cap R_{0}$ . Since the sequence $\{G^{P}(R_{n}, z, w)\}$

converges increasingly to $G^{P}(z, w)$ on $R$ , we have
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$\sup_{z\in\partial R_{0}}G^{P}(R_{n}, z, w_{0})<\alpha$

for every $n\in N$. Then, the maximum principle gives that

$G^{P}(R_{nz}z, w_{0})\leqq\delta^{i}G^{P}(W^{i}, z, w_{0})$

on $(R_{n}-\overline{R}_{0})\cap W^{i}$, where $\delta^{i}=\alpha/\beta^{i}$ . So, we have

(3.3) $G^{P}(z, w_{0})=\lim_{n\rightarrow+\infty}G^{P}(R_{n}, z, w_{0})$

$\leqq\delta^{i}G^{P}(W^{i}, z, w_{0})$

on $(R-R_{0})\cap W^{t}$ . Since (3.1) and (3.3) give that

$\int_{(R- R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(z, w_{0})P(z)dxdy$

$\leqq\delta^{i}\times\sup_{w\in W^{i}}!_{(R-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(W^{i}, z, w_{0})P(z)dxdy$

$\leqq\delta^{i}M^{i}<+\infty$ ,

which shows that

$\int_{(R- R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$ , $1\leqq i\leqq L$ ,

is a P-Green potential. Then,

$\int_{R-R_{0}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$=\sum_{i=1}^{L}\int_{(R-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

is a P-Green potential. And, since

$\int_{\overline{R}_{0}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$\leqq\sup_{\overline{R}_{0}}\lambda_{F}^{W}(f)\times\int_{R}G^{P}(z, w)P(z)dxdy$

$\leqq 2\pi\times\sup_{\overline{R}_{0}}\lambda_{P}^{W}(f)$

$<+\infty$ ,

the integral (3.2) is a P-Green potential.
To show that the P-Green potential (3.2) is finite everywhere on $R$ , let $w$

be any point in $R$ , and let $V$ be a disc with center at $w$ . Then, since the P-
Green potential

$\int_{R-V}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

is P-harmonic on $V$ : continuous on $V$, the inequality
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$\int_{V}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$\leqq\sup_{\overline{V}}\lambda_{P}^{W}(f)\times\int_{R}G^{P}(z, w)P(z)dxdy$

$\leqq 2\pi\times\sup_{\overline{V}}\lambda_{P}^{W}(f)$

$<+\infty$

implies that the P-Green potential (3.2) is finite everywhere on $R$ .
The integral

$\int_{(R_{n}-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(R_{n+1}, z, w)P(z)dxdy$ , $1\leqq i\leqq L_{f}$

is a finite P-Green potential on $R_{n+1}$ , for this integral is smaller than the
integral (3.2). So, Lemma 3.4 implies that there exists a P-harmonic function
$u_{n}^{i}$ on $W^{i}\cap R_{n+1}$ such that

(3.4) $\int_{(R_{n}-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(R_{n+1}, z, w)P(z)dxdy$

$=\int_{(R_{n}-R_{0})\cap W^{l}}\lambda_{P}^{W}(f)(z)G^{P}(R_{n+1}\cap W^{i}, z, w)P(z)dxdy+u_{n}^{i}(w)$

for $w\in W^{i}\cap R_{n+1}$ . Since $u_{n}^{i}|\partial R_{n+1}\cap W^{i}=0$ and, for any $w_{0}\in\partial W^{i}$ ,

$u_{n}^{i}(w_{0})=\int_{(R_{n}-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(R_{n+1}, z, w_{0})P(z)dxdy$

$\leqq\sup_{w\in\partial W^{i}}\int_{R-R_{0}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$<+\infty$ ,

denoting by $\epsilon^{i}$ the above supremum the maximum principle gives

$u_{n}^{i}\leqq\epsilon^{i}$ on $R_{n+1}\cap W^{i}$ .
Since, by (3.3) and (3.4), the $Lebesgue’ s_{-}^{-}monotone$ convergence theorem implies
that

$\int_{(R-R_{0})\cap W^{t}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$=\lim_{n\rightarrow+\infty}\int_{(R_{n}-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(R_{n+1}, z, w)P(z)dxdy$’

$=\int_{(R-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(W^{i}, z, w)P(z)dxdy+\lim_{n\rightarrow+\infty}u_{n}^{i}(w)$

$\leqq M^{i}+\epsilon^{i}$ , $w\in W^{i}$ ,

the Frostman’s maximum principle shows that the inequality
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$\int_{(R- R_{0})\cap W^{l}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$\leqq M^{i}+\epsilon^{i}$

holds on $R$ , for the support of the measure of the P-Green potential

$\int_{(R-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

is contained in $W^{i}$ . Therefore, we have

$\int_{R}\lambda\Psi(f)(z)G^{P}(z, w)P(z)dxdy$

$=\sum_{i=1}^{L}\int_{(R-R_{0})\cap W^{i}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$+\int_{\overline{R}_{0}}\lambda_{P}^{W}(f)(z)G^{P}(z, w)P(z)dxdy$

$\leqq\sum_{i=1}^{L}(M^{i}+\epsilon^{i})+2\pi\times\sup_{\overline{R}_{0}}\lambda_{P}^{W}(f)$

for every $w\in R_{f}$ which completes the proof. Q. E. D.
THEOREM 3.6. $\lambda_{P}^{W}(PH_{p}^{\prime}(W;\partial W))cPH_{p}^{\prime}(R),$ $ 1\leqq P<+\infty$ .
PROOF. Let $f$ be in $PH_{p}^{\prime}(W;\partial W)$ . Theorem 2.5 states that the smallest

P-harmonic majorant $p(f|W^{i})$ of $|f|W^{i}|^{p}$ on $W^{i}$ satisfies

(3.5) $supw\in W^{i\int_{W^{i^{p}}}(f|W^{i})(z)G^{P}(W^{i},z,w)P(z)dxdy<}+\infty$ ,

for $i,$ $1\leqq i\leqq L$ . By Definition 3.2 and Lemma 3.2, the maximum principle shows
that

$\lambda_{P}^{W}(pf)\geqq pf$ on $W$.
Then, since $\{\lambda_{P}^{W}(Pf)\}^{1/p}$ is a P-superharmonic function on $R$ by H\"older’s in-
equality, we have

$|P_{f}^{n}|\leqq\{\lambda_{P}^{W}(Pf)\}^{1/p}$ on $R_{n}$ ,

from which it follows that

$|\lambda_{P}^{W}(f)|^{p}=|\lim_{n\rightarrow+\infty}P_{f}^{n}|^{p}$

$\leqq\lambda_{P}^{W}(pf)$ on $R$ .
That is, $\lambda_{P}^{W}(pf)$ is a P-harmonic majorant of $|\lambda_{P}^{W}(f)|^{p}$ on $R$ . And, by (3.5),
Lemma 3.5 shows that

$\sup_{w\in R}\int_{R}\lambda_{P}^{W}(pf)(z)G^{P}(z, w)P(z)dxdy<+\infty$ .

Therefore, by Theorem 2.1, $\lambda_{P}^{W}(f)$ belongs to the space $PH_{p}^{\prime}(R)$ . Q. E. D.
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Let $\{R_{n}\}$ be an exhaustion such that $R_{0}\supset\partial W$. For a given function $g$ on
$W$, let $g_{n}$ be a function defined on $\partial R_{n}\cup\partial W$ such that

$g_{n}|\partial W=0$ and $g_{n}|\partial R_{n}=g$ .
If $g$ is a non-negative P-harmonic function on $R$ , the sequence $\{P_{g_{n}^{n}}^{R\cap W}\}$ is a
monotone decreasing sequence of P-harmonic functions. Then,

$\lim_{n\rightarrow+\infty}P_{g_{n}^{n}}^{R\cap W}$

exists and is a P-harmonic function on $R$ . Now, if $g$ is the difference of two
non-negative P-harmonic functions, then we can define an operator $\mu_{P}^{W}$, which
was referred to as the canonical restriction by Nakai ([3], [4]), as follows:

DEFINITION 3.3. For $g\in P(R)$ which is the difference of two non-negative
P-harmonic functions on $R_{f}$

$\mu_{P}^{W}(g)=\lim_{n\rightarrow+\infty}P_{g_{n}^{n}}^{R\cap W}$ .

THEOREM 3.7. $\mu_{P}^{W}\circ\lambda_{P}^{W}$ is the identity maPping on $PH_{p}^{\prime}(W;\partial W)$ .
PROOF. Let $f$ be in $PH_{p}^{\prime}(W;\partial W)$ , and suppose $f\geqq 0$ on $W$. Since

$P^{R_{n}\cap W}=f+P^{R_{n}\cap W}(\lambda_{P}^{W}(f))_{n}(\lambda_{P}^{W}(f)-f)_{n}$

and
$0\leqq P^{R_{n}\cap W}$

$(\lambda_{P}^{W}(f)-f)_{n}$

$\leqq P^{R_{n}}\lambda_{P}^{W}(f)-f$

$=\lambda_{P}^{W}(f)-P_{f^{n}}^{R}$ on $R_{n}\cap W$ ,

we have, by $\lambda_{P}^{W}(f)=\lim_{n\rightarrow+\infty}P_{f^{n}}^{R}$ , that

(3.6) $\mu_{P}^{W}\circ\lambda_{P}^{W}(f)=\mu_{P}^{W}(\lambda_{P}^{W}(f))$

$=\lim_{n\rightarrow+\infty}P^{R_{n}\cap W}(\lambda_{P}^{W}(f))_{n}$

$=f$

for every $f\in PH_{p}^{\prime}(W;\partial W)$ with $f\geqq 0$ on $W$. From the linearity of $\lambda_{P}^{W}and^{-}\mu_{P}^{W}$,
(3.6) follows for any $f\in PH_{p}^{\prime}(W;\partial W)$ . Q. E. D.

LEMMA 3.8.
$\mu_{P}^{W}(PH_{p}^{\prime}(R))cPH_{p}^{\prime}(W;\partial W)$ .

PROOF. It is sufficient to prove this lemma only for a non-negative $g$ in
$PH_{p}^{\prime}(R)$ . Then, from

$g\geqq P_{g_{n}^{n}}^{R\cap W}$

on $R_{n}\cap W$, it follows that
$pg\geqq|g|^{p}$
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$\geqq|\lim_{n\rightarrow+\infty}P_{g_{n}^{n}}^{R\cap W}|^{p}$

$=|\mu_{P}^{W}(g)|^{p}$

on $W$, that is, $pg|W$ is a P-harmonic majorant of $|\mu_{P}^{W}(g)|^{p}$ on $W$. Furthermore,
Theorem 2.5 shows that

$\sup_{w\in R}\int_{R^{p}}g(z)G^{P}(z, w)P(z)dxdy<+\infty$ ,

which implies, by Theorem 2.1, that $\mu_{P}^{W}(g)\in PH_{p}^{\prime}(W)$ for every $g$ in $PH_{p}^{\prime}(R)$ .
And, it is shown that $\mu_{P}^{W}(g)$ has a continuous extension to the closure $\overline{W}$ of
$W$ whose restriction to $\partial W$ vanishes. That is, $\mu_{P}^{W}(g)\in PH_{p}^{\prime}(W;\partial W)$ .

Q. E. D.
A P-potential on $R$ is a non-negative P-superharmonic function on $R$ whose

greatest P-harmonic minorant is non-positive. As in the case of classical Green
potentials, we can show that any P-harmonic minorant of a P-Green potential
is non-positive. Then, a P-Green potential is a P-potential. It is useful to
modify a terminology and a lemma which was stated in Nakai $\llcorner\ulcorner 3$]. A func-
tion $f$ on $R$ will be referred to as a quasi $P$-Potential if $|f|$ is majoranted by a
P-potential.

LEMMA 3.9. If $f$ is a continuous quasi $P$-Potential such that $-|f|$ is P-
superharmonic on $R_{f}$ then $f\equiv 0$ on $R$ .

PROOF. Assume that $|f|$ is majorated by a P-potential $p$ . Since

$0\leqq|f|$

$\leqq P_{f1}^{R_{n}}\leqq P_{p^{n}}^{R}\}$

from
$\lim_{n\rightarrow+\infty}P_{p^{n}}^{R}=0$

it follows that $f\equiv 0$ on $R$ . Q. E. D.
THEOREM 3.10. $\lambda_{P}^{W}\circ\mu_{P}^{W}$ is the identity maPping on $PH_{p}^{f}(R)$ .
PROOF. For $f\in PH_{p}^{\prime}(R)$ , let $f_{n}$ and $f_{n}^{\prime}$ be functions on $\partial R_{n}\cup\partial W$ such that

$f_{n}|\partial R_{n}=f$, $f_{n}|\partial W=0$

and
$f_{n}^{\prime}|\partial R_{n}=0$, $f_{n}^{\prime}|\partial W=f$ .

If $f\geqq 0$ on $R$ , by the equilibrium principle, there exists a P-Green potential
$G^{P}(z, \mu)$ such that

$G^{P}(z, \mu)\leqq\sup_{R-W}f$, $z\in R$ ,

$G^{P}(z, \mu)=\sup_{R-W}f$, $z\in R-W$,

and the support of $\mu$ is contained in $R-W$. Since

$0\leqq f(z)-P_{f_{n}}^{R_{\eta}\cap W}(z)$
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$=P_{f_{n}}^{R_{\eta_{/}}\cap W}(z)\leqq G^{P}(z, \mu)$, $z\in R_{n}\cap W$,

for every $n\in N$, it follows that

$0\leqq f(z)-\mu_{P}^{W}(f)(z)$

$=f(z)-\lim_{n\rightarrow+\infty}P_{f_{n}}^{R_{n}\cap W}(z)$

$\leqq G^{P}(z, \mu)$ , $z\in W$,

which shows that the function $f-\mu_{P}^{W}(f)$ is a quasi P-potential on $W$.
Next, let $g=\lambda_{P}^{W_{o}}\mu_{P}^{W}(f)$ , which is contained in $PH_{p}^{\prime}(R)$ . By

$\mu_{P}^{W}(f)-\lambda_{P}^{W}\circ\mu_{P}^{W}(f)=\mu_{P}^{W}(g)-g$ ,

the above discussion shows that the function

$\mu_{P}^{W}(f)-\lambda_{P}^{W}\circ\mu_{P}^{W}(f)$

is also a quasi P-potential for a non-negative function $f$ in $PH_{p}^{\prime}(R)$ . Therefore,
from

$|f-\lambda_{P}^{W}\circ\mu_{P}^{W}(f)|\leqq|f-\mu_{P}^{W}(f)|+|\mu_{P}^{W}(f)-\lambda_{P}^{W}\circ\mu_{P}^{W}(f)|$ ,

the P-harmonic function $f-\lambda_{P}^{W}\circ\mu_{P}^{W}(f)$ is a quasi P-potential on $W$, which shows
that $f=\lambda_{P}^{W}\circ\mu_{P}^{W}(f)$ by Lemma 3.9. And, it is evident that this equality holds
for any $f$ in $PH_{p}^{\prime}(R)$ , since $\lambda_{P}^{W}$ and $\mu_{P}^{W}$ are linear. Q. E. D.

COROLLARY 3.11. $\mu_{P}^{W}$ is $a$ one-to-one map of $PH_{p}^{\prime}(R)$ onto $PH_{p}^{\prime}(W;\partial W)$ ,
and

$\lambda_{P}^{W}$ : $PH_{p}^{\prime}(W;\partial W)\rightarrow PH_{p}^{\prime}(R)$

is the inverse of $\mu_{P}^{W}$ .
PROOF. This corollary follows easily from Theorem 3.7 and Theorem 3.10.

Q. E. D.
THBOREM 3.12. The maPping

$\mu_{P}^{W}$ : $PH_{p}^{\prime}(R)\rightarrow PH_{p}^{\prime}(W;\partial W)$

is an isomorphism, that is, $PH_{p}^{\prime}(R)$ and $PH_{P}^{\prime}(W;\partial W)$ are isomorphic.
PROOF. It is clear that $\mu_{P}^{W}$ is linear on $PH_{p}^{\prime}(R)$ . Since

$|P_{g_{n}^{n}}^{R\cap W}|^{p}\leqq P^{R_{n}\cap W}(|g|p)_{n}$

$\leqq P^{R_{n}\bigcap_{p^{g)}n}W}\leqq pg|R_{n}\cap W($
$n\in N$,

for $g\in PH_{p}^{\prime}(R)$ , as $ n\rightarrow+\infty$ it is shown that $pg|W$ is a P-harmonic majorant of
$|\mu_{P}^{W}(g)|^{p}$ on $W$ for $g\in PH_{p}^{\prime}(R)$ . So,

$pg|W\geqq p(\mu_{P}^{W}(g))$ ,

by which Theorem 2.5 and Definition 2.6 imply that



306 T. $s_{AT6}$

$\Vert|g\Vert|_{p}^{P}\geqq\Vert|\mu_{P}^{W}(g)\Vert|_{p}^{P}$ .
Therefore, $\mu_{P}^{W}$ is a continuous mapping of $PH_{p}^{\prime}(R)$ .

Since $\mu_{P}^{W}$ is a continuous linear one-to-one mapping of the Banach space
$PH_{p}^{\prime}(R)$ onto the Banach space $PH_{p}^{\prime}(W;\partial W)$ , the open mapping theorem gives
that $\mu_{P}^{W}$ is an open mapping, that is,

$\mu_{P}^{W}$ : $PH_{p}^{f}(R)\rightarrow PH_{p}^{\prime}(W;\partial W)$

is an isomorphism. Q. E. D.
COROLLARY 3.13. If $P$ and $Q$ are two densities on $R$ such that $P=Q$ outside

a compact subset of $R$ , then $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$ are isomorphic.
PROOF. Assume that $P=Q$ on $W\subset R$ . The Banach spaces $PH_{p}^{\prime}(R),$ $QH_{p}^{\prime}(R)$

are isomorphic with the Banach space $PH_{p}^{\prime}(W;\partial W)=QH_{p}^{\prime}(W;\partial W)$ . Q. E. D.

\S 4. The comparison theorem.

In the first part of this section we assume $R$ to be connected, and let $P$

and $Q$ be two densities on $R$ . We shall prove that the spaces $PH_{p}^{\prime}(R)$ and
$QH_{p}^{\prime}(R)(1\leqq p<+\infty)$ are isomorphic providing the existence of a constant $c\geqq 1$

such that
$c^{-1}Q\leqq P\leqq cQ$

on $R$ .
LEMMA 4.1. Let $P$ and $Q$ be densities on $R$ which are not identically zero.

If there exists a constant $c\geqq 1$ such that

(4.1) $c^{-1}Q\leqq P\leqq cQ$

on $R$ , then we have

(4.2) $ G^{Q}(z, w)=G^{P}(z, w)+\frac{1}{2\pi}\int_{R}(P(\zeta)-Q(\zeta))G^{Q}(\zeta, w)G^{P}(\zeta_{f}z)d\xi d\eta$

for every $z,$ $w\in R$ with $z\neq w$ , where $\zeta=\xi+i\eta$ .
PROOF. The Green’s formula implies that, for $z,$ $w\in R_{n}$ with $z\neq w$ ,

(4.3) $G^{Q}(R_{n}, z, w)=G^{P}(R_{n}, z, w)$

$+\frac{1}{2\pi}\int_{R_{n}}(P(\zeta)-Q(\zeta))G^{Q}(R_{n}, \zeta, w)G^{P}(R_{n}, \zeta, z)d\xi d\eta$ ,

where $\zeta=\xi+i\eta$ .
Let

$F(z, w, \zeta)=|P(\zeta)-Q(\zeta)|G^{Q}(\zeta, w)G^{P}(\zeta, z)$ .
To prove (4.2), we show that, if $z\neq w$ , the integral

$\int_{R}F(z, w, \zeta)d\xi d\eta$
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is finite. Let $U$ and $V$ be disks with centers $z$ and $w$ , respectively, such that
$ V\cap U=\emptyset$ . Then, since (4.1) implies that

$|P-Q|\leqq cP,$ $|P-Q|\leqq cQ$

on $R$ , and the maximum principle gives that

$\sup_{\zeta\in\partial U}G^{P}(\zeta, z)\geqq G^{P}(\zeta, z)$ , $\zeta\in\overline{V}$ ,
and

$\sup_{\zeta\in\partial V}G^{Q}(\zeta, w)\geqq G^{Q}(\zeta, w)$ , $\zeta\in R-V$,
we have

$\int_{\overline{V}}F(z, w, \zeta)d\xi d\eta\leqq\sup_{\zeta\in\partial U}G^{P}(\zeta, z)\times\int_{R}|P(\zeta)-Q(\zeta)|G^{Q}(\zeta, w)d\xi d\eta$

$\leqq\sup_{\zeta\in\partial U}G^{P}(\zeta, z)\times c\int_{R}G^{Q}(\zeta, w)Q(\zeta)d\xi d\eta$

$\leqq 2\pi c\times\sup_{\zeta\in\partial U}G^{P}(\zeta, z)<+\infty$

and

$\int_{R-V}F(z, w, \zeta)d\xi d\eta\leqq\sup_{\zeta\in\partial V}G^{Q}(\zeta, w)\times c\int_{R}P(\zeta)G^{P}(\zeta, z)d\xi d\eta$

$\leqq 2\pi c\times\sup_{\zeta\in\partial V}G^{Q}(\zeta, w)<+\infty$ .
Therefore,

$\int_{R}F(z, w, \zeta)d\xi d\eta=\int_{\overline{V}}F(z, w, \zeta)d\xi d\eta+\int_{R-V}F(z, w, \zeta)d\xi d\eta<+\infty$

for $z\neq w$ in $R$ .
Since the sequences $\{G^{Q}(R_{n}, z, w)\}$ and $\{G^{P}(R_{n}, z, w)\}$ converge increasingly

to $G^{Q}(z, w)$ and $G^{P}(z, w)$ , respectively, we have

$\lim_{n\rightarrow+\infty}(P(\zeta)-Q(\zeta))G^{Q}(R_{n}, \zeta, w)G^{P}(R_{n}, \zeta, z)$

$=(P(\zeta)-Q(\zeta))G^{Q}(\zeta, w)G^{P}(\zeta, z)$

and
$|P(\zeta)-Q(\zeta)|G^{Q}(R_{n}, \zeta, w)G^{P}(R_{n}, \zeta, z)\leqq F(z, w, \zeta)$

for each $n\in N$. The Lebesgue’s theorem of dominated convergence implies
that, if $z\neq w$ ,

$\lim_{n\rightarrow+\infty}\int_{R_{n}}(P(\zeta)-Q(\zeta))G^{Q}(R_{n}, \zeta, w)G^{P}(R_{n}, \zeta_{f}z)d\xi d\eta$

$=\int_{R}(P(\zeta)-Q(\zeta))G^{Q}(\zeta, w)G^{P}(\zeta, z)d\xi d\eta$ .

Therefore, (4.2) follows from (4.3). Q. E. D.
LEMMA 4.2. Let $P$ and $Q$ be densities on $R$ which are not identically zero



308 T. SAT6

on $R$ and which satisfies (4.1) on R. $Jf$ a continuous function $f$ on $R$ satisfies
the condition

(4.4) $\sup_{w\in R}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy<+\infty$ ,

then $f$ also satisfies
$\sup_{w\in R}\int_{R}|P(z)-Q(z)|G^{Q}(z, w)|f(z)|$ $ dxdy<+\infty$ .

And, in this case we have

\langle 4.5) $\sup_{w\in R}\int_{R}|P(z)-Q(z)|G^{Q}(z, w)|f(z)|dxdy$

$\leqq c(c+1)\times\sup_{w\in R}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy$ .

PROOF. Since the inequality (4.1) gives

(4.6) $|P-Q|\leqq cP,$ $cQ$ on $R$,

from Lemma 4.1 it follows that

\langle 4.7) $ G^{Q}(z, w)\leqq G^{P}(z, w)+\frac{c}{2\pi}\int_{R}Q(\zeta)G^{Q}(\zeta, w)G^{P}(\zeta, z)d\xi d\eta$ .

Then, by the inequalities (2.1) and (4.6),

$\int_{R}|P(z)-Q(z)|G^{Q}(z, w)|f(z)|dxdy$

$\leqq c\int_{R}Q(z)G^{Q}(z, w)|f(z)|dxdy$

$\leqq c\int_{R}Q(z)G^{P}(z, w)|f(z)|$ dxdy

$+\frac{c}{2\pi}\int_{R}Q(z)|f(z)|\{\int_{R}Q(\zeta)G^{Q}(\zeta, w)G^{P}(\zeta, z)d\xi d\eta\}dxdy$

$\leqq c(c+1)\times\sup_{w\in R}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy$ .

This inequality completes our proof. Q. E. D.
We dePne an auxiliary transformation $T_{PQ}^{n}$ of real valued continuous func-

tions $f$ dePned on the closure $R_{n}$ of $R_{n}$ as follows:

$T_{FQ}^{n}(f)(w)=f(w)+\frac{1}{2\pi}\int_{R_{n}}(P(z)-Q(z))G^{Q}(R_{n}, z, w)f(z)dxdy$ .

LEMMA 4.3. Iff is continuous on $R_{n}$ and P-harmonic on $R_{n}$ , then $T_{PQ}^{n}(f)$

is Q-harmonic on $R_{n}$ and is a continuous function on $R_{n}$ such that

$T_{PQ}^{n}(f)|\partial R_{n}=f|\partial R_{n}$ .
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PROOF. The Green’s formula and the properties of Green’s function
$G^{Q}(R_{n}, z, w)$ imply that $T_{PQ}^{n}(f)$ is the solution of Dirichlet problem with respect
to the equation $\Delta u=Qu$ and the domain $R_{n}$ with the boundary value $f$ on $\partial R_{n}$

(see, for example, Nakai [1]).

DEFINITION 4.1. For a real-valued continuous function $f$ dePned on the
connected Riemann surface $R$ satisfying the condition (4.4) in Lemma 4.2, we
dePne a transformation $T_{PQ}(f)$ as follows:

$T_{PQ}(f)(w)=f(w)+\frac{1}{2\pi}\int_{R}(P(z)-Q(z))G^{Q}(z, w)f(z)dxdy$ ,

which is well defined by Lemma 4.2.
LEMMA 4.4. Let $P$ and $Q$ be densities on $R$ which are not identically zero,

and assume that there is a constant $c$ satisfying (4.1). If a continuous function
$f$ on $R$ satisfies the condition (4.4) in Lemma 4.2, then

$T_{PQ}(f)=\lim_{n\rightarrow+\infty}T_{PQ}^{n}(f)$ .
PROOF. Let $\alpha$ be the function

$z\rightarrow c\{Q(z)G^{P}(z, w)|f(z)|+\frac{c}{2\pi}\times Q(z)|f(z)|\times\int_{R}Q(\zeta)G^{Q}(\zeta, \iota v)G^{P}(\zeta, z)d\xi d\eta\}$ ,

which satisfies that

(4.8) $\int_{R}\alpha(z)dxdy\leqq c(c+1)\times sup_{w\in R}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy<+\infty$ .

Since
$\lim_{n\rightarrow+\infty}(P(z)-Q(z))G^{Q}(R_{n}, z, w)f(z)=(P(z)-Q(z))G^{Q}(z, w)f(z)$

and, by Lemma 4.1 and the inequality (4.6),

$|P(z)-Q(z)|G^{Q}(R_{n}, z, w)|f(z)|\leqq cQ(z)G^{Q}(z, w)|f(z)|\leqq\alpha(z)$ ,

Lebesgue’s theorem on dominated convergence implies, by (4.8), that

$\lim_{n\rightarrow+\infty}\int_{R_{n}}(P(z)-Q(z))G^{Q}(R_{n}, z, w)f(z)dxdy$

$=\int_{R}(P(z)-Q(z))G^{Q}(z, w)f(z)dxdy$ ,

from which it follows that

$\lim_{n\rightarrow+\infty}T_{PQ}^{n}(f)(w)=T_{PQ}(f)(w)$ , $w\in R$ .
Q. E. D.

LEMMA 4.5. Under the assumPtion of Lemma 4.4, $T_{PQ}(f)$ is a Q-harmonic

function on $R$ .
PROOF. Since a sequence $\{f_{n}\}$ of Q-harmonic functions on a domain $U$ of

$R$ such that $|f_{n}|\leqq M<+\infty$ has a subsequence which converges uniformly on
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each compact subset of $U$ to a Q-harmonic function on $R$ (refer to Myrberg
[1]), it is sufficient to show that the sequence $\{T_{PQ}^{n}(f)\}$ of Q-harmonic functions
is uniformly bounded on a neighborhood $V$ of any $w\in R$ . Lemma 4.2 shows
that

$|T_{PQ}^{n}(f)(w)|\leqq\sup_{w\in\overline{V}}\{|f|+\frac{1}{2\pi}\int_{R_{n}}|P(z)-Q(z)|G^{Q}(R_{n}, z, w)|f(z)|dxdy\}$

$\leqq\sup_{w\in\overline{V}}|f|+\sup_{w\in R}\frac{1}{2\pi}\int_{R}|P(z)-Q(z)|G^{Q}(z, w)|f(z)|dxdy$

$\leqq\sup_{w\in\overline{V}}|f|+c(c+1)/2\pi\times\sup_{w\in R}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy$

$<+\infty$ , $w\in V$ .
Q. E. D.

LEMMA 4.6. Let $P$ and $Q$ be densities on $R$ which are not identically zero,
and assume that there exists a constant $c\geqq 1$ satisfying the inequality (4.1) on $R$ .
If $f$ is in $PH_{p}^{\prime}(R)(1\leqq p<+\infty)$ , then $T_{PQ}(f)$ is contained in the space $QH_{p}^{\prime}(R)$ .

PROOF. From Theorem 2.3, it follows that a function $f$ in $PH_{p}^{\prime}(R)$ satisfies
the condition in Theorem 4.2, that is, $T_{PQ}(f)$ is defined for $f$ in $PH_{p}^{\prime}(R)$ . Also,
$T_{p_{Q}}(pf)$ is defined by Theorem 2.5.

Since it is evident that

$|T_{PQ}^{n}(f)|^{p}=|f|^{p}\leqq pf=T_{PQ}^{n}(pf)$

on $\partial R_{n}$ for every $n\in N$, the Q-subharmonic function $|T_{PQ}^{n}(f)|^{p}$ is $dominated_{\Delta}^{\tau}by$

the Q-harmonic function $T_{PQ}^{n}(pf)$ on $R_{n}$ for each $n\in N$. Thus, Lemma 4.4
shows that

$|T_{PQ}(f)|^{p}\leqq T_{PQ}(pf)$

on $R$ , that is, $T_{PQ}(pf)$ is a Q-harmonic majorant of $|T_{PQ}(f)|^{p}$ on $R$ .
To prove $T_{PQ}(f)\in QH_{p}^{\prime}(R)$ , it is sufficient, by Theorem 2.1, to show that

$\sup_{w\in R}\int_{R}T_{PQ}(pf)(z)G^{Q}(z, w)Q(z)dxdy<+\infty$ .

By Definition 4.1, this integral equals to

(4.9) $\int_{R}pf(z)G^{Q}(z, w)Q(z)dxdy+\int_{R}\{\frac{1}{2\pi}\int_{R}(P(\zeta)-Q(\zeta))G^{Q}(C_{-}, z)$

$\times pf(\zeta)d\xi d\eta\}G^{Q}(z, w)Q(z)dxdy$ .
The first term of (4.9) is dominated by

$\int_{R}pf(z)G^{P}(z, w)Q(z)dxdy$

$+\int_{R}pf(z)\{\frac{1}{2\pi}\int_{R}|P(\zeta)-Q(\zeta)|G^{Q}(\zeta, w)$
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$\times G^{P}(\zeta, z)d\xi d\eta\}Q(z)dxdy$

$\leqq\{1+\frac{1}{2\pi}\int_{R}|P(\zeta)-Q(\zeta)|G^{Q}(\zeta, w)d\xi d\eta\}$

$\times\sup_{w\in R}\int_{R}pf(z)G^{P}(z, w)Q(z)dxdy$

$\leqq c(1+c)\times\sup_{w\in R}\int_{R}pf(z)G^{P}(z, w)P(z)dxdy$ ,

where the inequality $|P-Q|\leqq cQ$ on $R$ and Lemma 4.1 were used. The in-
equality (4.5) in Lemma 4.2 shows that the second term of (4.9) is dominated
by

$c(c+1)\times\sup_{w\in R}\int_{R}pf(\zeta)G^{P}(\zeta, z)Q(\zeta)d\xi d\eta\frac{1}{2\pi}\int_{R}G^{Q}(z, w)Q(z)dxdy$

$\leqq c^{2}(c+1)\times\sup_{w\in R}\int_{R}pf(z)G^{P}(z, w)P(z)dxdy$ .
Therefore, we have

$\sup_{w\in R}\int_{R}T_{PQ}(pf)(z)G^{Q}(z, w)Q(z)dxdy$

$\leqq c(c+1)^{2}\times\sup_{w\in R}\int_{R}pf(z)G^{P}(z, w)P(z)dxdy$

$<+\infty$ . Q. E. D.

LEMMA 4.7. Let $P$ and $Q$ be densities which are not identically zero on the
connected Riemann surface R. If there exists a constant $c\geqq 1$ satisfying the
inequality (4.1) on $R$ , then $T_{PQ}$ is a bounded linear transformation from $PH_{p}^{\prime}(R)$

into $QH_{p}^{\prime}(R)$ , and $T_{QP}$ is a bounded linear transformation from $QH_{p}^{\prime}(R)$ into
$PH_{p}^{\prime}(R)$ .

PROOF. Since Lemma 4.6 shows that $T_{PQ}(f)$ is well-defined and is con-
tained in the space $QH_{p}^{\prime}(R)$ for every $f\in PH_{p}^{\prime}(R)$ , it is clear that $T_{PQ}$ is a
linear mapping of $PH_{p}^{\prime}(R)$ into $QH_{p}^{\prime}(R)$ .

Since $T_{p_{Q}}(pf)$ is a Q-harmonic majorant of $|T_{PQ}(f)|^{p}$ on $R$ (this was
shown in the proof of Lemma 4.6), by (4.10) in the proof of Lemma 4.6 and
(4.1), we have that

$\{\Vert|T_{PQ}(f)\Vert|@\}^{p}=\sup_{w\in f}\frac{1}{2\pi}\int_{R^{p}}(T_{PQ}(f))(z)G^{Q}(z, w)Q(z)dxdy$

$\leqq\sup_{w\in R}\frac{1}{2\pi}\int_{R}T_{PQ}(pf)(z)G^{Q}(z, w)Q(z)dxdy$

$\leqq c(c+1)^{2}\sup_{w\in R}\frac{1}{2\pi}\int_{R}pf(z)G^{P}(z, w)P(z)dxdy$
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$=c(c+1)^{2}\times\{\Vert|f\Vert|_{p}^{P}\}^{p}$ ,
that is

(4.11) $\Vert|T_{PQ}(f)\Vert|_{p}^{Q}\leqq\{c(c+1)^{2}\}^{1/p}\times\Vert|f\Vert|_{p}^{P}$

for every $f\in PH_{p}^{\prime}(R)$ . This shows that the mapping $T_{PQ}$ is a bounded linear
transformation from $PH_{p}^{\prime}(R)$ into $QH_{p}^{\prime}(R)$ . By changing the roles of $P$ and $Q$

we can see that $T_{QP}$ is a bounded linear transformation from $QH_{p}^{\prime}(R)$ into
$PH_{p}^{\prime}(R)$ . Q. E. D.

LEMMA 4.8. If $P$ and $Q$ satisfy the same assumption as that in Theorem
4.7, then $T_{QP^{\circ}}T_{PQ}$ is the identity on $PH_{p}^{\prime}(R)$ , and $T_{PQ^{\circ}}T_{QP}$ is the identity on
$QH_{p}^{\prime}(R)$ .

PROOF. Since $PH_{p}^{\prime}(R)\subset PH_{1}^{\prime}(R)(1\leqq p<+\infty)$ , any function $f$ in $PH_{p}^{\prime}(R)$

satisfies that

$c^{-1}\int_{R}|f(z)|G^{P}(z, w)Q(z)dxdy$

$\leqq\int_{R}|f(z)|G^{P}(z, w)P(z)dxdy$

$\leqq\int_{R^{1}}f(z)G^{P}(z, w)P(z)dxdy$

$\leqq 2\pi\times\Vert|f\Vert|_{1}^{P}<+\infty$ , $w\in R$ ,

which implies, by Lemma 4.2, that

$\sup_{w\in R}\int_{R}|P(z)-Q(z)|G^{Q}(z, w)|f(z)|dxdy<+\infty$ .

Therefore, the last function of the inequality

$|(Q(z)-P(z))G^{P}(R_{n}, z, w)T_{PQ}^{n}(f)(z)|$

$\leqq c\{P(z)G^{P}(z, w)|f(z)|+\frac{1}{2\pi}P(z)G^{P}(z, w)$

$\times\int_{R_{n}}|P(\zeta)-Q(\zeta)|G^{Q}(R_{n}, \zeta, z)|f(\zeta)|d\xi d\eta\}$

$\leqq c\{P(z)G^{P}(z, w)|f(z)|+\frac{1}{2\pi}P(z)G^{P}(z, w)$

$\times\int_{R}|P(\zeta)-Q(\zeta)|G^{Q}(\zeta, z)|f(\zeta)|d\xi d\eta\}$

is integrable for any fixed $w\in R_{n}$ , where this inequality is obtained by the
definition of $T_{PQ}^{n}(f)$ and $|P-Q|\leqq cP$ on $R$ . Since



Banach spaces of solutions of $\Delta u=Pu$ 313

$\lim_{n\rightarrow+\infty}(Q(z)-P(z))G^{P}(R_{n}, z, w)T_{PQ}^{n}(f)(z)$

$=(Q(z)-P(z))G^{P}(z, w)T_{PQ}(f)(z)$ ,

Lebesgue’s theorem on bounded convergence gives that

$\lim_{n\rightarrow+\infty}\int_{R_{n}}(Q(z)-P(z))G^{P}(R_{n}, z, w)T_{PQ}^{n}(f)(z)dxdy$

$=\int_{R}(Q(z)-P(z))G^{P}(z, w)T_{PQ}(f)(z)dxdy$ ,

from which it follows that

$\lim_{n\rightarrow+\infty}T_{QP}^{n}\circ T_{PQ}^{n}(f)=T_{QP}\circ T_{PQ}(f)$

on $R$ for $f\in PH_{p}^{\prime}(R)$ . On the other hand, the maximum principle shows, by
Lemma 4.3, that

$T_{QP^{\circ}}^{n}T_{PQ}^{n}(f)=f$ on $R_{n}$ ,
for every $n\in N$, and so,

$T_{QP^{\circ}}T_{PQ}(f)=f$ on $R$ ,
for any $f\in PH_{p}^{\prime}(R)$ .

By changing the roles of $P$ and $Q$ we have also that

$T_{PQ^{\circ}}T_{QP}(g)=g$ on $R$ ,
for $g\in QH_{p}^{\prime}(R)$ . Q. E. D.

THEOREM 4.9. Under the same assumption as that in Lemma 4.8, $T_{PQ}$ is
an isomorphism between $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$ . And, $T_{QP}$ is the inverse of $T_{PQ}$ .

PROOF. This follows from Lemma 4.7 and 4.8. Q. E. D.
Now, let $R$ be a disconnected Riemann surface, and let

$R=\bigcup_{k=1}^{K}W^{k}$

be the decomposition of $R$ into connected components $W^{k},$ $k=1,2,$ $\cdots$ , $K$, of $R$ .
If the densities satisfy the relation

(4.12) $c^{-1}Q\leqq P\leqq cQ$ on $R(c\geqq 1)$ ,

then we can assume that $W^{1},$ $W^{2},$ $\cdots$ , $W^{L}(1\leqq L\leqq K)$ are connected components
of $R$ on which $P\not\equiv O$ and $Q\not\equiv O$, and that $W^{L+1},$ $W^{L+2},$ $\cdots$ , $W^{K}$ are connected
components of $R$ on which $P\equiv 0$ and $Q\equiv 0$ .

DEFINITION 4.2. If the relation (4.12) holds on the disconnected Riemann
surface $R$ , we define the function $T_{PQ}(f)$ on $R$ for $f\in PH_{p}^{\prime}(R)$ as follows:

$T_{PQ}(f)|W^{k}=T_{PQ}(f|W^{k})$ , $1\leqq k\leqq L$ ,
and

$T_{PQ}(f)|W^{k}=f|W^{k}$ , $L<k\leqq K$ .
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By changing the roles of $P$ and $Q$ we define also $T_{QP}(g)$ for $g\in QH_{p}^{\prime}(R)$ .
THEOREM 4.10. Let $R$ be a Riemann surface which may be disconnected,

and assume (4.12). Then, $T_{PQ}$ is an isomorPhism between $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$ .
And, $T_{QP}$ is the inverse of $T_{PQ}$ .

PROOF. Lemma 4.9 gives this theorem. Q. E. D.
Let $R$ be a connected hyperbolic Riemann surface and let $P$ and $Q$ be two

densities on $R$ . In the following, we prove the order comparison theorem: If
there exists a constant $c\geqq 1$ such that

(4.13) $c^{-1}Q\leqq P\leqq cQ$

on $R$ except possibly for a compact subset $K$ of $R$ , then $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$

are isomorphic.
Let $W$ be an open subset of $R$ such that $R-W\supset K$ and $R-W$ is a regular

region. Then, since (4.13) is valid on the whole $W$, which may be considered a
Riemann surface, Lemma 4.10 states that there is the isomorphism between
$PH_{p}^{\prime}(W)$ and $QH_{p}^{\prime}(W)$ , which is denoted by $T_{PQ}^{W}$ in the following.

LEMMA 4.11. If the inequality (4.13) holds on $W$, then $T_{PQ}^{W}$ may be consid-
ered an isomorphism of $PH_{p}^{\prime}(W;\partial W)$ onto $QH_{p}^{\prime}(W;\partial W)$ .

PROOF. Since $PH_{p}^{\prime}(W;\partial W)$ and $QH_{p}^{\prime}(W;\partial W)$ are closed subspaces of $PH_{p}^{\prime}$

$(W)$ and $QH_{p}^{\prime}(W)$ , respectively, it is necessary only to prove that $T_{PQ}^{W}(f)\in QH_{p}^{\prime}$

$(W;\partial W)$ for $f\in PH_{p}^{\prime}(W;\partial W)$ .
Let $\{R_{n}\}$ be an exhaustion of $R$ such that $R_{n}\supset R-W,$ $n=0,1,2,$ $\cdots$ , and let

$\alpha=\sup_{w\in\partial R_{0}}|T_{PQ}^{W}(f)(w)|$ .
We denotes by $\omega$ the continuous function on $\overline{R_{0}\cap W}$ such that $\omega$ is Q-harmonic
on $R_{0}\cap W$ and $\omega|\partial W=0,$ $\omega|\partial R_{0}=1$ .

Since Lemma 4.4 states that

$\lim_{n\rightarrow+\infty}T_{PQ}^{W_{n}}(f)=T_{PQ}^{W}(f)$ on $W$,

where $T_{PQ}^{W_{n}}$ is defined for a continuous function on $\overline{R_{n}\cap W}$ which is Q-harmonic
on $W\cap R_{n}$ , for any $\epsilon>0$ there exists $n_{0}\in N$ such that

$|T_{PQ}^{W_{n}}(f)(w)|\leqq(\alpha+\epsilon)\omega(w)$ , $w\in W\cap R_{0}$

for $n>n_{0}$ . So, as $ n\rightarrow+\infty$ , we have

$|T_{PQ}^{W}(f)(w)|\leqq(\alpha+\epsilon)\omega(w)$ , $w\in W\cap R_{0}$ ,
from which

$T_{PQ}^{W}(f)|\partial W=0$ ,
that is,

$T_{PQ}^{W}(f)\in QH_{p}^{\prime}(W;\partial W)$

follows. Q. E. D.
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THEOREM 4.12 (THE ORDER COMPARISON THEOREM). Let $P$ and $Q$ be two
densities on a connected Riemann surface. If there exists a constant $c\geqq 1$ such that

$c^{-1}Q\leqq P\leqq cQ$

on $R$ except Possibly for a $comPaci$ subset $K$ of $R$ , then $PH_{p}^{\prime}(R)$ and $QH_{p}^{\prime}(R)$ are
isomorphic.

PROOF. Let $W$ be the same open subset of $R$ as that defined before Lemma
4.11. Then, by Theorem 3.12 and Lemma 4.11, the mapping

$\lambda_{Q}^{W}\circ T_{PQ^{\circ}}^{W}\mu_{P}^{W}$ : $PH_{p}^{\prime}(R)\rightarrow QH_{p}^{\prime}(R)$

is an isomorphism. Q. E. D.
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