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1. Introduction.

Let M be an n-dimensional simply connected compact orientable submanifold
minimally immersed in an (n+ p)-dimensional sphere of constant curvature 1.
The pinching problem with respect to the scalar curvature of M [6] [1] and
the sectional curvature of M [4] [8] have been studied. In this note, we shall
prove a pinching theorem with respect to the Ricci curvature of M. Some
examples are:

EXxaMPLE 1. In general, let S%r) denote a g¢-dimensional sphere in R*!
with radius ». Let m and n be positive integers such that m<n and let M, o

:Sm</v/£_/l_)xsn—m(\/n;m>' We imbed My, ,-m into S**'=S7*(1) as follows.

Let (u,v) be a point of M,, ..., where u (resp. v) is a vector in R™*! (resp.
Rn»-™+1) of length \/—Z—l (resp. \/ _71_;@) We can consider (u, v) as a unit vector

in R""?=Rm™*x R*»-m+! |t is easily shown that M, .- i$ a minimal submanifold
of S**1. Furthermore from the fact the first eigenvalue of the Laplacian of
My, n-m is n and the dimension of the eigenspace is n-+2, we can prove the
following.

Let X be a minimal immersion of M, .-, into S®*? such that the immer-
sion is full, i.e. X (M, »-m) iS not contained in a linear subspace of R™*P+I,
Then p=1 and the immersion is rigid. The Ricci curvature of M, .., varies

n(im—1 n(n—m—1
between ——(—~——~)~ and ~L~————)~
m n—m
ExaMPLE 2. We can define a minimal immersion of an n-dimensional

.. . . . 2n
complex projective space P+ With holomorphic sectional curvature .

into S***»-1 guch that the usual coordinate functions of R™*®» are all inde-
pendent hermitian harmonic functions of degree 1 on P%,,cn+1)-
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N.R. Wallach proved in that if X is a minimal immersion of PZ/cn+n
into S™*? such that the immersion is full, then p=n%—1 and the immersion is
rigid. The Ricci curvature of P2+ iS equal to n.

THEOREM. Let M be an n-dimensional simply connected compact orientable
minimal submanifold immersed in S™P such that the immersion is full. If n
=4 and the Ricci curvature of M=n—2, then M is either S™ (totally geodesic),
M, . in S (n=2m) or P}, in S".

The author would like to express his sincere thanks to Professor K. Ogiue
for his many valuable suggestions.

2. Preliminaries.

Let M be an n-dimensional Riemannian manifold isometrically immersed in
an (n- p)-dimensional space form M of constant curvature ¢, We denote by
V(resp. V) the covariant differentiation of M (resp. A7I). Then the second funda-
mental form ¢ of the immersion is given by

o(X, Y)=V3 Y-V, YV

and it satisfies (X, Y)=0(Y, X). We choose a local field of orthonormal frames
ey, ***, en, €7, -+, €5 in M in such a way that, restricted to M, ¢, -+, e, are
tangent to M. With respect to the frame field of M chosen above, let !, ---,

", le, e, ®® be the field of dual frames. Then the structure equations of M
are given by

(2.1) do*=—>wiNw?, wit+wi=0,
(2.2) dot=—SwiNw§+eo* Nw®.

Restricting these forms to M, we have the structure equations of the immersion

2.3) =0

(24) of=2hie’, hi;=h%

(2.5) do'=—Xwi e, wi+w{=0

2.6) doi=—Ywi Nwk+2%, Qi= —; S Riuw* Aot
@7 Riy=280010;,—0i0 1)+ 2(hihGi—hih%) .

(x) We use the following convention on the ranges of indices unless otherwise
stated: A, B, C=1, «-, n, 1, =, p: i, j, ky I=1, =, n a. 3, y=1, -, p.
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The second fundamental form ¢ and h{; are related by

(2.8) a(e;, ej)=2hie, .

Define A by

(2.9) Shiw*=dhl— S hkhet— S hel+ S hios .
Then from [(2.2), [2.3) and [2.4)] we have

(2.10) hip=h; -

Then second fundamental form ¢ is said to be parallel if A{;,=0 for all 4, j, &, a.
The second fundamental form o satisfies a differential equation. In fact we
have the following.

LEMMA 2.1 ([6]).

1 x a
7A(Zh?§h?j)=2h§‘ﬁ ?jlz"2(;(}1?1:}12_7'—h?khek))z—zh%hgjhfzhgl+ nCZh?jhij ’

where A denotes the Laplacian.

3. Lemmas.

In general, for a matrix A=(a;;) we denote by N(A) the square of the norm
of A,i.e. N(A)=3a};. Clearly, N(A)=N(T'AT) for any orthogonal matrix 7.
Now we have

E(z’;(h?khgj—h?khlgi))z:zN(AaAﬁ—AﬁAa) ’

where A,=(h%).
LEMMA 3.1. (nXn)-symmetric matrix (0;—2h&he) is positive semi definite.
L a

In particular

€)) 1—-2h$hE=0 for each j,

t.a
) nzlel?,

where |o||*=2hhg;.
Proor. From Gauss equation and the fact the immersion is minimal,
we obtain
S(ej; el>:(n—1)5ﬂ-"i§ hihi ,
where S denotes the Ricci tensor of M. From the assumption of the theorem,
S(e;, e,)—(n—2)5ﬂ:5ﬂ—12(}1h§‘jhg'i is the (j, ]) entry of a positive semi definite

symmetric matrix. Q.E.D.
LemmAa 3.2. For each a



254 N. EJirI

3 N(AaAs— Ap A ZANAD—AN(AL)

In particular, we have

T N4y 45— 4 A)S4lo =S AN(A.
o7 T

Proor. Let 2¢, ---, 2% be the eigenvalues of A,. By a simple calculation,
we obtain

§JV(AaA3—A,sAa)= 2 (hé*z)z(i?—/l?)%ﬁ 2 (R (AF—20).
Bslsl 3#a,i,l

Since (A¥—A¥?=2((A%)2+(2%)%), we obtain
%)iV(AaAﬂ AzA a>< Z Z(h DHQAEP+AED)= 4 E (h A .
From Lemma 31 (1)
1—-(A)r= g&‘, 1,(h )2 for each .
Hence we obtain
% N(AeAs— A A=A (1= =4N(Aa) —4AN(A2) .

Q.E.D.
LEMMA 3.3.

N(A2)=

2
—AK% for each «.

The equality holds if and only if A% is proportional to the identity.
Proor. Let 1%, ---, 4% be the eigenvalues of A,. Then

nN(AL)—(N(Ao)y=n 3 () —(Z (2= Z;((l‘é‘)z —(45)")*.

The equality holds if and only if (1§)*= .- =(4%)%. Q.E.D.

4. Proof of theorem.

We set S,3= Z h$;hd. Then (pX p)-matrix (S,s) is symmetric and can de

diagonalized for a smtable choice of a basis ey, -+, ¢; at each point so that

> h&h&hihi= z N(AL?.
From , 3.1 (2) and 3.3, we obtain

—(A![0[]2)>Zhuk etnlo*—4lo|*+4 2 N(AL) -2 N(AL)?

= X hinhiptm—lo|® +——ZN(Aa)2 2ZN(ALy
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= S hiuhfetn—lo =" N4,

=2 hiphir=0 for n=4
{ (n—4)

— ol n—]0[920, for n=5

= Zh%k/7%k+

at each point. Since M compact and orientable, we obtain that > Af,h¢,=0.
Furthermore if n=5, we obtain that |¢|*(n—|l¢||®)=0. If M is not totally
geodesic, then [|o||>=n. Hereafter we consider the case where M is not totally
geodesic. Since the second fundamental form ¢ is parallel, M is locally sym-
metric. Since the equality of holds, the eigenvalues of each A, can

m m
be written as 2%, ---1%, —21¢, .-+, 2% If A,=0 for some «, then from the fact
that the second fundamental form o is parallel and a result of J. Erbacher, the
immage of M is contained in some hypersphere of S**?, This contradicts the
assumption that the immersion is full. From the above and the equality of
holds, we have the equality of Lemma 3.1 (1). This proves that

S=(n—2)g,

where g denotes the metric tensor of M.

CASE n=5. Since ZN(A.)=|o||*=(ZN(A,)), we obtain that (p—1) A,’s
must be zero so that p=1. Since p=1 and ||¢||*=n, a result of implies
that M must be M, ,_n. Furthermore S=(n—2)g shows that M=M, .

CASE n=4. Since M is simply connected and locally symmetric with S=2g,

from [5], M must be SZ(\/%)XSZ(\/%_) P3,; or S“(\/g)

From [2], if S%r) is minimally immersed in S**?, r:,\/

s(s+3)
3 4
positive integer s. 54(\/7> can not be immersed in S**?, Q.E.D.

for some

REMARK. Although we can prove the theorem without use of the result
of it is somewhat more complicated. Furthermore we can prove the
following.

Let M be an n-dimensional minimal submanifold immersed in S™*? such
that the immersion is full. If n=4, the Ricci curvature of M=n—2 and the
scalar curvature of M is constant, then M is locally either S” (totally geodesic),
M, » in S** (n=2m) or P3}; in S7.
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