Compact minimal submanifolds of a sphere with positive Ricci curvature

By Norio EJIRI

(Received June 7, 1977) (Revised Oct. 20, 1977)

1. Introduction.

Let M be an n-dimensional simply connected compact orientable submanifold minimally immersed in an (n+p)-dimensional sphere of constant curvature 1. The pinching problem with respect to the scalar curvature of M [6] [1] and the sectional curvature of M [4] [8] have been studied. In this note, we shall prove a pinching theorem with respect to the Ricci curvature of M. Some examples are:

EXAMPLE 1. In general, let $S^q(r)$ denote a q-dimensional sphere in R^{q+1} with radius r. Let m and n be positive integers such that m < n and let $M_{m,n-m} = S^m \left(\sqrt{\frac{m}{n}} \right) \times S^{n-m} \left(\sqrt{\frac{n-m}{n}} \right)$. We imbed $M_{m,n-m}$ into $S^{n+1} = S^{n+1}(1)$ as follows. Let (u,v) be a point of $M_{m,n-m}$, where u (resp. v) is a vector in R^{m+1} (resp. R^{n-m+1}) of length $\sqrt{\frac{m}{n}} \left(\text{resp. } \sqrt{\frac{n-m}{n}} \right)$. We can consider (u,v) as a unit vector in $R^{n+2} = R^{m+1} \times R^{n-m+1}$. It is easily shown that $M_{m,n-m}$ is a minimal submanifold of S^{n+1} . Furthermore from the fact the first eigenvalue of the Laplacian of $M_{m,n-m}$ is n and the dimension of the eigenspace is n+2, we can prove the following.

Let χ be a minimal immersion of $M_{m,\,n-m}$ into S^{n+p} such that the immersion is full, i.e. $\chi\left(M_{m,\,n-m}\right)$ is not contained in a linear subspace of R^{n+p+1} . Then p=1 and the immersion is rigid. The Ricci curvature of $M_{m,\,n-m}$ varies between $\frac{n(m-1)}{m}$ and $\frac{n(n-m-1)}{n-m}$.

EXAMPLE 2. We can define a minimal immersion of an n-dimensional complex projective space $P^n_{2n/(n+1)}$ with holomorphic sectional curvature $\frac{2n}{n+1}$ into $S^{n(n+2)-1}$ such that the usual coordinate functions of $R^{n(n+2)}$ are all independent hermitian harmonic functions of degree 1 on $P^n_{2n/(n+1)}$.

252 **N.** Ejiri

N. R. Wallach proved in [7] that if χ is a minimal immersion of $P_{2n/(n+1)}^n$ into S^{n+p} such that the immersion is full, then $p=n^2-1$ and the immersion is rigid. The Ricci curvature of $P_{2n/(n+1)}^n$ is equal to n.

THEOREM. Let M be an n-dimensional simply connected compact orientable minimal submanifold immersed in S^{n+p} such that the immersion is full. If $n \ge 4$ and the Ricci curvature of $M \ge n-2$, then M is either S^n (totally geodesic), $M_{m,m}$ in S^{n+1} (n=2m) or $P_{4/3}^2$ in S^7 .

The author would like to express his sincere thanks to Professor K. Ogiue for his many valuable suggestions.

2. Preliminaries.

Let M be an n-dimensional Riemannian manifold isometrically immersed in an (n+p)-dimensional space form \tilde{M} of constant curvature \tilde{c} . We denote by $\nabla(\text{resp. }\tilde{\nabla})$ the covariant differentiation of M (resp. \tilde{M}). Then the second fundamental form σ of the immersion is given by

$$\sigma(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y$$

and it satisfies $\sigma(X, Y) = \sigma(Y, X)$. We choose a local field of orthonormal frames $e_1, \dots, e_n, e_{\widetilde{1}}, \dots, e_{\widetilde{p}}$ in \widetilde{M} in such a way that, restricted to M, e_1, \dots, e_n are tangent to M. With respect to the frame field of M chosen above, let $\omega^1, \dots, \omega^n, \omega^{\widetilde{1}}, \dots, \omega^{\widetilde{p}}$ be the field of dual frames. Then the structure equations of M are given by (*)

(2.1)
$$d\omega^A = -\sum \omega_B^A \wedge \omega^B, \quad \omega_B^A + \omega_A^B = 0,$$

$$(2.2) d\omega_B^A = -\sum \omega_C^A \wedge \omega_B^C + \tilde{c}\omega^A \wedge \omega^B.$$

Restricting these forms to M, we have the structure equations of the immersion

$$\omega^{\alpha} = 0$$

(2.4)
$$\omega_i^{\alpha} = \sum h_{ij}^{\alpha} \omega^j, \qquad h_{ij}^{\alpha} = h_{ji}^{\alpha}$$

(2.5)
$$d\omega^{i} = -\sum \omega_{j}^{i} \wedge \omega^{j}, \qquad \omega_{j}^{i} + \omega_{i}^{j} = 0$$

(2.6)
$$d\omega_{j}^{i} = -\sum \omega_{k}^{i} \wedge \omega_{j}^{k} + \Omega_{j}^{i}, \qquad \Omega_{j}^{i} = \frac{1}{2} \sum R_{jkl}^{i} \omega^{k} \wedge \omega^{l}$$

$$(2.7) R_{jkl}^{i} = \tilde{c}(\delta_{k}^{i}\delta_{jl} - \delta_{l}^{i}\delta_{jk}) + \sum (h_{ik}^{\alpha}h_{jl}^{\alpha} - h_{il}^{\alpha}h_{jk}^{\alpha}).$$

^(*) We use the following convention on the ranges of indices unless otherwise stated: $A, B, C=1, \dots, n, \tilde{1}, \dots, \tilde{p}: i, j, k, l=1, \dots, n$ and $\beta, \gamma=\tilde{1}, \dots, \tilde{p}$.

The second fundamental form σ and h_{ij}^{α} are related by

(2.8)
$$\sigma(e_i, e_j) = \sum h_{ij}^{\alpha} e_{\alpha}.$$

Define h_{ijk}^{α} by

(2.9)
$$\sum h_{ijk}^{\alpha} \omega^{k} = d h_{ij}^{\alpha} - \sum h_{ik}^{\alpha} \omega_{j}^{k} - \sum h_{kj}^{\alpha} \omega_{i}^{k} + \sum h_{ij}^{\beta} \omega_{j}^{\alpha}.$$

Then from (2.2), (2.3) and (2.4) we have

$$(2.10) h_{ijk}^{\alpha} = h_{ikj}^{\alpha}.$$

Then second fundamental form σ is said to be parallel if $h_{ijk}^{\alpha}=0$ for all i, j, k, α . The second fundamental form σ satisfies a differential equation. In fact we have the following.

LEMMA 2.1 ([6]).

$$\frac{1}{2}\Delta(\sum h^{\alpha}_{ij}h^{\alpha}_{ij}) = \sum h^{\alpha}_{ijk}h^{\alpha}_{ijk} - \sum(\sum_{k}(h^{\alpha}_{ik}h^{\beta}_{kj} - h^{\alpha}_{jk}h^{\beta}_{ik}))^{2} - \sum h^{\alpha}_{ij}h^{\beta}_{ij}h^{\alpha}_{kl}h^{\beta}_{kl} + n\tilde{c}\sum h^{\alpha}_{ij}h^{\alpha}_{ij},$$

where Δ denotes the Laplacian.

3. Lemmas.

In general, for a matrix $A=(a_{ij})$ we denote by N(A) the square of the norm of A, i. e. $N(A)=\sum a_{ij}^2$. Clearly, $N(A)=N(T^{-1}AT)$ for any orthogonal matrix T. Now we have

$$\sum (\sum_k (h^\alpha_{ik} h^\beta_{kj} - h^\alpha_{jk} h^\beta_{ki}))^2 = \sum N(A_\alpha A_\beta - A_\beta A_\alpha)$$
 ,

where $A_{\alpha} = (h_{ij}^{\alpha})$.

Lemma 3.1. $(n \times n)$ -symmetric matrix $(\delta_{jl} - \sum_{i,\alpha} h_{ij}^{\alpha} h_{il}^{\alpha})$ is positive semi definite. In particular

(1)
$$1 - \sum_{i,a} h_{ij}^{\alpha} h_{ij}^{\alpha} \ge 0 \quad \text{for each } j,$$

$$(2) n \geq ||\sigma||^2,$$

where $\|\sigma\|^2 = \sum h_{ij}^{\alpha} h_{ij}^{\alpha}$.

PROOF. From Gauss equation (2.7) and the fact the immersion is minimal, we obtain

$$S(e_j, e_l) = (n-1)\delta_{jl} - \sum_{i,\alpha} h_{ij}^{\alpha} h_{il}^{\alpha}$$

where S denotes the Ricci tensor of M. From the assumption of the theorem, $S(e_j, e_l) - (n-2)\delta_{jl} = \delta_{jl} - \sum_{i,\alpha} h_{ij}^{\alpha} h_{il}^{\alpha}$ is the (j, l) entry of a positive semi definite symmetric matrix. Q. E. D.

LEMMA 3.2. For each α

254 N. EJIRI

$$\sum_{\beta} N(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha}) \leq 4N(A_{\alpha}) - 4N(A_{\alpha}^{2}).$$

In particular, we have

$$\sum_{\beta,r} N(A_r A_\beta - A_\beta A_r) \leq 4 \|\sigma\|^2 - \sum_r 4N(A_r^2).$$

PROOF. Let λ_1^{α} , ..., λ_n^{α} be the eigenvalues of A_{α} . By a simple calculation, we obtain

$$\textstyle \sum_{\beta} N(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha}) = \sum_{\beta,\,i,\,l} (h^{\,\beta}_{il})^2 (\lambda^{\alpha}_i - \lambda^{\alpha}_l)^2 = \sum_{\beta\,\neq\,\alpha,\,i,\,l} (h^{\,\beta}_{il})^2 (\lambda^{\alpha}_i - \lambda^{\alpha}_l)^2 \; .$$

Since $(\lambda_i^{\alpha} - \lambda_l^{\alpha})^2 \leq 2((\lambda_i^{\alpha})^2 + (\lambda_l^{\alpha})^2)$, we obtain

$$\sum_{\beta} N(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha}) \leq \sum_{\beta \neq \alpha, i, l} 2(h_{il}^{\beta})^{2} ((\lambda_{i}^{\alpha})^{2} + (\lambda_{l}^{\alpha})^{2}) = 4 \sum_{\beta \neq \alpha, i, l} (h_{il}^{\beta})(\lambda_{l}^{\alpha})^{2}.$$

From Lemma 3.1 (1)

$$1-(\lambda_l^{\alpha})^2 \ge \sum_{\beta \neq \alpha, i} (h_{il}^{\beta})^2$$
 for each l .

Hence we obtain

$$\sum_{\beta} N(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha}) \leq 4 \sum_{l} (1 - (\lambda_{l}^{\alpha})^{2})(\lambda_{l}^{\alpha})^{2} = 4N(A_{\alpha}) - 4N(A_{\alpha}^{2}).$$
 Q. E. D.

Q.E.D.

Lemma 3.3.

$$N(A_{\alpha}^2) \ge \frac{N(A_{\alpha})^2}{n}$$
 for each α .

The equality holds if and only if A^2_{α} is proportional to the identity. PROOF. Let $\lambda_1^{\alpha}, \dots, \lambda_n^{\alpha}$ be the eigenvalues of A_{α} . Then

$$nN(A_{\alpha}^{2})-(N(A_{\alpha}))^{2}=n \sum_{i}(\lambda_{i}^{\alpha})^{4}-(\sum_{i}(\lambda_{i}^{\alpha})^{2})^{2}=\sum_{i,j}((\lambda_{i}^{\alpha})^{2}-(\lambda_{j}^{\alpha})^{2})^{2}.$$

The equality holds if and only if $(\lambda_1^{\alpha})^2 = \cdots = (\lambda_n^{\alpha})^2$.

4. Proof of theorem.

We set $S_{\alpha\beta} = \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}$. Then $(p \times p)$ -matrix $(S_{\alpha\beta})$ is symmetric and can de diagonalized for a suitable choice of a basis e_1^{α} , ..., e_p^{α} at each point so that

$$\sum h_{ij}^{\alpha} h_{ij}^{\beta} h_{kl}^{\alpha} h_{kl}^{\beta} = \sum_{\alpha} N(A_{\alpha})^2$$
.

From Lemma 2.1, 3.1 (2) and 3.3, we obtain

$$\begin{split} \frac{1}{2} (\Delta \|\sigma\|^2) & \geq \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + n \|\sigma\|^2 - 4 \|\sigma\|^2 + 4 \sum N(A_{\alpha}^2) - \sum N(A_{\alpha})^2 \\ & \geq \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + (n-4) \|\sigma\|^2 + \frac{4}{n} \sum N(A_{\alpha})^2 - \sum N(A_{\alpha})^2 \end{split}$$

$$\begin{split} &= \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + (n-4) \|\sigma\|^2 - \frac{(n-4)}{n} \sum N(A_{\alpha})^2 \\ &= \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} \geq 0 & \text{for } n{=}4 \\ &\geq \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + \frac{(n-4)}{n} \|\sigma\|^2 (n-\|\sigma\|^2) \geq 0 \text{, for } n \geq 5 \end{split}$$

at each point. Since M compact and orientable, we obtain that $\sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} = 0$. Furthermore if $n \ge 5$, we obtain that $\|\sigma\|^2 (n - \|\sigma\|^2) = 0$. If M is not totally geodesic, then $\|\sigma\|^2 = n$. Hereafter we consider the case where M is not totally geodesic. Since the second fundamental form σ is parallel, M is locally symmetric. Since the equality of Lemma 3.3 holds, the eigenvalues of each A_{σ} can

be written as λ^{α} , $\cdots \lambda^{\alpha}$, λ^{α} , λ^{α} . If $A_{\alpha}=0$ for some α , then from the fact that the second fundamental form σ is parallel and a result of J. Erbacher, the immage of M is contained in some hypersphere of S^{n+p} . This contradicts the assumption that the immersion is full. From the above and the equality of Lemma 3.2 holds, we have the equality of Lemma 3.1 (1). This proves that

$$S=(n-2)g$$
,

where g denotes the metric tensor of M.

CASE $n \ge 5$. Since $\sum N(A_{\alpha})^2 = \|\sigma\|^4 = (\sum N(A_{\alpha}))^2$, we obtain that (p-1) A_{α} 's must be zero so that p=1. Since p=1 and $\|\sigma\|^2 = n$, a result of [1] implies that M must be $M_{m,n-m}$. Furthermore S=(n-2)g shows that $M=M_{m,m}$.

CASE n=4. Since M is simply connected and locally symmetric with S=2g, from [5], M must be $S^2\left(\sqrt{\frac{1}{2}}\right)\times S^2\left(\sqrt{\frac{1}{2}}\right)$, $P_{4/3}^2$ or $S^4\left(\sqrt{\frac{3}{2}}\right)$. From [2], if $S^4(r)$ is minimally immersed in S^{4+p} , $r=\sqrt{\frac{s(s+3)}{4}}$ for some positive integer s. $S^4\left(\sqrt{\frac{3}{2}}\right)$ can not be immersed in S^{4+p} . Q. E. D.

REMARK. Although we can prove the theorem without use of the result of [5], it is somewhat more complicated. Furthermore we can prove the following.

Let M be an n-dimensional minimal submanifold immersed in S^{n+p} such that the immersion is full. If $n \ge 4$, the Ricci curvature of $M \ge n-2$ and the scalar curvature of M is constant, then M is locally either S^n (totally geodesic), $M_{m,m}$ in S^{n+1} (n=2m) or $P_{4/3}^2$ in S^7 .

References

[1] S.S. Chern, M. doCarmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, "Functional Analysis and Related Fields", Springer, Berlin, 1970, 60-75.

- [2] M. doCarmo and N. R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math., 95 (1971), 43-62.
- [3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5 (1971), 333-340.
- [4] T. Itoh, Addendum to my paper "On Veronese manifolds", J. Math. Soc. Japan, 30 (1978), 73-74.
- [5] G.R. Jensen, Homogeneous einstein spaces of dimension four, J. Differential Geometry, 3 (1969), 309-340.
- [6] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968) 62-105.
- [7] N.R. Wallach, Minimal immersions of symmetric spaces into spheres, "Symmetric spaces", Ed. Boothby and Weiss, Dekker, New York, 1972, 1-40.
- [8] S.T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math., 96 (1975), 76-100.

Norio Ejiri

Department of Mathematics Tokyo Metropolitan University Setagaya, Tokyo 158 Japan