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\S 1. Introduction.

For a Banach space, the existence and uniqueness of its injective envelope
was proved by Cohen [5], and the present author [9] generalized this result
to the case of Banach modules over a unital Banach algebra. In this paper we
show a $C^{*}$-algebraic version of these results, $i$ . $e$ . that any unital $C^{*}$-algebra has
a unique injective envelope (Theorem 4. 1), where injectivity for $C^{*}$-algebras is
understood as that considered by several authors, $e$ . $g$ . Hakeda and Tomiyama
[8], Tomiyama [16], Choi and Effros [4], Loebl [12], et al. We also give
two characterizations of injective $C^{*}$-algebras, one of which (Proposition 4. 8)

is similar to that of injective Banach modules (cf. [9; Lemma 3 (iv)]) and
another (Proposition 4. 11) is similar to that of von Neumann algebras whose
commutant has property $P$ of Schwartz ([13]; cf. also Remark 4. 13). In the
last section we give an example of an injective non $W^{*}-,$ $AW^{*}$-factor of
type $m$ .

We recall the above-mentioned result of Cohen [5]. He considered the
category whose objects are Banach spaces and whose morphisms are contractive
linear maps, and defined ”injectivity” and an ”injective envelope” of a Banach
space as follows: A Banach space $Y$ is injective if any continuous linear map
of a linear subspace of a Banach space $Z$ into $Y$ extends to a continuous linear
map of the same norm on all of $Z$. An injective envelope of a Banach space
$X$ is a pair $(Y, \kappa)$ of an injective Banach space $Y$ and a linear isometry $\kappa$ of
$X$ into $Y$ such that $Y$ itself is the only subspace of $Y$ which is injective and
contains $\kappa(X)$ [or equivalently, the identity map $id_{Y}$ on $Y(id_{Y}(y)=y, y\in Y)$

is a unique contractive linear map of $Y$ into itself which fixes each element of
$\kappa(X)$ (cf. Isbell [10])]. This pair $(Y, \kappa)$ is unique in the sense that if $(Y_{1}, \kappa_{1})$

is another injective envelope of $X$, there exists a linear isometry $\iota$ of $Y$ onto
$Y_{1}$ such that $\iota\circ\kappa=\kappa_{1}$ .

In contrast to the case of Banach spaces, we consider the category whose
objects are unital $c*$-algebras and whose morphisms are unit-preserving com-
pletely positive linear maps. Hereafter, unless otherwise specified, $c*$-algebras
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are unital, their $C^{*}$-subalgebras have the same units as the $C^{*}$-algebras con-
taining them, and maps between $C^{*}$-algebras preserve units.

A $C^{*}$-algebra $B$ is said to be injective if given any self-adjoint linear sub-
space $S$ , containing the unit, of a $C^{*}$-algebra $C$, any completely positive linear
map of $S$ into $B$ extends to a completely positive linear map of $C$ into $B$ (cf.

Choi-Effros [4] and Loebl [12]). Let a $C^{*}$-algebra $A$ be given. An extension
of $A$ is a pair $(B, \kappa)$ of a $c*$-algebra $B$ and a $*$-monomorphism $\kappa$ of $A$ into $B$ .
The extension $(B, \kappa)$ is called injective if $B$ is injective, and it is called an
injective envelope of $A$ if it is an injective extension of $A$ such that the
identity map $id_{B}$ on $B$ is a unique completely positive linear map of $B$ into
itself which fixes each element of $\kappa(A)$ . A result of Arveson [1; Theorem
1. 2. 3] says that the $C^{*}$-algebra $L(H)$ of all bounded linear operators on a
Hilbert space $H$ is injective, hence that each $C^{*}$-algebra, being represented
faithfully on some Hilbert space, has an injective extension. The main result
of this paper asserts that any $C^{*}$-algebra has a unique injective envelope (see

Theorem 4. 1).

For commutative $c*$-algebras, their injective envelopes were studied by

Gonshor ([6], [7]). His injective envelopes for commutative $C^{*}$-algebras
coincide with their injective envelopes as Banach spaces (in fact, those become
commutative $AW^{*}$-algebras which contain the original $c*$-algebras as $C^{*}$-sub-
algebras) or those in the above sense.

The author would like to thank the referee for his valuable comments.

\S 2. Preliminaries.

This section is devoted to preparations for later use, most of which are
known (cf. [3], [4]), but some of which are stated in a (possibly superficially)

more general form (cf. Remark 2. 5).

DEFINITION 2. 1 (Choi-Effros [4] and Loebl [12]). A $C^{*}$-algebra $B$ is in-
jective if given any self-adjoint linear subspace $S$ , containing the unit, of a
$c*$-algebra $C$, any completely positive linear map of $S$ into $B$ extends to a
completely positive linear map of $C$ into $B$ .

DEFINITION 2. 2. An extension of a $C^{*}$-algebra $A$ is a pair $(B, \kappa)$ of a
$c*$-algebra $B$ and a $*$-monomorphism $\kappa$ of $A$ into $B$ . The extension $(B, \kappa)$ is
injective if $B$ is injective, and it is an injective envelope of $A$ if it is an
injective extension such that the identity map $id_{B}$ on $B$ is a unique completely
positive linear map of $B$ into itself which fixes each element of $\kappa(A)$ .

Let $B$ be a $C^{*}$-algebra and $\varphi$ a unit-preserving contractive idempotent
linear map of $B$ into itself satisfying the Schwarz inequality:

$\varphi(x)^{*}\varphi(x)\leqq\varphi(x^{*}x)$ , $x\in B$ .
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As in the proof of [4; Theorem 3. 1], we define a multiplication $‘‘\circ‘‘$ in
${\rm Im}\varphi=\varphi(B)$ by

$xoy=\varphi(xy)$ , $X,$ $ y\in{\rm Im}\varphi$

and endow ${\rm Im}\varphi$ the involution and norm which are induced by those of $B$ .
THEOREM 2. 3. In the above situation we have:
(i) ${\rm Im}\varphi$ is a unital $C^{*}$-algebra.
We denote this $C^{*}$-algebra by $c*(\varphi)$ and the canonical map of ${\rm Im}\varphi$ onto

$C^{*}(\varphi)$ by $j_{\varphi}$ .
(ii) Let $B_{\varphi}=\{x\in B : \varphi(x^{*}x)=\varphi(\varphi(x^{*})\varphi(x)), \varphi(xx^{*})=\varphi(\varphi(x)\varphi(x^{*}))\}$ and

$I_{\varphi}=\{x\in B : \varphi(x^{*}x)=\varphi(xx^{*})=0\}$ . Then $B_{\varphi}={\rm Im}\varphi+I_{\varphi},$ $B_{\varphi}$ is the largest $C^{*}-$

subalgebra of $B$ restricted to which the map

$ j_{\varphi}\circ\varphi$ : $B\rightarrow{\rm Im}\varphi\rightarrow C^{*}(\varphi)$

becomes an onto $*$-homomorphism, and further Ker $(j_{\varphi}\circ\varphi|B_{\varphi})=I_{\varphi}$ . Hence $C^{*}(\varphi)$

is $*$-isomorphic to the quotient $C^{*}$-algebra $B_{\varphi}/I_{\varphi}$ .
PROOF. As in the proof of [4; Theorem 3. 1], we have for $x,$ $ y\in{\rm Im}\varphi$

$(x\circ y)^{*}=\varphi(xy)^{*}=\varphi(y^{*}x^{*})=y^{*}\circ x^{*}$ ,

$\Vert x\circ y\Vert=\Vert\varphi(xy)\Vert\leqq\Vert xy\Vert\leqq\Vert x\Vert\Vert y\Vert$ ,
and

$|Ix\Vert^{2}=\Vert x^{*}x\Vert\leqq\Vert\varphi(x^{*}x)\Vert=\Vert x^{*}\circ x\Vert\leqq\Vert x^{*}x\Vert=\Vert x\Vert^{2}$

since $\varphi$ is positive, contractive and

$x^{*}x=\varphi(x)^{*}\varphi(x)\leqq\varphi(x^{*}x)=x^{*}\circ x$

by the Schwarz inequality. Thus ${\rm Im}\varphi$ satisPes the axioms of $C^{*}$-algebras
except for the associativity of the multiplication.

LEMMA 2. 4. Let $B$ be a $C^{*}$-algebra and $\varphi$ a unit-preserving contractive
idemp0tent linear map of $B$ into itself. Then

$(*)$ $\varphi(\varphi(x)^{*}\varphi(x))\leqq\varphi(x^{*}x)$ for all $x$ in $B$

if and only if
$(^{**})$ $\varphi(\varphi(x)\varphi(y))=\varphi(\varphi(x)y)=\varphi(x\varphi(y))$ for all $x,$ $y$ in $B$ .

PROOF OF LEMMA 2. 4. Let $f$ be a state on $B$ . Then $ g=f\circ\varphi$ is also a
state on $B$ . Consider the cyclic representation $\{\pi_{g}, H_{g}\}$ of $B$ induced by $g$

and define a densely defined linear operator $P_{f}$ on $H_{g}$ by

$P_{f}x_{g}=\varphi(x)_{g}$ , $x\in B$ ,
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where $x_{g}$ stands for the canonical image of $x$ in $H_{g}$ ; then $P_{J}^{2}=P_{f}$ . Hence $\varphi$

satisfies $(*)$ if and only if

$\Vert P_{f}x_{g}\Vert^{2}=f(\varphi(\varphi(x^{*})\varphi(x)))\leqq f(\varphi(x^{*}x))=\Vert x_{g}\Vert^{2}$

for all $x$ in $B$ and all state $f$ on $B$ if and only if $P_{f}$ can be extended to a
(self-adjoint) projection on $H_{g},$ $i$ . $e$ .

$(P_{f}y_{g}, P_{f}(x^{*})_{g})=(y_{g}, P_{f}(x^{*})_{g})=(P_{f}y_{g}, (x^{*})_{g})$ ,

$f(\varphi(\varphi(x)\varphi(y)))=f(\varphi(\varphi(x)y))=f(\varphi(x\varphi(y)))$

for all state $f$ on $B$ if and only if $\varphi$ satisfies $(^{**})$ . $q$ . $e$ . $d$ .
The Schwarz inequality for $\varphi$ : $\varphi(x)^{*}\varphi(x)\leqq\varphi(x^{*}x)$ implies $\varphi(\varphi(x)^{*}\varphi(x))$

$\leqq\varphi(x^{*}x)$ , hence $\varphi$ satisfies $(^{**})$ in Lemma 2. 4, so that we have for $x,$ $y,$ $z$

in ${\rm Im}\varphi$ ,

$x\circ(y\circ z)=\varphi(x\varphi(yz))=\varphi(\varphi(x)yz)=\varphi(xyz)$

$=\varphi(xy\varphi(z))=\varphi(\varphi(xy)z)=(x\circ y)\circ z$ .

(ii) First we show that ${\rm Im}\varphi+I_{\varphi}$ is a $c*$-subalgebra of $B^{/}$ The iterated
use of the equalities $(^{**})$ in Lemma 2. 4 shows

(1) if $x,$ $y\in I_{\varphi}$ , $xy\in I_{\varphi}$ ;

(2) if $ x\in{\rm Im}\varphi$ and $y\in I_{\varphi}$ , $xy,$ $yx\in I_{\varphi}$ ;

(3) if $x,$ $ y\in{\rm Im}\varphi$ , $xy-\varphi(xy)\in I_{\varphi}$ .
In fact (1) $\varphi((xy)^{*}xy)\leqq\Vert x\Vert^{2}\varphi(y^{*}y)=0,$ $\varphi(xy(xy)^{*})\leqq\Vert y\Vert^{2}\varphi(xx^{*})=0$ ; hence
$xy\in I_{\varphi}$ .

(2) $\varphi((xy)^{*}xy)\leqq\Vert x\Vert^{2}\varphi(y^{*}y)=0$ and $\varphi(xy(xy)^{*})=\varphi(\varphi(x)yy^{*}x^{*})=$

$\varphi(x\varphi(yy^{*}x^{*}))=\varphi(x\varphi(yy^{*}\varphi(x^{*})))=\varphi(x\varphi(\varphi(yy^{*})x^{*}))=0$ . Similarly for $yx$ .

(3) $\varphi((xy-\varphi(xy))^{*}(xy-\varphi(xy)))$

$=\varphi((xy)^{*}xy)-\varphi((xy)^{*}\varphi(xy))-\varphi(\varphi(xy)^{*}xy)+\varphi(\varphi(xy)^{*}\varphi(xy))$

$=\varphi((xy)^{*}xy)-\varphi((xy)^{*}\varphi(xy))$ and

$\varphi((xy)^{*}xy)=\varphi(\varphi(y^{*})x^{*}xy)=\varphi(y^{*}\varphi(x^{*}xy))=\varphi(y^{*}\varphi(\varphi(x^{*})xy))$

$=\varphi(y^{*}\varphi(x^{*}\varphi(xy)))=\varphi(\varphi(y^{*})x^{*}\varphi(xy))=\varphi(y^{*}x^{*}\varphi(xy))$ ;

hence $\varphi((xy-\varphi(xy))^{*}(xy-\varphi(xy)))=0$ .
Similarly

$\varphi((xy-\varphi(xy))(xy-\varphi(xy))^{*})=0$ .
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We have for $x_{i}\in{\rm Im}\varphi,$ $y_{i}\in I_{\varphi}(i=1,2)$ ,

$(x_{1}+y_{1})(x_{2}+y_{2})=\varphi(x_{1}x_{2})+x_{1}x_{2}-\varphi(x_{1}x_{2})+x_{1}y_{2}+y_{1}x_{2}+y_{1}y_{2}$

$\in{\rm Im}\varphi+I_{\varphi}$ by (1), (2), (3).

Further ${\rm Im}\varphi+I_{\varphi}$ is self-adjoint, closed since $ I_{\varphi}\subset Ker\varphi$ by the Schwarz in-
equality. Therefore ${\rm Im}\varphi+I_{\varphi}$ is a $C^{*}$-subalgebra of $B$ and $I_{\varphi}$ is its closed
two-sided ideal by (1), (2).

Next we show that $B_{\varphi}\subset{\rm Im}\varphi+I_{\varphi}$ . In fact, we have for $x$ in $B_{\varphi}$ ,

$\varphi((x-\varphi(x))^{*}(x-\varphi(x)))=\varphi(x^{*}x)-\varphi(x^{*}\varphi(x))-\varphi(\{V(x^{*})x)+\varphi(\varphi(x^{*})\varphi(x))$

$=\varphi(x^{*}x)-\varphi(\varphi(x^{*})\varphi(x))=0$ .
Similarly $\varphi((x-\varphi(x))(x-\varphi(x))^{*})=0$ ; hence $x-\varphi(x)\in I_{\varphi}$ , $x=\varphi(x)+x-\varphi(x)$

$\in{\rm Im}\varphi+I_{\varphi}$ .
Now, since the equalities defining the set $B_{\varphi}$ are rewritten as

$j_{\varphi}\circ\varphi(x^{*}x)=(j_{\varphi}\circ\varphi(x^{*}))\circ(j_{\varphi}\circ\varphi(x))$

and
$j_{\varphi}\circ\varphi(xx^{*})=(j_{\varphi}\circ\varphi(x))\circ(j_{\varphi}\circ\varphi(x^{*}))$ ,

it is clear $that_{A}$if $C$ is a $C^{*}$-subalgebra of $B$ such that $j_{\varphi}\circ\varphi|_{C}$ is a $*$-homomor-
phism, then $C\subset B_{\varphi}$ . On the other hand, $j_{\varphi}\circ\varphi|_{{\rm Im}\varphi+I_{\varphi}}$ is a $*$-homomorphism

because, for $ x_{i}\in{\rm Im}\varphi$ and $y_{i}\in I_{\varphi}(i=1,2)$ ,

$\varphi(y_{1}(x_{2}+y_{2}))=0=\varphi(\varphi(y_{1})(x_{2}+y_{2}))$

and so
$j_{\varphi}\circ\varphi((x_{1}+y_{1})(x_{2}+y_{2}))$

$=j_{\varphi}\circ\varphi(x_{1}(x_{2}+y_{2}))+j_{\varphi}\circ\varphi(y_{1}(x_{2}+y_{2}))$

$=j_{\varphi}\circ\varphi(\varphi(x_{1}+y_{1})(x_{2}+y_{2}))$

$=j_{\varphi}\circ\varphi(\varphi(x_{1}+y_{1})\varphi(x_{2}+y_{2}))$

$=(j_{\varphi}\circ\varphi(x_{1}+y_{1}))\circ(j_{\varphi}\circ\varphi(x_{2}+y_{2}))$ .

Thus ${\rm Im}\varphi+I_{\varphi}\subset B_{\varphi}$ , so ${\rm Im}\varphi+I_{\varphi}=B_{\varphi}$ .
Finally Ker $(j_{\varphi}\circ\varphi|_{B_{\varphi}})=I_{\varphi}$ is immediate from $B_{\varphi}={\rm Im}\varphi+I_{\varphi}$ and $ I_{\varphi}\subset Ker\varphi$ .

$q$ . $e$ . $d$ .
REMARK 2. 5. In the proof of [4; Theorem 3. 1], to conclude the equalities

of the form $(^{**})$ in Lemma 2. 4, Choi and Effros used 2-positivity of $\varphi$ . On the
other hand, we used the Schwarz inequality for $\varphi$ , which is implied by
2-positivity of $\varphi$ (Choi [3; Corollary 2. 81). But the author does not know
whether or not there is a unit-preserving contractive idempotent linear map on
a $C^{*}$-algebra which satisfies the Schwarz inequality but is not 2-positive.
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Following Arveson [1; DePnition 1. 2. 1], we say that a linear map $\varphi$ of
a self-adjoint linear subspace $S$ of a $c*$-algebra $B$ into another $C^{*}$-algebra $C$ is
completely isometric if, for each positive integer $n$ , the map

$\varphi\otimes 1$ : $S\otimes M_{n}\rightarrow C\otimes M_{n}$

is isometric, where $M_{n}$ is the algebra of $n\times n$ matrices over $C$ and 1 denotes
the identity map on $M_{n}$ . Obviously when $\varphi$ is unit-preserving, $\varphi$ is completely
isometric if and only if $\varphi$ is isometric and both $\varphi$ and $\varphi^{-1}$ . $\varphi(S)\rightarrow B$ are
completely positive.

LEMMA 2. 6 (cf. the proof of [4; Theorem 3. 1]). Let $B,$
$\varphi,$

$C^{*}(\varphi)$ and $j_{\varphi}$

be as in Theorem 2. 3. If $B$ is injective and $\varphi$ is completely positive, then
$j_{\varphi}^{-1}$ : $C^{*}(\varphi)\rightarrow{\rm Im}\varphi\subset B$ is completely isometric and $c*(\varphi)$ is an injective $C^{*}-$

algebra.

LEMMA 2. 7 (cf. the proof of [4; Theorem 3. 1]). A unit-preserving com-
pletely isometric linear map of a $C^{*}$-algebra onto another $c*$-algebra is a
$*$-isomorphism.

LEMMA 2. 8 (cf. Choi [3; Theorem 3. 1]). Let $\varphi$ be a unit-preserving com-
pletely positive linear map of a $C^{*}$-algebra $B$ into another $C^{*}$-algebra $C$.
Then the set

$D=\{x\in B : \varphi(x^{*}x)=\varphi(x^{*})\varphi(x), \varphi(xx^{*})=\varphi(x)\varphi(x^{*})\}$

is the largest $C^{*}$-subalgebra of $B$ restricted to which $\varphi$ becomes a $*_{-homomor-}$

Phism, and moreover

$\varphi(axb)=\varphi(a)\varphi(x)\varphi(b)$ for $a,$ $b\in D$ and $x\in B$ .

\S 3. Minimal projections on injective $C^{*}$-algebras.

Let $B$ be a $C^{*}$-algebra and $A$ its $c*$-subalgebra.

DEFINITION 3. 1. A linear map $\varphi$ of $B$ into itself is called a projection
(resp. A-projection) on $B$ if it is unit-preserving, completely positive and idem-
potent (resp. and further $\varphi(a)=a$ for all $a$ in $A$).

DEFINITION 3. 2. In the family of all A-projections on $B$ we define a partial
ordering $\prec$ by the rule $\varphi\prec\psi$ if $\varphi\circ\psi=\psi\circ\varphi=\varphi$ . An A-projection on $B$ which
is minimal under this partial ordering is called a minimal A-projection.

DEFINITION 3. 3. A seminorm $P$ on $B$ is called an A-seminorm if

$ p(x)\leqq\Vert x\Vert$ , $ p(axb)\leqq\Vert a\Vert p(x)\Vert b\Vert$

and
$ P(a)=\Vert a\Vert$ for $a,$ $b$ in $A$ and $x$ in $B$ .
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In the family of all A-seminorms on $B$ we define a partial ordering $\leqq$ by the
rule $P\leqq q$ if $P(x)\leqq q(x)$ for all $x$ in $B$ .

Tomiyama’s projection of norm one from a $c*$-algebra $B$ onto its $C^{*}$-sub-
algebra $A[14]$ is an A-projection on $B$ since it is completely positive ([15],

[18]). Although the image of a projection on a $C^{*}$-algebra need not be a $C^{*}-$

subalgebra, by Theorem 2. 3, it is made into a $C^{*}$-algebra which is $*$-isomorphic
to a quotient $C^{*}$-algebra of some $c*$-subalgebra.

It is an immediate consequence of Zorn’s lemma that there exists a minimal
A-seminorm on $B$ .

THEOREM 3. 4. Let $B$ be an injective $C^{*}$-algebra and $A$ its $C^{*}$-subalgebra.
Then there exists a minimal A-projection on $B$ .

PROOF. Let $p_{0}$ be a minimal A-seminorm on $B$ . Take a family $\{f_{i}\}_{i\in I}$ of
pure states on $A$ such that the direct sum $\sum_{l\in I}^{\oplus}\{\pi_{f_{i}}, H_{f_{i}}\}$ of the cyclic
representations $\{\pi_{f_{i}}, H_{f_{i}}\}$ of $A$ induced by $f_{i}$ is faithful. By the Hahn-Banach
theorem and the definition of A-seminorms, there exists a state extension $g_{i}$

of each $f_{i}$ to $B$ such that

$|g_{i}(x)|\leqq p_{0}(x)$ for all $\chi$ in $B$ .

Let $\{\pi, H\}=\sum_{i\in I}^{\oplus}\{\pi_{g_{i}} , H_{g_{i}}\}$ be the direct sum of the cyclic representations
$\{\pi_{g_{i}}, H_{g_{i}}\}$ of $B$ induced by $g_{i}$ and let $E$ be the projection of $H$ onto $\sum_{i\in I}^{\oplus}A_{g_{i}}$ .
Then $E\in\pi(A)^{\prime}$ , and by the choice of the family $\{f_{i}\}_{i\in I}$ , the map

$\kappa$ : $\pi(A)E\rightarrow A$

given by $\kappa(\pi(a)E)=a,$ $a\in A$ , is a $*$-isomorphism and $\pi(A)$ acts irreducibly on
each $A_{g_{i}}\subset H_{g_{i}}$ . Since $\kappa$ is completely positive and $B$ is injective, there exists
a completely positive map $\hat{\kappa}$ of $E\pi(B)E$ into $B$ such that $\hat{\kappa}|_{\pi(A)E}=\kappa$ .

Let $\varphi(x)=\hat{\kappa}(E\pi(x)E)$ for $x$ in $B$ . Then $\varphi|_{A}=id_{A}$ and so $\varphi$ is an A-moduie
homomorphism, $i$ . $e$ . $\varphi(axb)=a\varphi(x)b$ , $a,$ $b\in A,$ $x\in B$ by Lemma 2. 8. We will
show that $\Vert\varphi(x)\Vert\leqq p_{0}(x)$ , $X\in B$ . To this end we need only show that



188 M. HAMANA

$\Vert E\pi(x)E\Vert\leqq p_{0}(x),$ $x\in B$ since $\Vert\varphi(x)\Vert\leqq\Vert E\pi(x)E\Vert$ . Take an $\epsilon>0$ and an $x$ in $B$ .
Then there exist families $\{a_{i}\}_{i\in I},$ $\{b_{i}\}_{i\in I}(a_{l}, b_{i}\in A)$ such that

$\Vert\Sigma_{i\in I}(a_{i})_{g_{i}}\Vert=\Vert\Sigma_{i\in I}(b_{i})_{g_{i}}\Vert=1$

and
$|(\pi(x)\Sigma_{i}(a_{i})_{g_{i}}, \sum_{j}(b_{j})_{g_{j}})|\geqq\Vert E\pi(x)E\Vert-\epsilon$ .

Since $\pi(A)$ acts irreducibly on $A_{g_{i}}$ , we may assume that

$\Vert(a_{i})_{g_{i}}\Vert=\Vert a_{i}\Vert$ and $\Vert(b_{j})_{g_{j}}\Vert=\Vert b_{j}\Vert$ $(i, j\in I)$ .

We have then

$|(\pi(x)\Sigma_{i}(a_{i})_{g_{i}}, \Sigma_{j}(b_{j})_{g_{j}})|$

$=|\Sigma_{i}g_{i}(b_{i}^{*}xa_{i})|\leqq\sum_{i}|g_{i}(b_{i}^{*}xa_{i})|\leqq\sum_{i}p_{0}(bfxa_{i})$

$\leqq p_{0}(x)\sum_{i}\Vert b_{i}^{*}\Vert\Vert a_{i}\Vert=p_{0}(x)\Sigma_{i}\Vert(a_{i})_{g_{i}}\Vert\Vert(b_{i})_{g_{i}}\Vert$

$\leqq p_{0}(x)(\sum_{i}\Vert(a_{i})_{g_{i}}\Vert^{2})^{1/2}(\sum_{t}\Vert(b_{i})_{g_{i}}\Vert^{2})^{1/2}=p_{0}(x)$ .
Hence $\Vert E\pi(x)E\Vert\leqq p_{0}(x)$ and so $\Vert\varphi(x)\Vert\leqq p_{0}(x)$ .

The seminorms $p_{1},$ $p_{2}$ on $B$ defined by

$ p_{1}(x)=\Vert\varphi(x)\Vert$

$ p_{2}(x)=\lim\sup_{n\rightarrow\infty}||(\varphi+\varphi^{2}+-+\varphi^{n})(x)/n\Vert$

are A-seminorms $\leqq p_{0}$ , so that the minimality of $p_{0}$ implies that $p_{1}=p_{2}=p_{0}$ .
Thus we have for each $x$ in $B$ ,

$\Vert\varphi(x)-\varphi^{2}(x)\Vert=p_{1}(x-\varphi(x))=p_{2}(x-\varphi(x))$

$=\lim_{n\rightarrow}\sup_{\infty}\Vert(\varphi(x)-\varphi^{n+1}(x))/n\Vert=0$ ,

$i$ . $e$ . $\varphi=\varphi^{2}$ , so that $\varphi$ is an A-projection on $B$ .
To see the minimality of $\varphi$ take an A-projection $\psi$ on $B$ with $\psi\prec\varphi$ .

Then, since $\Vert\psi(x)\Vert=\Vert\psi(\varphi(x))\Vert\leqq\Vert\varphi(x)\Vert=p_{0}(x)$ , the minimality of $p_{0}$ implies
that $||\psi(x)\Vert=\Vert\varphi(x)\Vert=p_{0}(x)$ , so that Ker $\psi=p_{0}^{-1}(O)=Ker\varphi$ . On the other hand,
$\varphi\circ\psi=\psi$ implies ${\rm Im}\psi\subset{\rm Im}\varphi$ . Hence we have ${\rm Im}\psi={\rm Im}\varphi$ and Ker $\psi=Ker\varphi$ ,
$i$ . $e$ . $\psi=\varphi$ . $q$ . $e$ . $d$ .

REMARK 3. 5. The above argument to conclude that $\varphi=\varphi^{2}$ is a modification
of the one by Kaufman [11; the proof of Theorem 1].

REMARK 3. 6. It follows from the argument analogous to the one in the
proof of Theorem 3. 4 that if we denote by $p_{\varphi}$ the seminorm on $B$ defined by
$ p_{\varphi}(x)=\Vert\varphi(x)\Vert$ , then the map $\varphi\mapsto p_{\varphi}$ is a map of the set of all minimal
A-projections on $B$ onto the set of all minimal A-seminorms on $B$ , and that if
$\varphi,$

$\psi$ are minimal A-projections on $B$ , then
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$\varphi\circ\psi\circ\varphi=\varphi$

and $\varphi\circ\psi$ is a minimal A-projection on $B$ such that

${\rm Im}\varphi\circ\psi={\rm Im}\varphi$ and Ker $\varphi\circ\psi=Ker\psi$ .

LEMMA 3. 7. Let $B$ be an injective $C^{*}$-algebra, $A$ its $C^{*}$-subalgebra and $\varphi$

a minimal A-projection on B. Then the identity map $id_{C^{*}(\varphi)}$ on the $C^{*}$-algebra
$C^{*}(\varphi)$ is a unique completely positive linear map of $C^{*}(\varphi)$ into itself whose
restriction to $A$ coincides with $id_{A}$ .

PROOF. Let $\psi$ : $C^{*}(\varphi)\rightarrow C^{*}(\varphi)$ be a completely positive linear map such
that $\psi|_{A}=id_{A}$ . Since the seminorm $p_{\varphi}$ is a minimal A-seminorm on $B$ (Remark

3. 6), the norm on $C^{*}(\varphi)$ is a unique A-seminorm on it, so that a reasoning
similar to that of the proof of Theorem 3. 4 shows that

$\lim_{n}\underline{\sup}\Vert(\psi+ +\psi^{n})(x)/n\Vert=\Vert x\Vert$ for $x$ in $C^{*}(\varphi)$ .

Hence we have for each $x$ in $C^{*}(\varphi)$

$\Vert_{X}-\psi(x)\Vert=\lim_{n\rightarrow}\sup_{\infty}\Vert(\psi+ +\psi^{n})(x-\psi(x))/n\Vert=0$,

$i$ . $e$ . $\psi=id_{C^{*}(\varphi)}$ . $q$ . $e$ . $d$ .

LEMMA 3. 8. Let $A$ (resp. $A_{1}$) be a $c*$-subalgebra of an injective $C^{*}$-algebra
$B$ (resp. $B_{1}$) and $\varphi$ (resp. $\varphi_{1}$) a minimal A- (resp. $A_{1^{-}}$) prOjectiOn on $B$ (resp. $B_{1}$).
SuPpose that there exists a $*$-isomorPhism $a$ of $A$ onto $A_{1}$ . Then $a$ extends
uniquely to a $*$-isomorPhism a of $C^{*}(\varphi)$ onto $c*(\varphi_{1})$ .

PROOF. Since $c*(\varphi)$ [resp. $C^{*}(\varphi_{1})$ ] is injective (Lemma 2. 6), there exists
a completely positive linear map $\hat{\alpha}$ [resp. $(\alpha^{-1})^{\wedge}$] of $c*(\varphi)$ into $C^{*}(\varphi_{1})$ [resp.
$C^{*}(\varphi_{1})$ into $c*(\varphi)$ ] extending $\alpha$ (resp. $\alpha^{-1}$ ).

$C^{*}(\varphi)C^{*}(\varphi_{1})J\overline{\overline{(\alpha^{-1})^{\wedge}}}J\hat{\alpha}$

$A_{\frac{\underline{\alpha}}{\alpha^{-1}}A_{1}}$

Then Lemma 3. 7 implies that $(\alpha^{-1})^{\wedge}\circ\hat{\alpha}=id_{c*(\varphi)}$ and $\hat{\alpha}\circ(\alpha^{-1})^{\wedge}=id_{c*(\varphi 1)}$ , so that
by Lemma 2. 7 $\hat{\alpha}$ is a $*$-isomorphism of $c*(\varphi)$ onto $c*(\varphi_{1})$ . The uniqueness of
$\delta$ follows again from Lemma 3. 7. $q$ . $e$ . $d$ .
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\S 4. The main results.

With above preparations we can prove the following

THEOREM 4. 1. Any $C^{*}$-algebra $A$ has an injective envelope $(B, \kappa)$ , which is
unique in the sense that if another injective envelope $(B_{1}, \kappa_{1})$ is given, there
exists a unique $*- isomorphism\iota$ of $B$ onto $B_{1}$ such that $\iota\circ\kappa=\kappa_{1}$ .

PROOF. As stated before, there exists an injective $C^{*}$-algebra $C$ containing
$A$ as a $c*$-subalgebra. Let $\varphi$ be a minimal A-projection on $C$ (Theorem 3. 4).

Let $B=C^{*}(\varphi)$ and let $\kappa$ be the canonical inclusion of $A$ into $B$ . Then, by

Lemmas 2. 6 and 3. 7, $(B, \kappa)$ is an injective envelope of $A$ . If $(B_{1}, \kappa_{1})$ is another
injective envelope of $A$ , then $id_{B_{1}}$ is a unique $\kappa_{1}(A)$-projection on $B_{1}$ . Hence
Lemma 3. 8 implies the existence of a unique $*$-isomorphism $\iota$ of $B$ onto $B_{1}$

such that $\iota\circ\kappa=\kappa_{1}$ . $q$ . $e$ . $d$ .

The next corollaries are immediate consequences of Theorem 4. 1 and
Lemma 3. 8:

COROLLARY 4. 2. Let $A$ be a $C^{*}$-algebra and $(B, \kappa)$ its injective envelope.
Then, for each $*$-automorphism $a$ of $A$ , there exists a unique $*$-automorPhism a
of $B$ such that $\kappa\circ\alpha=\theta\circ\kappa$ . Hence the map $\alpha->$ a is a group-monomorphism of
Aut $A$ ( $=the$ group of all $*$-automorPhisms of $A$) into Aut $B$ , whose image con-
sists of elements $\beta$ such that $\beta(\kappa(A))=\kappa(A)$ .

COROLLARY 4. 3. With $A,$ $(B, \kappa)$ as in Corollary 4. 2, the relative commutant
$\kappa(A)^{\prime}\cap B$ of $\kappa(A)$ in $B$ coincides with the center of $B$ .

PROOF. Let $u$ be a unitary element in $\kappa(A)^{\prime}\cap B$ . Then the map $ x-\rangle$ uxu*
defines a $*$-automorphism of $B$ which fixes each element of $\kappa(A)$ , so it is the
identity map on $B$ . This shows that $\kappa(A)^{\prime}\cap B$ $\subset$ the center of $B$ , and the
converse inclusion is clear. $q$ . $e$ . $d$ .

REMARK 4. 4. By the construction it is obvious that a pair $(B, \kappa)$ is the
injective envelope of a $c*$-algebra $A$ if and only if $B$ is an injective $C^{*}$-algebra
and $\kappa$ is a $*$-monomorphism of $A$ into $B$ such that the norm on $B$ is a unique
$\kappa(A)$-seminorm on $B$ (cf. the proofs of Theorems 3. 4 and 4. 1).

We will give a characterization of the injective envelope of a $C^{*}$-algebra,
which is similar to that of the injective envelope of a Banach module (cf. [9]).

DEFINITION 4. 5. An extension $(B, \kappa)$ of a $C^{*}$-algebra $A$ is essential if for
any completely positive linear map $\varphi$ of $B$ into a $c*$-algebra $C,$

$\varphi$ is completely
isometric whenever $\varphi\circ\kappa$ is.

LEMMA 4. 6. Let $(C, \lambda)$ be an injective envelope of a $c*$-algebra A. Then
an extension $(B, \kappa)$ of $A$ is essential if and only if there exists a $*$-monomorPhism
$\mu$ of $B$ into $C$ such that $\mu^{c}\kappa=\lambda$ .
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PROOF. Necessity: Suppose that $(B, \kappa)$ is essential. Since $C$ is injective,
we have a completely positive linear map $\mu$ of $B$ into $C$ such that $\mu\circ\kappa=\lambda$ .
Then, by hypothesis, $\mu$ is completely isometric. We will show that $\mu$ is a
$*$-monomorphism. Let $(D, \nu)$ be the injective envelope of $B$ . Since $C$ and $D$

are injective and $\mu$ is completely isometric, we have completely positive linear
maps $\hat{\mu}$ : $D\rightarrow C$ and $(\mu^{-1})^{\wedge}$ : $C\rightarrow D$ such that $\hat{\mu}\circ\nu=\mu$ and $(\mu^{-1})^{\wedge}|_{\mu^{(B)}}=\nu\circ\mu^{-1}$ .

Hence $(\mu^{-1})^{\wedge}\circ\beta$ : $D\rightarrow D$ and $\hat{\mu}\circ(\mu^{-1})^{\wedge}$ : $C\rightarrow C$ are completely positive linear maps
such that

$(\mu^{-1})^{\wedge}\circ\beta|_{\nu(B)}=id_{\nu(B)}$ and $\beta\circ(\mu^{-1})^{\wedge}|_{\lambda(A)}=id_{\lambda(A)}$ ,

so that by the definition of the injective envelope,

$(\mu^{-1})^{\wedge}\circ\beta=id_{D}$ and $\beta\circ(\mu^{-1})^{\wedge}=id_{c}$ .

Thus $(\mu^{-1})^{\wedge}=\hat{\mu}^{-1}$ and by Lemma 2. 7, $\hat{\mu}$ is a $*$-isomorphism of $D$ onto $C$, so
that $\mu=\hat{\mu}\circ\nu$ is a $*$-monomorphism.

Sufficiency: Suppose that there exists a $*$-monomorphism $\mu$ of $B$ into $C$

such that $\mu\circ\kappa=\lambda$ and let $\varphi$ : $B\rightarrow E$ be a completely positive linear map of $B$

into a $c*$-algebra $E$ such that $\varphi\circ\kappa$ is completely isometric. By replacing $E$ by
an injective $C^{*}$-algebra containing it as a $C^{*}$-subalgebra, we may assume that
$E$ itself is injective. Then an argument similar to above shows the existence
of a completely isometric linear map $\psi$ : $C\rightarrow E$ such that $\psi\circ\mu=\varphi$ ; hence $\varphi$ is
completely isometric. $q$ . $e$ . $d$ .

PROPOSITION 4. 7. An extension $(B, \kappa)$ of a $C^{*}$-algebra $A$ is the injective
envelope of $A$ if and only if it is both injective and essential.

PROOF. Necessity follows immediately from Lemma 4. 6.
Sufficiency: Let $(C, \lambda)$ be the injective envelope of $A$ . Then Lemma 4. 6

implies the existence of a $*$-monomorphism $\mu$ of $B$ into $C$ such that $\mu^{o}\kappa=\lambda$ .
Since $B$ is injective, we have a completely positive linear map $(\mu^{-1})^{\wedge}$ of $C$ into
$B$ such that $(\mu^{-1})^{\wedge}|_{\mu^{(B)}}=\mu^{-1}$ .
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Hence $\mu^{-}\lrcorner(\mu^{-1})^{\wedge}$ : $C\rightarrow C$ is a completely positive linear map such that $\mu\circ(\mu^{-1})^{\wedge}|_{\lambda(A)}$

$=id_{\lambda(A)}$ , so that $\mu\circ(\mu^{-1})^{\wedge}=id_{c}$ and consequently $\mu$ is a $*$-isomorphism of $B$

onto C. $q$ . $e$ . $d$ .
PROPOSITION 4. 8. A $C^{*}$-algebra $B$ is injective if and only if it has no

pr0per essential extension [ $i$ . $e$ . if $(C, \lambda)$ is an essential extension of $B$ , then $\lambda$ is
$a*$-isomorphism of $B$ onto $C$].

PROOF. Necessity: Let $(C, \lambda)$ be an essential extension of $B$ . Since $B$

is injective, there exists a completely positive linear map $(\lambda^{-1})^{\wedge}$ of $C$ onto $B$

such that $(\lambda^{-1})^{\wedge}|_{\lambda(B)}=\lambda^{-1},$ $i$ . $e$ . $(\lambda^{-1})^{\wedge}\circ\lambda=id_{B}$ . By hypothesis $(\lambda^{-1})^{\wedge}$ is completely
isometric, and $(\lambda^{-1})^{\wedge}\circ(\lambda\circ(\lambda^{-1})^{\wedge}-id_{c})=0$ . Hence $\lambda\circ(\lambda^{-1})^{\wedge}=id_{c}$ , so $\lambda$ is a $*$-isomor-
phism of $B$ onto $C$ .

Sufficiency: Let $(C, \lambda)$ be an injective envelope of $B$ . By Proposition 4. 7,
$(C, \lambda)$ is an essential extension of $B$ , so if $B$ has no proper essential extension,
then $\lambda$ is a $*$-isomorphism of $B$ onto $C$ . Hence $B$ is injective. $q$ . $e$ . $d$ .

DEFINITION 4. 9. A self-adjoint linear subspace $S$ , containing the unit, of a
$C^{*}$-algebra $B$ is called a $c*$-subspace of $B$ if there exist a $C^{*}$-algebra $A$ and a
completely isometric linear map $\varphi$ of $A$ into $B$ with ${\rm Im}\varphi=S$ .

We note that if there exists another completely isometric linear map $\varphi_{1}$

of a $c*$-algebra $A_{1}$ into $B$ with ${\rm Im}\varphi_{1}=S$ , $A$ and $A_{1}$ are $*$-isomorphic by
Lemma 2. 7.

PROPOSITION 4. 10. Let $B$ be an injective $C^{*}$-algebra and $S$ a closed self-
adjoint linear subspace, containing the unit, of B. Then $S$ is a $C^{*}$-subspace of
$B$ if and only if there exists a projection $\varphi$ on $B$ such that $\varphi(S^{2})\subset S\subset{\rm Im}\varphi$ .

PROOF. Sufficiency: By Theorem 2. 3 and Lemma 2. 6, $j_{\varphi}^{-1}$ : $ C^{*}(\varphi)\rightarrow{\rm Im}\varphi$

$\subset B$ is a completely isometric linear map of the $C^{*}$-algebra $C^{*}(\varphi)$ onto ${\rm Im}\varphi$ .
Noting the definition of the multiplication in $c*(\varphi)$ , we see that $\varphi(S^{2})\subset S\subset$

${\rm Im}\varphi$ if and only if $j_{\varphi}(S)$ is a $C^{*}$-subalgebra of $C^{*}(\varphi)$ . Hence $j_{\varphi}^{-1}|_{J\varphi^{(S)}}$ : $j_{\varphi}(S)$

$\rightarrow S\subset B$ is a completely isometric linear map of the $C^{*}$-algebra $j_{\varphi}(S)$ onto $S$ ,

so that $S$ is a $C^{*}$-subspace of $B$ .
Necessity: Suppose that there exists a completely isometric linear map $\psi$

of a $C^{*}$-algebra $A$ onto $S$ and let $(C, \lambda)$ be the injective envelope of $A$ . Since
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$B$ is injective and $(C, \lambda)$ is essential (Proposition 4. 7), we have a completely
isometric linear map $\hat{\psi}$ of $C$ into $B$ such that $\hat{\psi}\circ\lambda=\psi$ . Then there exists a
projection $\varphi$ on $B$ such that ${\rm Im}\varphi={\rm Im}\hat{\psi}$ .

Since $j_{\varphi}\circ\varphi^{\hat{\prime}}$ is $a*$-isomorphism of $C$ onto $c*(\varphi)$ (Lemma 2. 7), $ j_{\varphi}(S)=(j_{\varphi}\circ\phi)\circ\lambda(A\rangle$

is a $c*$-subalgebra of $C^{*}(\varphi)$ , so that the condition in the statement of this
proposition is satisfied. $q$ . $e$ . $d$ .

We will give a necessary and sufficient condition that a $C^{*}$-subalgebra of
an injective $C^{*}$-algebra be injective: Let $A\subset B$ be $c*$-algebras with $B$ in-
jective. For each $x$ in $B$ , set

$C_{A}(x)=\{y\in B$ : $\Vert a+\sum_{\iota-1}^{n}b_{i}yc_{i}\Vert\leqq\Vert a+\sum_{i=1}^{n}b_{i}xc_{i}\Vert$

for all $a,$ $b_{i},$ $c_{i}$ in $A,$ $n=1,$ 2, }.

PROPOSITION 4. 11. With notations as above $A$ is injective if and only if
$ C_{A}(x)\cap A\neq\emptyset$ for all $x$ in $B$ .

PROOF. Take a minimal A-projection $\varphi$ on $B$ (Theorem 3. 4). Then
obviously $A$ is injective if and only if ${\rm Im}\varphi=A$ .

Necessity: If ${\rm Im}\varphi=A$ , then $\varphi$ is a contractive A-module homomorphism
(Lemma 2. 8), so that $\varphi(x)\in C_{A}(x)\cap A$ for all $x$ in $B$ .

Sufficiency: Suppose that the above condition is satisfied, but $A$ is not
injective. Then there exist an $x_{0}\in{\rm Im}\varphi\backslash A$ and an $a_{0}\in C_{A}(x_{0})\cap A$ . Let $X$ be
the Banach A-bimodule generated by $A$ and $X_{0}$ , $i$ . $e$ . $X$ is the norm closure of
the subset

$\{a+\Sigma_{l=1}^{n}b_{i}x_{0}c_{i} : a, b_{i}, c_{i}\in A, n=1, 2, \}$

of $B$ . Define a seminorm $p$ on $X$ by

$ p(a+\Sigma_{i=1}^{\eta}b_{i}x_{0}c_{i})=\Vert a+\Sigma_{i=1}^{\eta}b_{i}a_{0}c_{i}\Vert$ .
Then

$ p(axb)\leqq\Vert a\Vert p(x)\Vert b\Vert$ for $a,$ $b\in A$ and $x\in X$,
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$p(a+\sum_{i=1}^{n}b_{l}x_{0}c_{i})=\Vert a+\Sigma_{i=1}^{n}b_{1}a$

$\leqq\Vert a+\Sigma_{i=1}^{n}b_{t}x_{0}c_{t^{I_{\mathfrak{l}}}}$

$=\Vert\varphi(a+\Sigma_{i=1}^{n}b_{i}x_{0}c_{i})|_{1}^{t}$

$=p_{\varphi}(a+\Sigma_{i=1}^{n}b_{i}x_{0}c_{i})$

( $p_{\varphi}$ denotes the seminorm on $B$ defined in Remark 3. 6)

for all $a+\Sigma_{i=1}^{n}b_{i}x_{0}c_{i}\in X$, $a,$ $b_{i},$ $c_{i}\in A$ ,
and

$ P(a)=\Vert a\Vert$ for $a\in A$ .
On the other hand,

$P(-a_{0}+x_{0})=\Vert-a_{0}+a_{0}\Vert=0<\Vert-a_{0}+x_{0}\Vert=p_{\varphi}(-a_{0}+x_{0})$ .

Since $p_{\varphi}$ is a minimal A-seminorm (Remark 3. 6), this inequality and the
following lemma would yield a contradiction:

LEMMA 4. 12. There exists an A-seminorm $p_{1}$ on $B$ such that

$p_{1}|_{X}=p$ and $p_{1}\leqq p_{\varphi}$ .

PROOF OF LEMMA 4. 12. Let $U=\{x\in X:p(x)\leqq 1\}$ , $V=\{y\in B:p_{\varphi}(y)\leqq 1\}$

and $W$ the convex hull of $U\cup V$ in $B$ . Then the Minkowski functional
$p_{1}$ of $W$ :

$p_{1}(y)=inf\{\lambda>0:y\in\lambda W\}$ , $y\in B$

is the desired seminorm. In fact $p_{1}|_{X}=p$ follows from $V\cap X\subset U$, and the
remainder of the proof is immediate. $q$ . $e$ . $d$ .

REMARK 4. 13. In the above proposition, let $A$ be a von Neumann algebra
on a Hilbert space $H$ and let $B=L(H)$ . Then Schwartz’s property $P[13]$ for
the commutant $A^{\prime}$ of $A$ implies the above condition for $A$ , hence the existence
of a projection of norm one from $B$ onto $A$ (cf. [13; Lemma 5]).

Let $A$ be a $C^{*}$-algebra, $B$ an injective $C^{*}$-algebra containing $A$ as a $C^{*}-$

subalgebra, and $(C, \lambda)$ an injective envelope of $A$ . We know that $C$ can be
embedded in $B$ as a $C^{*}$-subspace of $B,$ $i$ . $e$ . there exists a completely isometric
linear map $\varphi$ of $C$ into $B$ such that $\varphi\circ\lambda=id_{A}$ (cf. Proposition 4. 7). But the
author does not know whether or not $C$ can be embedded in $B$ as a $C^{*}$-sub-
algebra of $B,$ $i$ . $e$ . the above $\varphi$ can be chosen as a $*- monomorphism$ . (Added

March 1978: This is not the case for a general $C^{*}$-algebra $A.$ ) A necessary
condition for this is stated as follows:

PROPOSITION 4. 14. Let $A,$ $B$ and $C$ be as above and let $K$ be the set of all
completely isometric linear maps $\varphi$ of $C$ into $B$ such that $\varphi\circ\lambda=id_{A}$ . Then $K$ is
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a convex subset of $L(C, B)$ , the Banach space of all continuous linear maps of
$C$ into $B$ , and if $\varphi_{0}\in K$ is $a$ $*- monomorphism$, then $\varphi_{0}$ is an extreme Point of $K$.

PROOF. Let $\varphi=\mu\varphi_{1}+(1-\mu)\varphi_{2}$ , where $\varphi_{1},$
$\varphi_{2}\in K$ and $0<\mu<1$ . Then $\varphi$ : $C$

$\rightarrow B$ is completely positive and $\varphi\circ\lambda=id_{A}$ , so by Proposition 4. 7, $\varphi$ is completely
isometric; hence $\varphi\in K$.

Suppose that $\varphi_{0}\in K$ is a $*$-monomorphism and that $\varphi_{0}=(\varphi_{1}+\varphi_{2})/2,$
$\varphi_{1},$ $\varphi_{2}$

$\in K$. Then the Schwarz inequality shows that for each $x$ in $C$,

$\{\frac{1}{2}(\varphi_{1}(x)+\varphi_{2}(x))\}^{*}\{\frac{1}{2}(\varphi_{1}(x)+\varphi_{2}(x))\}=\varphi_{0}(x)^{*}\varphi_{0}(x)$

$=\varphi_{0}(x^{*}x)=\frac{1}{2}(\varphi_{1}(x^{*}x)+\varphi_{2}(x^{*}x))\geqq\frac{1}{2}(\varphi_{1}(x)^{*}\varphi_{1}(x)+\varphi_{2}(x)^{*}\varphi_{2}(x))$ ,

$0\geqq(\varphi_{1}(x)-\varphi_{2}(x))^{*}(\varphi_{1}(x)-\varphi_{2}(x))$ ;
hence

$\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{0}(x)$ , $\varphi_{1}=\varphi_{2}=\varphi_{0}$ .
$q$ . $e$ . $d$ .

PROPOSITION 4. 15. Let $A$ be a unital $C^{*}$-algebra and $(B, \kappa)$ its injective
envelope. Then if $A$ is simple, so is $B$ too. Hence, in particular, $B$ is an
$AW^{*}$-factor.

PROOF. Let $I$ be a proper closed two-sided ideal of $B$ . Since $A$ is unital
and simple, $A\cap I=\{0\}$ . Hence the map $\pi\circ\kappa$ : $A\rightarrow B\rightarrow B/I$, where $\pi$ : $B\rightarrow B/I$

is the quotient map, is a $*$-monomorphism, so that the seminorm $ x->\Vert\pi(x)\Vert$

on $B$ defines a $\kappa(A)$-seminorm. Thus Remark 4. 4 implies that $I=Ker\pi=\{0\}$ ,
hence that $B$ is simple. An injective $c*$-algebra is monotone closed (Tomiyama

[16; Theorem 7. 1]); in particular, it is an $AW^{*}$-algebra. Hence the simple
$AW^{*}$-algebra $B$ is an $AW^{*}$-factor. $q$ . $e$ . $d$ .

\S 5. An example.

We give an example of an injective non $W^{*}-,$ $AW^{*}$-factor of type $m$ .
EXAMPLE 5. 1. Let $A=L(H)/LC(H)$ be the Calkin algebra, where $H$ is a

separable infinite dimensional Hilbert space, and let $(B, \kappa)$ be the injective
envelope of $A$ . Then $B$ is an injective non $W^{*}-,$ $AW^{*}$-factor of type $m$ .

PROOF. Since $A$ is simple, Proposition 4. 15 implies that $B$ is a simple
$AW^{*}$-factor. Hence $B$ must be of type I $n(n<\infty)$ or $II_{1}$ or $m$ . The first
two cases are excluded since $A$ is infinite dimensional and contains an inPnite
projection; so $B$ is of type I1I. To see that $B$ is non $W^{*}$ , we follow the
argument of Birrell [2; Example $(c)$ ]: If $B$ were $W^{*}$ , since it is simple, it
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must be a countably decomposable $W^{*}$-factor of type $m$ . But there exists an
uncountable orthogonal family of non-zero projections in $A$ , hence in $B$ , a
contradiction. $q$ . $e$ . $d$ .

REMARK 5. 2. Professor Sakai kindly pointed out to the author that a
result of Voiculescu can be applied to show that the Calkin algebra $A$ is not
$AW^{*}$ , hence that the injective envelope $B$ of $A$ , being $AW^{*}$ , contains $\kappa(A)$

properly: In fact, let $C$ be the $c*$-subalgebra of $A=L(H)/LC(H)$ generated
by $S+LC(H)$ , where $S$ is the simple unilateral shift on $H$. Then Voiculescu
[17; Corollary 1. 9] implies that $C$, being separable, is equal to its bicommutant.
Hence if $A$ were $AW^{*}$ , then $C$ also would be so. But this is absurd since
$C\cong C(T)$ , the $c*$-algebra of continuous functions on the 1 dimensional
torus $T$ .
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