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\S 1. Introduction.

This is a continuation of ”On a class of type I solvable Lie groups I”,

J. Math. Soc. Japan, 30 (1978), which will be quoted as {I} in this paper, and
we shall retain the terminology and notation there.

Let $E$ be a connected Lie subgroup of $GL(m, R)$ . If no element of the
Lie algebra of $E$ has non-zero purely imaginary eigenvalue, $E$ is said to be
of exPonential type. When $E$ is of exponential type, $E$ is closed in $GL(m, R)$ ,

simply connected and solvable. Let $L$ be a connected Lie group, and let 1 be
the Lie algebra of $L$ . When the exponential map exp : $l\rightarrow L$ is a surjective
diffeomorphism, $L$ is called an exponential group. If the adjoint group $Ad(L)$

is of exponential type, then $L$ is an exponential group, and conversely,
cf. Dixmier [12] and Saito [13], [14]. Here we shall extend the notion of
exponential groups as follows:

DEFINITION. A connected solvable Lie group $G$ is said to be an $(EA)$-group
if the adjoint group $Ad(G)$ contains a normal subgroup $E$ of exponential type
such that the factor group $Ad(G)/E$ is a toral group.

REMARK. A more general definition of (EA)-groups will be given in \S 4
below.

Exponential groups are of course (EA). In \S 4 we shall see that a con-
nected adjoint semi-algebraic group is an (EA)-group. The purpose of this
paper is to prove the following theorem.

THEOREM. A simply connected, solvable $(EA)$-group is of type I.
As in {I}, we shall prove the orbit condition and the integrability condition,

due to Auslander and Kostant [1], for such groups.
In \S 4 we shall outline the relations between classes of linear groups

discussed in this series of papers. The details may be given elsewhere.

\S 2. Lemmas.

The following lemma must be known. Because no suitable reference could
be located, we shall give a proof.
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LEMMA 1. Let $A$ and $B$ be pre-algebraic groups in $GL(m, R)$ . If $AB=BA$ ,

then $G=AB$ is Pre-algebraic.

PROOF. Since $A$ and $B$ are pre-algebraic, $G=AB$ is a locally compact set.
On the other hand, a locally compact subgroup of a topological group is closed.
Hence $G$ is a closed subgroup. Since $A$ and $B$ are finitely connected, so is $G$ .
Let $a$ and $b$ be the Lie algebras of $A$ and $B$ , respectively. Then the Lie
algebra of $AB$ is $a+b$ . So it suffices to prove the existence of an algebraic
group with Lie algebra $a+b$ .

We pick an algebraic group $A_{1}$ in $GL(m, R)$ with Lie algebra $a$ . The set
of polynomials defining $A_{1}$ defines an algebraic group $A_{1}^{c}$ in $GL(m, C)$ , and
the Lie algebra of $A_{1}^{c}$ is the complex linear span $a^{c}$ of $a$ in $gl(m, C)$ . In a
similar way, the complex linear span $b^{c}$ of $b$ is the Lie algebra of a suitable
algebraic group in $GL(m, C)$ . Since $a+b$ is a Lie algebra, so is $a^{c}+b^{c}=$

$(a+b)^{c}$ .
By a theorem in Chevalley [11], a Lie subalgebra $h$ of $gl(m, C)$ corresponds

to an algebraic group if and only if we can pick a basis $\{x_{1}, \cdots, x_{n}\}$ of $h$ such
that $\exp(CX_{i})$ is an algebraic group for $i=1,$ $\cdots,$ $n$ . Hence $a^{c}+b^{c}$ is the Lie
algebra of an algebraic group, say $G^{c}$ . Then $G^{c}\cap GL(m, R)$ is an algebraic
group with Lie algebra $a+b$ .

LEMMA 2. Let $G$ be a connected Lie subgroup of $GL(m, R)$ . SuPpose that
there exist a compact subgroup $K$ and a connected normal Lie subgroup $E$ in $G$

such that $G=KE$ . Let $v$ be in $R^{m}$ such that the orbit $Ev$ is locally comPact.
Then $Gv$ is locally compact, and $Ev$ is closed in $Gv$ .

PROOF. Let $\leftrightarrow q(E)$ denote the pre-algebraic hull of $E$ . Then $K$ normalizes
$\mathcal{A}(E)$ and $K_{c}d(E)=\mathcal{A}(E)K$ is a group. Since a compact subgroup of $GL(m, R)$

is algebraic, we have that $K\mathcal{A}(E)$ is pre-algebraic by Lemma 1. Hence $K\mathcal{A}(E)$

coincides with the pre-algebraic hull of $G$ : $d(G)=K\leftrightarrow l(E)$ .
Let $I$ denote the isotropy subgroup of .,4 $(G)$ at $v$ . Since the orbit $d(G)v$

is locally compact, it can be identified with the factor space $d(G)/I=\{xI$ ;
$x\in d(G)\}$ . Let $\xi$ be the natural map

$\approx q(G)\ni x\rightarrow\xi(x)=xv\in A(G)v$ .

Since $Ev$ is locally compact, so is $\xi^{-1}(Ev)=EI$ . Because the normalizer of $E$

in $GL(m, R)$ is algebraic and contains $G$ , we see that $E$ is a normal subgroup
of $d(G)$ , and $EI$ is a group. Hence $EI$ is a clcsed subgroup of $A(G)$ .
Since $K$ is compact, $\xi^{-1}(Gv)=GI=K(EI)$ is closed, which implies that $Gv$ is
locally compact.

Since $NI$ is closed, $Nv$ is closed in $Gv$ .
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\S 3. Proof of Theorem.

Let $\tilde{G}$ be a connected, simply connected solvable Lie group, and $g$ its Lie
algebra. Let $\varphi$ denote the adjoint representation of $\tilde{G}$ :

$\tilde{G}\ni x->\varphi(x)=Ad(x)\in Ad(g)\subset GL(g)$ .

Suppose that $\tilde{G}$ is an (EA)-group. Let $E$ be a normal subgroup of exponential
type in $Ad(g)$ such that $Ad(g)/E$ is a toral group. Let $\tilde{L}$ denote the identity

component of $\varphi^{-1}(E)$ . Then $\tilde{L}$ is a closed normal subgroup in $\tilde{G}$ and $\varphi(Z)=E$ .
Let 1 denote the Lie algebra of $\tilde{L}$. Then for $X$ in $l,$ $ad(X)\in ad(l)$ is the
restriction of $d\varphi(X)$ into $l$ . Since $d\varphi(X)$ has no non-zero purely imaginary
eigenvalue, the same is true for $ad(X)$ . Hence $\tilde{L}$ is an exponential group.

Let $\mu$ denote the coadjoint representation of $\tilde{G}$ . Since $\mu$ is the dual
representation of $\varphi$ , for any $Y$ in $g,$ $d\mu(Y)$ and $-d\varphi(Y)$ share the set of
eigenvalues. Hence in particular, $\mu(\tilde{L})$ is of exponential type. Thus $\tilde{L}$ is an
exponential group. and $\mu(\tilde{L})$ is of exponential type. By Pukanszky [9], for
any $f\in g^{*},$ $\mu(\tilde{L})f$ is locally compact and the isotropy subgroup

$Z(f)=\{x\in L^{\prime} ; \mu(x)f=f\}$

is connected.
Since $\mu(\tilde{G})/\mu(\tilde{L})$ is a toral group, we can find a toral subgroup $K$ of $\mu(\tilde{G})$

such that $\mu(\tilde{G})=K\mu(\tilde{L})$ , see {I} Proposition 2. By Lemma 2, the orbit $\mu(\tilde{G})f$

is locally compact, and the orbit condition is satisfied.
Next, let $Z$ denote the center of $\tilde{G}$ . Because $L/\tilde{L}\sim\cap Z\cong E$ is simply

connected, $\tilde{L}\cap Z$ must be connected, and coincides with the identity component
$Z_{e}$ of $Z$. Let $k$ denote the dimension of $Ad(g)/E$ . Then there exists a free
abelian group $D$ of $k$ generators such that $Z=D\times Z_{e}$ . We put $\tilde{G}/D=G$ . Then
$G$ contains $L=\tilde{L}D/D\cong\tilde{L}$ as a closed normal subgroup such that $G/L$ is a toral
group of $k$ dimension. Hence we can find a toral subgroup $C$ of $G$ such that
$G=CL,$ $C\cap L=\{e\}$ . Therefore $G$ is faithfully representable.

Let $g^{*}$ denote the dual vector space to $g$ , and let $f$ be in $g^{*}$ . Let $ G(f\rangle$

be the isotropy subgroup of $G$ at $f$. For $x\in G(f)$ , we put

$x=\gamma(x)\lambda(x)$ $\gamma(x)\in C$, $\lambda(x)\in L$ .

Then $x\rightarrow\gamma(x)$ is a continuous homomorphism from $G(f)$ into $C$ . The kerneI
of the homomorphism is the isotropy subgroup $L(f)$ of $L$ at $f$. We recall that
$L(f)$ is connected. We put the image $\gamma(G(f))=C^{\prime}$ , and we shall prove that
$C^{\prime}$ is closed in $C$.

Let $\mu_{0}$ denote the coadjoint representation of $G$ . Suppose that $\gamma_{i}\in C,$ $\lambda_{i}\in L$

$(i=1, 2, )$ such that $\mu_{0}(\gamma_{i}\lambda_{i})f=f$. If $\lim\gamma_{i}=\gamma_{0}$ , then $\lim\mu_{0}(\lambda_{i})f=\mu_{0}(\gamma_{0}^{-1})f$.



178 M. $GoTO$

By the last statement in Lemma 2, $\mu_{0}(L)f$ is closed in $\mu_{0}(G)f$, and so we can
find a $\lambda_{0}\in L$ with $\mu_{0}(\gamma_{0}^{-1})f=\mu_{0}(\lambda_{0})f,$ $i$ . $e.,$ $\mu_{0}(\gamma_{0}\lambda_{0})f=f$. Hence $\gamma_{0}\in C^{\prime}$ , and we
have shown that $C^{\prime}$ is closed. Since $G(f)/N(f)\cong C^{\prime}$ , and $C^{\prime}$ is Pnitely con-
nected, so is $G(f)$ . By Corollary 1 in {I}, the integrability condition holds
for $\tilde{G}$ .

\S 4. Remarks on linear Lie groups.

A connected Lie subgroup $T$ of $GL(m, R)$ is said to be (R-) triangularizable
if the eigenvalues of every member of $T$ are all real. A triangularizable $T$ is
of exponential type and is an exponential group.

Let $G$ be a connected Lie subgroup of $GL(m, R)$ , and $R$ the radical of $G$ .
By Lie’s theorem, there exists an $x\in GL(m, C)$ such that $xRx^{-1}$ can be (upper)
triangularized simultaneously. Let $T_{1}$ be the totality of $y$ in $R$ with all
eigenvalues real. Then $T_{1}$ is a closed normal subgroup of $R$ . Let $T$ be the
identity component of $T_{1}$ . We shall call $T$ the triangularizable radical of $G$ .
The triangularizable radical is obviously a normal subgroup of $G$ , but is not
characteristic in general. We can also define the triangularizable radical as a
maximal triangularizable, normal connected Lie subgroup of $G$ .

In [3], the author defined a faithfully representable connected Lie group $H$

completely reducible if the radical of $H$ is a toral group. Notice that ”completely
reducible” is stronger than ”reductive”. There it was proved that a connected
Lie group is faithfully representable if and only if there exists a completely
reducible subgroup $H$ and a closed simply connected solvable normal Lie sub-
group $L$ such that

$(*)$ $G=HL$, $H\cap L=\{e\}$ ;

the $H$ is determined uniquely up to inner automorphisms and will be called a
comPletely reducible Part of $G$ . Let us call $L$ a linear radical of $G$ , and the
decomposition $(*)$ canonical.

PROPOSITION. Let $G$ be a connected Lie subgroup of $GL(m, R)$ .
(i) $G$ is Pre-algebraic if and only if the triangularizable radical is Pre-

algebraic (of the form AN, where $A$ is a connected Pre-algebraic abelian sub-
group compOsed of semisimple elements, and $N$ the unipOtent radical of $G$ ) and
is a linear radical of $G$ .

(ii) $G$ is semi-algebraic if and only if the triangularizable radical is a
linear radical.

PROOF. (i) Suppose that a linear radical $L$ of $G$ is pre-algebraic. Let $H$

be a completely reducible part, and $H^{\prime}$ the commutator subgroup of $H$.
Then $H^{\prime}$ is a closed connected semisimple subgroup, and there exists a central
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toral subgroup $K$ with $H=H^{\prime}K$. By repeated use of Lemma 1, we have that
$G$ is pre-algebraic.

Conversely, suppose that $G$ is pre-algebraic, then so is the radical $R$ .
Hence $R$ has an Iwasawa decomposition $R=KAN$, where $K$ is a toral group,
$A$ abelian composed of semisimple elements, and $N$ the unipotent radical of $R$ .
Let $k$, $a,$ $n,$ $\gamma$, denote the Lie algebras of $K,$ $A,$ $N$ and $R$ , respectively.
Then $r=k\oplus a\oplus n$ , and for $X\in k,$ $Y\in a$ , and $Z\in n$ , the eigenvalues $\alpha_{i}(X+Y$

$+Z),$ $\cdots,$
$\alpha_{m}(X+Y+Z)$ are given by $\alpha_{i}(X+Y+Z)=\alpha_{i}(X)+\alpha_{i}(Y)+\alpha_{i}(Z)$ for

$i=1,$ $\cdots$ , $m$ , in virtue of Lie’s theorem. Since $\alpha_{i}(X)$ is purely imaginary,
$\alpha_{t}(Y)$ real and $\alpha_{i}(z)=0$, all $\alpha_{i}(X+Y+Z)$ are real if and only if $\alpha_{i}(X)=0$ for
$i=1,$ $\cdots,$ $m,$

$i$ . $e.,$ $X=0$ because $X$ is semisimple. Hence the triangularizable
radical is given by $AN$, which is obviously a linear radical of $G$ .

(ii) SuPpose that $GL(m, R)\supset G=HLH\cap L=\{e\}$ , where $H$ is a completely
reducible part and $L$ is triangularizable. Let $d(L)$ denote the pre-algebraic
hull of $L$ . Then $Hd(L)$ is pre-algebraic and coincides with $d(G)$ : $cd(G)=$

$H\mathcal{A}(L)$ . Since $L$ is triangularizable, so is $d(L)$ . $H\cap cd(L)$ is a solvable
normal subgroup of $H$, which is obviously compact and discrete. Hence
$H\cap d(L)$ must be a Pnite group. But $A(L)$ contains no element of finite
order except $e$ . Hence $H\cap A(L)=\{e\}$ , and $\llcorner fl(G)/G$ is homeomorphic with
$d(L)/L$ which is a vector group. This implies that $G$ is semi-algebraic.

Conversely, suppose that $G$ is semi-algebraic. Then UZ $(G)=H(AN)$
$H\cap AN=\{e\}$ . Since $H=H^{\prime}K$ and $G$ contains all compact subgroups and the
commutator subgroup of $d(G)$ , we have that $G\supset H$. Hence $G=H(AN\cap G)$

is a canonical decomposition with linear radical $AN\cap G$ which is of exponen-
tial type.

Now we shall give a definition.

DEFINITION. A connected Lie subgroup $G$ of $GL(m, R)$ is said to be of
$(EA)- tyPe$ if there exists a linear radical of exponential type. A connected Lie
group is said to be an $(EA)$ -grouP if the adjoint group is of (EA)-type.

REMARK. Let $G$ be a faithfully representable connected Lie group, and $K$

a maximal compact subgroup of $G$ . Then we can find a simply connected
solvable Lie subgroup $P$ with

$(^{**})$ $G=KP$ $K\cap P=\{e\}$ ,

see Goto [3]. For a pre-algebraic group $G$ , we can take $P=AN$ as an Iwasawa
subgroup. Hence we shall call $(^{**})$ a generalized Iwasawa decomposition of $G$ .
For semi-algebraic $G,$ $P$ can be triangularizable and for $G$ of (EA)-type, $P$ can
be of exponential type.
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Added in proof: After this paper was accepted, the author has learned
that the main theorem of this paper can also be proved by using machinery
due to Mackey. But it seems to the author that to get further results along
the way, the method here would be preferable.
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