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Let A be a finite dimensional semisimple Q-algebra and let 4 be a Z-order
in A. We mean by the class group of A the class group defined by using
locally free left A-modules and denote it by C(A). Let £ be a maximal
Z-order in A containing 4. We define D(A) to be the kernel of the natural
surjection C(A)— C(2) and d(A4) to be the order of D(A).

Let G be a finite group and let ZG be the integral group ring of G.
Then ZG can be regarded as a Z-order in the semisimple @-algebra QG.

In this paper we will try to determine all finite groups G for which
d(ZG)=1.

Let C, (n=1) denote the cyclic group of order n and let D, (n=2) denote
the dihedral group of order 2n. Let S,, A, denote the symmetric, alternating
group on »n symbols, respectively.

P. Cassou-Nogués showed that, for a finite abelian group G, d(ZG)=1
if and only if G=C,, C, (p any prime), C,, Cs, Cs, Cy, Cy, Cyy or C,XGC,.
Hence we have only to treat the nonabelian case.

Our main result is the following :

THEOREM. A finite nonabelian group G for which d(ZG)=1 is isomorphic
to one of the groups: D, n=3), A,, S., As.

It is well known (e.g. [14]) that d(ZA)=d(ZS,)=d(ZA;)=1. It is also
known that d(ZD,)=1 in each of the following cases: (i) n is an odd prime
([9)); (ii) n is a power of an odd regular prime ([7]); or (iii) n is a power
of 2 ([4]). Recently Cassou-Nogués [2] showed that there is an infinite number
of pairs (p, ¢) of distinct odd primes p, ¢ such that d(ZD,)>1. It seems
difficult to determine all integers n for which d(ZD,)=1.

§1. The group T(ZG).

Let G be a finite group and let (2) be the ideal of ZG generated by
2="¢. We define the subgroup T (ZG) of D(ZG) to be the kernel of the

=4

natural surjection D(ZG)— D(ZG/(X)) and t(ZG) to be the order of T (ZG)
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{13], [14]). We denote by A(G) the Artin exponent of G ([8]) and by G»
a Sylow p-subgroup of G for a prime divisor p of |G]|.

Recently S. Ullom showed some basic and important results on T(ZG).
The following theorem which is a summary of Ullom’s results will play an
essential role in the proof of our main result.

THEOREM 1.1 ([14]). (1) For any subquotient H of G t(ZH) divides t(ZG).
(2) The exponent of T(ZG) divides A(G).
(3) t(ZC=1 for any n=1 ([13]).

(4) If G is a noncyclic p-group where p is an odd prime, then p divides
t(ZG). If G is a noncyclic 2-group which is not dihedral, then 2 divides t(ZG).

(5) If G is the metacyclic group defined by
G={o, 7| 0P?=11=1, t7lor=0")

where p is an odd prime, q is a divisor of p—1 and 7 is a primitive g-th root
of unity modulo p, then t(ZG)=q/(q, 2).

From this we deduce

PROPOSITION 1.2. Let G be a finite group for which t(ZG)=1. Then the
maximal normal subgroup O(G) of G of odd order is cyclic and G/O(G)=Cy:
(t=0), Dy (t=1), Ay, S, or A;.

Proor. By (1.1) any subgroup of G of odd order is cyclic. Therefore
O(G) is cyclic and, for any odd prime p||G|, G» is also cyclic. Further, by
(1.1) G*® 1is cyclic or dihedral. Hence G/O(G) is isomorphic to one of the
groups: (i) Cp¢e (t=0), (ii) D,e (t=1), (ii) the subgroups of PI'L(2, p*)
containing PSL(2, p*) where p is an odd prime and s=1, or (iv) A, ([12],
)R

Since A, contains a subgroup which is a semidirect product of C, and C;
such that C, acts faithfully on C,, by (1.1) we have #(ZA,;)>1, and so the case
(iv) is excluded. Hence we have only to consider the case (iii). It is clear that
PSL(2, p*)» is an elementary abelian p-group of order p°. Therefore from
(1.1) it follows that s=1.

The group PSL(2, p) contains a subgroup which is a semidirect product of
Cp, and Cp-y, such that C,_,, acts faithfully on C,. If p=7, then by (1.1)
we have t(ZPSL(2, p))>1. Since PI'L(2, p)=PGL(2, p), G/O(G) must be
isomorphic to one of the groups: A,(=PSL(2,3)), S,(=PGL(2,3)), A=
PSL(2,5)), or S;(=zPGL(2,5)). But S; contains a subgroup which is a semi-
direct product of C; and C, such that C, acts faithfully on C;, and so again by
(1.1) we have t(ZS;)>1. Thus we conclude that G/O(G)=A,, S, or A;.
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§2. The group T(Z(C,XCyXCyp)).

In this section we give the following :

PROPOSITION 2.1. Let p be an odd prime. Then t(Z(CyXCyXCp))=2.

We begin with

LEMMA 2.2. Let p be an odd prime. Then t(Z(C,XCyXC,))=1 or 2.

Proor. Since A(C,XC,XC,)=2 ([8]), this follows directly from (1.1).

Let U(S) denote the unit group of a ring S. Let {, be a primitive n-th
root of unity and let @,(X) be the n-th cyclotomic polynomial.

LEMMA 2.3. The natural surjection D(Z(CyXC,))— D(ZC,[{,]) is a
bijection.

Proor. For example, see [11].

We refer to and for the Mayer-Vietoris sequence which will be
used in §§2 and 3.

LEMMA 2.4. The natural surjection D(Z(Cy X CyX Cp)/(2))— D(Z(Cy X C,) [ 1)
is a bijection.

ProOOF. Write C,XC,XC,={zy, 7y, 0l|t*=1,2=0P=1, 1,7:=1,7,, T, 0=07y,
7,0=07,>. Then we have Y=(14r7,)(1+7,)P,(s) and hence there is a pullback
diagram

Z (CoXCyXCp)/(2) Z (C, X Cp)

Z(CZXCZXCp)/((1+TZ)@p(0)) i Z(szcp>/((1+72) Qp (0'>)

From this we get an exact (Mayer-Vietoris) sequence
U(Z (C;XCyXCp)/(1+15) P p(0))) B U(Z(C,XCyp))
> U(Z(CXC((1+2) 0, (0))) —> D(Z(CXCXCH/E))
—> D(Z(CXCyXCp)/(1+75) 01 (0))) D D(Z(C, X Cyp))
—> D(Z(C,XCp)/((141) P (0)))-

It is clear that g is surjective. Since {(Z(C,XC,))=1, we have D(Z(C,XC,))
=D(Z(C,XCp)/((147,)D,(a))). Consequently it follows that

D(Z(szczxcp)/(z))gD(Z(szczxcp)/((l—i—fz)¢p(0')>)-

Further, from the pullback diagram

Z(CXCXC/((1+175) 0, (0)) —> Z(C,X Cy)

Z(C,XG,)IE,] ZG,[E,]
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we get an exact sequence
U(Z(C,xC)ILT) B UZ(C,XCp)) ~> U(ZC,TL,T)
—> D(Z(CyXCy X Cp)/((1+75) D ()
—> D(Z(C,XCY[E,]) B D(Z(C,%Cy))
—> D(ZG,[E,]).

Clearly p’ is surjective and by (2.3) D(Z(C,xC,)=D(ZC,[{,]). Therefore
we have

D(Z(Co X CoXCp)/(1+7,) @ (0)))=D(Z (Co X Co) [L1).
Thus we conclude that
D(Z(CoXCoXCp)/(2))=D(Z(CoXCy)[Ep]).

We denote by U*(Z(C,XC))) (resp. U*(ZC,[{,])) the image of U(Z(C,XCp))
(resp. U(ZC,[{,])) under the natural map U(Z(C,XC,))— U(F,(C,XCyp))
(resp. U(ZC,[L,]) — UF.C[L,1)).

LEMMA 2.5. If the order of U*(Z(C,XCp))® is equal to the order of
U*(ZC,[£,0)®, then t(Z(CyXxCyXCp))=2.

PrOOF. From the pullback diagrams

Z(CXGXCp) —> Z(GXCp) Z(C,XCYLL,] — ZG,15,]
|

v v
Z(C,XCp)  —> Fy(CXCyp), ZC[5]  — F.GIE,]
we get a commutative diagram with exact rows

0 —> U(F:(C, X Cp))/U*(Z (G, X Cp)) —> D(Z(C: X C X Cp))
2!

P

0— UWFGILD/UMZGIL]) — D(Z(GXEG)ILD

—> D(Z (C,XCp)) D D(Z(CyxCp)) —>0
2

—> D(ZG,[Cp]) @ D(ZGL]) — 0.

By (2.3) A is bijective and by (2.4) the kernel of A’ coincides with T (Z (C,X
C,%xC,)). Hence we have

HZ (CyXCy X Cyp))
=|UFy(CoXCoNI NUX(ZCLEDI/NU (F, G DI U (Z (G X Cp))l.

It is easy to see that |U(F,(C.XC)|=2|U(F,C,[{,1)|. Therefore, if [U*(Z
(CoXC )P =|U*(ZC,[£,1)®], then 2 divides #(Z(C.XC,XCp)). Thus we
conclude by (2.2) that t(Z (C,XC,XCp))=2.
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We are now ready to prove (2.1).

ProoOF OF (2.1). Write C,XC,=<z, o|t*=0¢?=1, to=07)>. Then we have
a commutative diagram

U(Zlz, 0]) 2> U(F,r, 01)=U(F,[<1) ® U(F,lz, 1)
¢ ¢
U(Zlz, C)) —> UF,Lz, ).

By (2.5) it suffices to show that |(Im ¢,)®|=]|(Im ¢,)®|.

Let a be a primitive root modulo p. The map Z[{,]— F, defined by
() — f(1) induces a surjection U(Z[{,+{,"'])— U(F,). Therefore there
exist elements u;({,), 1=i=t of U(Z[{,+{,7"]) such that

UZ[E,+C D=<u(Cp)1=i=D,
u;(1)=a (mod p), 1=i=t.
Since the exponent of U(F;[{,]) divides 2?7'—1, we can write
ui (o) =1420:(Ch), v (CR)EZIL, 7.

From the fact that u;(1)=a (mod p) it follows that
p-1/2 X
I i (€ =Nocgprzpnie(ui(Cp)) =—1.

Through the inclusion U(Z[z, {,])— U(Z[L,]) D U(Z[L,]) we may identify
1—v;(C,) (z—1) with (1, u;(£p)*'-1). Then it is easy to see that

p-1/2 .
1:[ (1—v; (Cp]) (r—1))=r.

j=1

(1)

Note that U(Z[{,1)=<L» -U(Z[L,+E,""]) and 277'—1 is odd. Then we have
(2) (Im ¢,)®={A+2,({p) (c+D|1=i=0.

Let f(z, ¢) be an element of Z[r, ¢] such that f(z, {,)ed—v;,)(z—1)]
1=:=t>. Then we can write

flz, 0)= n (1—v:(0) (c—1))*i+(c+d2) D, (o)

where h;, ¢, d are integers. It is clear that f(r, o)€U(Z[<, ¢]) if and only
if f(r, )eU(Z[z]), i.e, if and only if f(1,1), f(—1,1)eU(Z). However
7, D=1+p(c+d) and f(—1, )=TI(1+2v;(1))*i+p(c—d)=a" (mod p) where
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h=@2?7'—1)> h;. Therefore, if f(z, 0)€U(Z[z, 0]), then d=—c and p—1/2|h.
Conversely, if d=—c and p—1/2|h, then f(1, 1)=1, and, for some c,

1 when 2h/p—1 is even

-1, )=
/¢ ) {—1 when 2h/p—1 is odd.

In this case we have
f(z, a)=111(1—vi(0)<r*1)>”i—6(r—l)@p(0)e U(Z[z, o])

and
(II(A+9;(Cp) (z+1))":, 1) when 2h/p—1 is even

& (f(z, 0)):{ (IT(1+5;&p) (z+1))", z) when 2h/p—1 is odd.

If we put V={f(z, 0)€U(Z[x, o )|f(z, Lp)=<1—0v:((p) (z—1) [1=i=8>}, then
we see that (Im ¢,)®=¢,(V). From this it follows that

{(1+5;C,p)(z+1), 7)]1=i=t) when p=3 (mod4)
(3) (Im ¢)®=1¢ <1, 7), (A+5: )+ 1)) A+, ) (z+1), DII=i<i' =
when p=1 (mod4).

Let ¢ : (Im @) — (Im ¢,)® denote the restriction map of ¢.
In the case where p=3 (mod4) it follows from (2) and (3) that ¢ is sur-
jective. Suppose that (1, r)e(Im ¢,)®. Then by (3) we have

11 (1+8, € e+ 1) =1
for an odd integer »=1 and integers 1=i,=t¢. Therefore

| I, (o, @) e+ 1) =L

Jj=1

but by (1)

11 ["Jn” * (145, C0) + 1))]:Tr:f,

k=1

which is a contradiction. Hence Ker ¢=<(1, z)> £ (Im ¢,)®, and so ¢ is injective.
Thus ¢ is bijective, i.e., |(Im¢,)®|=|(Im ¢,)®|.
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In the case where p=1 (mod4) ¢ is not injective because (1, ©)eKer §.
Suppose that ¢ is surjective. Then by (2) and (3)

1T (145, ) e +1) =1

for an odd integer r=1 and integers 1=i,={. In the same way as above this
leads to a contradiction. Hence ¢ is not surjective, which implies that
|(Im ¢)®|=|(Im ¢,)*®|. This completes the proof of (2.1).

§3. The groups D(Z(C,%xD,)) and D(Z(D,XD,)).

Let A be a finite dimensional algebra over a field K. We denote by N4/«
the norm map A — K. Especially, if A is a separable K-algebra with center L,
then we denote by Nrd,,, the reduced norm map A — L.

Now let p be an odd prime. We define a map

pwUZ)YPULZILDDUZIL,DDUWZ)
—> UF,) QUWFJLLDDUWF,) D UF,)
by
(x, y&p), 2(p), w) —> (%-2(1), (L) 2(,), -0, §(1)-iD).

LEMMA 3.1. Let a be a primitive root modulo p. Then (1,1, 1, @*)e&Im g
for each odd integer k.

PrROOF. Let v : U(Z)PUZL,+L, " DR UZIL AL, DB UZ)—- U(F,)
B UF,[C,+C, N B UWF,)DUF,) be the restriction map of p. Since p((1,
Cor L, D)=p(1, 1, &, ))=U,8p, 1, 1) and U(Z[{,)=Lpw - UZ[L,+L,71]), it
suffices to show that (1, 1, 1, @¢¥)¢Imv.

Define a map N :U(Z)DUZL,+(, " DO UZIL+L, ' HOUZ)—
UZ)YQU(Z)DU(Z)YDU(Z) by (x, y (L), 2(Cp), w)—=(xP7Y%, Noreprep,-110(y (E5))s
Norgprzp1ia (2(€,)), wP~V?). Then we have a commutative diagram

UZ)D UZCp+E71) ? UZL+L7 Do U@)
N/
UZ)oUZ)dUZ)DU(Z)

S UF)® U(Fq[CerCI“l]) G U(F) P U(F,)
N
U(F,) @ UF) & U(F)® UF,)

pr

where v’ denotes the restriction map of v. If a({,)=(,*—{, */{,—(,™", then

v((1, a(ly), 1, 1))=, a(,), 1, @ because a(l)=a. Suppose that (1,1, 1, a*)e
Imy. Then (1, @)% 1, )€Imy and hence N((1, a({,)* 1, 1))=Imy’. Since
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kis 0dd, Np,izp+p-1ur (@(C,)*)=—1 and so N((I, alpt 1,1)=01, —1, 1, e
Imy’. However it is clear that Imy'={(—1, —1,1,1),(1, 1, —1, —1),(—1, 1,
-1, 1,1, —1, 1, —1))>, which implies (1, —1, 1, 1)é¢eIm’, a contradiction. This
concludes that (1, 1, 1, @*)e&Imy.

PROPOSITION 3.2. Let p, q be distinct odd primes. Then 2 divides
d(Z(CprXDy)).

PrOOF. Write
CpyXDy={(o, t|oPi=1*=1, to'=0%, toP=0""1).
Then we have a pullback diagram

Z (CpXDy)

Z[Cp’ T] @ Z[Cq: T]

Z[T] @Z[Cp; Cq: T] _"—>Fp[7] @Fq[gp, T] @Fq[f:l @Fp[Cq, 7].

From this we get an exact sequence

UZD)DUZLL,, &, t) D UZLIL,, c)) D UZLE,, <)
5> UF,[c]) @ UF,[£,, v1) @ UF,[]) ® U (F,[L,, )
—> D(Z(CpXDyg)) —> D(Z[c]) D D(Z1L,, &, 1)

D D(Z[Lp, c]) B D(ZIE,, 1) — 0.

Note that z{,={,7r and {,={,'z. Since both Z[{,,{,, z] and Z[{,, z] are
hereditary, we see that D(Z[{,, &, t])=D(Z[{,, z1)=0. Clearly D(Z[z])==0,
and by (2.2) D(Z[{,, t1)=D(ZC,,). Hence we have an exact sequence

0 —> Coker pg —> D(Z(Cp, X Dy)) —> D(ZC,,) —> 0.

If K denotes one of the rings Q[{,, {1, Q[{,] and F,[{,], then K[7] is a
separable algebra with center K<>={zeK|r(z)=z}, and we see that
Nrdgoyr<e>(x+yr)=xt(x)—yr(y) for any x, yeK. Define a map N,:
UZz) D ULy, Lo 1D UZIL,, t) D UZIL,, 71) = UZ) P U(ZL,, &,
+ DD UEZE,D) D UL+ ) by (xitxe7, it yet, 2F 227, witw, )
= (x5 = x5 ¥t () =yt (¥2), 2.5 —2%, wit(w,)—w,z(w,)) and a map N, : U<Fp
[c]) D UF Ly, 7]) D U(F,[z]) D UF,[&, 7]) — U(Fy) O U(F,[{,]) D U(F)
-~ U(Fp[Cq"l_Cq_l]) by (f1+f27; itdet, 21+ 2,7, W+, 7) — (X2 —X,°, V2= Z,2
—2Z,%, W, t(W,)—W,7(W;)). Then we have a commutative diagram
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UZLz)) D UZ1Lp, &y 7)) Gf U(ZL,, 1) D UZIE,, «1)
Ny
U(Z) D UZLL,, L) UZIE]) © UZIG+H D)

L UF,[2]) ® U(F,[Cp, 71) ® U(F,[2]) ® UF, Ly, 1)

|
L UWF) B UWERLD) O UF)D UEF, L)

where p;, denotes the restriction map of p. Here the map N, is surjective and
hence |Coker y,| divides d(Z(C,XD,)). Further define a map N, : U(Z)D
UZ[Cy, C+E 1) QUZIE]) D UZILE ) — UZ) B UZIL,)) S UEZILD
DQUZ) by (x,y,z w)—(x% thgp,§q+cq—lllqtcpl(y), FAR NQquJrcq*lJ/Q(w))
and a map N,:U(F,) @ UFLL)) D UF) D UF,[L+E]) — U, D
UF DD UWF)DUF,) by (X,5, 2, W) — (X2, 512, 20742, Np i rgg-1im,
(@)). Then we get a commutative diagram

UZ)D UZLL,, L+E1D) T UZ1E,1) D UZIL+C D)
Ny
UZ)DUZILDD UEZIL]D QU2

Lo UF,) @ U1 B UWF) O UF, [+ )
N,

s UF,) & UF,[L,1) S UF) @ UFy)

where p, denotes the restriction map of g,. Let a be a primitive root modulo
p and let & be an odd integer. By virtue of (3.1) we have (1,1, 1, @¥)&Im p,.
Since Np,ipre1ur, - UF L+ 71]) — U(F,) is surjective, there is an element
7 of U(Fp[L+E, ") such that Ny ciep-1ur,(F)=a. Then we have (1,1, 1, 7%)
éIm g,, and therefore the Sylow 2-subgroup of the cyclic group <(1,1,1,7)>
is not contained in Img,. This shows that 2 divides |Coker p,|, which com-
pletes the proof of the proposition.

REMARK 3.3. It is known (e.g. [1]) that d(ZC,,)>1 for any prime p=11.
Since d(ZC,p) divides d(Z(C,XDy)), this implies that d(Z(C,xD,))>1 for
any p=11. However d(ZC,;,) is odd. Hence this does not imply that 2 divides
d(Z(C,XxXDy)).

PROPOSITION 3.4. Let p, q be distinct odd primes. Then 2 divides
d(Z(Dp,XDy)).

PROOF. Write

D, XDy={0, 71, 1:| 6P1=12=1,=1, 1, 09=0"7y, 7, 0°=0"1,,

To09=0%7,, T,62=0"P7y, T1To=T2T1).
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Then we have a commutative diagram
Z(D,xDy)

Zzr,, 1.1 D Z[Lp, Ly, 71, 7o)

Z[Cp: T1s 7-'2] EB Z[Cq’ T1, 7-'2]

R Fp[fl; Tz]@Fq[Cp; Ti1s Tz]@Fq[Tn 75 @Fp[Cq’ Ti, To] .

From this we get an exact sequence

UZlzy, ©)) © UZILy, Loy 71, 21) D UZ Ly, 70, ©0) D UZIL,, 1, 7))
L UF, [, ©d) © UL, 71, 7)) @ UFley, ) B UFL, ©, 7))
—> D(Z(DyXDg) —> D(Z[z,, 7:) D D(Z[C,, &y 71, 721)

D D(ZLy, 71, 7)) B D(Z[L,, 7, 7]) —> .

Note that z;{,=C, " 7y, 7,{,=Cy 71, 7:8p,=Cp7, and 7, {,={, ' 7,. Since Z[{,, &,
71, 7o) is hereditary, it follows that D(Z[{,, {,, 71, v.1)=0. It is clear that
D(Z[z,, 7,1)=0. Further we see that D(Z[{,, r,, 7.1)=D(ZD,,) and D(Z[{,,
71, T21)=D(ZD,,). Therefore we have an exact sequence

0 —> Coker v —> D(Z(D,%D,)) —> D(ZD,,) & D(ZD,;) —> 0.

Denote by S one of the rings Z[{,, {1, Z[L,1, Z[L,]), Z, F,[{,], Fy[{.],
F,, F, and define a map Ns: U(S[z,, 7,]) = U(S~172”) by

x y z w
7. () 7, (x) 7, (w) 7,(2)

|
|
0@ w@  a wb)

z
x+yritzr,twrty— J
|
!

7(w) Ti7e(2) Tite(y) TiTe(x) f

Here it should be noted that Ny, 7 =Nrdec, cperosvaigpreptcgrgg - Let
N,:(lvz, NZ[vaqu' Nzgcpj, Nz[cq}) and N:(Npp, ATFq[CpJ’ ]\TFq, NFP[Cq]). Then we
get a commutative diagram

U(Z[Tn 72]) EB U(Z[Cp) C’qr T1, Tz]) @ U(Z[Cp) (2% 72]) @ U(Z[Cq; T1s Tz])
N/
UZ) D U(ZILp+ o™, Gt D B UZ L+ 270) & UZ L+ D)
L UF,[ty, 7]) & UF [y, 71, 721) D U(Fylty, 751) & U(F,[Ly, 71y 7))
N

UFp) QUFLL+0 D) D UWF) D UWF L+

V1
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where v, denotes the restriction map of v. The map N is surjective and hence
|Cokery,| divides d(Z(DpXD,)). Then, in the same way as in the proof of
(3.2), we can show that 2 divides [|Cokery,|. Thus we conclude that 2 divides
d(Z(D,%xDyp)).

REMARK 3.5. In the proof of (3.4) it was shown that there exists a sur-
jection: D(Z(D,XDy))— D(ZD,,) P D(ZD,,). It is seen that, if p is one of
the primes: p=3l, p=47, 53, 59, 179, 19379, then d(ZD,,)=1. However we do
not know whether d(ZD;,)=1 for any prime p or not.

For any integers n=3 and t=2, define the group H,,, as follows:

H, =<0, t|o"=t*"=1, or=10"".

PROPOSITION 3.6. Let p be an odd prime. Then 2 divides d(ZH,,,).

Proor. By Frohlich [3] this has already been proved in a more precise
form. For completeness we give a simple proof.
Now there is an exact sequence

U(Z[,, T O UZL7]) —> U(F,[7]) — D(ZH,,,/(z*+1))
—> D(Z[E,, 7D D(Z[7]) — 0

where 7°=—1 and {,7=7(,"%. It is clear that D(Z[{,, 7])=D(Z[7])==0.
Therefore we get an exact sequence

UZ[Z,, 7]) BN UWF,[7])—> D(ZH,,,/(z*+1)) —> 0.

Let a be a primitive root modulo p and let (¢, d), ¢, d=Z be a solution of the
congruence X?+Y?*=qa (mod p). Then a=é+d7eU(F,[7]) and (¢+d7)(6—d7)
—d. Let k be an odd integer and suppose that a*=Im¢. Then there exists
F&p, DEU(ZIE,, 71) such that F(1, B=a*. Write f(&p, D= (C)+ )7,
FAE), fCIEZIC,] and let g(C,y, D=F(C ) —fo((, )7 Then

Nrdauzy wiaczprep-0(F Cor D =FCpr B Cpr D=AEC) fiCo™HF2 ) fo ™) >0,
Consequently Nz +z,-110 (f (Cy) 7)g({,, 7))=1. However f(1,7)2(1, 7)=a*,
and therefore (NQ[CPJ,CI,-H/Q(]‘(C,,,f)g(Cp,f))):(a“k)p‘I/Z::T, a contradiction.
Hence a*<Im¢. This implies that <a>® is not contained in Im ¢, which con-
cludes that 2 divides d(ZH,,,).

§4. The main result.

We are now in a position to prove our main result.

THEOREM 4.1. A finite nonabelian group G for which d(ZG)=1 is isomor-
phic to one of the groups: D, (n=3), As, Sy, As.
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Proor. By (1.2) O(G) is cyclic and G/0(G)=Cy, Dy, Ay, Sy or A
Write O (G)=<p)> and let m=|0(G)|. Let C(G) denote the center of G.

(i) Assume that G/O(G)=C,. Then G®=(,, and so we may write
G®=<r). The action of <{r) on <p)> by conjugation yields a map ¢ : () —
Aut{p). Since G is nonabelian, we have Kerg¢S=<z). I [{z>:Ker ¢]=23,
s=2, then there is a prime p|m such that <{z)/Ker ¢ acts faithfully on {p>®.
Therefore by (1.1) d(ZG/(z¥—1, p™?—1))>1 and so d(ZG)>1. Thus we
must have [{z) : Ker ¢]=2. In this case, suppose that O(G) N\ C(G)={1} and
let O(G)N C(G)=<p™>, m’|m. Then m”"=m/m’>1 and (m’, m”)=1. Hence
G={p™>X<p™, t> and so G/<{t*)=Cp XDy.. According to (3.2) d(ZG/(z*—1))
>1 and therefore d(ZG)>1. Consequently we have O(G) N\ C(G)={l1}. Then
G=<p, t|p™=1*=1, pr=tp~*). By virtue of (3.6), d(ZG)>1 if t=2. Hence
we must have t=1, i.e.,, G=D,,.

(ii) Assume that G/O(G)=D,:, t=2. Then G®=D,; and so we may
write G®={(g, t|o¥=72=1, gr=70"%. If O(G) N C(G)= {1}, then there exists
a subquotient of G which is isomorphic to C,XC,XC, for a prime p|m. From
(1.1) and (2.1) it follows that {(ZG)>1. Therefore we have O(G) N\ C(G)={1}.

Let p;, 1=i=<r, be all prime divisors of m and let {p,>=<{p>?¥¥. The
action of G® on {p;> by conjugation yields a map ¢;: G® — Aut<{p;>. Let
N;=Ker ¢;. Since Aut<{p;> is abelian, [G?®, G®]={¢?) C N;. Only one of g,
7, 7o is contained in N; because O(G) N\ C(G)={l1}. If o« N; for some i, then
either 7 or ¢z is contained in N;. Since <{o%, t>=<{0? to)=D,:-1, this shows
that there exists a subquotient of G which is isomorphic to CoX Gy X Cy,.
Again from (2.1) it follows that ¢(ZG)>1. Thus we must have ¢=N; for
each 7, which implies that G=D,:,,.

(iii) Assume that G/O(G)=D,=C,XC,. Then we have G®=(C,x(C, and
O(G)+{1}. In the same way as in the case (ii) it can be shown that
0(G)N C(G)={1}. If there exist 7,, 7,£G® such that pr,=7,p7! and pr,=
7,0, then G=Co, XD =Dy

Now suppose that there exist 7,, 7,€G® such that pr,=z,p™' but pr,>
720" Y, 72 0. Then we can find p,, p,E<p> such that p=p, p,, p17,=7,p,"* and
p2T:=Ty pz. Clearly p;717,=717,p1 and p,7,7,:=17,7,0,"", and so G=<p,, 7,7
X<z, 20. Let my=[<p>| and m,=|<{p,>|. Then (m,, my)=1 and G=D,, X D,.
Therefore by (3.4) we have d(ZG)>1.

Next suppose that, for any r€G®— {1}, prxzp™, zp. Let r,€G®—{l}.
We can find p,, p.€<p) such that p=p,p., p.7:=7:p0,"' and p,7,=7,p,. By
assumption both p, and p, are different from 1. Further let r,eG®—{1, z,}.
Then p,7,=7,p,"* because O(G) N C(G)={1}, and hence we can find p{, pje
{p,y such that p,=p}p;, pi7.;=7,0; and py7,=7,p;"'. By assumption we have
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p1#1. Let m,=|<{p>| and m,=[{p,>|. Then G/{pi»=D, XD,, and therefore,
by (3.4), d(ZG)>1.

(iv) Assume that G/O(G)=A,, S, or A;. If O(G)={1}, then G=A,, S,
or A;, as required. Suppose that O(G)={l} and let ¢: G — Aut{p) be the
map defined by the action of G on {p)> by conjugation. Note that G®=
(G/O(G))®. Then we see that Ker ¢ contains a subgroup which is isomorphic
to C,XC,. Therefore there exists a subgroup H of G which is isomorphic to
C,xXCyXC,. According to (2.1) we have ((ZG)>1.

From (i)~ (iv) we conclude that G=D, (n=3), A, S, or A;.

REMARK 4.2. It is fairly difficult to determine all integers n for which
d(ZD,)=1. It should be noted ([2]) that there exists an infinite number of
pairs (p, q¢) of distinct odd primes p, ¢ such that d(ZD,,)>1. Some further
results on the group T(ZG) will be given in a forthcoming paper.
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