Finite groups with trivial class groups

By Shizuo ENDO and Yumiko HIRONAKA

(Received July 14, 1977)

Let A be a finite dimensional semisimple Q-algebra and let Λ be a Z-order in A. We mean by the class group of Λ the class group defined by using locally free left Λ -modules and denote it by $C(\Lambda)$. Let Ω be a maximal Z-order in A containing Λ . We define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \to C(\Omega)$ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let G be a finite group and let ZG be the integral group ring of G. Then ZG can be regarded as a Z-order in the semisimple Q-algebra QG.

In this paper we will try to determine all finite groups G for which $d(\mathbf{Z}G) = 1$.

Let C_n $(n \ge 1)$ denote the cyclic group of order n and let D_n $(n \ge 2)$ denote the dihedral group of order 2n. Let S_n , A_n denote the symmetric, alternating group on n symbols, respectively.

P. Cassou-Noguès [1] showed that, for a finite abelian group G, $d(\mathbf{Z}G)=1$ if and only if $G\cong C_1$, C_p (p any prime), C_4 , C_6 , C_8 , C_9 , C_{10} , C_{14} or $C_2\times C_2$. Hence we have only to treat the nonabelian case.

Our main result is the following:

THEOREM. A finite nonabelian group G for which $d(\mathbf{Z}G)=1$ is isomorphic to one of the groups: D_n $(n \ge 3)$, A_4 , S_4 , A_5 .

It is well known (e.g. [14]) that $d(\mathbf{Z}A_4)=d(\mathbf{Z}S_4)=d(\mathbf{Z}A_5)=1$. It is also known that $d(\mathbf{Z}D_n)=1$ in each of the following cases: (i) n is an odd prime ([9]); (ii) n is a power of an odd regular prime ([7]); or (iii) n is a power of 2 ([4]). Recently Cassou-Noguès [2] showed that there is an infinite number of pairs (p,q) of distinct odd primes p, q such that $d(\mathbf{Z}D_{pq})>1$. It seems difficult to determine all integers n for which $d(\mathbf{Z}D_n)=1$.

§ 1. The group T(ZG).

Let G be a finite group and let (Σ) be the ideal of $\mathbf{Z}G$ generated by $\Sigma = \sum_{\sigma \in G} \sigma$. We define the subgroup $T(\mathbf{Z}G)$ of $D(\mathbf{Z}G)$ to be the kernel of the natural surjection $D(\mathbf{Z}G) \to D(\mathbf{Z}G/(\Sigma))$ and $t(\mathbf{Z}G)$ to be the order of $T(\mathbf{Z}G)$

([13], [14]). We denote by A(G) the Artin exponent of G ([8]) and by $G^{(p)}$ a Sylow p-subgroup of G for a prime divisor p of |G|.

Recently S. Ullom [14] showed some basic and important results on $T(\mathbf{Z}G)$. The following theorem which is a summary of Ullom's results will play an essential role in the proof of our main result.

THEOREM 1.1 ([14]). (1) For any subquotient H of G $t(\mathbf{Z}H)$ divides $t(\mathbf{Z}G)$.

- (2) The exponent of $T(\mathbf{Z}G)$ divides A(G).
- (3) $t(\mathbf{Z}C_n)=1 \text{ for any } n \ge 1 \text{ ([13])}.$
- (4) If G is a noncyclic p-group where p is an odd prime, then p divides $t(\mathbf{Z}G)$. If G is a noncyclic 2-group which is not dihedral, then 2 divides $t(\mathbf{Z}G)$.
 - (5) If G is the metacyclic group defined by

$$G = \langle \sigma, \tau \mid \sigma^p = \tau^q = 1, \tau^{-1} \sigma \tau = \sigma^r \rangle$$

where p is an odd prime, q is a divisor of p-1 and r is a primitive q-th root of unity modulo p, then $t(\mathbf{Z}G)=q/(q,2)$.

From this we deduce

PROPOSITION 1.2. Let G be a finite group for which $t(\mathbf{Z}G)=1$. Then the maximal normal subgroup O(G) of G of odd order is cyclic and $G/O(G)\cong C_{2t}$ $(t\geq 0)$, D_{2t} $(t\geq 1)$, A_4 , A_5 or A_5 .

PROOF. By (1.1) any subgroup of G of odd order is cyclic. Therefore O(G) is cyclic and, for any odd prime p||G|, $G^{(p)}$ is also cyclic. Further, by (1.1) $G^{(2)}$ is cyclic or dihedral. Hence G/O(G) is isomorphic to one of the groups: (i) C_{2t} $(t \ge 0)$, (ii) D_{2t} $(t \ge 1)$, (iii) the subgroups of $P\Gamma L(2, p^s)$ containing $PSL(2, p^s)$ where p is an odd prime and $s \ge 1$, or (iv) A_7 ([12], [5]).

Since A_7 contains a subgroup which is a semidirect product of C_7 and C_8 such that C_8 acts faithfully on C_7 , by (1.1) we have $t(\mathbf{Z}A_7)>1$, and so the case (iv) is excluded. Hence we have only to consider the case (iii). It is clear that $PSL(2, p^s)^{(p)}$ is an elementary abelian p-group of order p^s . Therefore from (1.1) it follows that s=1.

The group PSL(2, p) contains a subgroup which is a semidirect product of C_p and $C_{p-1/2}$ such that $C_{p-1/2}$ acts faithfully on C_p . If $p \ge 7$, then by (1.1) we have $t(\mathbf{Z}PSL(2, p)) > 1$. Since $P\Gamma L(2, p) = PGL(2, p)$, G/O(G) must be isomorphic to one of the groups: $A_4(\cong PSL(2, 3))$, $S_4(\cong PGL(2, 3))$, $A_5(\cong PSL(2, 5))$, or $S_5(\cong PGL(2, 5))$. But S_5 contains a subgroup which is a semi-direct product of C_5 and C_4 such that C_4 acts faithfully on C_5 , and so again by (1.1) we have $t(\mathbf{Z}S_5) > 1$. Thus we conclude that $G/O(G) \cong A_4$, S_4 or A_5 .

§ 2. The group $T(\mathbf{Z}(C_2 \times C_2 \times C_p))$.

In this section we give the following:

PROPOSITION 2.1. Let p be an odd prime. Then $t(\mathbf{Z}(C_2 \times C_2 \times C_p)) = 2$.

We begin with

LEMMA 2.2. Let p be an odd prime. Then $t(\mathbf{Z}(C_2 \times C_2 \times C_p))=1$ or 2.

PROOF. Since $A(C_2 \times C_2 \times C_p) = 2$ ([8]), this follows directly from (1.1).

Let U(S) denote the unit group of a ring S. Let ζ_n be a primitive n-th root of unity and let $\Phi_n(X)$ be the n-th cyclotomic polynomial.

LEMMA 2.3. The natural surjection $D(\mathbf{Z}(C_2 \times C_p)) \to D(\mathbf{Z}C_2 \llbracket \zeta_p \rrbracket)$ is a bijection.

PROOF. For example, see [11].

We refer to [10] and [11] for the Mayer-Vietoris sequence which will be used in §§2 and 3.

LEMMA 2.4. The natural surjection $D(\mathbf{Z}(C_2 \times C_2 \times C_p)/(\Sigma)) \rightarrow D(\mathbf{Z}(C_2 \times C_2)[\zeta_p])$ is a bijection.

PROOF. Write $C_2 \times C_2 \times C_p = \langle \tau_1, \tau_2, \sigma | \tau_1^2 = \tau_2^2 = \sigma^p = 1, \tau_1 \tau_2 = \tau_2 \tau_1, \tau_1 \sigma = \sigma \tau_1, \tau_2 \sigma = \sigma \tau_2 \rangle$. Then we have $\Sigma = (1+\tau_1)(1+\tau_2) \Phi_p(\sigma)$ and hence there is a pullback diagram

$$Z(C_2 \times C_2 \times C_p)/(\Sigma) \longrightarrow Z(C_2 \times C_p)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z(C_2 \times C_2 \times C_p)/((1+\tau_2) \Phi_p(\sigma)) \longrightarrow Z(C_2 \times C_p)/((1+\tau_2) \Phi_p(\sigma)).$$

From this we get an exact (Mayer-Vietoris) sequence

$$U(\mathbf{Z}(C_{2} \times C_{2} \times C_{p})/((1+\tau_{2})\Phi_{p}(\sigma))) \oplus U(\mathbf{Z}(C_{2} \times C_{p}))$$

$$\stackrel{\mu}{\longrightarrow} U(\mathbf{Z}(C_{2} \times C_{p})/((1+\tau_{2})\Phi_{p}(\sigma))) \longrightarrow D(\mathbf{Z}(C_{2} \times C_{2} \times C_{p})/(\Sigma))$$

$$\longrightarrow D(\mathbf{Z}(C_{2} \times C_{2} \times C_{p})/((1+\tau_{2})\Phi_{p}(\sigma))) \oplus D(\mathbf{Z}(C_{2} \times C_{p}))$$

$$\longrightarrow D(\mathbf{Z}(C_{2} \times C_{p})/((1+\tau_{2})\Phi_{p}(\sigma))).$$

It is clear that μ is surjective. Since $t(\mathbf{Z}(C_2 \times C_p)) = 1$, we have $D(\mathbf{Z}(C_2 \times C_p)) \cong D(\mathbf{Z}(C_2 \times C_p)/((1+\tau_2)\Phi_p(\sigma)))$. Consequently it follows that

$$D(\mathbf{Z}(C_2 \times C_2 \times C_p)/(\Sigma)) \cong D(\mathbf{Z}(C_2 \times C_2 \times C_p)/((1+\tau_2)\Phi_p(\sigma))).$$

Further, from the pullback diagram

$$Z(C_2 \times C_2 \times C_p)/((1+\tau_2)\Phi_p(\sigma)) \longrightarrow Z(C_2 \times C_p)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z(C_2 \times C_2)[\zeta_p] \longrightarrow ZC_2[\zeta_p]$$

we get an exact sequence

$$U(\mathbf{Z}(C_{2} \times C_{2}) [\zeta_{p}]) \oplus U(\mathbf{Z}(C_{2} \times C_{p})) \xrightarrow{\mu} U(\mathbf{Z}C_{2} [\zeta_{p}])$$

$$\longrightarrow D(\mathbf{Z}(C_{2} \times C_{2} \times C_{p}) / ((1+\tau_{2}) \Phi_{p}(\sigma)))$$

$$\longrightarrow D(\mathbf{Z}(C_{2} \times C_{2}) [\zeta_{p}]) \oplus D(\mathbf{Z}(C_{2} \times C_{p}))$$

$$\longrightarrow D(\mathbf{Z}C_{2} [\zeta_{p}]).$$

Clearly μ' is surjective and by (2.3) $D(\mathbf{Z}(C_2 \times C_p)) \cong D(\mathbf{Z}C_2[\zeta_p])$. Therefore we have

$$D(\boldsymbol{Z}(C_2 \times C_2 \times C_p)/((1+\tau_2)\boldsymbol{\Phi}_p(\boldsymbol{\sigma}))) \cong D(\boldsymbol{Z}(C_2 \times C_2)[\zeta_p]).$$

Thus we conclude that

$$D(\mathbf{Z}(C_2 \times C_2 \times C_p)/(\Sigma)) \cong D(\mathbf{Z}(C_2 \times C_2)[\zeta_p]).$$

We denote by $U^*(\mathbf{Z}(C_2 \times C_p))$ (resp. $U^*(\mathbf{Z}C_2 \llbracket \zeta_p \rrbracket)$) the image of $U(\mathbf{Z}(C_2 \times C_p))$ (resp. $U(\mathbf{Z}C_2 \llbracket \zeta_p \rrbracket)$) under the natural map $U(\mathbf{Z}(C_2 \times C_p)) \to U(\mathbf{F}_2(C_2 \times C_p))$ (resp. $U(\mathbf{Z}C_2 \llbracket \zeta_p \rrbracket) \to U(\mathbf{F}_2(C_2 \llbracket \zeta_p \rrbracket))$.

LEMMA 2.5. If the order of $U^*(\mathbf{Z}(C_2 \times C_p))^{(2)}$ is equal to the order of $U^*(\mathbf{Z}C_2[\zeta_p])^{(2)}$, then $t(\mathbf{Z}(C_2 \times C_2 \times C_p))=2$.

PROOF. From the pullback diagrams

$$Z(C_{2} \times C_{2} \times C_{p}) \longrightarrow Z(C_{2} \times C_{p}) \qquad Z(C_{2} \times C_{2}) [\zeta_{p}] \longrightarrow ZC_{2} [\zeta_{p}]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z(C_{2} \times C_{p}) \longrightarrow F_{2}(C_{2} \times C_{p}), \qquad ZC_{2} [\zeta_{p}] \longrightarrow F_{2}C_{2} [\zeta_{p}]$$

we get a commutative diagram with exact rows

By (2.3) λ is bijective and by (2.4) the kernel of λ' coincides with $T(\mathbf{Z}(C_2 \times C_2 \times C_p))$. Hence we have

$$t(\mathbf{Z}(C_2 \times C_2 \times C_p))$$

$$= |U(\mathbf{F}_2(C_2 \times C_p))| |U^*(\mathbf{Z}C_2 \llbracket \zeta_p \rrbracket)| / |U(\mathbf{F}_2C_2 \llbracket \zeta_p \rrbracket)| |U^*(\mathbf{Z}(C_2 \times C_p))|.$$

It is easy to see that $|U(\mathbf{F}_2(C_2 \times C_p))| = 2|U(\mathbf{F}_2C_2[\zeta_p])|$. Therefore, if $|U^*(\mathbf{Z}(C_2 \times C_p))^{(2)}| = |U^*(\mathbf{Z}C_2[\zeta_p])^{(2)}|$, then 2 divides $t(\mathbf{Z}(C_2 \times C_2 \times C_p))$. Thus we conclude by (2,2) that $t(\mathbf{Z}(C_2 \times C_2 \times C_p)) = 2$.

We are now ready to prove (2.1).

PROOF OF (2.1). Write $C_2 \times C_p = \langle \tau, \sigma | \tau^2 = \sigma^p = 1, \tau \sigma = \sigma \tau \rangle$. Then we have a commutative diagram

$$U(\mathbf{Z}[\tau, \sigma]) \xrightarrow{\phi_2} U(\mathbf{F}_2[\tau, \sigma]) \cong U(\mathbf{F}_2[\tau]) \oplus U(\mathbf{F}_2[\tau, \zeta_p])$$

$$\downarrow^{\phi'} \qquad \qquad \downarrow^{\phi}$$

$$U(\mathbf{Z}[\tau, \zeta_p]) \xrightarrow{\phi_1} U(\mathbf{F}_2[\tau, \zeta_p]).$$

By (2.5) it suffices to show that $|(\text{Im }\phi_1)^{(2)}| = |(\text{Im }\phi_2)^{(2)}|$.

Let a be a primitive root modulo p. The map $Z[\zeta_p] \to F_p$ defined by $f(\zeta_p) \to f(1)$ induces a surjection $U(Z[\zeta_p + \zeta_p^{-1}]) \to U(F_p)$. Therefore there exist elements $u_i(\zeta_p)$, $1 \le i \le t$ of $U(Z[\zeta_p + \zeta_p^{-1}])$ such that

$$U(\mathbf{Z}[\zeta_p + \zeta_p^{-1}]) = \langle u_i(\zeta_p) | 1 \leq i \leq t \rangle,$$

$$u_i(1) \equiv a \pmod{p}, \quad 1 \leq i \leq t.$$

Since the exponent of $U(\mathbf{F}_{2}[\zeta_{p}])$ divides $2^{p-1}-1$, we can write

$$u_i(\zeta_p)^{2^{p-1}-1} = 1 + 2v_i(\zeta_p), \quad v_i(\zeta_p) \in \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$$

From the fact that $u_i(1) \equiv a \pmod{p}$ it follows that

$$\prod_{j=1}^{p-1/2} u_i(\zeta_p^j) = N_{\mathbf{Q}(\zeta_p + \zeta_p^{-1})/\mathbf{Q}}(u_i(\zeta_p)) = -1.$$

Through the inclusion $U(\mathbf{Z}[\tau, \zeta_p]) \to U(\mathbf{Z}[\zeta_p]) \oplus U(\mathbf{Z}[\zeta_p])$ we may identify $1-v_i(\zeta_p)(\tau-1)$ with $(1, u_i(\zeta_p)^{2^{p-1}-1})$. Then it is easy to see that

(1)
$$\prod_{i=1}^{p-1/2} (1-v_i(\zeta_p^j)(\tau-1)) = \tau.$$

Note that $U(Z[\zeta_p]) = \langle \zeta_p \rangle \cdot U(Z[\zeta_p + \zeta_p^{-1}])$ and $2^{p-1} - 1$ is odd. Then we have

$$(2) \qquad (\operatorname{Im} \phi_1)^{(2)} = \langle 1 + \bar{v}_i(\zeta_p)(\tau+1) | 1 \leq i \leq t \rangle.$$

Let $f(\tau, \sigma)$ be an element of $\mathbf{Z}[\tau, \sigma]$ such that $f(\tau, \zeta_p) \in \langle 1 - v_i(\zeta_p)(\tau - 1) | 1 \le i \le t \rangle$. Then we can write

$$f(\tau, \sigma) = \prod_{i=1}^{t} (1 - v_i(\sigma)(\tau - 1))^{h_i} + (c + d\tau) \Phi_p(\sigma)$$

where h_i , c, d are integers. It is clear that $f(\tau, \sigma) \in U(\mathbf{Z}[\tau, \sigma])$ if and only if $f(\tau, 1) \in U(\mathbf{Z}[\tau])$, i.e., if and only if f(1, 1), $f(-1, 1) \in U(\mathbf{Z})$. However f(1, 1) = 1 + p(c+d) and $f(-1, 1) = \prod_{i} (1 + 2v_i(1))^{h_i} + p(c-d) \equiv a^h \pmod{p}$ where

 $h=(2^{p-1}-1)\sum_i h_i$. Therefore, if $f(\tau,\sigma)\in U(\boldsymbol{Z}[\tau,\sigma])$, then d=-c and p-1/2|h. Conversely, if d=-c and p-1/2|h, then f(1,1)=1, and, for some c,

$$f(-1, 1) = \begin{cases} 1 & \text{when } 2h/p-1 \text{ is even} \\ -1 & \text{when } 2h/p-1 \text{ is odd.} \end{cases}$$

In this case we have

$$f(\tau, \sigma) = \prod_i (1 - v_i(\sigma)(\tau - 1))^{h_i} - c(\tau - 1) \boldsymbol{\Phi}_p(\sigma) \in U(\boldsymbol{Z}[\tau, \sigma])$$

and

$$\phi_2(f(\tau, \sigma)) = \begin{cases} (\prod_i (1 + \bar{v}_i(\zeta_p)(\tau+1))^{h_i}, & 1) \text{ when } 2h/p-1 \text{ is even} \\ (\prod_i (1 + \bar{v}_i(\zeta_p)(\tau+1))^{h_i}, & \tau) \text{ when } 2h/p-1 \text{ is odd.} \end{cases}$$

If we put $V = \{f(\tau, \sigma) \in U(\mathbf{Z}[\tau, \sigma]) | f(\tau, \zeta_p) \in \langle 1 - v_i(\zeta_p)(\tau - 1) | 1 \leq i \leq t \rangle \}$, then we see that $(\operatorname{Im} \phi_2)^{(2)} = \phi_2(V)$. From this it follows that

(3)
$$(\operatorname{Im} \phi_{2})^{(2)} = \begin{cases} \langle (1+\bar{v}_{i}(\zeta_{p})(\tau+1), \tau) | 1 \leq i \leq t \rangle & \text{when} \quad p \equiv 3 \pmod{4} \\ \langle (1, \tau), ((1+\bar{v}_{i}(\zeta_{p})(\tau+1))(1+\bar{v}_{i'}(\zeta_{p})(\tau+1)), 1) | 1 \leq i < i' \leq t \rangle \\ & \text{when} \quad p \equiv 1 \pmod{4}. \end{cases}$$

Let $\bar{\phi}: (\operatorname{Im} \phi_2)^{(2)} \to (\operatorname{Im} \phi_1)^{(2)}$ denote the restriction map of ϕ .

In the case where $p\equiv 3\pmod 4$ it follows from (2) and (3) that $\bar{\psi}$ is surjective. Suppose that $(1,\tau)\in (\operatorname{Im}\phi_2)^{(2)}$. Then by (3) we have

$$\prod_{k=1}^{r} (1 + \bar{v}_{i_k}(\zeta_p)(\tau+1)) = 1$$

for an odd integer $r \ge 1$ and integers $1 \le i_k \le t$. Therefore

$$\prod_{i=1}^{p-1/2} \left[\prod_{k=1}^{r} (1 + \bar{v}_{i_k}(\zeta_p^j)(\tau+1)) \right] = 1,$$

but by (1)

$$\prod_{k=1}^{r} \left[\prod_{j=1}^{p-1/2} (1 + \bar{v}_{i_k}(\zeta_p^j)(\tau+1)) \right] = \tau^r = \tau,$$

which is a contradiction. Hence $\operatorname{Ker} \phi = \langle (1, \tau) \rangle \oplus (\operatorname{Im} \phi_2)^{(2)}$, and so $\bar{\psi}$ is injective. Thus $\bar{\psi}$ is bijective, i. e., $|(\operatorname{Im} \phi_1)^{(2)}| = |(\operatorname{Im} \phi_2)^{(2)}|$.

In the case where $p\equiv 1\pmod 4$ $\bar{\psi}$ is not injective because $(1,\tau)\in \mathrm{Ker}\,\bar{\psi}$. Suppose that $\bar{\psi}$ is surjective. Then by (2) and (3)

$$\prod_{k=1}^{r} (1 + \bar{v}_{i_k}(\zeta_p)(\tau+1)) = 1$$

for an odd integer $r \ge 1$ and integers $1 \le i_k \le t$. In the same way as above this leads to a contradiction. Hence $\bar{\phi}$ is not surjective, which implies that $|(\operatorname{Im} \phi_1)^{(2)}| = |(\operatorname{Im} \phi_2)^{(2)}|$. This completes the proof of (2,1).

§ 3. The groups $D(\mathbf{Z}(C_p \times D_q))$ and $D(\mathbf{Z}(D_p \times D_q))$.

Let A be a finite dimensional algebra over a field K. We denote by $N_{A/K}$ the norm map $A \to K$. Especially, if A is a separable K-algebra with center L, then we denote by $Nrd_{A/L}$ the reduced norm map $A \to L$.

Now let p be an odd prime. We define a map

$$\mu: U(\mathbf{Z}) \oplus U(\mathbf{Z}[\zeta_p]) \oplus U(\mathbf{Z}[\zeta_p]) \oplus U(\mathbf{Z})$$

$$\longrightarrow U(\mathbf{F}_p) \oplus U(\mathbf{F}_q[\zeta_p]) \oplus U(\mathbf{F}_q) \oplus U(\mathbf{F}_p)$$

by

$$(x, y(\zeta_p), z(\zeta_p), w) \longmapsto (\bar{x} \cdot \bar{z}(1), \bar{y}(\zeta_p) \cdot \bar{z}(\zeta_p), \bar{x} \cdot \bar{w}, \bar{y}(1) \cdot \bar{w}).$$

LEMMA 3.1. Let a be a primitive root modulo p. Then $(1, 1, 1, \bar{a}^k) \in \text{Im } \mu$ for each odd integer k.

PROOF. Let $\nu: U(\mathbf{Z}) \oplus U(\mathbf{Z}[\zeta_p + \zeta_p^{-1}]) \oplus U(\mathbf{Z}[\zeta_p + \zeta_p^{-1}]) \oplus U(\mathbf{Z}) \to U(\mathbf{F}_p)$ $\oplus U(\mathbf{F}_q[\zeta_p + \zeta_p^{-1}]) \oplus U(\mathbf{F}_q) \oplus U(\mathbf{F}_p)$ be the restriction map of μ . Since $\mu((1, \zeta_p, 1, 1)) = \mu((1, 1, \zeta_p, 1)) = (1, \zeta_p, 1, 1)$ and $U(\mathbf{Z}[\zeta_p]) = \langle \zeta_p \rangle \cdot U(\mathbf{Z}[\zeta_p + \zeta_p^{-1}])$, it suffices to show that $(1, 1, 1, \bar{a}^k) \notin \operatorname{Im} \nu$.

Define a map $N': U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}[\zeta_p + \zeta_p^{-1}]) \oplus U(\boldsymbol{Z}[\zeta_p + \zeta_p^{-1}]) \oplus U(\boldsymbol{Z}) \rightarrow U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z})$ by $(x, y(\zeta_p), z(\zeta_p), w) \mapsto (x^{p-1/2}, N_{\mathbf{Q}[\zeta_p + \zeta_p^{-1}]/\mathbf{Q}}(y(\zeta_p)), N_{\mathbf{Q}[\zeta_p + \zeta_p^{-1}]/\mathbf{Q}}(z(\zeta_p)), w^{p-1/2})$. Then we have a commutative diagram

$$U(\mathbf{Z}) \oplus U(\mathbf{Z}[\zeta_{p} + \zeta_{p}^{-1}]) \oplus U(\mathbf{Z}[\zeta_{p} + \zeta_{p}^{-1}]) \oplus U(\mathbf{Z})$$

$$\downarrow N'$$

$$U(\mathbf{Z}) \oplus U(\mathbf{Z}) \oplus U(\mathbf{Z}) \oplus U(\mathbf{Z})$$

$$\stackrel{\nu}{\longrightarrow} U(\mathbf{F}_{p}) \oplus U(\mathbf{F}_{q}[\zeta_{p} + \zeta_{p}^{-1}]) \oplus U(\mathbf{F}_{q}) \oplus U(\mathbf{F}_{p})$$

$$\downarrow N$$

$$\downarrow N$$

$$\downarrow N$$

$$U(\mathbf{F}_{p}) \oplus U(\mathbf{F}_{p}) \oplus U(\mathbf{F}_{q}) \oplus U(\mathbf{F}_{q}) \oplus U(\mathbf{F}_{p})$$

where ν' denotes the restriction map of ν . If $\alpha(\zeta_p) = \zeta_p^{-a} - \zeta_p^{-a}/\zeta_p - \zeta_p^{-1}$, then $\nu((1, \alpha(\zeta_p), 1, 1)) = (1, \bar{\alpha}(\zeta_p), 1, \bar{a})$ because $\bar{\alpha}(1) = \bar{a}$. Suppose that $(1, 1, 1, \bar{a}^k) \in \text{Im } \nu$. Then $(1, \bar{\alpha}(\zeta_p)^k, 1, 1) \in \text{Im } \nu'$. Since

PROPOSITION 3.2. Let p, q be distinct odd primes. Then 2 divides $d(\mathbf{Z}(C_p \times D_q))$.

PROOF. Write

$$C_p \times D_q = \langle \sigma, \tau | \sigma^{pq} = \tau^2 = 1, \tau \sigma^q = \sigma^q \tau, \tau \sigma^p = \sigma^{-p} \tau \rangle.$$

Then we have a pullback diagram

$$Z(C_p \times D_q) \longrightarrow Z[\zeta_p, \tau] \oplus Z[\zeta_q, \tau] \downarrow \\ Z[\tau] \oplus Z[\zeta_p, \zeta_q, \tau] \longrightarrow F_p[\tau] \oplus F_q[\zeta_p, \tau] \oplus F_q[\tau] \oplus F_p[\zeta_q, \tau].$$

From this we get an exact sequence

$$U(\boldsymbol{Z}[\tau]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \tau]) \oplus U(\boldsymbol{Z}[\zeta_{q}, \tau])$$

$$\stackrel{\mu}{\longrightarrow} U(\boldsymbol{F}_{p}[\tau]) \oplus U(\boldsymbol{F}_{q}[\zeta_{p}, \tau]) \oplus U(\boldsymbol{F}_{q}[\tau]) \oplus U(\boldsymbol{F}_{p}[\zeta_{q}, \tau])$$

$$\longrightarrow D(\boldsymbol{Z}(C_{p} \times D_{q})) \longrightarrow D(\boldsymbol{Z}[\tau]) \oplus D(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau])$$

$$\oplus D(\boldsymbol{Z}[\zeta_{p}, \tau]) \oplus D(\boldsymbol{Z}[\zeta_{q}, \tau]) \longrightarrow 0.$$

Note that $\tau \zeta_p = \zeta_p \tau$ and $\tau \zeta_q = \zeta_q^{-1} \tau$. Since both $Z[\zeta_p, \zeta_q, \tau]$ and $Z[\zeta_q, \tau]$ are hereditary, we see that $D(Z[\zeta_p, \zeta_q, \tau]) = D(Z[\zeta_q, \tau]) = 0$. Clearly $D(Z[\tau]) = 0$, and by (2.2) $D(Z[\zeta_p, \tau]) \cong D(Z[\zeta_p])$. Hence we have an exact sequence

$$0 \longrightarrow \operatorname{Coker} \mu \longrightarrow D(\mathbf{Z}(C_p \times D_q)) \longrightarrow D(\mathbf{Z}C_{2p}) \longrightarrow 0.$$

If K denotes one of the rings $\mathbf{Q}[\zeta_p,\zeta_q]$, $\mathbf{Q}[\zeta_q]$ and $\mathbf{F}_p[\zeta_q]$, then $K[\tau]$ is a separable algebra with center $K^{<\tau>}=\{z\in K|\tau(z)=z\}$, and we see that $Nrd_{K[\tau]/K}<\tau>(x+y\tau)=x\tau(x)-y\tau(y)$ for any $x,y\in K$. Define a map N_1' : $U(\mathbf{Z}[\tau])\oplus U(\mathbf{Z}[\zeta_p,\zeta_q,\tau])\oplus U(\mathbf{Z}[\zeta_p,\tau])\oplus U(\mathbf{Z}[\zeta_p,\tau])\to U(\mathbf{Z})\oplus U(\mathbf{Z}[\zeta_p,\zeta_q+\zeta_q^{-1}])$ by $(x_1+x_2\tau,y_1+y_2\tau,z_1+z_2\tau,w_1+w_2\tau)\to (x_1^2-x_2^2,y_1\tau(y_1)-y_2\tau(y_2),z_1^2-z_2^2,w_1\tau(w_1)-w_2\tau(w_2))$ and a map $N_1:U(\mathbf{F}_p[\tau])\oplus U(\mathbf{F}_q[\zeta_p,\tau])\oplus U(\mathbf{F}_q[\tau])\oplus U(\mathbf{F}_q[\tau])\to U(\mathbf{F}_q[\tau])\oplus U(\mathbf{F}_q[\tau])$ by $(\bar{x}_1+\bar{x}_2\tau,\bar{y}_1+\bar{y}_2\tau,\bar{z}_1+\bar{z}_2\tau,\bar{w}_1+\bar{w}_2\tau)\mapsto (\bar{x}_1^2-\bar{x}_2^2,\bar{y}_1^2-\bar{y}_2^2,\bar{z}_1^2-\bar{z}_2^2,\bar{w}_1\tau(\bar{w}_1)-\bar{w}_2\tau(\bar{w}_2))$. Then we have a commutative diagram

$$U(\boldsymbol{Z}[\tau]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \tau]) \oplus U(\boldsymbol{Z}[\zeta_{q}, \tau])$$

$$\downarrow N_{1}'$$

$$U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}[\zeta_{p}, \zeta_{q} + \zeta_{q}^{-1}]) \oplus U(\boldsymbol{Z}[\zeta_{p}]) \oplus U(\boldsymbol{Z}[\zeta_{q} + \zeta_{q}^{-1}])$$

$$\stackrel{\mu}{\longrightarrow} U(\boldsymbol{F}_{p}[\tau]) \oplus U(\boldsymbol{F}_{q}[\zeta_{p}, \tau]) \oplus U(\boldsymbol{F}_{q}[\tau]) \oplus U(\boldsymbol{F}_{p}[\zeta_{q}, \tau])$$

$$\downarrow N_{1}$$

$$\stackrel{\mu_{1}}{\longrightarrow} U(\boldsymbol{F}_{p}) \oplus U(\boldsymbol{F}_{q}[\zeta_{p}]) \oplus U(\boldsymbol{F}_{q}) \oplus U(\boldsymbol{F}_{p}[\zeta_{q} + \zeta_{q}^{-1}])$$

where μ_1 denotes the restriction map of μ . Here the map N_1 is surjective and hence $|\operatorname{Coker} \mu_1|$ divides $d(\boldsymbol{Z}(C_p \times D_q))$. Further define a map $N_2' : U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}[\zeta_p, \zeta_q + \zeta_q^{-1}]) \oplus U(\boldsymbol{Z}[\zeta_p]) \oplus U(\boldsymbol{Z}[\zeta_q + \zeta_q^{-1}]) \to U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}[\zeta_p]) \oplus U$

$$U(\mathbf{Z}) \oplus U(\mathbf{Z}[\zeta_{p}, \zeta_{q} + \zeta_{q}^{-1}]) \oplus U(\mathbf{Z}[\zeta_{p}]) \oplus U(\mathbf{Z}[\zeta_{q} + \zeta_{q}^{-1}])$$

$$\downarrow N_{2}'$$

$$U(\mathbf{Z}) \oplus U(\mathbf{Z}[\zeta_{p}]) \oplus U(\mathbf{Z}[\zeta_{p}]) \oplus U(\mathbf{Z})$$

$$\stackrel{\mu_{1}}{\longrightarrow} U(\mathbf{F}_{p}) \oplus U(\mathbf{F}_{q}[\zeta_{p}]) \oplus U(\mathbf{F}_{q}) \oplus U(\mathbf{F}_{p}[\zeta_{q} + \zeta_{q}^{-1}])$$

$$\downarrow N_{2}$$

$$\stackrel{\mu_{2}}{\longrightarrow} U(\mathbf{F}_{p}) \oplus U(\mathbf{F}_{q}[\zeta_{p}]) \oplus U(\mathbf{F}_{q}) \oplus U(\mathbf{F}_{p})$$

where μ_2 denotes the restriction map of μ_1 . Let a be a primitive root modulo p and let k be an odd integer. By virtue of (3.1) we have $(1, 1, 1, \bar{a}^k) \in \text{Im } \mu_2$. Since $N_{\mathbf{F}_p[\zeta_q+\zeta_q^{-1}]/\mathbf{F}_p}: U(\mathbf{F}_p[\zeta_q+\zeta_q^{-1}]) \to U(\mathbf{F}_p)$ is surjective, there is an element $\bar{\gamma}$ of $U(\mathbf{F}_p[\zeta_q+\zeta_q^{-1}])$ such that $N_{\mathbf{F}_p[\zeta_q+\zeta_q^{-1}]/\mathbf{F}_p}(\bar{\gamma})=\bar{a}$. Then we have $(1, 1, 1, \bar{\gamma}^k)$ $\in \text{Im } \mu_1$, and therefore the Sylow 2-subgroup of the cyclic group $\langle (1, 1, 1, \bar{\gamma}) \rangle$ is not contained in $\text{Im } \mu_1$. This shows that 2 divides $|\text{Coker } \mu_1|$, which completes the proof of the proposition.

REMARK 3.3. It is known (e.g. [1]) that $d(\mathbf{Z}C_{2p})>1$ for any prime $p \ge 11$. Since $d(\mathbf{Z}C_{2p})$ divides $d(\mathbf{Z}(C_p \times D_q))$, this implies that $d(\mathbf{Z}(C_p \times D_q))>1$ for any $p \ge 11$. However $d(\mathbf{Z}C_{2p})$ is odd. Hence this does not imply that 2 divides $d(\mathbf{Z}(C_p \times D_q))$.

PROPOSITION 3.4. Let p, q be distinct odd primes. Then 2 divides $d(\mathbf{Z}(D_p \times D_q))$.

PROOF. Write

$$\begin{split} D_p \times D_q = & \langle \sigma, \tau_1, \tau_2 | \sigma^{pq} = \tau_1^2 = \tau_2^2 = 1, \tau_1 \sigma^q = \sigma^{-q} \tau_1, \tau_1 \sigma^p = \sigma^p \tau_1, \\ \tau_2 \sigma^q = & \sigma^q \tau_2, \tau_2 \sigma^p = \sigma^{-p} \tau_2, \tau_1 \tau_2 = \tau_2 \tau_1 \rangle. \end{split}$$

Then we have a commutative diagram

$$egin{aligned} oldsymbol{Z}(D_p imes D_q) \ & iggrid oldsymbol{Z}[au_1,\, au_2] \oplus oldsymbol{Z}[\zeta_p,\,\zeta_q,\, au_1,\, au_2] \ & \longrightarrow oldsymbol{Z}[\zeta_p,\, au_1,\, au_2] \oplus oldsymbol{Z}[\zeta_q,\, au_1,\, au_2] \ & iggrid oldsymbol{F}_p[au_1,\, au_2] \oplus oldsymbol{F}_p[\zeta_q,\, au_1,\, au_2] \ . \end{aligned}$$

From this we get an exact sequence

$$U(\boldsymbol{Z}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{q}, \tau_{1}, \tau_{2}])$$

$$\stackrel{\nu}{\longrightarrow} U(\boldsymbol{F}_{p}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{q}[\zeta_{p}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{q}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{p}[\zeta_{q}, \tau_{1}, \tau_{2}])$$

$$\longrightarrow D(\boldsymbol{Z}(D_{p} \times D_{q})) \longrightarrow D(\boldsymbol{Z}[\tau_{1}, \tau_{2}]) \oplus D(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau_{1}, \tau_{2}])$$

$$\oplus D(\boldsymbol{Z}[\zeta_{p}, \tau_{1}, \tau_{2}]) \oplus D(\boldsymbol{Z}[\zeta_{q}, \tau_{1}, \tau_{2}]) \longrightarrow 0.$$

Note that $\tau_1 \zeta_p = \zeta_p^{-1} \tau_1$, $\tau_1 \zeta_q = \zeta_q \tau_1$, $\tau_2 \zeta_p = \zeta_p \tau_2$ and $\tau_2 \zeta_q = \zeta_q^{-1} \tau_2$. Since $\mathbf{Z}[\zeta_p, \zeta_q, \tau_1, \tau_2]$ is hereditary, it follows that $D(\mathbf{Z}[\zeta_p, \zeta_q, \tau_1, \tau_2]) = 0$. It is clear that $D(\mathbf{Z}[\tau_1, \tau_2]) = 0$. Further we see that $D(\mathbf{Z}[\zeta_p, \tau_1, \tau_2]) \cong D(\mathbf{Z}D_{2p})$ and $D(\mathbf{Z}[\zeta_q, \tau_1, \tau_2]) \cong D(\mathbf{Z}D_{2q})$. Therefore we have an exact sequence

$$0 \longrightarrow \operatorname{Coker} \nu \longrightarrow D(\boldsymbol{Z}(D_p \times D_q)) \longrightarrow D(\boldsymbol{Z}D_{2p}) \oplus D(\boldsymbol{Z}D_{2q}) \longrightarrow 0.$$

Denote by S one of the rings $Z[\zeta_p, \zeta_q]$, $Z[\zeta_p]$, $Z[\zeta_q]$, Z, $F_q[\zeta_p]$, $F_p[\zeta_q]$, F_q , F_p and define a map $N_S: U(S[\tau_1, \tau_2]) \to U(S^{<\tau_1, \tau_2>})$ by

$$x + y\tau_1 + z\tau_2 + w\tau_1\tau_2 \longmapsto \begin{vmatrix} x & y & z & w \\ \tau_1(y) & \tau_1(x) & \tau_1(w) & \tau_1(z) \\ \tau_2(z) & \tau_2(w) & \tau_2(x) & \tau_2(y) \\ \tau_1\tau_2(w) & \tau_1\tau_2(z) & \tau_1\tau_2(y) & \tau_1\tau_2(x) \end{vmatrix}.$$

Here it should be noted that $N_{\mathbf{Z}^{[\zeta_p,\zeta_q]}}=Nrd_{\mathbf{Q}^{[\zeta_p,\zeta_q,\tau_1,\tau_2]/\mathbf{Q}[\zeta_p+\zeta_p^{-1},\zeta_q+\zeta_q^{-1}]}$. Let $N'=(N_{\mathbf{Z}},\,N_{\mathbf{Z}^{[\zeta_p,\zeta_q]}},\,N_{\mathbf{Z}^{[\zeta_p]}},\,N_{\mathbf{Z}^{[\zeta_p]}})$ and $N=(N_{\mathbf{F}_p},\,N_{\mathbf{F}_q^{[\zeta_p]}},\,N_{\mathbf{F}_q},\,N_{\mathbf{F}_p^{[\zeta_q]}})$. Then we get a commutative diagram

$$U(\boldsymbol{Z}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \zeta_{q}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{p}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{Z}[\zeta_{q}, \tau_{1}, \tau_{2}])$$

$$\downarrow N'$$

$$U(\boldsymbol{Z}) \oplus U(\boldsymbol{Z}[\zeta_{p} + \zeta_{p}^{-1}, \zeta_{q} + \zeta_{q}^{-1}]) \oplus U(\boldsymbol{Z}[\zeta_{p} + \zeta_{p}^{-1}]) \oplus U(\boldsymbol{Z}[\zeta_{q} + \zeta_{q}^{-1}])$$

$$\stackrel{\nu}{\longrightarrow} U(\boldsymbol{F}_{p}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{q}[\zeta_{p}, \tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{q}[\tau_{1}, \tau_{2}]) \oplus U(\boldsymbol{F}_{p}[\zeta_{q}, \tau_{1}, \tau_{2}])$$

$$\downarrow N$$

$$\stackrel{\nu_{1}}{\longrightarrow} U(\boldsymbol{F}_{p}) \oplus U(\boldsymbol{F}_{q}[\zeta_{p} + \zeta_{p}^{-1}]) \oplus U(\boldsymbol{F}_{q}) \oplus U(\boldsymbol{F}_{p}[\zeta_{q} + \zeta_{q}^{-1}])$$

where ν_1 denotes the restriction map of ν . The map N is surjective and hence $|\operatorname{Coker} \nu_1|$ divides $d(\mathbf{Z}(D_p \times D_q))$. Then, in the same way as in the proof of (3.2), we can show that 2 divides $|\operatorname{Coker} \nu_1|$. Thus we conclude that 2 divides $d(\mathbf{Z}(D_p \times D_q))$.

REMARK 3.5. In the proof of (3.4) it was shown that there exists a surjection: $D(\mathbf{Z}(D_p \times D_q)) \to D(\mathbf{Z}D_{2p}) \oplus D(\mathbf{Z}D_{2q})$. It is seen that, if p is one of the primes: $p \leq 31$, p = 47, 53, 59, 179, 19379, then $d(\mathbf{Z}D_{2p}) = 1$. However we do not know whether $d(\mathbf{Z}D_{2p}) = 1$ for any prime p or not.

For any integers $n \ge 3$ and $t \ge 2$, define the group $H_{n,t}$ as follows:

$$H_{n,t} = \langle \sigma, \tau | \sigma^n = \tau^{2^t} = 1, \sigma \tau = \tau \sigma^{-1} \rangle.$$

PROPOSITION 3.6. Let p be an odd prime. Then 2 divides $d(\mathbf{Z}H_{p,2})$.

PROOF. By Fröhlich [3] this has already been proved in a more precise form. For completeness we give a simple proof.

Now there is an exact sequence

$$U(\boldsymbol{Z}[\zeta_p, \bar{\tau}]) \oplus U(\boldsymbol{Z}[\bar{\tau}]) \longrightarrow U(\boldsymbol{F}_p[\bar{\tau}]) \longrightarrow D(\boldsymbol{Z}H_{p,2}/(\tau^2+1))$$
$$\longrightarrow D(\boldsymbol{Z}[\zeta_p, \bar{\tau}]) \oplus D(\boldsymbol{Z}[\bar{\tau}]) \longrightarrow 0$$

where $\bar{\tau}^2 = -1$ and $\zeta_p \bar{\tau} = \bar{\tau} \zeta_p^{-1}$. It is clear that $D(Z[\zeta_p, \bar{\tau}]) = D(Z[\bar{\tau}]) = 0$. Therefore we get an exact sequence

$$U(\mathbf{Z}[\zeta_p, \bar{\tau}]) \xrightarrow{\phi} U(\mathbf{F}_p[\bar{\tau}]) \longrightarrow D(\mathbf{Z}H_{p,2}/(\tau^2+1)) \longrightarrow 0.$$

Let a be a primitive root modulo p and let (c,d), $c,d\in \mathbf{Z}$ be a solution of the congruence $X^2+Y^2\equiv a\pmod{p}$. Then $\alpha=\bar{c}+\bar{d}\bar{\tau}\in U(\mathbf{F}_p[\bar{\tau}])$ and $(\bar{c}+\bar{d}\bar{\tau})(\bar{c}-\bar{d}\bar{\tau})=\bar{a}$. Let k be an odd integer and suppose that $\alpha^k\in \mathrm{Im}\ \phi$. Then there exists $f(\zeta_p,\bar{\tau})\in U(\mathbf{Z}[\zeta_p,\bar{\tau}])$ such that $\bar{f}(1,\bar{\tau})=\alpha^k$. Write $f(\zeta_p,\bar{\tau})=f_1(\zeta_p)+f_2(\zeta_p)\bar{\tau}$, $f_1(\zeta_p),f_2(\zeta_p)\in \mathbf{Z}[\zeta_p]$ and let $g(\zeta_p,\bar{\tau})=f_1(\zeta_p^{-1})-f_2(\zeta_p^{-1})\bar{\tau}$. Then $Nrd_{\mathbf{Q}[\zeta_p,\bar{\tau}]/\mathbf{Q}[\zeta_p+\zeta_p^{-1}]}(f(\zeta_p,\bar{\tau}))=f(\zeta_p,\bar{\tau})g(\zeta_p,\bar{\tau})=f_1(\zeta_p)f_1(\zeta_p^{-1})+f_2(\zeta_p)f_2(\zeta_p^{-1})>0$. Consequently $N_{\mathbf{Q}[\zeta_p+\zeta_p^{-1}]/\mathbf{Q}}(f(\zeta_p,\bar{\tau})g(\zeta_p,\bar{\tau}))=1$. However $\bar{f}(1,\bar{\tau})\bar{g}(1,\bar{\tau})=\bar{a}^k$, and therefore $N_{\mathbf{Q}[\zeta_p+\zeta_p^{-1}]/\mathbf{Q}}(f(\zeta_p,\bar{\tau})g(\zeta_p,\bar{\tau}))=(\bar{a}^k)^{p-1/2}=-1$, a contradiction. Hence $\alpha^k\in \mathrm{Im}\ \phi$. This implies that $(\alpha)^{(2)}$ is not contained in $\mathrm{Im}\ \phi$, which concludes that 2 divides $d(\mathbf{Z}H_{p,2})$.

§ 4. The main result.

We are now in a position to prove our main result.

THEOREM 4.1. A finite nonabelian group G for which $d(\mathbf{Z}G)=1$ is isomorphic to one of the groups: D_n $(n \ge 3)$, A_4 , A_5 .

PROOF. By (1.2) O(G) is cyclic and $G/O(G) \cong C_{2t}$, D_{2t} , A_4 , S_4 or A_5 . Write $O(G) = \langle \rho \rangle$ and let m = |O(G)|. Let C(G) denote the center of G.

- (i) Assume that $G/O(G)\cong C_{2^t}$. Then $G^{(2)}\cong C_{2^t}$ and so we may write $G^{(2)}=\langle \tau \rangle$. The action of $\langle \tau \rangle$ on $\langle \rho \rangle$ by conjugation yields a map $\phi:\langle \tau \rangle \to Aut \langle \rho \rangle$. Since G is nonabelian, we have $\ker \phi \subseteq \langle \tau \rangle$. If $[\langle \tau \rangle : \ker \phi]=2^s$, $s \ge 2$, then there is a prime $p \mid m$ such that $\langle \tau \rangle / \ker \phi$ acts faithfully on $\langle \rho \rangle^{(p)}$. Therefore by (1.1) $d(\mathbf{Z}G/(\tau^{2^s}-1,\rho^{m/p}-1))>1$ and so $d(\mathbf{Z}G)>1$. Thus we must have $[\langle \tau \rangle : \ker \phi]=2$. In this case, suppose that $O(G) \cap C(G) = \{1\}$ and let $O(G) \cap C(G) = \langle \rho^{m'} \rangle$, $m' \mid m$. Then m'' = m/m' > 1 and (m',m'')=1. Hence $G=\langle \rho^{m'} \rangle \times \langle \rho^{m'}, \tau \rangle$ and so $G/\langle \tau^2 \rangle \cong C_{m'} \times D_{m'}$. According to (3.2) $d(\mathbf{Z}G/(\tau^2-1))>1$ and therefore $d(\mathbf{Z}G)>1$. Consequently we have $O(G) \cap C(G)=\{1\}$. Then $G=\langle \rho,\tau \mid \rho^m=\tau^{2^t}=1, \rho\tau=\tau\rho^{-1} \rangle$. By virtue of (3.6), $d(\mathbf{Z}G)>1$ if $t \ge 2$. Hence we must have t=1, i. e., $G\cong D_m$.
- (ii) Assume that $G/O(G)\cong D_{2t}$, $t\geqq 2$. Then $G^{(2)}\cong D_{2t}$ and so we may write $G^{(2)}=\langle \sigma,\tau|\sigma^{2t}=\tau^2=1$, $\sigma\tau=\tau\sigma^{-1}\rangle$. If $O(G)\cap C(G)=\{1\}$, then there exists a subquotient of G which is isomorphic to $C_2\times C_2\times C_p$ for a prime $p\mid m$. From (1.1) and (2.1) it follows that $t(\mathbf{Z}G)>1$. Therefore we have $O(G)\cap C(G)=\{1\}$. Let p_i , $1\leqq i\leqq r$, be all prime divisors of m and let $\langle \rho_i\rangle=\langle \rho\rangle^{\langle p_i\rangle}$. The action of $G^{(2)}$ on $\langle \rho_i\rangle$ by conjugation yields a map $\phi_i:G^{(2)}\to \operatorname{Aut}\langle \rho_i\rangle$. Let $N_i=\operatorname{Ker}\phi_i$. Since $\operatorname{Aut}\langle \rho_i\rangle$ is abelian, $[G^{(2)},G^{(2)}]=\langle \sigma^2\rangle\subset N_i$. Only one of σ , τ , $\tau\sigma$ is contained in N_i because $O(G)\cap C(G)=\{1\}$. If $\sigma\notin N_i$ for some i, then either τ or $\sigma\tau$ is contained in N_i . Since $\langle \sigma^2,\tau\rangle\cong \langle \sigma^2,\tau\sigma\rangle\cong D_{2t^{-1}}$, this shows that there exists a subquotient of G which is isomorphic to $C_2\times C_2\times C_{p_i}$.
- (iii) Assume that $G/O(G)\cong D_2\cong C_2\times C_2$. Then we have $G^{(2)}\cong C_2\times C_2$ and $O(G)\neq\{1\}$. In the same way as in the case (ii) it can be shown that $O(G)\cap C(G)=\{1\}$. If there exist τ_1 , $\tau_2\in G^{(2)}$ such that $\rho\tau_1=\tau_1\,\rho^{-1}$ and $\rho\tau_2=\tau_2\,\rho$, then $G\cong C_2\times D_m\cong D_{2m}$.

Again from (2.1) it follows that $t(\mathbf{Z}G)>1$. Thus we must have $\sigma \in N_i$ for

each i, which implies that $G \cong D_{2tm}$.

Now suppose that there exist τ_1 , $\tau_2 \in G^{(2)}$ such that $\rho \tau_1 = \tau_1 \rho^{-1}$ but $\rho \tau_2 \neq \tau_2 \rho^{-1}$, $\tau_2 \rho$. Then we can find ρ_1 , $\rho_2 \in \langle \rho \rangle$ such that $\rho = \rho_1 \rho_2$, $\rho_1 \tau_2 = \tau_2 \rho_1^{-1}$ and $\rho_2 \tau_2 = \tau_2 \rho_2$. Clearly $\rho_1 \tau_1 \tau_2 = \tau_1 \tau_2 \rho_1$ and $\rho_2 \tau_1 \tau_2 = \tau_1 \tau_2 \rho_2^{-1}$, and so $G = \langle \rho_1, \tau_1 \tau_2 \rangle \times \langle \rho_2, \tau_2 \rangle$. Let $m_1 = |\langle \rho_1 \rangle|$ and $m_2 = |\langle \rho_2 \rangle|$. Then $(m_1, m_2) = 1$ and $G \cong D_{m_1} \times D_{m_2}$. Therefore by (3.4) we have $d(\mathbf{Z}G) > 1$.

Next suppose that, for any $\tau \in G^{(2)} - \{1\}$, $\rho \tau \neq \tau \rho^{-1}$, $\tau \rho$. Let $\tau_1 \in G^{(2)} - \{1\}$. We can find ρ_1 , $\rho_2 \in \langle \rho \rangle$ such that $\rho = \rho_1 \rho_2$, $\rho_1 \tau_1 = \tau_1 \rho_1^{-1}$ and $\rho_2 \tau_1 = \tau_1 \rho_2$. By assumption both ρ_1 and ρ_2 are different from 1. Further let $\tau_2 \in G^{(2)} - \{1, \tau_1\}$. Then $\rho_2 \tau_2 = \tau_2 \rho_2^{-1}$ because $O(G) \cap C(G) = \{1\}$, and hence we can find ρ_1' , $\rho_2' \in \langle \rho_1 \rangle$ such that $\rho_1 = \rho_1' \rho_2'$, $\rho_1' \tau_2 = \tau_2 \rho_1'$ and $\rho_2' \tau_2 = \tau_2 \rho_2'^{-1}$. By assumption we have

- $\rho_1' \neq 1$. Let $m_1 = |\langle \rho_1' \rangle|$ and $m_2 = |\langle \rho_2 \rangle|$. Then $G/\langle \rho_2' \rangle \cong D_{m_1} \times D_{m_2}$ and therefore, by (3.4), $d(\mathbf{Z}G) > 1$.
- (iv) Assume that $G/O(G)\cong A_4$, S_4 or A_5 . If $O(G)=\{1\}$, then $G\cong A_4$, S_4 or A_5 , as required. Suppose that $O(G) \neq \{1\}$ and let $\phi: G \to \operatorname{Aut} \langle \rho \rangle$ be the map defined by the action of G on $\langle \rho \rangle$ by conjugation. Note that $G^{(2)}\cong (G/O(G))^{(2)}$. Then we see that Ker ϕ contains a subgroup which is isomorphic to $C_2 \times C_2$. Therefore there exists a subgroup H of G which is isomorphic to $C_2 \times C_2 \times C_m$. According to (2.1) we have $t(\mathbf{Z}G) > 1$.

From (i) \sim (iv) we conclude that $G\cong D_n$ ($n\geq 3$), A_4 , S_4 or A_5 .

REMARK 4.2. It is fairly difficult to determine all integers n for which $d(\mathbf{Z}D_n)=1$. It should be noted ([2]) that there exists an infinite number of pairs (p,q) of distinct odd primes p, q such that $d(\mathbf{Z}D_{pq})>1$. Some further results on the group $T(\mathbf{Z}G)$ will be given in a forthcoming paper.

References

- [1] P. Cassou-Noguès, Classes d'idéaux de l'algèbre d'un groupe abélien, C. R. Acad. Sci. Paris, 276 (1973), A 973-A 975. (Doctorat de Spécialité, Bordeaux, 1972).
- [2] P. Cassou-Noguès, Groupe de classes de l'algèbre d'un groupe métacyclique, J. Algebra, 41 (1976), 116-136.
- [3] A Fröhlich, Module invariants and root numbers for quaternion fields of degree $4l^r$, Proc. Cambridge Philos. Soc., 76 (1974), 393-399.
- [4] A. Fröhlich, M.E. Keating and S.M.J. Wilson, The class group of quaternion and dihedral 2-groups, Mathematika, 21 (1974), 64-71.
- [5] D. Gorenstein, Finite groups, Harper & Row Publ., New York, 1968.
- [6] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952.
- [7] M. E. Keating, Class groups of metacyclic groups of order $p^r q$, p a regular prime, Mathematika, 21 (1974), 90-95.
- [8] T.Y. Lam, Artin exponent of finite groups, J. Algebra, 9 (1968), 94-119.
- [9] M.P. Lee, Integral representations of dihedral groups of order 2p, Trans. Amer. Math. Soc., 110 (1964), 213-231.
- [10] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, Princeton Univ. Press, Princeton, 1971.
- [11] I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Algebra, 31 (1974), 305-342.
- [12] M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., 77 (1955), 657-691.
- [13] R.G. Swan, Periodic resolutions for finite groups, Ann. of Math., 72 (1960), 267-291.
- [14] S. Ullom, Nontrivial lower bounds for class groups of integral group rings, Illinois J. Math., 20 (1976), 361-371.

Shizuo ENDO Department of Mathematics Tokyo Metropolitan University Fukazawa-cho, Setagaya-ku, Tokyo, 158 Japan Yumiko HIRONAKA
Department of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun,
Ibaraki, 300-31 Japan