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The purpose of the present note is to prove an asymptotic expansion
theorem for a certain kind of oscillatory integrals. OQur theorem is a generali-
zation of Theorem 3.2.4 of Hérmander in the sense that we allow the
phase function to contain certain inhomogeneous terms. Our motivation which
leads us to considering such a kind of generalization lies in long-range scatter-
ing (cf. [3], [4]) as against Hoérmander’s purpose in was to consider
Fourier integral operators. Using our main result, we can give a prodf of
Theorem 3.1 of which played a crucial role in the proof of the complete-
ness of the modified wave operator for long-range scattering. We should note
that Hormander’s Theorem 3.2.4 also can be used to prove the completeness
when long-range potential V satisfies V(x)=0(|x|"¥*"¢), >0, but for V which
has longer range, we must use our generalized theorem proved in this paper.

The crucial tool we shall use is the method of stationary phase (see e.g.
Hoérmander and [2]). Moreover, a method similar to Hérmander’s proof
of Theorem 3.2.4 will be used to estimate the integral on the region bounded
away from the critical point of the phase function.

We shall first summarize our main result in §1 and then prove it in §2.

§1. Main result.
We shall consider the distribution A, . defined by

(1' 1) <Aw.s; u>
:S}zn SRN ei(sD(w;z,ﬁ)-X(.z:,ﬁ)) a(x, 0)u(x)x(€ﬁ) dﬁdx,

¢#0, ucsCy(R™),

where o is a parameter; functions ¢, X, a are C*; and X is a rapidly decreas-
ing function on R¥ with X(0)=1. The precise conditions imposed on those
functions will be given below. Under those conditions, we shall prove the
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existence of the limit A, ,=lim A4,,. (which is called an “oscillatory integral”
] .
by Hérmander [1]) and investigate the asymptotic behavior of

(1.2) (Ay. e, ue Y@= 00

when {-—co for an arbitrary e=R'. For the case when X and Y are
identically zero, an asymptotic estimate of (1.2) has been obtained by Horman-
der (cf. Theorem 3.2.4 of [1]).

We first state several conditions imposed on the functions ¢, X, a, ¢, Y.
Those conditions will be assumed throughout the paper. Let £ be a compact
set in R™ (m=1) and let I" be an open conic set contained in R"X(R¥—{0}),
n=0, N=1, that is, assume that (x, )=I’, t>0 implies (x, tf)el’. The first
conditions are concerned with ¢ and ¢:

(Cp) 1) There exists a bounded open neighborhood £’ of £ in R™ such
that ¢(w; x, 0) is a real-valued C* function on Q’'xI.

2) For any we ’, the function ¢(w; -, -) is positively homogeneous
of degree 1 with respect to # and has no critical point in I, in other words,

a) ¢(w;x, th=tp(w; x,0), Vt>0, V(x, el
b) (O,¢(w; x,0), de(w; x, 0))+0, V(x, OHel'>.
(C¢) 1) ¢ is a real-valued C* function on £2’XR".
2) For any w2’ and xesuppu, 0,¢(w; x)#0.
Let I, and I, be the projection mapping from R*XRY onto R™ and R?,
respectively, and let real numbers p, 0, hy, h,, &, and h’ be fixed as
L3 1>p>1/2>8>0, hy, h,e R},
0=<e,<min(p—1/2, 1—p), h'=3p—2+z¢,.
The next three conditions are concerned with the functions X, Y, and a:
(CX) 1) X is a real-valued C> function on R*XR?.

2) For any compact set L of I7,(I') and any multi-indices «a, J,
there exists a positive constant C such that for any (x, )L X II,(I")

{ (95 05 X) (x, ) SC(14]6])*'=-2, when |a|+|81=2,
1(95 9% X) (x, )| SC(L|GHr e+ oy, when |a|+|B=3.

1) The real-valued C* function ¢ satisfying this condition is called a phase
function by Hérmander [1].

2) Here and hereafter, d, and dy denote (0/dxy,---,0/3x,) and (9/06,,+--,0/30y),
respectively. ’
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(CY) 1) Y is a real-valued C> function on (0, o0)X Q' X R™,

2) For any compact set L of R" and any multi-index «, there exists
a positive constant C such that

(1.5) [@2Y)(t, w; ) =CA+1)7%, VxeL, Vo=, Vi>O0.
(Ca) 1) a is a C* function on R*XR?,
2)» For any compact set L of R™ and any multi-indices «, 8, there
exists a positive constant C such that for any (x, ) LXRY
{ (0508 a)(x, )| =C(A+|6))r1'a | when |a|4|BI=1,
| (0§ 0% a) (x, O)|=C(L+|G])re-etatra-oiB, when |a|+]8|=2.
3) There exists a compact set K of I' such that a(x, §)=0 for any
(x, he R*"X RY —{(x, t0) | t=1, (x, O) e K}.
Before stating our main result, we prepare the following proposition.

PROPOSITION 1.1. Suppose that the functions ¢, ¢, X, and Y satisfy
conditions (Co), (C), (CX), and (CY), respectively. Suppose further that there
exists a compact set W of I satisfying the following two conditions:

1° For any ws Q' there exists a unique point (x.(), fu(w))c Wi®

such that

090 (@; Xe(®), O (w))=0,

(1.7 { "¢

0z 0 (0 Xeo(@), O (@) =0, (@ xeo(@)).
2° For any w=Q’ and any (x, O)W,

0y 0 090y

(1.8) get (0 70e )(@; x, 6)20.
0,000 0,0,0—0,0,¢

Then there exist a positive constant T>1 and a bounded open mneighborhood U
of £ with its closure contained in £’ such that the following three assertions
hold :

i) For any t>T, w€ U, and (x, O)= W, the real symmetric matrix
0p0sf 0.00f

is non-singular, where f is defined by

(1.9) It w; x, 0)=( Y, w5 x, 0)

3) The class of the functions satisfying the lower estimate of (1.6) for all « and
8 coincides with S%z_,(R"x RY) of Hérmander (cf. Definition 1.1.1 of [T]).
4) W? denotes the interior of the set W.
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(1.10) ft, w; x, h=p(w; x, O)—¢d(w; x)—X(x, t0)/t—=Y (t, w; x)/t.

Moreover there exists a positive constant C such that

590 3,9
Q1 |7 esx 6 —( s ’e )@; x, ¢9)[<Ct-<s
Y I N YO . )

for any t>T, weU, and (x, )eW.

ii) There exists a uniquely determined function (x.,0.):(T, 0)xXU—W
such that:

a) for any t>T and weU,

0 f(t, 03 x.(t, w), 0.(, 0))=0,

1.12
¢ ) { 05 f(t, w; x.(t, ), 8.(t, w))=0, and

b) for any wsU,

(1.13) ltig(xc(t, ), 0:.(t, ®))=(xw(®), O ()).

iii) The function (x., 0,) defined in ii) satisfy the following three assertions:
a) (x¢, 0.) is a C™ function on (T, c0) X U.
b) The convergence of (1.13) is uniform in we< U.

¢c) For any t>T and w<sU, the matrix J(t, w; x.(t, w), 0.(t, w)) is non-
singular.

The proof is similar to that of Proposition 2.2 of hence is omitted.
Now we can state our main result.

THEOREM 1.2. Let v and k be integers such that v=1, k>((h,\V hy)+N)/d;,
where h,\ hy=max(hy, hy), 6,=min(p—h’, 0)>0. Suppose that all assumptions of
Proposition 1.1 and condition (Ca) are satisfied. Then:

i) For any t>0 and w2 the following limit exists:

(1. 14) lim{ Ay, ., ue™ 9 @in= ¥ Gy,

&=0

This defines a distribution A,..€9D'(R™). Moreover, for any T'>0 there exists
a positive constant C=Cp such that

(1. 15) [(Ay, e, ue @i Gy <C

holds for any e R}, ws and 0<t<T".
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ii) There exist positive constants T>1 and C>0 such that for any t>T,
e€ R, and wsQ the following estimate holds:

(1 16) ,<Aw,e, ue‘“?”(w;')-iY(t,w;-)>

_ (Zn.)(N+n)/2 oTEO /4 fN =) /2 it [ (E,w; 2oy, 06 (E,w))

x |det 7] >3 (I D, DY ut, ,)(0)((23) /)t

éC(Z‘)” !)—1(N+n)2|]ly(]v+n—l) ldet ]I—(p+l/2)

Xt(N—n)/2+h1\/h2+so+(N+n+1) (1-pteg)+(1-2(o~€0)dv
+CtN+h1Vh2_ k51'

Here f is the function defined by (1.10); (x., 6.) is the critical point of f defined
in Proposition 1.1; J=]J({, w; xc(t a)) 6.(t, w)); o denotes the signature of the

real symmetric matrix J; I]l—( 2 | Ji15Y2 where [J;; denotes the (i, j) com-

ponent of J; D=—1i0,; uf. 1is deﬁned by (2.16) of §2 below; and C depends
only on v, k, ¢, ¢, X, Y, and a (see §2.2, 2nd, 4th and 5th steps).

iliy In particular there exist positive constants T>1 and C>0 such that the
following two estimates hold for t>T, e R, and wef :
(1. 17) <Aw.e; ue—itgi'(w;-)-iY(t,w;-)>
_(271.)(]\/'+7L)/2 en‘io‘/4 t(N—n)/Z eitf(t,w;xc(t,w),oc(t,w))
X|det JI7?a (x.(t, w), 10.(t, ®))
v-1 . . o~ s .
X JZ=;) (KJ'D, DY v, ,)(0) 77 (20)/ 5!
éC(t(N—n)/2+h1\/h2+eo+(N+n+1)(1—p+eo)+(1-2(p—£0))v
+t(N—n)/2—1+max(hl,h1+h’+2—3p,h2+2—2p)+tN+h1\/h2-kﬁl).
(1. 18) ]<Aw,5: ue-it¢(w;-)*iY(t,w;-)>
—(272,')(N+n)/2 ezia/4 t(N—n)lz eitf(t,w;zc(t,w),ﬁc(t,m))
X|det JI7V2a (x.(t, ®), t0:(, ®)) u(x:(t, ®))
XX (etl,(t, w))l

_<_C(t(N-n)/2+h1vh2+eo+(1v+n+1)(1-p+eo)+(1—2(p—eo)>u
<N =n)/2-1+max (hy,hy+ R/ +2-3p,ho+2-20)

+tN+h1Vh2- k51+t(N—n)/2+h1Vh2+min(—1/2,1—2p)) ]

Here 5., is defined by (2.16) in §2 below.
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iv) When the function a satisfies the lower estimate of (1.6) for all « and
B, that is, when a= Sk _o(R"XRY)®, then i) ~iii) above remain valid with hy\/ h,
and max(hy, hy-+h'+2-3p, hy+2—2p) in the powers replaced by h, and
hy+2—2p, respectively.

§2. Proof of Theorem 1.2.

2.1. Proor oF i). Since ¢(w; -, -) has no critical point in I" for any
we 2’, we can prove the existence of a first order differential operator

P= 2 a,ﬁ/@ﬁﬂ— Z bja/ax]'—l'c

satisfying 'Pe’¢*=¢®¢ in a way similar to Lemma 1.2.1 of Ho6rmander [1].
Here ‘P is the adjoint of P, and a;(w; x,6), b;(w; x,8), and c(w; x, §) are
C* functions on £’XxI" satisfying the following estimate: For any compact set
L of II,(I') and any multi-indices «, B, there exists a positive constant C,, g
such that for any x€L, 0ly,(I") and w= 2,

10502 a;(w; x, O)|=Cas(1+0)',
2.1) [0508b;(w; x, ) =Cqs(1-+10])1',

[0505¢c(w; x, 0)[§Ca,(3(1+|(9|>—1—1a1.

Therefore by integration by parts, we get for any integer k

(2’ 2) <Aw,a; ue_it¢—iy>
— SRN Sm ¢ P*[a (x, 0) e~ 8% o0 4 ()% (e6) ] d x db,

where g(t, w; x, O)=td(w; x)+X(x, )+ Y (¢, w; x). On the other hand, if we
put &, .,(x, O=a(x, O)e e=n  then one can prove the following estimate
by direct computation: For any compact set L of /7,(/") and any multi-indices
a, B, there exists a positive constant C, g such that

(2.3) 0§ 084,10 (x, O)l =Ca,p(14[6])r1vnerdrtatta-ovi3

holds for any x<L, 0=1l,(I"), o= and 0<t<T’, where h,V h,=max(h,, h;)
and d,=min(p—~’, )>0. From (2.1) and (2. 3), we have for any &

(2.4) |P* [, 0(x, @) u(x)X(ed) ]| SC, (14-|6])r2rvhe ki

for some positive constant C, independent of x&L, 6=l,(I"), 0<t<T’, and

5) cf. footnote 3).
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we 2. Thus taking £>(h,V h,+N)/d,, we get from (2.2) and (2. 4)
!<Aw,e, ue-it¢-iY>I§CT’
for some positive constant Cr. independent of ¢#0, we R, and 0<i<T’. The
existence of the limit (1.14) can also be proved by using (2.4).
2.2. Proor OF ii). We divide the proof into 5 steps.

1st step: We shall divide the integral (1.2) into the sum of two integrals,
that is, into the one near the critical point (x., 8,) of f defined in
1.1 and the one on the remainder region. For this purpose we first make a
change of variable § — t6 (t>0) in (1.2). Then we obtain

(2.5) (Ao, we oy =p7 | onscmnst o (x, 10y u () 0(ct6) dbdx.

For T,>T and w2 put
A@)={(x, 0) | (x.(t, 0)+x, 0.(t, @) +O)E B, vt> T},

where B (CW) is a bounded open neighborhood of B=(x., 0.)(£2)®. Then
by iii), b) of Proposition 1.1, A(w) is a neighborhood of (0, ) R"XRY and
satisfies '

inf dist((0, 0), A(@)")>0"7
wsl

if T, is sufficiently large. Thus there exists an open ball A in R"XRY with
center (0, 0) such that AC A(w) for any w=f. Now define

f@Y 05 x+x.(c7Y w), 0+6.(z7%, 0)), 0<c<T{,

2.6) J(x,0;7, @)=
L VO T

To this function we shall apply the following Morse lemma.

LEMMA 2.1. Let B be an open ball in R* (k=1) with center 0= R*, £ be
a compact space, and J=[0, R] (R>0). Let f(-;7,®) be a real-valued C*~
Sfunction on B for an arbitrarily fixed (z, )€ ] X8, and suppose that f satisfies
the following conditions:

a) 0:f(0;7, w)=0, Y(r, 0)€]XQ2;

b) The matrix Az, )=0,0,1(0; 7, w) is non-singular for ¥(r, w)eJX2;
and

6)  (XwsBe) (2) denotes the image of 2 by the mapping (Xw,8.). Notice that
(%o, 00) (2) is compact because 2 is compact and the mapping (*«,0w) is continuous
by iii), b) of [Proposition 1.1,

7) dist(A, B) denotes the distance between the sets A and B, and A° denotes the
complement of the set A.
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c) 0,0,f(x; 7, w) is continuous in (x, v, w)EBXJX 0.

Suppose furthermore that the following estimate holds for some convex sequence
{a(k)}e-y of real numbers satisfying a(1)=a(2)=0: For any multi-index «,
there exists a positive constant C, such that ‘

@.7) |02 f(x; 7, w)|=Cyr-otian

holds for any (x, 7, @) EBXJ*X 8.

Then we can find an open ball B’CB in R* with center 0 such that for any
(r, w) e J X2 there exist an open neighborhood V.. of 0 in R* and a C=
diffeomorphism .. . Ve, — B’ satisfying the following properties:

i) Vi, w)eJX82, ¢..0)=0;
ii) Y(r, /X2, YyeV,a,
(2.8) [(@ro(y)i 7, @)=f(0; 7, 0)+<A(z, @) y, ¥>/2;
iii) VY(z, w)eJxQ,
sgn(det dy ¢, ,(y))=constant for y&V.,,
{ |det 9, ¢-,, (0)|=1;

2.9)

iv) Va, 3C:>0, VY(r, w)e]' XL, VyeV,_,,

[az QD—a:<y)| éca ,z.—a(xa|+2)’

(2. 10) {
|5§ @r,w(o>léca7~a(lal+l); and
V)
inf dist (0, V..,.5)>0,
2.1 { (r.@eJX.Q
sup diam V,,,<co®
(T, w)EIxQ

The proof of this lemma is similar to that of Lemma A.6 of Hormander
[2]. But our lemma is somewhat different from Hérmander’s in the sense that
our estimate (2. 10) includes the one on a neighborhood of the origin, while
Hormander’s estimate (A.10) is only concerned with the one restricted to
the origin. Consequently we must somewhat modify the proof of Hoérmander.
However the proof does not change essentially and is easily reconstructed from
that of Lemma A.6 of hence is omitted.

If we put k=n+N, B=4, 2=0, R=T;!, f=f, and a(k)=max (0, (1—p)k
+h’—1) in this lemma, then all assumptions of the lemma are satisfied.
Thus the assertions i)~ v) of the lemma hold with |

8) diam A denotes the diameter of the set A.
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J@ 0x.(c7Y w), 0.(z7% w)) for 0<z<TYY,
Alr, w)= (303090 02090 '

(@; xo(w), 0.(w)) for =0,
303190 axazsp_azaxsb)

Let r=diam B’/4 and choose € Cg(R™XRY) so that supp 1 C B’ and Z(x, §)=1
for |(x, 8)|=<r. Now introducing the partition of unity 1=%+(1—%), we write
(2.5) in the form ’

(2- 12) <A¢o,e; ue_it¢—iy>:-[1 (8, w} t>+12(8’ Cl), t)’
where
(2.13) I,(e, w; )

=¥ SR” SRN ettS @iz g (5 t0)u(x)X(et)

XT(x—x.(t, @), 0—0.(t, w))dbdx,

(2.14) L(e, w; 1)
—— 4N itft, w;z,0) 0
=t I a(x, t0)u(x)x(etl)

X (1=X(x—x.(t, w), 0—0.(t, w)))dOd x.

2nd step: We shall estimate [,(¢, w;t). Making a chan_ge of variable
x— x+x.(t, w), 6—6.(t, w) in (2.13), recalling the definition of 7, and using
the result of Lemma 2.1, we can rewrite I, as follows:

(2.15) I(e, w; 1)

— N it f o w; et @), 0, ) <AL o)y, yD>/2 ,,€
=t'e cctenfe SRn+Ne DIyt W (¥)dy,

where

ui'w(y):a (x+xc (t; CU), t<0+0c(t; w)))l(z,0)=<pt-1,w(y) vi,w(y)‘,
(2.16) vi.m(y)=wi,9(x+xc(t, w), t(0+0.(t, ®))) l;x,m:m-l,,‘,(wldet 0y 0i-1,0 (),
1 w5, o(x, O=u(x)L(e) X (x—x.(t, w), 0/t—0.(t, )).

Therefore by Lemma A.2 of Hérmander [2], we obtain
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2.17) I,(e, w;1)

__(2”)(N+n)/2er:ia/4 t(N—n)/z eitf(t.m;zc(t.w),ﬁc(t.m))
X |det J1742 53 (<7D, Dy utu)(0)((2i)/5 1)t
J=v
é (Zv” |)—1(N+n)2 l]ly(N+n—1)|det J]-(v+1/2) t(N—n)/Z—v

105 ut 0 (¥)dy,

lalS2v+ N+n+l SRTH'N

where ¢ and J are the same as in [Theorem 1. 2. On the other hand, direct
computation gives for any «

|05 us, 0 (¥)| SCythrvizteotd=@meo)lal

for some constant C,>0 independent of yeR™%V, ¢+0, ws, and t>T,,
where we have used A'=3p—2+¢,”. Therefore the left-hand side of (2.17) is
bounded by a constant times

(2.18) (22 1) (N4 )2 | J|PN+n-D | det J|~w+i/»

X t(N—n)/2—v+h1\/h2+so+(2y+N+n+1) A-(o-c0))

3rd step: We shall next consider /,. By (1.13) and iii), b) of
1.1 we can find a positive constant 7,> T, such that for any > T, and ws £,

[(xe(t, @), 0.2, ©))—(xe(®), Ou(@))| <7/2.
Therefore if we put
Ey o=supp{(1—Z(x—x.(t, @), 0—0.(t, ®))) a(x, t6) u(x)},
then we obtain
| (x, 0)—(x=(®), O (@))|>7/2

for any wef, t>T, and (x, /) E, ,. Then in the same way as in the proof
of Theorem 3.2.4 of (cf. page 152 of [1]), we can prove the existence of
a positive number £ such that for any > T;, w2, and (x, §)E, , either

Ogp(w; x,0)|>k or |0:¢(w;x, 0)—0,¢(w; x)|=e(1+]6])

holds. Now we can choose JACQ,EC“(R”XRN) so that any derivative of iw is
continuous in weQ; X, does not depend on 6 if |#|>1; and %, (x, f)=1 when

9) In all the other parts of this paper, we only need assume A/<2p—1 essentially.
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[Osp(w; x, 0)|<k/2 and =0 when [dpp(w; x, )|>«. Using this %, we divide
I, in the form

(2.19) I,(e, w; )=].(e, w; )+ ]:(c, w; 1),
where

11(6, (l); t)
— N itlplw; z.,0)-¢(w; 2)) -1 X (2, 10)~iY (t, w; x)
t San SRNe {a(x, th)e

Xu(x)(L—%(x—x¢, 0—0)) X, (x, )} X (etf) dOd x,

and

Jo(e, @5 1)
=ov[ et oz, ) e T (—Lx—x., -0.)

X (1—Xu (x, 6))} X (etf) e~ #t¢ @i~V Cws 02y (1) dAd x.

4th step: We shall first estimate J,. As in page 152 of [1], we put

P=— ﬁ) a;j0/0x;+a,,
Jj=1

{ a=—id(p—9)/ox,( Z, Olo—pfoxsy)

1

\l Aoy—— i aaj/ax]'.
Jj=1

Then we have ‘Pett‘¢?~9=tet¢~¥ and for any «a
(2. 20) |0%a;(w; x, 0)|=C.(1+10])7Y, j=0,1, -, n,

where C,>0 is a constant independent of we®, (x,0)=E, .. Therefore by
integration by parts we obtain for any k&

Ji(e, ;1)
:tNS S gitlp@; 2.0 =g, 2 g~k Pkiqg (x 1)
RM JRN ’

X ™ iX @ 0= iy (1) (L—F (x—xc, 0—00) ) X (x, 6)} 2 (et6) dOd x.

The integrand of this integral can be estimated by using (2.20), (Ca), (CX).
and (CY) as follows.
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|integrand| < C, th1Vre-#o1(]4-|@|)1Vhe ko1

for any k where constant C,>0 is independent of ¢+0, t>7T,, wsf, and
(x, )= E, ,. Thus taking k>(N+h,V h,)/0,, we get

(2.21) 17.(e, @; t) | S CtN¥+r1vhe-kor,
5th step: Finally we shall estimate J,. Putting

A, ty w5 )= eesD b, o (x, 0)X(ct9) dB,
brw(x, 0)=a(x, 18) e ¥ (1—F(x—x., 0—0.)) 1, (x, 6)),

we can rewrite J, in the form
e, 03 0=t" | Ale, t, 0 D)u(x) e iemn gy,
Define P by

P= 3 a,3/36+c,

J=1

a;=i(1-D)dp/30;( % Gp/a0,)7) ",
= N
c=X+ 2 aaj/aaj’
Jj=1

where XCP(RY) is taken as ?((0):1 near 0. Then P satisfies ‘Pet'¢=tett¢
hence we have for any k%

@.22) Ale, t, o x):t“kg et P (b, . (x, )X (ct6)} db.

RN

On the other hand, a; and ¢ satisfy the following estimate: For any a we
can find a constant C,>0 such that for any t>T,, 0w and (x, ) €E,. .,

105 a;(@; x, O)|=Ca(1+101)7',

(2.23) {
10F c(w; x, O) | =Ca(1416])7 "=,
Furthermore direct computation gives for any «
(2.24) 10§ bew(x, 6)]
. ) é.Cth1Vh2+(1"51)1al(l+‘ﬁl)hlvhg—(h!al

+C D ‘tﬁl\/hg.+(1—51)|a’l(1+|01)‘h1\/h2—511a’lW(ﬁ)’
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where ¥'(6)=1 when |#|<A and =0 when |§]|> A for some constant A>0, and
C>0 is a constant independent of t>T,, we®, (x,0)€E,,. Therefore by
(2.23) and (2. 24), the integrand of (2.22) is bounded by a constant times

th]\/h2+k(1"51) (l+ IH Dhl\/hz— ko1 .

Thus taking 2> (h,V h,+N)/0,, we get
(2.25) | Je(e, @; 1) | SCel+ravha=hon,

Therefore we have by (2.19), (2.21), and (2. 25)
[ I,(e, w; 1) | SCHV+havhe-kdy

where C>0 is independent of (> T,, ¢+0, and wsR. Combining this with
(2.18) proves ii) of [Theorem 1. 2.

2.3. PROOF OF iii). By virtue of ii), (1.17) follows from the following
estimate: For any integer j=1, t> T, e R, and w= £,

@26 |7 3 [0fle (et e, HOH02) | crimmpie o} Ty-o (@] 05,0 O)
1811

éc]' t—1+max(h1, hi+h'+2-3p, h2+2—2p),

where C; is a positive constant independent of #, e, and . But this can be
proved by direct calculation using the estimate (2.10) of Lemma 2.1 and the

assumption (Ca).
Thus to prove (1.18) it now suffices to note the next estimate which can

also be proved by using (2.10):
@20 | E (7D, DY) O @iY/j1 | SC i, 22,

where constant C, is independent of ¢, ¢, and w.

2.4. Proor oF iv). We have only to check that all the estimates stated
in §82.1~2.2 hold with h,V h, replaced by h,, and that (2.26) holds with the
right-hand side replaced by C,t*2**"%, But this has been essentially done
already. This completes the proof of [Theorem 1.2
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