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Consider a nonnegative locally Hoélder continuous function P(z) on the
punctured unit disk 0<|z]=<1. Such a function will be referred to as a den-
sity. To describe the potential theoretic singular behavior of a density P(z)
at z=0 we consider the elliptic dimension, dim P in notation, which is defined
to be the dimension of the half module of nonnegative solutions of the equa-
tion Au=Pu on 0<|z|<1 having the continuous boundary values zero on
lz]=1. After Bouligand we say that the Picard principle is valid for a density
P at z=0 if dim P=1. One of the central theme of the study of elliptic
dimensions is to determine the range of the mapping P—dim P and in parti-
cular to determine {P; dim P=1}, the family of densities for which the Picard
principle is valid. Although we have various results on this subject obtained
by many authors listed in the references at the end of this paper, the study
is quite far from being complete. As an experimental study we considered in
our former paper rotation free densities P(z) in the sense that P(z)=
P(lz]) for every zin 0<|z]<1. We showed that the Martin compactification
2% of the punctured open unit disk 2:0<|z| <1 with respect to a rotation
free density P on 0<|z|=<1 is homeomorphic to a closed annulus, i.e.

ey p=(a(P)=lz|=1)

where a(P), referred to as the singularity index of P, is the proper quantity

in [0, 1) associated with P determined as follows: The ordinary differential
equation

(ru'(r)) =r(P(r)+7*/r*)u(r)

has a unique bounded solution ¢;(r) on (0, 1] with the initial condition ¢;(1)=1

(j=0,1) and the function e,(r)/e,r) has a limit as r—0 which is defined to
be a(P):

a(P)= lirgl e(r)/e(r)e[0,1).
Therefore in particular we have
(2) dim P=1+4a(P)-¢

where ¢ is the cardinal number of continuum, and there really can occur both
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cases a(P)=0 and a(P)>0. Thus the problem may be said to be settled to
a considerable extent for tractable densities P which are rotation free. Prac-
tically speaking, however, to compute a(P) is not easy and in fact almost
impossible for most cases.

The purpose of this paper as a continuation of [13] is to provide a practical
test for a(P)=0 and a(P)>0 which is wishfully expected to supply informa-
tions to proceed to general densities. Typical examples of our test (7-tests)
given in the section 4 are: If

(3) lim sup P(r)/r*- (n,l—I1 log; r™1)*-(log, r™*)*=0
7—0 J=1
for an integer n >0 then a(P)=0, and if
(4) lim inf P(r)/r * (ﬁllogj 1) (log, ¥ 1)*** >0
r—0 J=1

for an integer 7n>0 and an ¢ >0 then a(P)>0, where log, f=log? and log,,,
=log (log,t) (n=1,2, ---), and Tl =1.

If r?P(r) is increasing as r—0, or more generally, if ¥*P(r) is ‘almost
increasing’ as ¥—0 in the sense that there exist a constant c=[1, ) and a
ke (0, o) such that

riP(r)+k = c(riP(ry)+k)

for every pair (v, 7,) with 0<7,=r; =1, then we can give in the section 6 a
complete criterion: a(P)=0 (>0, resp.) if and only if

1 dr . oo
(5) joW—m (< , resp.) .

§1. Singularity indices.

1.1. Throughout this paper our density P(z) on 0<|z|<1, i.e. a locally
Holder continuous nonnegative function P(z) on 0<|z|=1, will be supposed
to be rotation free in the sense that P(z)=P(|z|) on 0<|z| =1 unless other-
wise is explicitly stated. Thus a density P(z) may be considered as a function
P(r) on (0,1]. The mere continuity of P(r) will be sufficient for the whole
discussion in this paper, we assume the Holder continuity for convenience of
references. We briefly recall results obtained in [13]. Consider

6) L L ur)) =P+ utr)  (n=0,1, ).

For each 7, (6) has a unique bounded solution e,(r) on (0, 1] with the initial
condition ¢,(1)=1. We see that

(7) 0<e,(r)=r?  (j=0,1,--,n)

on (0,1]. The functions e,(r)/e,_(r) and e,(r)/e(r) (n=0,1,---; e_;=1) are
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decreasing as ¥—0. We set
(8) an(P) = hm en(r)/eo(r) ’
7—0

which is referred to as the n‘” singularity index of P at z=0, and in particular,
a(P)=a,(P) as singularity index of P at z=0. We have the following funda-
mental inequality :

9) 0=a(P)<1, (aP)*" PP =ay(P)=(a(P))"

for n=0, 1, ---.
1.2. Let Fp be the half module of nonnegative solutions of the equation

(10) Au(z)=P(z)u(z)

on 0<|z| <1 with boundary values zero on |z|=1. The main result in
is the existence of [0, coJ-valued continuous function K(z, ) on (0<|z]<1)X
(a(P)<|C|Z1) such that z—K(z, &) is a solution of on (0<|z|<1)—{¢}
and that there exists a bijective correspondence u« ¢ between S p and the
class {p} of regular Borel measures on |{|=a(P) with

(1) uz)={ Kz duQ)

181 =a(

on 0<|z|<1. Since dim P=dim F» and the cardinal number % {¢} =£(|{|=
a(P))=14a(P)-c, where ¢ is the cardinal number of continuum, implies that

(12) dim P=1+a(P)-c.

Therefore it is important to determine whether a(P)=0 or a(P)>0 for a given
P. For this reason we will try to give some tests for a(P)=0 and «(P)>0.

1.3. Before proceeding to the above mentioned theme we pause here to
state two simple consequences of the mere definition of «(P)>0 in this and
the next nos. By twice applications of the Cauchy mean value theorem we
can find an f(r)=(0, ) for each = (0, 1] such that

(S(Me(f(r)) _ elr)
(f(Me(f(r))) — efr) -

On using (6) we then deduce

Pfr))+/(r)* | e(Jf(r) _ ef(r)
P(f(r)) e( (7)) e(r) -

Therefore, by (8), we see that

a(P)- (1-lim inf —zpr-) < a(P)

7—0

In particular, if a«(P)>0, then we must have
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(13) lim sup 72P(r)=o0.

70
By this simple observation we obtain the following:
The Picard principle is valid for P, i.e. a(P)=0, if
(14) limsup r*P(r) < oo,

7—0

In connection with this we naturally ask whether the condition is
necessary for a(P)=0. This is one of the motivations of the present study.
Of course the situation is not so simple. We proved in our former paper
that if

(15) P(z) log —=— dxdy < co

| 2]
for a general (i.e. not necessarily rotation free) density P, where E is a closed
subset of 0<|z|<1 thin at z=0, then the Picard principle is valid for P.
Obviously we can find P(r) with but without [14), and thus is not
necessary for a(P)=0. Hence our concern is to analyze to what extent the
condition can be weakend.

1.4. We say that the unicity principle is valid for P if a solution u of
on 0<|z| <1 satisfies

(16) 113)1 lz|"u(z)=0 (n=0,1, )

5‘(0<l2|<'1)ﬂE

then u must be identically zero. It is well known that if the degree of singu-
larity of P at z=0 is not so high, in particular if P=0, then the unicity prin-
ciple is valid for P (cf. e.g. Brelot [1]). Fix an arbitrary n=0, 1, --- and
choose an integer £ >n. By (8) and (9),

eo(”)§2(a(P))<1—3k>/2ek(7,)
for every r=(0, p) with a certain p=(0,1). Thus by (7)
rey(r) < A a(P)) 3Py

and if a(P)>0, then [16) is valid for u(z)=-e,(|z]|)>0, a solution of [(10).
Therefore the unicity principle is invalid for P with «(P)>0. In other words,
The Picard principle is valid for P, i.e. a(P)=0, if the unicity principle is
valid for P.
We shall see that e.g. the density P(r)=r"%(logr)® satisfies a(P)=0 (cf.
(3)). It is readily seen that u(z)=¢e,(]|z|) for this P is a nonzero solution of

(10). Observe that
A(lzl/p)"=(n*/]2]%)-(|z]/p)* < P(2)-(|z|/p)"

for an arbitrary integer n >0 on (0, p] if p >0 is sufficiently small. Therefore
sz)=(lz|/p)"+elog (p/|z])—ell2]|)/ep) satisfies (A—P(z))s(z)=<0 for any
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¢>0 and lim,-(S.(z)=0 for every { in the boundary of 0<|z| <p. The maxi-
mum principle yields (cf. Lemma 2.2 below) s.(2)=0 on 0<|z|<p. On making
e—0, we conclude that e,(r)=(ep)/p")r"™ on (0, p]. Thus is valid for
e(}z]). Therefore the validity of the unicity principle is not necessary for the
validity of the Picard principle.

§ 2. Reduction to Riccati equations.

2.1. In dealing with the equation (6) we change the variable r=(0, 1] to
te[0,) by r=e, Then u is a solution of (6) on (0, 1] if and only if v(¢)
=u(e’?) is a solution of

(17) =@, Q=P

on [0, o). A positive function v(f) is a solution of on [0, o) if and only
if ¢(t)=—log v(?) is a solution of

(18) g+ (-Lg)) = Q) a®

on [0, 0). Therefore possesses a unique nonnegative solution ¢,(f)=
—log (e,(e7")) on [0, o) with the initial condition ¢,(0)=0. Consider

(19) b(t)zébl(t)_?bo(t) .

Then since e P =¢,(r)/e,(r) (r=¢7"), we see that b(0)=0, b(t) is increasing,
and the limit

(20) B(P)=lim b(t) € (0, o]

exists and a(P)=e*?, Moreover b(t) is a unique positive solution of
2 2

(21) — w2 g(t) e wt)+ () =1

with the initial condition b(0)=0. Therefore the question of whether a(P)=0
or a(P)>0 is equivalent to determine whether S(P)=o0 or B(P)<eco for the
positive solution b(t) of with b6(0)=0. Since the property of the solution
b(t) is determined only by

(22) alt)y =3 ult),

we need to know the property of a(#) which is a nonnegative (cf. no. 1.1.)
solution of

(23) — B+t =Q1)  (QWZ0).
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2.2. We have thus to study the equation of Riccati type. We shall
see that has a unique nonnegative solution ag on [0, o). Our main con-
cern is how the asymptotic behavior of Q(t) reflects on that of agy(f) as t—oo.
Intuitively we are tempted to say that ao(f)~+/Q(t) as t—oo. We shall see
that this intuition is, to a certain extent, true.

For convenience we state properties of solutions of the equations [(17), [18),
and in a selfcontained manner without referring to the results in § 1.
Consider the following second order ordinary differential operator

(24) Loy=v"()—gt)-v'O)—AW)-v)=0  (g(1), A()=0)

on [0, ) where g and A are continuous on [0, o©). Let s be a continuous
function on [a, b]JC [0, o). The maximum principle (minimum principle) says
that if L,s<0 on (a,b) and s(a), s(b)=0, then s(t)=0 on [aq, b]. Another
formulation of the maximum principle is that if L,s=0 on (a, b) with s(a),
s(b)=0, then s(t)<max(s(a), s(b)) on [a, b]. As a consequence of the maxi-
mum principle, we have the following comparison principle: if v, and v, are
continuous on [a, b] such that L,v,=L,v,=0 on (q,b), vi(a)=vy(a), and
v,(b)=v,(b), then A, =< A, on [a, b] implies that v,=v, on [a, b]. To state the
properties of solutions of [(17), (18), [21) and [(23), the following is fundamental:

LEMMA. There exists a unique bounded solution v, of (24) on [e, o) (¢=0)
with the initial condition v,(e)=1. The solution v, is decreasing on [g, ). If
A< A, then vy, =vy, on [, o).

The lemma can also be applied to the corresponding equations on (0, 7]
(p=(0, 1]) by the change of variable {=—log». For each integer j >0 there
exists a solution v; of on [e, j] such that v,(e)=1 and v;(j)=0. This is
obtained e.g. as a linear combination of two solutions of Cauchy problems on
[e, 71 with suitable initial conditions. By the maximum principle, 0=v; S vy,
=1 on [¢ ] and v; is decreasing on [e j]. By the Harnack principle, v=
lim;-..v; is a solution of on [e, o) such that 0<v=1, v(e)=1, and v is
decreasing on [g, o). To see the uniqueness of v, let v be a bounded solu-
tion of on [¢, o) with v(e)=0. Observe that L,¢=—(g(t)+A(t)-1)=0 on
[e, o). Therefore, for any >0, L,(v(t)—7t)=0 on [, o). Since v(t)—nt=0
for t=0 and t=r7 if 7 is sufficiently large, v({)—%-t=<0 on [¢, v]. Hence v(f)
=7yt on [e 00) for any »>0. A fortiori v=0 on [¢, o0). The last assertion
can be verified by the limiting process v,=limv; on using the comparison
principle.

2.3. On choosing g(t)=0 and A(t)=Q(t), a nonnegative continuous func-
tion on [0, o), reduces to with n=0. Thus the lemma 2.2 can be
restated as follows:

LEMMA. There exists a unique bounded solution vy of v"=Qv (Q =0) on
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e, ) (e=0) with the initial condition ve(e)=1. The solution vy is decreasing
on [e,00). If 0=ZQ,=<Q,, then vy, =vg, on [e, ).

2.4. We turn to the equation [I8)]. By the correspondence ¢=—logv
(v>0), ¢ is a solution of —¢”+¢"*=Q if and only if v is a solution of v”=
Qv; ¢ is nonnegative if and only if v=<1. Thus the lemma in 2.3 takes the
following form :

LEMMA. There exists a unique nonnegative solution ¢q of —¢"+¢*=Q
(Q=0) on [, 00) (e=0) with the initial condition ¢g(e)=0. The solution ¢q 1s
increasing on [e, 00). If 0Z Q= Q,, then ¢, = g, and ¢u, = g, on [e, o).

Only the last assertion is beyond the Lemma 2.3. Let v=e¢ “e"%¢’, which
is a bounded solution of

V=2, V' —(Qs— Qv =0

on [¢, ) with v(¢)=1. Since ¢, is increasing, 2¢o, =0. Therefore Lemma
2.2 is applicable to deduce that v is decreasing, i.e. v/ =(¢p,—¢o,)v=0 and a
fortiori ¢g, < ¢, on [¢, o).

2.5. Let ¢ and ¢4, be as in Lemma 2.4 on [e, o). Observe that w=
¢o+1—¢Po is a nonnegative solution of

@1y — w2 w' +wt =1

on [¢ o) with the initial condition w(e)=0. Conversely assume that w is a
nonnegative solution of [21)} on [¢, oo) with the initial condition w(¢)=0. Then
¢=w-t¢, satisfies the equation —¢”+¢*=Q+1 on [e, o0) with ¢(e)=0.
Therefore ¢=qgs1, i.€e. W=¢o,—Po. Thus we have seen that [21) has a
unique positive solution wq on [¢, o) with the initial condition wg(e)=0. By
Lemma 24, wo=¢on—¢o=0. Therefore wy is increasing and the limit

(25) BLQ) = lim wo(t) = (0, o7

exists. Observe that exp (—¢qo(—log7))=r¢y(r) and exp (—¢q+(—logr))=e\r)
where e,(r) is the unique solution of (6) with P(r)=7r"2Q(—logr) on (0, %]
with e,(e™*)=1 (n=0, 1). Therefore exp (—wo(—logr))=1e,(r)/er) and if we
set

(26) ae(P)= 1,5? eir)/er),  an(P)=a(P),
then we have
(27) a(P)=e <@,

Let wgq, be for the interval [e, o) and wq the interval [0, o). Then wg,(?)
=wy(t)—we(e) and thus

(28) BLQ) = B(Q)—wq(e)
where B(Q)=p8,(Q). This means that the fact a(P)>0 or a(P)=0 depends
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only on the behavior of P in any small vicinity of z=0. We have

PROPOSITION. There exists a unique positive solution wg of —w”+2duw’+w’*
=1 on [e, ) (¢=0) with the initial condition wy(e)=0. The solution wqy is
increasing on [, o). The singularity index a(P) is zero or positive (Q(t)=
e *P(e*)=0) if and only if BQ)=Ilim,—.wq(t) is infinite or finite for one and
hence for every e [0, ).

2.6. From the view point of the practical application it is convenient to
reformulate the proposition 2.5 as follows. Suppose that b is a nonnegative C*
function satisfying —b”+2¢gb’+b*=1 (=<1, resp.) on [¢, o) (¢=0). On putting
¢=b+¢q, we see that —¢”’+¢?=Q+1 (ZQ+1, resp.) on [¢ ). Let v=
e @9 Then v"=(Q+1v (Z(Q+1)v, resp.) on [e ). The maximum
principle applied to vg.(B)+nt—v(t) (v(t)+nt—vg.i(t), resp.) (>0) for the
operator Lf=f"—(Q+1)f yields v ()+nt=v(t) (v(t)+nt=vq.4(), resp.) on
Le, 7] for sufficiently large v >e. Thus we can conclude that v < vgy; (V= vg4y,
resp.) on [¢, o). Since vg.; =€ 7e+1, we see that

P—Pe) = Por1  (p—P(e) = g1, TESD.)

on [e, o). Therefore
b—b(e)=wq (b—b(e) =wy, resp.)

on [¢, ). Then B.(Q) < oo (8.Q)=co, resp.) if

lim inf b(f) < oo (lifn sup b(t) =co, resp.)
t—oo —oo

We summarize this observation in the following
THEOREM. The singularity index a(P)=0 if and only if there exists a
nonnegative C*® function b(t) on [e, o) (e =0) such that

(29) —b"() 20V’ D+ =1 (QU)=e*P(e™))
on (e, o) (6=0) and ‘
(30) lirgiup b(t) =0,

The singularity index a(P)>0 if and only if there exists a mnonnegative C*
Sfunction b(t) on [e, o0) (¢=0) such that

(31) —b"() 200" (1) +b'(1)2 = 1
on [e, o) and

(32) lim inf b(t) < oo .

t—oa

2.7. In view of the preceding theorem we need to know the property of
¢p in terms of Q. By Lemma 24, a=¢)j is a nonnegative solution of —a’-+a®
=Q on [¢, ). Conversely assume that a is a nonnegative solution of —a’-+a?
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=@ on [¢ o). Then
t
o6 = [ a(s)ds
is a nonnegative solution of —¢”+¢’*=0Q on [¢, c0) with ¢(¢)=0. Thus again
by Lemma 2.4, ¢ =¢, and a fortiori a =¢yg. Therefore the Lemma 2.4 implies
the following

LEMMA. There exists a unique nonnegative solution aq of —a’+a*=Q
(Q=0) on [e,00) (620). If 0=Q,=Q,, then ag, = aq,

§ 3. Asymptotic behaviors.

3.1. We are interested in the question how the asymptotic behavior of
Q(t) as t—oo reflects on that of a,, the unique nonnegative solution of

—a'()+a(t)=Q) (Q=0)

on [¢, o) (¢=0). Specifically we ask to what extent the relation a(t)~ ~/Q(t)
(t—o0) is true. Consider a positive C*' function T(t) on [e, o) (¢ =20) satisfy-
ing either of the following conditions:

(33) lim sup T'(t)/ T(t)* <o0;
(34) lim inf 77(2)/ T()* > —oo .

To describe the asymptotic behavior of @ in terms of T consider the following
conditions :

(35) lim sup Q(t)/ T(t)* < co;
(36) lim inf Q(8)/ T(1)* > 0.

Similarly we consider the following conditions for agq:

(37) lim sup aq(t)/ T (1) <o
(38) lim inf ag(t)/ T()>0.

As an answer to the above question we state the following
PROPOSITION. For a T with (33) ((34), resp.) if Q satisfies (35) ((36), resp.),
then aq satisfies (37) ((38), resp.).
3.2. For the proof first we assume that 7T satisfies [33). On replacing T
by aT-+b with suitable positive constants a¢ and b, we may assume that 7(t)
=1 and that implies
Q)= T(t)
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on [¢, o) for a sufficiently large ¢>0. In view of we can find a positive
constant k2 so large that

Qo(t)=—kT/(t)+R*T(1)* =z T(1)*

on [, o). Observe that ag,=kT, and Q,=Q. Therefore the lemma in 2.7
implies that ag,=ay, i.e.
ag()/ T =k

and a fortiori we conclude that a, satisfies [37).
3.3. Next suppose that 7 satisfies [34). On replacing T by aT with a
suitable positive constant a, we may assume that implies

(39) Q) > T(t)*

on [¢, ) for a sufficiently large ¢>0. In view of we can find a positive
constant & so small that

Qu(t)=—RT'(O)+RT() = T(t)
on [¢, ). With we then have
(40) Q) <Q(t)

on [, o). If Q) were nonnegative, then Lemma 2.7 would imply the desired
conclusion as in 3.2. However this assumption may not valid and thus we
need an extra discussion as follows. Consider the function

JO)=ET(t)—aq(t)

on [e, o). We maintain that f(#)<0 on [t, o) for some ¢,=¢, from which
the desired conclusion follows. Suppose the assertion is false. Then there
occur two cases: f(¢) is not of constant sign on [z, o) for any large z=¢;
f(t)=0 on [z, 0) for some z=¢. First suppose the former is the case, i.e.
there exists an interval [a, b]C [, o) such that f(a)=f(b)=0 and f({)=0 on
La, b]. By the mean value theorem there exists a c¢c<(q, b) such that f/(c)=0.
Then ag(c)=FkT'(c) and ag(c)<kT(c). A fortiori

Q)= —ag(c)Fae(e)* = —kT"(c)+ R T(c)* =Qu(c) .

This contradicts [(40). Next we consider the case where there exists a f,=¢
such that f(#)=0 on [f,, ). We treat this case in the following two exclusive
situations. First suppose there exists a ce<[f, o) such that f(¢)<0. Then
ag(c)=kT'(c) and ag(c)<kT(c). By the similar consideration as above we
deduce Q(c) = Q(c), a contradiction. Otherwise f/(£)>0 on [#, o). Let ¢, be
for the interval [¢,;, o) and set

¢<t)=j: ET(s)ds .
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The maximum principle applied to e ¢®4pt—ve(t) (vo=e"%e, 5>0) for the
operator Lg=g"—Qg on the interval [{, z] for sufficiently large = >0 yields
e ?P4pt—vy(t)=0 on [¢,7) and hence on [f, o). Here we have used the
following :

L(e™#® 4t —vy(1)) = —7tQ() +(Qu(t) —Q(1))e#® < 0
on [f,, ). On making »—0, we conclude that ¢ ¥® =e¢ %™ on [t, ), i.e.,
(41) OET20
on [ £, ©©). On the other hand,
— QYO+ RT () = —at)+RT'(8) = /(1) > 0
on [?,, ), and the integration of the above inequality over [f, t] yields
Gt < kT(H)—c
where ¢= —g(ty)+rT(4) = —aq(t,)+kET(%)=f(4,)=0. Hence we have
Do) = RT(2)
on [, o). Again by the integration of the above over [, {] we deduce
Do) = ¢(1)
on [, o). This with implies that ¢=¢y, on [f,, =), i.e.
Qo) = —¢"()+¢'(1)* = — Pg(H)+ Pe(?)* = Q(2)

on [t,, c0), a contradiction.

§4. T-tests.

4.1. Based on the foregoing discussions we are now able to state one of
our main results in this paper: tests (sufficient conditions) for a(P)=0 and
also for a(P)>0. Our tests will use auxiliary functions 7 and thus we shall
refer them as T-tests. We start with a test for a(P)=0. For convenience
we shall call a nonnegative C! function T on [z, o) (z =0) an upper tester if
the following two conditions are satisfied :

(42) liIlIlDSnup %gg < ooy
< dt
(43) f . TH - °

for any ¢=0. If T is an upper tester, then 7T-+c¢ with a nonnegative constant
¢ is again an upper tester. We maintain the following upper T-tfest:
THEOREM. The Picard principle is valid for a density P, i.e. a(P)=0, if
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there exists an upper tester T such that

. P
(44) fim Sup =5 [ e < -

4.2. The proof is by the reduction to Theorem 2.6. On setting Q(f)=
e *P(e™), takes the form

lim sup Q(t)/ T(t)? < oo,

By the proposition in 3.1, we have

lirtxliup ag(t)/T(t) < co
with ago=¢4. By replacing T by T+1, if necessary, we may assume that 7=1.
Thus, if we choose 7 >0 sufficiently small and ¢> 0 sufficiently large, then
(45) T [ T*+2nde/T+7n*/T* =1
on [¢, ). Set

b(t) = nf:ns)—lds.

Then b(t) is a nonnegative C? function on [, o) and implies that
——b”—{—ng&'b/-*—b/zé 1

and lim suphmb(t):py wT(s)‘lds:oo. A fortiori, by Theorem 2.6, we conclude
that a(P)=0. ‘

4.3. We turn to a test for a(P)>0. Similarly asin 4.1, a nonnegative C*
function T on [z, o) (z =0) will be referred to as a lower tester if the follow-
ing two conditions are satisfied :

(46) lim inf %é? >0;
(47) Lm%— < oo

for a certain e=7. We assert the following lower T-test:
THEOREM. The Picard principle is invalid for a density P, i.e. a(P)>0,
if there exists a lower tester T such that

. P(r)
(48) h‘}li,“f T T(log 7 E >0.

4.4. As in 4.2, takes on the following form for Q(f)=e *P(e""):
lim inf,~.Q(t)/T(t)* > 0. By Proposition 3.1, lim inf,—.aq(t)/T(t) > 0 with ag = ¢%.
Choose a sufficiently large »>0 and an ¢>0 such that is valid and

(49) 0T T+29¢/ T+7*/ T* 21



424 M. NAKAI

2
on [¢g, c0). Consider the function b(t):ﬁj‘ T(s)"'ds which is a nonnegative C*
function on [e, o) and implies that

_b//+2¢/Q.b/+b/2z 1

on [¢, o0) and lim inftmb(t):pjmT(s)‘lds< oo, By Theorem 2.6, we conclude
that a(P)> 0. 5

4.5. To derive the applications of the above T-tests stated in the intro-
duction we consider the iterated logarithms log;? (=0, 1, ---) defined by

log,t=t, log;..t=log(log;t) (/=0,1,---).
Consider the function

Ty, )= (ﬁ log, t)- (log, t)***
J=0

where #£=0 and n=0, 1, ---. Here the convention IT;%,=1 is made, i.e. T, (1)
=t"*# and T, ,(t)=t-(log t)'**. It is easily checked that T, . is an upper tester
(lower tester, resp.) if =0 (#>0, resp.). The condition [44) with T=T,, or
T =1, a trivial upper tester, takes the form

(50) lim sup nP(r)
r—90 7,-—2( ].Illogj 7,—1)2
J=

<L oo

for some n=0, 1, ---. The condition may be restated as

(51) lim sup — P(r)
T v (1l logy r7)*(log, ')
]::

=0

for some n=1,2, ---. The condition with T=T,,., (¢>0) takes the form

(52) lim inf — £
7—0 7,.—2.( H log] r—1)2_ (logn 7,—1)24—:‘.
Jj=1

>0

for some n=1, 2, ---. Thus we have

THEOREM. The Picard principle is valid for a density P, i.e. a(P)=0, if
the condition (50) or (51) is satisfied. The Picard principle is invalid for a
density P, i.e. a(P)>0, if the condition (52) is satisfied.

§5. Comparisons.

5.1. It seems likely that dimcP=dim P (¢>0) and dim P,<dim P, if
P, <P, even for general densities P, P, and P, (cf. [13, 14]). Although we
are unable to settle these questions yet, we shall show that the latter is the
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case at least for rotation free densities P, and P,*:

PROPOSITION. If P, <P, then dim P, <dim P,.

We only have to show that a(P,)=0 implies that «(P,)=0. As before set
Qi(tH)y=e?Pye") (1=1,2). By Proposition 2.5, a(P,)=0 implies that

(53) ”w62+2¢62'w62+w32 =1

on [¢, 00) (¢=0) and lim, ..wq,(t)=c0. Since @, =Q,, Lemma 2.4 assures that
o, = ¢4, Therefore, in view of [53), b=wq, satisfies

_—b”+2¢’221' b/+b/2§ 1

on [e, o) and lim;-..b(¢)=co. By Theorem 2.6, we deduce that a(P,)=0.

5.2. If P and P, are densities, then, by the above, we have the inequality
dim (P+4P,) =dim P. When does the equality hold ? We shall use the follow-
ing in the next section:

PrROPOSITION. If P, LA0,1] (A>1) or lim sup,., P(r)/r2<co, then
dim (P+P,)=dim P.

We only have to show that dim (P+P,)<dim P, and for this purpose it is
sufficient to prove that a(P)=0 implies a(P+P,)=0. We first treat the case
P,e L’ Let e, and &, (n=0, 1, ---) be as inno. 1.1 for P and P=P+P, Let
p. be the unique bounded solution of » (ru’) =P,u on (0, €] with p.e)=1.
Then (cf. e. g. [14])

pdr)=1-{ min (log =~ log - )- PNp.(t)tdt .

In view of p.(t)<1 and P,(t)= L*0,1] (A>1), the Holder inequality assures
that the integral on the right can be made arbitrary small by choosing ¢>0
sufficiently small. Thus p.(0)>0. Set p=7p, and observe that p.(v)=7p(r)/p(e).
Therefore

$(0) = lim () >0.

Since p’ and e¢;, are nonnegative, the inequality
T—1<7'(peo)/>/§ﬁ'(peo>

follows from the identity r'(7-(pe,)’) = P-(pe,)+2p'+¢;. Thus by the comparison
principle (cf. Lemma 2.2; apply the lemma by changing variables t= —log7),
we deduce

pe,= e,

*) After the completion of this work the author found that the former is also the
case for rotation free densities P, i.e. dimc¢P=dim P (¢>0). The proof is based on
o dt
0 aQ(t)+1
be discussed elsewhere.

the equivalence of f =co (Q(t)=e"22P(e~?)) and dim P=1. The detail will



426 M. Nakal

on (0,17. Observe that P+7"2= P+r-2 Again by the comparison principle,
¢,<e,. Then

El/éoéel/peo:(%/eo)/p
and a fortiori a(P)<a(P)/p(0). Since p(0)>0 and a(P)=0, we deduce that
a(P+Py)=a(P)=0.

5.3. We next consider the case lim,_, Py(r)/r?<co. For a sufficiently
large integer k>0, P(r)<(3k)*/r*. Again assuming a(P)=0, we shall show
that a(P+P,)=90. Since dim (P+P,)<dim (P+(3k)%/7?), we only have to prove
a(P-+(3k)*/r*)=0. Let e, and ¢, be as in no. 1.1 for P and P=P+(3k)*/r%.
Observe that (3k)*+(4k)*=(5k)* and thus

€= ey, Cop =05 .
On the other hand we have
en/en—l g en+1/en (n - 1, 27 )

(cf. [13]). Therefore we see that

- 2k
€ar __ Gk G5k, Csk-1 ., Cskn1 & )
= — = )

=\,

@ €3p C5k-1  Csk-2 €3p

and thus by (9)
a(P) = (@)Y < (a(P)) et =0,

§6. Almost increasing densities.

6.1. Hereafter we shall consider special rotation free densities P such
that 7®P(r) are increasing as r—0 or more generally ‘almost increasing’ as
r—0. Here a function f is almost increasing as r—0 on (0, 1] if there exist
a constant ¢=1 and a constant 2=0 such that

(54) fr)+k=c(f(r)+k)

for every 0<r,<7,<1. If we can choose c to be the unity 1, then f is increas-
ing in the usual sense as r—{0. Increasing functions, decreasing functions,
bounded functions, and functions which are sums of increasing and bounded
functions are simple examples of almost increasing functions. By Theorems
4.1 and 3, we see that if »?P(r) is ‘not so large’ as »—0 then a(P)=0 and
that if »>P(r) is ‘enough large’ as r—0 then a(P)>0. We wish to describe
the rate of ‘this largeness’ exactly. We are able to perform this if r2P(r) is
supposed to be almost increasing as —0. Namely we state another of our
main results in this paper:

THEOREM. The Picard principle is valid for a density P such that r*P(r)
is almost increasing as r—0, i.e. a(P)=0, if and only if
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! dr .
(55) jo rvVrP(r)+1 —

In other words the Picard principle is invalid for a density P such that v*P(r)
is almost increasing as r—0, i.e. a(P)>0, if and only if

L dr
= o mpme <

We are unable to decide whether the condition of almost increasingness
is really needed. We rather feel something like would be a complete con-
dition for dim P=1 for general densities. The proof will be given for increas-
ing 7®*P(r) first and then for almost increasing 7®*P(r). The divergence of
for P is equivalent to that for P+1. By Proposition 5.2, dim (P+1)=dim P,
and thus a(P+1)=0 is equivalent to a(P)=0. For this reason we my assume
in the proof of the above theorem that

(57) P(r)y=1
on (0,1]. This condition will be assumed throughout nos. 6.2-6.5.

6.2. First we assume that »?>P(r) is increasing as r—0. Set, as we have
been doing repeatedly, Q(#)=e¢ 2P(e"*)>0. Then since Q()=r?P(r) (r=e™),
Q(t) is an increasing function on [0, ) as f—oco. As a result we see that
ag=¢g does not change its sign on a certain [¢, c0) (¢=0). If this were not
the case there would exist an interval [e,, &,] (e, <e&,) such that

a,Q(sl) = a/Q(SZ) = 0 ’ a,Q é 0 ’ a/QSE 0
on [e, &1, Then ag(e;) > ag(e,). On the other hand, since
—a/Q+azQ: Q ’
we have Q(s,) =uaq(e,)” > aq(e,)? =Q(e,), which contradicts the increasingness of
Q. By the assumption [57), Q(0)=P(1)=1. Thus the increasingness of Q
implies that

(58) =1
on [0, ). By the change of variable t=—logr

1
50 rr 2P r)+1 j «/Q(t)—H
In view of and the above identity, the condition is then “equivalent
to the following : for every ¢>0
dt
59 -
(59) f ¢ V(@)

6.3. Another consequence of for ag=¢j, is the following. Since
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—1'"4+1*=1=<@Q, Lemma 2.7 assures that ag=1. Let ay be of constant sign on
[e, ) (¢=0) (cf. 6.2), and consider the function

(60) by =nf <o
which is of class C? on [¢, o). Observe that
—b" 204 b b2 = al ay+2n+n*/
=7-(1-Q/ap)+2n+7/ a4
=3n+7°
on [¢ o). We fix an 7 >0 so small that 3y+7*<1, and we have
—b"42¢4-b'+b* <1

on [, 00). Suppose ag=0 on [&, o). Then Q———aQ—i—a =aj. Thus

lim b() =~ a(s) =), «/Q(S)

if the condition [59) is assumed. By Theorem 2.6 we deduced that a(P)=0.
Next suppose aQ>O on [&, o). Then from

{3{ —_
2
o
3

it follows that

1,1/ 1 (1Y
st rlve ()
Here the essential use of is made. A fortiori
1 1 1 , 171
. =2 ¢@‘+2<aQ :

Since ag=1 is increasing, l/aQ(oo‘)-——lime 1/ao(t) =1 exists and

L 1 1
lim b(t) =7 (s) =3, ¢Q(s> 5 (oo — 2 )-
Therefore lim;-.. b(tf)=oo if the condition [59) is supposed. Again by Theorem
2.6 we conclude that a(P)=0.

6.4. Our next purpose is to prove the implication of from the assump-
tion a(P)=0. First assume that a4, =<0 on [¢, o). Then a4 is decreasing and
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ap=ag(e)="k on [¢, o). In view of

on [¢, o) we deduce that

%’é*\/%ﬂf’/‘él“' Z%/Q
syt (v alQ )

on [e, ) (cf. 6.3). Since ay=1 is decreasing, 1/ag(co)<1 exists as in 6.3.
Therefore we deduce that

ds 1 1 1
—j ——j \/Q (s) v<—a_Q~(55)‘— agle) >’

from which the condition follows. Here observe that the condition a(P)
=0 is not used. Actually the condition auz=0 is sufficient both for a(P)=0
and [59). Therefore the essential case is when ag=¢§ =0 on [¢, ). We once
more use the function b(¢) given by [60) with »=1. Observe that

—b" 4204 -0 +b"?=ap/aj+2+1/ap =2
and in particular
_b//+2¢22_b/+b/22 1

J, ot =

If this were not the case, then we would have

. I
= 2 <
Then, by Theorem 2.6, we must have a(P)>0, which contradicts our assump-

tion a(P)=0. Since we have Q:—a’Q—i—azqéaZQ, we deduce that

ds
o0

. «/Q(S) 2 iy =

i.e. [59) is valid. The theorem is herewith proved when 7*P(r) is increasing
as r—0.

on [¢, o). We maintain that

6.5. We proceed to the case when r*P(r) is almost increasing as r—0,
i.e. there exist a constant c=1 and a constant 2=0 such that

(61) riP(r)+k=c(riP(r,)+k)

for every pair (ry, r,) with 0<7, =<7, <1. We may assume that ¢>1. We set
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P*(r)y=r""max s>P(s)
r=ss1

for r=(0,1]. Then clearly P*(z)=P*(|z|) is a rotation free density on 0<|z]
<1 such that r?P*(r) is increasing as r—0 and

(62) P(rysPXr), c'PXr)=P(r)+irs

\

with [=Fk(c—1)/c. By the second of the above inequality, the condition (b5
for P implies that for P* and a fortiori a(P*)=0. By the first inequality in
(62), Proposition 5.1 assures that dim P<dim P* and thus a(P)=0. Conversely
assume that a(P)=0. By Propositions 5.1 and 2, implies that

dim (¢ *P*) < dim (P+Ir*)=dim P=1,

i.e. a(c*P*)=0. Since ¢ 'P* is also a density such that r*(¢c"'P*(r))=c 'r*P*(r)
is increasing as »—0, the condition for ¢ 'P* follows from a(c™*P*)=0.
This implies the validity of for P* and then for P by P< P*. The proof
of Theorem 6.1 is herewith complete.

6.6. Since a(P)=0 (>0, resp.) if there exists another Py= P (= P, resp.)
with a(Py)=0 (>0, resp.), we can formulate various criteria for a(P)=0 and
a(P)>0 based on Theorem 6.1. As an example we state the following:

THEOREM. The Picard principle is valid for a density P, i.e. a(P)=0, if

1 dr
(63) -s‘() rv/max s2P(s)+1 -

0ss=r

The Picard principle is invalid for a density P, i.e. a(P) >0, if

! dr
(64) jo rv/min s>P(s) + 1 <0

0=s=r7r

Set P(r)=r""maxX,<;<, S°P(s) for r=(0,1]. Then P, is a density for which
r2P,(r) is increasing as r—0. The condition means that P, satisfies (56)
and a fortiori a(P;)=0. Since P,= P, Proposition 5.1 implies that a(P)=0.
Similarly we set Py(r)=r"?*ming=s<, s*P(s) for r&(0,1]. Clearly Py(r) is a
density such that 7*P,(r) is increasing as r—0. The condition assures
that P, satisfies and thus a(P,)>0. Obviously P, <P and again by Pro-
position 5.1 we see that a(P) > 0.
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