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§1. Introduction.

Holomorphic continuation of solutions of partial differential equations
with constant coefficients has been studied by several authors. C. O. Kiselman
[10] showed that under the suitable conditions on the two convex domains
0,C 2, in C", every holomorphic solution # of P(D)u=0 in £, can be pro-
longed to the function holomorphic in £,. He proved this theorem by the
Fourier transformation of analytic functionals. On the other hand, M. Zerner
used more direct method based on the Cauchy-Kovalevsky theorem to
prove the holomorphic continuation theorem over the non-characteristic sur-
face, and G. Bengel obtained a necessary and sufficient condition under
which the above theorem was valid. For the system of differential equations,
the same result was obtained by J.M. Bony and P. Schapira [2]. In [2] and
1 16 |, the case of variable coefficients was also studied. They dealt essentially
with the continuation over the non-characteristic surface.

In this paper we study the holomorphic continuation of a solution u(z)
of P(z, D)u=0 over the simply characteristic surface. In §3, we show that
if the simply characteristic surface 02 is in C? and the second directional
derivative of ¢(z), where £ = {z|¢(z) <0}, along a certain direction in a com-
plex bicharacteristic curve is negative at some point, then every holomorphic
solution u(z) of P(z, D)u(z)=0 in £ becomes holomorphic near that point
({Corollary 1). The proof of this theorem is motivated by the proof in E.C.
Zachmanoglou which states the uniqueness of the:Cauchy problem.
When the coefficients of the operator P(D) are constant, F. Tréves is
also available. In §4, we construct the solution of P(z, D)u(z)=0 with
singularities in a characteristic variety. The method is employed from Y.
Hamada and C. Wagschal in which the singular Cauchy problem is
solved. In the last section, §5, we construct the holomorphic characteristic
function and, using the result in §4, we find a necessary condition for the
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holomorphic continuation: If £ is strictly pseudo-convex and the second
directional derivative of ¢(z), where £ = {z|¢(z) <0}, along every direction
in a complex bicharacteristic curve is positive, then, under some additional
conditions, we can construct a solution u(z) of P(z, D)u(z) =0 holomorphic in
£ which cannot be prolonged (Theorem 3).

The author wishes to thank Professor H. Suzuki for his valuable sugges-
tion and also to thank Professor T. Kusano, Mr. N. Otsuki and Mr. J. Noguchi
for the useful discussion in this work.

§2. Preliminaries.

Let C™ be the complex n-dimensional space with the coordinates (zy, -+, 2,)-
We set z;=x,;+iy; (=1, -, n) where x,, ¥; are real and i=+/—1, then C”
may be regarded as the real 2n-dimensional space R?" with the coordi-

W 0 .0 0
nates (xly o xn’ yly Tty yn)- e denote ‘%‘ ‘g&;-—l*]—) b —73; and
1 a a = vee

2 (‘af i ay, ) by 0z, and set D= az ( 5z Gzn ) For any

multi-index a=(ay, -+, «,), D“:<7Z~> :<~6—2T> <~—8—Zn—> land la|=

a,+ - +a, Let P(z, D) be a differential operator of order m (m =2) with
holomorphic coefficients in an open set £ in C", that is

0 o
Pz D)= 3 a((5,) . m=2,

where a,(z) is holomorphic in £. Its principal part P,(z, D) is then the
homogeneous part of order m,

Po(z D)= a4

lal=m

DEFINITION 1 (Zerner [16]). A real hyperplane H through z, in C" is
said to be characteristic at z, with respect to P(z, D) if the unique complex
hyperplane through z, in H is characteristic at z,.

REMARK. Let H={(x,y)] }J(x —’C“’))Eﬁi(yj—yz-‘”)m:()}, where z,=

=1

(2{%, -+, 2?) and 2(0)—x(°’+1y(°). Then H is characteristic at z, if and only

if Pm(zo, A)=0, where A=¢&—1i7n. Let ¢(z) be a real-valued C' function near
the point z, and

grad,@(z,) = (-5

¢ (20)— ay ( 0)) ",*2‘ —3? Z)— 1_‘—(20))) *0,

then the real tangent plane at z, of the hypersurface {¢(z) = ¢(z,)} is charac-
teristic if and only if P,(z, grad,é(z,))=0.
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PROPOSITION 1 (Zerner [16], Proposition 1). Let U be a neighborhood of z,
in C" and ¢(z) be a real-valued C* function in U such that grad,¢(z,) #0. We
assume that the real tangent plane at z, of the surface {z€U |¢(z) = ¢(z)} is
non-characteristic with respect to P(z, D). Then every function uw(z) which is
holomorphic in {z€U |¢(z) < ¢(z,)} and satisfies P(z, D)u(z)=0 is also holomor-
phic in a neighborhood of z,.

DEFINITION 2. A complex hyperplane through 2z, {z|<{z—z, 4) =0},
where 1€ C", is said to be simply characteristic at z, with respect to P(z, D)
if Po(z,, )=0 and P(z, A)#0 for some j (1<j=<n), where PP(z &)=

%Pm(z, &). We call that a real hyperplane is simply characteristic if it
j

contains a simply characteristic complex hyperplane.
Here we quote some theorems which are used later.

2.1. Bicharacteristic curves.

Let P(z, D) be a differential operator with holomorphic coefficients in an
open set U and P,(z, D) be its principal part. We use the notation

pmgaziéanEL 1%Aa®=7%4ﬁaa-

Now we choose a point 2, in U and a vector N C™ such that P,(z, N)=0
and PP(z, N)# 0 for some j. Then a solution (z(#), &(1)) of the Hamilton
equations

W L _Pwia ), Lt =-Puua®), k=1,

with the initial conditions

2(0)=z,, E0)=N

is called a bicharacteristic strip through (z,, N) and the curve described by
2(t) is called a bicharacteristic curve through (z, N), where t is a complex
parameter. As for the relation between the bicharacteristic equations (1)
and a holomorphic change of variables, we have the following proposition
(H6rmander [8], p. 31, Remark 3, Duff [3], pp. 49-50).

PROPOSITION 2. The equations (1) are invariant for coordinate transfor-
mations if £ is transformed as a covariant vector.

REMARK. From this proposition, we especially have that the f,-direction
{(t,€C, t,#0) in a complex bicharacteristic curve, {z(zf,)} (r = R), is also
invariant for the change of coordinates.
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2.2. Initial value problem for the characteristic equation.

PROPOSITION 3, Let P(z, D) be a differential operator with holomorphic co-
efficients in a neighborhood 2 of 0 in C" and let ¢(z) be a holomorphic func-
tion in 2 such that the equation

P(0,7)=0,
where n;= 4% ), 7=1, -, n—1, has a simple root n,. In a neighborhood 2’
0z; 7

of O there then exists a unique holomorphic solution ¢ of the initial value
problem

P(z, grad ¢)=0,
@(2) = ¢(z) when z,=0 and grad ¢(0)=17.

See Hormander [8], Theorem 1.8.2, p. 31, and the following Remark, p. 32.
See also Y. Hamada [6], § 2.

2.3. Levi’s condition and pluri-subharmonic functions.

Let ¢ be a real-valued C® function in a neighborhood of 0 in C". The
complex Hessian form defined by ¢ at 0 is denoted by Hg(2), where A= C",
that is

Hy) =% —=22 (023, .
ik aZjaZk J
Let £ be a domain in C™ and 0€0f2. We say that 2 is pseudo-convex

at 0 if there are a neighborhood U of 0 and a real-valued C? function ¢
defined in U such that

(i) QNU={zeU|¢(z) <0},
(ii) if i %i (Ow;=0, then Hy(w)=0.
j=1 0%;
If (ii) holds with Hy(w) >0 whenever w # 0, £ is said to be strictly pseudo-
convex at 0.
A real-valued C? function ¢ in U is called strictly pluri-subharmonic if

3¢

the Hessian Wa?jaz(zb of ¢, is positive definite for all ze U. Then we

have the following

PROPOSITION 4 (Gunning-Rossi [5], p. 263, Proposition 4). If £ has a C*
boundary and is strictly pseudo-convex at 0, there exists a strictly pluri-sub-
harmonic function ¢ in a neighborhood U of 0 such that

(i) 2nU={zeUl¢(z)<0},
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() (G-, SE@) 20 in U,

From this proposition, we may assume that the boundary of the strictly
pseudo-convex domain is defined locally by a strictly pluri-subharmonic func-
tion.

§3. Sufficient condition for holomorphic continuation.

In this section we find a sufficient condition for the holomorphic con-
tinuation of local solutions of P(z, D)u(z)=0 over the simply characteristic
surface. The coefficients of a differential operator P(z, D) are supposedito
be holomorphic in some open set.

LEMMA 1. Let U be a neighborhood of 0in C™ and ¢(z), F(z) be two real-
valued C*' functions in U such that ¢(0)=0, grad,F(z) # 0 in U, where grad,F(z)
= (-gg—, e aj—i) We assume the following conditions:

(i) P,z grad,F(2)+0 in U,
there exist constants C, < C, such that

(ii) C,<F(0)<C,,

(iii) {zeU|F(@)=Cin{ze U|¢p(2)=0) is a compact set in U,

(iv) {zeUlF(@=C}n{ze Ulg(z)=0} =0,

(v)  {zeUlF(a)=C} #9,

(vi) {ze U|F(2) < C} is simply connected for all C (C,<C<C)).

Then, every holomorphic function u in {ze U|@(z) <0} which satisfies the
equation P(z, D)u(z)=0 can be prolonged to the function holomorphic in
{ze U|F(z) < C,}.

Remark that the hypersurface {z|¢(z)=0} may be characteristic at 0.

PrROOF. Let u(z) be a holomorphic function in {z& U|¢(z) <0} which
satisfies the equation P(z, D)u(z)=0. Then we set

a=sup {C| u(z) is holomorphic in {z€ U|F(2) <C}}.
From the conditions (iv) and (v), there exists such an o« =C,. It is sufficient
to show that a =C,. If we suppose that a < C,, then u(z) is holomorphic in
{ze U|F(z) < a}. Since the level surface {z€ U|F(z)=a} is non-charac-
teristic, u(z) becomes holomorphic at every boundary point by
in §2. Since by the condition (iii), {z€ U|F(@)=a}N{z€ U|¢(z)=0} is
compact, we can choose a positive number ¢ such that u(z) is holomorphic in
{ze U|F(2) < a+¢}. Here we use the monodromy theorem (Fuks [4], p. 93)
by the condition (vi). Then this is the contradiction to the definition of «,
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which proves Lemma 1.
Now we state the main theorem in this section which gives a sufficient
condition for the holomorphic continuation of solutions of P(z, D)u(z)=0.
THEOREM 1. Let V be a neighborhood of 0 in C™ and ¢(z) be a real-valued
C* function (k=2) in V such that ¢(0)=0 and grad,¢(z) #0. We suppose
that the level surface {z€V |¢(z)=0} is simply characteristic at 0 with respect
to a differential operator P(z, D) with holomorphic coefficients in V, that is

P,0,N)=0 and PP, N)+0 for some k,

where N= grad,$(0). Then under the assumptions (Al) and (A2) below, every
holomorphic solution u(z) of P(z, D)u(z)=0 in {z€V [¢(2) <0} becomes holo-
morphic near the origin.

Assumptions: Let (z(t), &(t)) be the complex bicharacteristic strip of P(z, D)
through (0, N). Then we assume that there exists some constant t,+ 0 such that
for a real parameter <,

A -Lrpeet) =0 for j<k,

=0  for j=k (k odd),
<0  for j=k (k even),
(a2 L lerad gt~ £l =0  for j=(k—1)/2.

Before the proof we remark that the conditions in this theorem are
invariant for transformations of coordinates. In fact, that the level surface
{zeV|¢(2)=0} is simply characteristic at 0 is invariant (Hérmander [8],
Definition 1.8.5) and the invariance of (Al) and (A2) follows from
2 and the following Remark in §2. (See also Zachmanoglou [15], p. 520.)

PROOF. Our proof is an adaptation of Zachmanoglou’s proof in and
also Tréves' proof of Theorem 6.9 in [12]. We first consider the following
special case: in some neighborhood of 0 the function ¢(z) has the following
form

(2) ¢(2) - ¢(Z/y xn)_ynv z'= (Zlv Tt Zn—l)y Zpn = xn—l_zyn ’

with ¢(0,0)=0 and grad,¢(0)=N=(0, -+, 0, 1/2), and the principal part of
the differential operator P(z, D) has the following form
. 0 0 \™1!
(3) Pu(e Dy =c(57—N55) +
‘where ¢ is a constant and the omitted part consists of terms of order less

than m—1 with respect to (0/0z,). In this case the complex bicharacteristic
strip (z(%), £&(¢)) through (0, N) is given by the equations
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zZ() = =2z,,()=2z(0)=0,  z,.,(D=c(i/2)""t,

Then we may assume that the direction such that the assumptions (Al) and
(A2) hold is the Im z,_;-axis because the rotation in the z,_,-plane, if needed,
is permitted. At this stage we change notations and write s instead of
Im z,-, and denote x={(x,, -+, x,), ¥" =(y, -+, Vp-2), Where z;=x;+1y;, J=1,
- n. Thus the point (z, -, z,) is denoted by (x, ¥”, s, ¥,). Since grad,¢$(0)
=(0, ---, 0, 1/2), we have

@) gf] 0)=0, g;’; ©)=0.

Now, we may write
n n—2
¢(xs y”: S) - QO(S)+ ];1 Qj(s)xj+ ElQn+j<S)yj

+Q(x, ", s)+o(lx*+1y"|*+ %),

where Q,(s) is a polynomial of degree =&k in s, @Q,(s) are polynomials of
degree <k—1 in s, and Q(x, »”, s) is a polynomial of degree <k in (x, »”, s)
without terms of degree <1 with respect to (x,y”), and |x|*=x}+ -+ +x35,
|¥"|12=3}+ - +32_.. Then by (4) we have

Q;0)=0, j=1, -, 2n—-2.

Assumption (Al) implies that Q,(s) = const. s*, where the constant is negative
when % is even. By a real contraction on z,_,-axis, we may assume that
Q.(s)= —s*. We remark that after this contraction only the constants may
be altered in the formula (8) and the Im z,.,-axis (except orientation) is
invariant so that the condition (A2) also holds under this new coordinates.
If we apply then (A2), we see that

|Q(s)| = Mi|s|tF=bmtt - |s|  small,
here we set [a]=integral part of «. For |x|, |¥”| and |s| small, we have
1Q(x, 3", )1 = Mo(Ix|*+1[y"1%) .
Let &, > 0 be arbitrary. We have for M, =(n—1)Mj,

310,515+ 1 Que (51,1 = Miss| 51+ Moe (1 x1+15713).
Then we see that for |x|, |v”| and |s| sufficiently small,
(5) |p(x, 7, $)+s* < Myey | s ¥+ Maer'(1x |2+ 97 %)
+ M x P+ 19" 1) +e, (| 224137 [P+ s]5)

We construct now the function F(z) which satisfies all the conditions in
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Lemma 1. We set

F(xy y”’ S, yn) :f(x’ y”v S)—_yn ’
with

f(x; Y, S>:_Sk+5< |X'2‘:l—2|y”[2 g:(;j_()v> )

Here ¢, a, s,, » are positive numbers with the following relations:
(6) e:~§77(1+p)s{;, @=s o<y <1,

We have then by (3),
P,(z, grad, F(z))—c(~—> (— ~--—+ )m 1( T z%]si) 4o

(G

where the omitted part is a polynomial of f,=(—=>F, -, 8x ) Sy = ( 3y,
of

., - ) and fs:ﬂ without any term of degree =1. Here we may
ayn—z 83

suppose that 2°™|¢|=1. Then, we have for |f.l, |fy-| and |f;| sufficiently
small,

) | Palz, grad P 2|55 |- C L1+ Ll 1419,

where C is a positive constant depending only on P,. Now we have
0 0

) 7}){7:2”]./(12, 8yfj =2¢ey,/a®

and by (6),
af

B = RSt ((s/30)" = (s/s0)F1) .

Then for —gg(:l_:f_s—"z?—z)— <1, there are two positive constant ¢(k) and C(k) depend-
ing only on k%, such that
st = |95 | = cmst
Thus we have from (7) and (8),
| Pz, grad, F(2))| = c(k)s§ ™ — C(4e?/a*+C(k)*s§* )

> o)k,

for

2 Ak — 2
Ed —gzly[ <1, t(?,s(lj—ozj) <1 and s, sufficiently small. Hence

P,(z, grad,F(z)) does not vanish there. Here we take, as a neighborhood of
0, the set U defined by the inequalities:
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224 y7 ] (s=s0)"
(9) a? ss(1+7)

|y7l|<M0y

<1,

where the constants are chosen so that the conditions in are
satisfied.

Observe that in the set of points (x,y”,s) defined in (9), ¢(x, ¥, s) is
bounded by a constant B>0. We remark that B can be taken arbitrarily
small if s, is sufficiently small because ¢(0,0,0)=0. Now we take C, and

M, as
(10) —Mo < Co < —B—e——(Bso)k .
Then, for ze U,

#(z)=0 implies y,=<B.

On the other hand, since f(x, ¥”, s) is bounded by e+(3s,)* in U,
F(z)<C, implies y,> B.

Thus the condition (iv) in [emma 1 is satisfied. For the condition (v), it
suffices to remark that the point (x,3”,s,¥,) such that x=0, y"=0, s=5s,
and —C, =<y, <M, belongs to U. As for (iii), it is sufficient to show that
the set S={z U | F(z)=C,} naU is contained in the open set {z€ U,|$(2)<0},
where U, is a suitable open neighborhood of the closure U of U. If we take
0<C,< B, we have on S

| x>+ 1y7 ]2 | (s—s0)® __
@ taasy T
therefore

$(2) = ¢(2)—(F(2)—C)

=d(x,y", s)+st—e+C;.
In view of (5),

o(2) = _5+C1+(M1+1)51(350)k+<M151‘1+M2+31)a2 .

If we choose

e =L 7 1
72 14 (M+1)3%
and s, small, we have by (6)

(M D)e,Bso)* + (Mo + Me)at < - 7.
This implies that

$(2) < —e+Crb -

Thus if we choose C, as

n
14+ s
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(1) €< (=5 )

the condition (iii) is satisfied. Since F(0)=¢/(1+n), (ii) is true if

(12) e/(1+7) <C;.

Lastly if we show that

(13) (zeUIF@)=Cni{zeU|y,=M} =0,

then (Vi_) is fulfilled. F(2)=C and y,= M, implies that f(x, y”, s)= M,+C,
and in U, |f]|<e+(3s,)* so that if we take

(14) M+Cy > e4-(3sy)*,

then for every C (C,<C<C,) is valid. Consequently if the two con-
stants C, and C; are taken so as to satisfy (10), (11), (12), (14) and 0<C,< B,
that is

—M, < —M,+e+(3s))* < Cy < —B—e—(350)* <0,

&
0<—4i7 <Cl<(1——é~ H’Zv )e< B,
(which are possible if we first fix M, and s, such that the set U defined
by (9) is contained in the set V in [Theorem 1, and secondly we change
s, for a smaller number, if needed, and choose B satisfying ¢ < B and
M, > B+2(e+(3s,)%)), then all the conditions in are satisfied. This
completes the proof of for the special case.

It remains to reduce the general case to the one that we have just studied
(Zachmanoglou [15], P. 525). We first make a linear change of variables so
that grad,¢(0)=N=(0, ---,0,1/2). Let f(z) be a function holomorphic in a
neighborhood of 0 and satisfying the conditions

Pn(z grad,f(2)=0, f(0)=0, grad,f(0)=N.

Existence of such a function f(z) follows from in §2, since
P,(0, N)=0 and P$(0, N)#=0 for some j. Then we define the holomorphic

transformation of coordinates from z-variables to w-variables as follows:
wij=z;, Jj=1,--,n—1,
w, = —2if(z).
Since the functional matrix of this transformation is an identity matrix at 0,
this is a nonsingular change of variables in a neighborhood of 0. We sup-
pose that P,(z D,) is mapped to PL(w, D,) under this transformation. Since

the level surfaces {f(z)=constant} are simply characteristic with respect to
P,(z D,), the hyperplanes {w,=constant} are simply characteristic with
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respect to P, (w, D,). Moreover we may assume, renaming the variables if
necessary, that P »Y(0, N)=0. At this step, P,(w, D,) can be written as
follows :

Ply(w, Dy) = (al(w)a—?ul-_i_ +an_1(w)a+m)(a_3;>m'l+ .

where a,_,(0)#0 and the omitted part consists of terms of order less than
m—1 with respect to (9/0w,).

We next find the bicharacteristic curve {w(f)} with parameter t=v,_,
passing through ((vq, -+, v,-s, 0, v,), N) at t=0, so that w;(v) may be written
as the following forms:

wj:Uj+gj(v)’ j:lr'”,n_zy
Wp-1= &n-1(V),
Wy =1y,

where g; are holomorphic near 0 and g;(v”, 0,v,)=0 with v” =(vy, -+, V,_,).
Moreover it follows from Hamilton’s equation that the Jacobian of w with
respect to v at the origin is equal to P,»P(0, N)+0. Hence there exists a
nonsingular holomorphic transformation from w-coordinates to v-coordinates,
which maps P,L(w, D,) to P (v, D,). Since the hyperplanes {w,=constant}
are transformed to the hyperplanes {v,=constant}, these hyperplanes are
also simply characteristic with respect to P, (v, D,). Moreover Hamilton’s
equations are invariant, so that we have

0 for j+n—1,

PIa(y, N)= ‘ .

1 for j=n—1,
when v is in some neighborhood of 0. Therefore we write P (v, D,) as the
following form

Py (v, Dy)= (—Zi)m-1<3£T>(Tz:>m_l+ o,

which shows that every differential operator P(z, D) is reduced to the form
(3) under the holomorphic change of coordinates.

Lastly we remark that the boundary function ¢(z) may be supposed to
have the form (2) (Treves [12], p. 369). In fact, if grad,$(0)=N=(0, ---,
0, i/2), the equation

#(2/, 2,) =0

can be solved with respect to Im z, =%,. In other words, there exists a C*
function ¢(z”, x,) in a neighborhood of 0 such that the sets

{2l (2) <0},  {z[ (2", x)—y, <0}
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are identical. Then

P(z”, x) =y =2(2)¢9(2),

where g is a C* function in {z| ¢(z) # 0}, which is positive and C** near the
origin. Furthermore if D* is any differentiation of order k, the function

(D*g(2))¢(2)

defined when ¢(z) # 0, can be extended in a neighborhood of 0 as a continuous
function, vanishing for ¢(z)=0. Thus if ¢ satisfies (Al) and (A2), so does
also ¢—y,.

This completes the proof of

When k=2, condition (Al) with j=0,1 and condition (A2) are always
fulfilled. In fact condition (Al) with =0 and condition (A2) are trivial and
for (Al) with j=1 we have

3¢ dz; dt | 3¢ dz, df
0z; dt dr ' 0zZ; df dr

d n
4z et =% (

= 3 (3Pt Ont—52-PIG DE),

thus, if we set N=(N,, ---, N,), we have for =0

et

=

= 32 (N,;t,P(0, N)+N £, PP, NY)
0 j=1

— mt,P,,(0, N)-+mf, P00, N)
=0.

Therefore we have the next corollary.

COROLLARY 1. Let P(z, D) be a differential operator with holomorphic co-
efficients in an open set U in C™ and let ¢(z) be a real-valued C* function in
U whose gradient never vanish. Let zy= U be a simply characteristic point of
the hypersurface {z=U |¢(z)=¢(2,)}. We make the following assumption:

(C) Let z(t) be the complex bicharacteristic curve through (z, grad ¢(z,)).

Then there is a constant t,+ 0 such that for a real parameter <,

sG] <o.

Then there is an open set U’ = z, such that every holomorphic function u(z) in
{ze U|¢(2) < ¢(2,)} which satisfies P(z, D)yu(z)=0, becomes holomorphic in U’.

Condition (C) in the above corollary is, more explicitly stating, as
follows :
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s )
(15) 5 {5n g (@ P Lz NYPE (2, N)
0’ ; BT

250 (@t P, N PHC, )

+a s @F Pz W PE W}

+ 2 AP (20, N)Pu,j(2:N)t 5+ PP (20, N)Pro, (20, NE 3}
J

<90,

where N=grad,#(z,). This follows from the bicharacteristic equations and
Euler’s identity for homogeneous polynomials.

We say that a domain £ in C" is a domain of holomorphy with respect
to P(z, D), whose coefficients are holomorphic in a neighborhood of Q, if for
every point in 082 there exists a solution u(z) of P(z, D)u(z)=0, which is
holomorphic in £ but cannot be holomorphically continued over that point.
For example Bengel showed that a convex domain is a domain of holo-
morphy with respect to P(D) whose coefficients are constants, if there is a
characteristic supporting hyperplane of the convex domain at every boundary
point. Now we suppose that £ has a C* boundary. Zerner [16] proved that
if £ is a domain of holomorphy with respect to P(z, D), then every boundary
point is characteristic. We give here more precise result.

COROLLARY 2. Let 2={z| ¢(z) <0} be a domain of holomorphy with respect
to P(z, D), where ¢(2) is a real-valued C*? function. Then at every boundary
point the tangent plane of the surface 082 is characteristic with respect to
P(z, D), and if it is simply characteristic then the left part of the inequality
(15) is non-negative.

§4. Holomorphic solutions with singularities.

Let P(z, D):I |2<) a,iz)(%)a be a differential operator with holomorphic
coefficients in a neighborhood U of 0 in C* and Pa(z D)= 3 a,(2) (-2

be its principal part. Let ¢(z) be a function holomorphic in U and satisfying
P,(z grad ¢)=0, ¢(0)=0 and grad ¢(z) #0. We assume that
(16) (PR(z, grad ¢(2)), ---, PiP(z, grad ¢(2))) # 0

in U. Then we construct the solution #(z) of P(z, D)u(z)=0 which has
singularities on the analytic set {z= U|¢(z)=0}. The method of the con-
struction is based on the decomposition of a solution in terms of the func-
tion ¢, and this was effectively used in Y. Hamada to study the Cauchy
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problem with singular initial data.

Under the above conditions on P(z, D) and ¢(z), we have

THEOREM 2. There exists a solution u(z) of P(z, D)u=0 in a neighborhood
of 0 with the following form:

(2) = %ézi))—w(z) log ¢(2)+H(z),

where F(z), G(z) and H(z) are holomorphic at 0 and u(z) is not holomorphic
at 0,

The proof of this theorem consists of two parts. In the first step, 4.1,
we construct the formal solution. In the next step, 4.2, we discuss its con-
vergence.

We remark that this theorem is also proved in T. Kawai [9]. But our
proof of the convergence of the formal solution is self-contained and may be
more elementary than that of T. Kawai, so we reproduce it here.

Now, in view of (16), we make a change of variables, if needed, so that

P{(z, grad ¢(z)) does not vanish in a neighborhood of 0. Therefore we may
suppose that

an PP(z, grad ¢(z))=1

in a neighborhood of 0. Under this situation, we construct the solution.

4.1. Construction of formal solution.
Let f;(s) (j=0, +1, +2, --+) be functions defined by

J Fols)=(—DUls,  1=0,1,2 -,

(18) fi(s)=logs,

kot Ay k-1

fk<s>:@8j1ﬁ“log3’*-(k—_l)TS , k:2, 3’ cer

where Ak:1+%+ —!—~k—}1—. Thus we have

19) L =F1i9).

We then assume that the solution u(z) has the form

(20) u(z)= 3 Fu($(2)us(2),

where u,(z) are functions to be determined. Now we have
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P(z, D)L (¢)ul=f™(¢)Pn(z, grad ¢)u
e LI ou
+rmo(g) X Pil(z grad ¢)*a?j~—|—c(z)u(z)}

1@ LoLul+ - +AP)Lulu],

where ¢(z) is holomorphic and L, (p=2, ---, m) are linear differential opera-
tors of order p with holomorphic coefficients. We remark that these depend
only on P(z, D). Therefore using we have formally

Pz, Du(2)= X [fr-n($)Pu(z grad $)us(2)
remed 9 B PR, grad )5+ claun()}

+fk—m+2(¢)L2[uk]+ +fk(¢)Lm[uk]]

=0.
Setting each of the coefficients of f;-,+:(¢) equal to zero, we have
'§1 P (z, grad ¢) aal’;k +e(Dup(2)+Lolup I+ -+ +Lp[Ug_pne:1=0,
J= J

where we set u,(2)=0 if 2<0.
If we define the operator L as

L) =3 Pz grad §)go—+c(2(a),

we then have the next recursion formulas,
Llu,]1=0

(21) .
Lwd=— B L], k=12,

Here we change the notations for the convenience and write ¢ instead of z,
and again (z, -, z,) instead of (z, -+, z,). Then, by [17), we can rewrite
the equation as follows:

ou,_

Llud =2t 320, 2325 (r, 2)uglt, =0
i=1 J
(22)
Lluyl=— jZ::ZLj[uk+l—j] ) k=1,2,--.

We now impose the initial conditions on u,(¢, 2z) at t=0 as
(23> uo(ov Z) =1, u'k(Oy Z) =0 ’ k= 1,2, .

Since the hyperplane {f=0} is non-characteristic with respect to the operator
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L, we can find, by the Cauchy-Kovalevsky theorem, recursively the solutions

uy(t, z) of the initial value problem (22) and [23). Thus we obtain the formal
solution.

4.2. Convergence of formal solution.

We prove the convergence of the formal solution given above by the
method of majorant functions. The technique used here is due to C.
Wagschal [13].

For two holomorphic functions at 0, u(t, z), U(t, z), we say that U(t, 2) is
a majorant of u(f, 2) if, for every multi-index «, |DZ,u(0)| =< DE,U(0), and we
denote this by ¥ € U. Then we have readily that u < U implies D*u < D*U
and u< U, v« V implies uv K UV and u+v << U+V.

We set 4=1{(t,2)| |t|=<R, |z;]<R}. Then we have the next lemma.

LEMMA 2. For every function u holomorphic in a neighborhood of A, there
exists a constant M such that

u(t, z) € MJ(R—(t+ E"l ).

"The proof is easy from Cauchy’s inequalities.
Now we introduce the functions U,(t, z) as follows:

A 1 k!
’(24) Uk(t; Z)—‘ dfk r_E - (7,__5)}&1 ’
where 0 <7 <R, §=at+ézj and a=1.

j=1

Then, we have
LEMMA 3 (C. Wagschal [13]).

(25) Up L 1Ups1,
1 1
(26) rg Us <y Un,
(27) u U, implies DPu< aPolUyyp,

where B=(By, B1, -+, Brn) 1S any multi-index.

The proof is omitted.

We now construct the majorants of the solutions u,(¢, z) of the initial
value problem and [23). At first, we choose R >0 and M >0 such that
all the coefficients of L, L; (j=2, -, m) and uy(# z) are holomorphic in a

neighborhood of 4 and, using M/(R—(t+ :V‘_,zj)) is a majorant of
Jj=1

these functions. Then we show the next proposition.
PROPOSITION 5. There exists a constant ¢> 0 such that
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(28) uk(t, Z) << Ck+1Uk(ty 2) ’ k = 07 17 2: Tt

PROOF. We prove this by induction on k.. When £=0, is true be-
cause u,(t, 2)  M/(R—(t+ 3 2,)) < cUy(t, 2) if c= Mr/R. We then suppose that
Jj=1

is valid for k=0, 1, ---,[—1. We remark that the Taylor coefficients of
uy(t, z) are uniquely determined by the equations and [23), so that to
prove with k=1, it is sufficient to show that

@® e 9> R et U 2

e U D 3 Dile U, 2)],
=
where fj is an operator obtained by exchanging the coefficients of L; by

those majorants. We have, using and [(26),

M 0 M

“R—_‘S_ a Ut z2)= 5 Uit 2)
<L —R]\{‘T’ Ul+1(t7 Z) ’
M
R Ut )< Uit 2.

Thus we have

(30) Cl+1 M

[0
el az,. U, 2)+Uilt, 2)}

l
<<C +1 R P + R r )Ul+1(t Z)

Further for a multi-index 8=(8, B4, -**, Bu)s

M
R—¢

DU )= g a Ut 2 < g a®r > P Ut 2),
and since the order of fj is j, we have

alj( rj_llsl)UH"l(t: 2) ’

Zj[Ul+1—j] < R

18l=i
so that
@) BLIUL < PR B alet L, 2)
j= = =

«- M (3 s airyUL 2)
R—r " *j= 142, h S

Here we assumed that ¢=1. Thus from and (31),
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{C’”“EAZ[_T(nJrrH Rj\fr clela, 1, m)}Urn(t, 2)

is a majorant of the right hand side of (29), where c(a, r, m)= 3. |ﬁ|2 alri™P,
=2 =j
On the other hand, ] J
0

_at—‘CHlUL(t, z)= CHlaULH(ZL’ z).

Therefore if we choose constants ¢ and « as

azmax (1, 2M(n+r)/(R—r)),
and

M 2 M
¢=max (1, Rr o Ry e, m)) )

then we have (29). This completes the proof.
We remark that from this proposition every function u,(f, z2) is holomor-

phic in {(¢, z)laltl—i—ﬁ) |z;|<r}. Now we study the convergence of the
j=1
formal solution [20). At first we have, by [Proposition 5 and [24),
k1
(r=gy
where £=at|+ ﬁ)l |z;1. Then if |@(2, e(r—E&)1 <1,
=

lup(t, )| < c**

G(t, 2) :k§ (BN 'PFup.y,
=0
and

H(t Z) = _kgl (k !)_1Ak+1¢kuk+1

are holomorphic. Thus we have with F (¢, 2) = u,(t, 2),
u(t, z) = F(t, 2)/$(t, 2)+G(t, z) log ¢(t, z)+ H(t, 2),

where F, G and H are holomorphic at 0. We remark that by F(0, 2) =
u,(0, 2) =1 and ¢(0, 0) =0, so that u(f, z) is not holomorphic at 0. This com-
pletes the proof of

COROLLARY 3. Let ¢(z) be a holomorphic function in a neighborhood of 0
in C* satisfying Pn(z, grad ¢)=0, ¢(0)=0, grad ¢(z) +0 and (PP(z, grad ¢),
-+, P®(z, grad ¢)) #0. Then there exists a solution u of P(z, D)u(z) =0 which
ts holomorphic in {z| Re ¢(2) <0} and cannot be prolonged over the origin.

§5. Necessary condition for holomorphic continuation.

Let P(z, D) be a differential operator with holomorphic coefficients in a
neighborhood of 0 in C” and ¢(2) be a real-valued C? function such that
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grad,¢(2) #0 and ¢(0)=0. Then we seek the conditions on P(z, D) and ¢(2),
for which the solution u(z) of P(z, D)u(z)=0 which is holomorphic in
{z|¢(2) < 0} can be holomorphically prolonged over 0 or not. For example
if ¢(z) does not satisfy the Levi condition at 0, then every holomorphic func-
tion in {z|¢(2) <0} can be prolonged over the origin (see e.g. M. Hervé [7],
p. 44). When the surface {z|¢(z) =0} is simply characteristic, we have proved
in in §3 that if the second derivative of ¢(z) along some direc-
tion in the complex bicharacteristic curve is negative at 0, then every solu-
tion can be prolonged. Now we study the converse of this corollary.

Let 2 be a domain in C™ with C? boundary and 0€02. We assume
that £ is strictly pseudo-convex at 0. Then by Proposition 4] in §2, we find
a strictly pluri-subharmonic C? function ¢(z) in a neighborhood U of 0 such
that

(i) RNU={zeU|¢(z) <0},
(ii) grad,¢(z) #0 in U.

We suppose that the surface {z€U |¢(z)=0} is simply characteristic at 0
with respect to a differential operator P(z, D). Under this situation, we have
the following theorem.

THEOREM 3. If assumptions (Bl) and (B2) below are fulfilled, then we can
find a solution u(z) of P(z, D)u(z) =0 which is holomorphic in {z€V |¢(z) <0}
and cannot be holomorphic near the origin, where V is some neighborhood of Q.

Assumptions: Let (z(t), E(t)) be the complex bicharacteristic strip of P(z, D)
through (0, grad, ¢(0)). Then we assume that for every complex number t,+0
and a real parameter z,

B -Lglaten)

>0,
0

T=

B 20+ T 50l (0)} PR, N)+3 A4Ps(0, N) =0
b 02,02, 02;0%), %

Sfor all 2=(A,, ---, A,) in C™, satisfying the equation
2 4,PP0,N)=0
J

where N=grad,¢(0) .

Since the left hand side of the equality (B2) is the first directional deriva-
tive of P,(z grad ¢(z)) at z=0 and P,(z, grad ¢(z)) is invariantly defined,
we can change variables if the Jacobian matrix at 0 is a complex orthogonal
matrix.

Proor. We first consider the next special case: the principal part of
P(z, D) has the following form
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m-1
(D Pala D)= (0@ gt @D 5o +aDd g ) ()

where the omitted part consists of terms of order less than m—1 with respect
to (0/0z,-,) and a;(z) are holomorphic in U and satisfy

{ aj(oy'"107 Zn>:0y J:]-y "';n’—zf
an(oy Tty Oy Zn>:1 .

(33)

Further we assume that grad,¢(0)=N=(0, ---,0,1,0). In this case the com-
plex bicharacteristic strip (z(f), £&(t)) through (0, N) at =0 is given by the
equations

z(t) =+ =2,,)=0, z()=t,

S)==&0=50=0, &.O)=1.
Moreover we have from (32) and [33),

PP, N)=0, j=1,---,n—1, P@0O,N)=1

Pn,;0,N)=0, j=1,--,n

(34)

therefore assumption (Bl) means from that there is a constant a >0
such that

0? 0° _ 0* -
(35) 20 22 +25 0L Ozt (0B Z ezl
For the condition (B2), we have by
_ 0% oy 0 o 1
(36) aZjaZn (O) _'0 4 azjazn (O) —_‘0 ’ J= 1: , I 1 .
Since ¢(2) is strictly pluri-subharmonic in (z, -+, 2,) variables, it is also
strictly pluri-subharmonic in (z, -, 2,-,) variables in the {z,=0} plane.

Thus we have

(37) S () PRSPl
j k=1 aZja:Z-k J k:T ’
for some constant y > 0, where we denote (z;, -+, Z,-;) by z/. Now we have
, B 1 n—1 aZ
(39 B, 0=zt 2ast - 5 {50 b Oz
0°¢ s 0°¢ s 5 /
+2*5712(0)212k+‘§2—ja§k“ (O)ijk}-i-O(lZ 1% .
Then we set
(39) Ay =2yt 1S 08 ()22
Tl 2 42 02,02 Jok

We remark that from [37), and [39), f(z’)=0 implies that ¢(z/,0)>0 in
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a neighborhood of 0 in the {zn—O} plane except z2=0. We then apply the
initial value problem, [P in §2 with ¢(2)=f(z’). Therefore we

have a holomorphic function F(z) such that

(40) Pu(z, grad F(2) =0
(41) F(z,0)=1(z),
(42) grad,F(0)=N=(0, -, 0,1,0).

Then we show the next lemma in order to estimate the above function F(z).
LEMMA 4. For a holomorphic function F(z) which satisfies (40) and (42),
we have

A2F .
(43) aZ]azn (O)‘—"Oy ]_1y e, N
PROOF. From we have
(44) 2 Po(z, grad F(2)
Zj

n | 0*F
— kgl P®(z grad F <Z))W (2)+Pn, (2, grad F(2))

=0.

If we set z=0 in (44), we obtain by using [(34), which proves this lemma.

We now continue the proof of From [(41)], [(42) and [(43), F(z)
may be written as

(45) F(z2)=f(z')+2,8(2),

where

g(z)=0(]z]%).
Thus if Re F(2)=0, then for some constant C and lgl small, we have
(46) Re f(z/) = —C| z,| | z|®.

On the other hand, in a neighborhood of 0, we have
&(2)=2p 1+ 2,1+ 2 2 { a‘z az (O)ijk

0

+2 azj(%k‘(())'zfz_k+%§%€*(O)§j§k}+0( |2]%)

= f(z)+ )+ :;:1 ag:ébz(O)zjik

+ E{ 0z, 82 (02254 oz, a¢— (0)z,2,+ 888 (0)z;2,
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0°¢ s = 1 1 0°¢
+ 205 (V2 7} o {5 0z

25— Oz, O ol 21,
Then by [35), and we have
(47) 822 ()T +r2 1+ al 2| ol 2]
Thus if Re F(z)=0, we have by and [(47),
$(2) = —2C| z, | | 2]*+e(12/ "+ 12,17,
for some constant ¢>0 and |z,|, |z/| sufficiently small. If |z,|<e/4C, we

have then
#(2)=(e/2)|2|*=0.

Therefore there exists a neighborhood V of 0 such that
{48) {zeV|ReF(2)=z0}C{zeV |¢(2) =0} .

Now we construct the solution u(z) of P(z, D)u(z)=0 which is holomorphic
in {z=V |¢(2) <0} and cannot be holomorphic near the origin. By
2 in §4 we obtain the function #(z) of the form

u,(2)/ F(2)+1,(2) log F(2)+uy(2),

where u,(2), u,{z) and u,(z) are holomorphic in V (V is sufficiently small)
and u(z) is not holomorphic at the origin. Then by (48), ¢(z) <0 implies that
Re F(2) <0. Therefore we can choose some branch of log F(2) in {z€V |¢(z)
< 0}. Thus u(2) given by is holomorphic in {z€ V| ¢(2) <0} but
cannot be holomorphic at 0. This completes the proof of for the
special case.

It remains to reduce the general case to the one we have just studied.
We first make a holomorphic linear orthogonal change of variables so that
grad,(0)=N=(0, ---,0,1,0) and PP, N)=0, j=1, ---,n—1, P@O, N)=1
because N is orthogonal to (PL(0, N), ---, P%(0, N)) by Euler’s identity. Then
we find a holomorphic function f(z) which satisfies

Pn(z, grad, f(2))=0,
f(Z/; O) = Zy-1 gradzf<0> =N.

Existence of such a function follows from in §2. Now we
define the holomorphic transformation of coordinates from z-variables to w-
variables as follows:
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Since the Jacobian matrix of this transformation is an identity matrix at 0,
this transformation is available in this proof (see the remark before this
proof). We suppose that P,(z, D,) is mapped to P, (w, D,) under this trans-
formation, then P, (w, D,) can be written as follows

(49)  Pu(w, Dy)
a m-1
= (GI(W)'B?U—I—}— ves +an_2(w)-au?ﬁ+an(w)?%>( m) + .. ,

where the omitted part consists of terms of order less than m—1 with respect

to (0/0w,-,) (see the proof of [Theorem I)). Since P, (w, )= E P("’(z 6 an
we have at w=0

(50) P00, N)=0, Jj=1,2--,n=1, Pz, N)=1.

We next find the bicharacteristic strip (w(t), »(f)) of Pn(w,n) through
(0, N) at t=0. Then by (49) and

dw,

(O> P'/ﬂ(l.j)(oaN):O; j——~1,2,"',n_"1,
(51)

B )= P00, N)=1,  wo()=0
We denote ¢ by v, and define the transformation
wj:wj<vn)+vj’ ]:17 "',7’1"‘2,
Wpo1=Vp-a,
Wy, = wn(”n) ]

then, the Jacobian matrix of this transformation becomes an identity by [51)
and is also permissible in our proof. Let PZ% (v, 1) be the transform of Pr(w, 7),
then P7, (v, D,) can also be written in the following form:

(52) P (v, Dy)
:(bl(v)aivl—}- o F (V) A 61}2_ +0.(v) 5, >( ava )m -

Under this system of coordinates, the bicharacteristic strip (v(#), A(f)) through
(0, N) is given by the next equations

vj(t):()’ j:]-y”';n—l, Un(t):t’
2]<t):()7 j:17“'rn_2ynr zn-l(t):]--

Then, by Hamilton’s equation we have in (52) that
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bl(o’ Tty 07 vn): e = bn—Z(O; Tty 01 UTL>:0!
bn(oy Tty 0; vn):]. .

Therefore P, (v, D,) obtained above satisfies the conditions (32) and
which completes the proof of [Theorem 3.

Until now we study only the local properties of holomorphic solutions.
Here we have some global problem: For a given domain 2 in C", we seek
a condition under which £ becomes a domain of holomorphy with respect
to P(z, D), or not. We give a necessary condition in[Corollary 2 in §3. We
now find a sufficient condition.

Let P(z, D) be a differential operator with holomorphic coefficients in
some open set U containing the closure of a given domain £. Then we
suppose that its principal symbol P,(z &) does not vanish identically in U.
Thus by the Cauchy-Kovalevsky theorem the equation P(z, D)u(z) = f(2) is
locally solvable, that is, the following sequence is exact

P(z, D)
(53) 0 V) o
where © is the sheaf of germs of holomorphic functions on U and S is a
solution sheaf of P(z, D) of © (i.e. S=kernel of P(z D) in ©). We now
consider the next condition (P),

(P) there exists a fundamental system of neighborhoods {2,} of 2 such
that

’

(54) (i) each £, is a domain of holomorphy,

(55) (ii) the equation P(z, D)u(z)=f(z) has a solution %#(z) holomorphic in
2, for any f(z) holomorphic in £,.
Then we have the next theorem.

THEOREM 4. Let £2 be a domain and P(z, D) be a differential operator which
is locally solvable in UDRQ. We suppose that 2 has a property (P). Then if
for some point z, =082 and a neighborhood V of z, there is a function v(2)
which is holomorphic on [Q—{z}1NV and satisfies P(z, D)v(z)=0 but not
holomorphic at z, we can find a function u(z) which is holomorphic in the
whole of 2 and satisfies P(z, D)u(z)=0 but cannot be holomorphic at z,.

PROOF. Let W be an open set in V containing [ﬁ—{zo}]n V and v(2) is
holomorphic in W. Then for some 2,, K=W N2,V is a compact set in
V. We set d=distance (K,0V)>0 and set

Vi={ze Q,|distance (z, K) >4d/2},
VZI Vm‘Qn .
Then £,=V,U V, and v(z) is holomorphic in V,N V, because V,NV,C W,
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On the other hand, we have by [53), (54) and (55)
(56) HY2,,S)=0.

For a locally finite covering U of £2,, we denote by HYU, S) the first Cech
cohomology group with respect to . Then I : HY(U, 8)— H'#2,, S) is injec-
tive (see J. Morrow and K. Kodaira [11], Proposition 2.2, p. 34). Therefore

we have by
HY U, 8$)=0.

We now take U={V,, V,}. Then v(2)I'(V,NV, S) is a l-cocycle, there-
fore there are O-cochains f; € I'(V,, S) such that v(2) = fi(2)—/f,(2). Now we
define the function u(z) as follows

f1(2) for zeQnNV,,
f(2)+v()  for zelANV,.

Then u(z) is holomorphic in £ and satisfies P(z, D)u(z)=0. Moreover f,(z)
is holomorphic near z, and v(z) is not holomorphic at z,. Hence u(z) is
singular at z,, This completes the proof.

u(z) =
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