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\S 1. Introduction.

Holomorphic continuation of solutions of partial differential equations
with constant coefficients has been studied by several authors. C. O. Kiselman
[10] showed that under the suitable conditions on the two convex domains
$\Omega_{1}\subset\Omega_{2}$ in $C^{n}$ , every holomorphic solution $u$ of $P(D)u=0$ in $\Omega_{1}$ can be pro-
longed to the function holomorphic in $\Omega_{2}$ . He proved this theorem by the
Fourier transformation of analytic functionals. On the other hand, M. Zerner
[16] used more direct method based on the Cauchy-Kovalevsky theorem to
prove the holomorphic continuation theorem over the non-characteristic sur-
face, and G. Bengel [1] obtained a necessary and sufficient condition under
which the above theorem was valid. For the system of differential equations,
the same result was obtained by J. M. Bony and P. Schapira [2]. In [2] and
[16], the case of variable coefficients was also studied. They dealt essentially
with the continuation over the non-characteristic surface.

In this paper we study the holomorphic continuation of a solution $u(z)$

of $P(z, D)u=0$ over the simply characteristic surface. In \S 3, we show that
if the simply characteristic surface $\partial\Omega$ is in $C^{2}$ and the second directional
derivative of $\phi(z)$ , where $\Omega=\{z|\phi(z)<0\}$ , along a certain direction in a com-
plex bicharacteristic curve is negative at some point, then every holomorphic
solution $u(z)$ of $P(z, D)u(z)=0$ in $\Omega$ becomes holomorphic near that point
(Corollary 1). The proof of this theorem is motivated by the proof in E. C.
Zachmanoglou [15] which states the uniqueness of the Cauchy problem.
When the coefficients of the operator $P(D)$ are constant, F. Tr\‘eves [12] is
also available. In \S 4, we construct the solution of $P(z, D)u(z)=0$ with
singularities in a characteristic variety. The method is employed from Y.
Hamada [6] and C. Wagschal [13] in which the singular Cauchy problem is
solved. In the last section, \S 5, we construct the holomorphic characteristic
function and, using the result in \S 4, we find a necessary condition for the
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holomorphic continuation: If $\Omega$ is strictly pseudo-convex and the second
directional derivative of $\phi(z)$ , where $\Omega=\{z|\phi(z)<0\}$ , along every direction
in a complex bicharacteristic curve is positive, then, under some additional
conditions, we can construct a solution $u(z)$ of $P(z, D)u(z)=0$ holomorphic in
$\Omega$ which cannot be prolonged (Theorem 3).

The author wishes to thank Professor H. Suzuki for his valuable sugges-
tion and also to thank Professor T. Kusano, Mr. N. \^Otsuki and Mr. J. Noguchi
for the useful discussion in this work.

\S 2. Preliminaries.

Let $C^{n}$ be the complex n-dimensional space with the coordinates $(z_{1}, \cdots, z_{n})$ .
We set $z_{j}=x_{j}+iy_{j}(j=1, \cdots n)$ where $x_{j},$ $y_{j}$ are real and $i=\sqrt{-1}$ , then $C^{n}$

may be regarded as the real $2n$ -dimensional space $R^{2n}$ with the coordi-

nates $(x_{1}, \cdots , x_{n}, y_{1}, \cdots y_{n})$ . We denote $\frac{1}{2}(\frac{\partial}{\partial x_{j}}-i\frac{\partial}{\partial y_{j}})$ by $\frac{\partial}{\partial z_{j}}$ and

$\frac{1}{2}(\frac{\partial}{\partial x_{j}}+i\frac{\partial}{\partial y_{j}})$ by $\frac{\partial}{\partial\overline{z}_{j}}$ and set $D=\frac{\partial}{\partial z}=(\frac{\partial}{\partial z_{1}}$ . $\cdots$ , $\frac{\partial}{\partial z_{n}})$ . For any

multi-index $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n}),$ $D^{\sigma}=(\frac{\partial}{\partial z})^{\alpha}=(\frac{\partial}{\partial z_{1}})^{\alpha_{1}}\ldots(\frac{\partial}{\partial z_{n}})^{\alpha_{n}}$ and $|\alpha|=$

$\alpha_{1}+\cdots+\alpha_{n}$ . Let $P(z, D)$ be a differential operator of order $m(m\geqq 2)$ with
holomorphic coefficients in an open set $\Omega$ in $C^{n}$ , that is

$P(z, D)=\sum_{|\alpha|\leqq m}a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}$ $m\geqq 2$ ,

where $a_{\alpha}(z)$ is holomorphic in $\Omega$ . Its principal part $P_{m}(z, D)$ is then the
homogeneous part of order $m$ ,

$P_{m}(z, D)=\sum_{|\alpha|=m}a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}$

DEFINITION 1 (Zerner [16]). A real hyperplane $H$ through $z_{0}$ in $C^{n}$ is
said to be characteristic at $z_{0}$ with respect to $P(z, D)$ if the unique complex
hyperplane through $z_{0}$ in $H$ is characteristic at $z_{0}$ .

REMARK. Let $H=\{(x, y)|\sum_{j=1}^{n}(x_{j}-x_{j}^{(0)})\xi_{j}+\sum_{j=1}^{n}(y_{j}-y_{j}^{(0)})\eta_{j}=0\}$ , where $z_{0}=$

$(z_{1}^{(0)}, \cdots , z_{n}^{(0)})$ and $z_{j}^{(0)}=x_{j}^{(0)}+iy_{j}^{(0)}$ . Then $H$ is characteristic at $z_{0}$ if and only

if $P_{m}(z_{0}, \lambda)=0$ , where $\lambda=\xi-i\eta$ . Let $\phi(z)$ be a real-valued $C^{1}$ function near
the point $z_{0}$ and

$grad_{z}\phi(z_{0})=(\frac{1}{2}(\frac{\partial\phi}{\partial x_{1}}(z_{0})-i\frac{\partial\phi}{\partial y_{1}}(z_{0})),$ $\frac{1}{2}(\frac{\partial\phi}{\partial x_{n}}(z_{0})-i\frac{\partial\phi}{\partial y_{n}}(z_{0})))\neq 0$ ,

then the real tangent plane at $z_{0}$ of the hypersurface $\{\phi(z)=\phi(z_{0})\}$ is charac-
teristic if and only if $P_{m}(z_{0}, grad_{z}\phi(z_{0}))=0$ .
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PROPOSITION 1 (Zerner [16], Proposition 1). Let $U$ be a neighborhood of $z_{0}$

in $C^{n}$ and $\phi(z)$ be a real-valued $C^{1}$ function in $U$ such that $grad_{z}\phi(z_{0})\neq 0$ . We
assume that the real tangent plane at $z_{0}$ of the surface $\{z\in U|\phi(z)=\phi(z_{0})\}$ is
non-characteristic with respect to $P(z, D)$ . Then every function $u(z)$ which is
holomorphic in $\{z\in U|\phi(z)<\phi(z_{0})\}$ and satisfies $P(z, D)u(z)=0$ is also holomor-
phic in a neighborhood of $z_{0}$ .

DEFINITION 2. A complex hyperplane through $z_{0}$
$\{z|\langle z-z_{0}, \lambda\rangle=0\}$ ,

where $\lambda\in C^{n}$ , is said to be simply characteristic at $z_{0}$ with resPect to $P(z, D)$

if $P_{m}(z_{0}, \lambda)=0$ and $P_{m}^{(j)}(z_{0}, \lambda)\neq 0$ for some $i(1\leqq j\leqq n)$ , where $P_{m}^{(j)}(z, \xi)=$

$\frac{\partial}{\partial\xi_{j}}P_{m}(z, \xi)$ . We call that a real hyperplane is simPly characteristic if it

contains a simply characteristic complex hyperplane.
Here we quote some theorems which are used later.

2.1. Bicharacteristic curves.

Let $P(z, D)$ be a differential operator with holomorphic coefficients in an
open set $U$ and $P_{m}(z, D)$ be its principal part. We use the notation

$P_{m}^{(j)}(z, \xi)=\frac{\partial}{\partial\xi_{j}}P_{m}(z, \xi)$ , $P_{m,j}(z, \xi)=\frac{\partial}{\partial z_{j}}P_{m}(z, \xi)$ .

Now we choose a point $z_{0}$ in $U$ and a vector $N\in C^{n}$ such that $P_{m}(z_{0}, N)=0$

and $P_{m}^{(j)}(z_{0}, N)\neq 0$ for some $i$ . Then a solution $(z(t), \xi(t))$ of the Hamilton
equations

(1) $\frac{dz_{k}}{dt}=P_{m}^{(k)}(z, \xi)$ , $\frac{d\xi_{k}}{dt}=-P_{m,k}(z, \xi)$ , $k=1,$ $n$

with the initial conditions

$z(0)=z_{0}$ , $\xi(0)=N$

is called a bicharacteristic strip through $(z_{0}, N)$ and the curve described by
$z(t)$ is called a bicharacteristic curve through $(z_{0}, N)$ , where $t$ is a complex
parameter. As for the relation between the bicharacteristic equations (1)

and a holomorphic change of variables, we have the following proposition
(Hdrmander [8], p. 31, Remark 3, Duff [3], pp. 49-50).

PROPOSITION 2. The equations (1) are invariant for coordinate transfor-
mations if $\xi$ is transformed as a covariant vector.

REMARK. From this proposition, we especially have that the $t_{0}$ -direction
\langle $t_{0}\in C,$ $t_{0}\neq 0$) in a complex bicharacteristic curve, $\{z(\tau t_{0})\}(\tau\in R)$ , is also
invariant for the change of coordinates.
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2.2. Initial value problem for the characteristic equation.

PROPOSITION 3. Let $P(z, D)$ be a $d\iota fferential$ operat0r with holomorphic co-
efficients in a neighborhood $\Omega$ of $0$ in $C^{n}$ and let $\psi(z)$ be a holomorphic func-
tion in $\Omega$ such that the equation

$P_{m}(0, \eta)=0$ ,

where $\eta_{j}=\frac{\partial\psi}{\partial z_{j}}(0),$ $j=1,$ $\cdots$ , $n-1$ , has a simple root $\eta_{n}$ . In a neighborhood $\Omega^{\prime}$

of $0$ there then exists a unique holomorphic solution $\phi$ of the initial value
pr0blem

$P_{m}$( $z$, grad $\phi$ ) $=0$ ,

$\phi(z)=\psi(z)$ when $z_{n}=0$ and grad $\phi(0)=\eta$ .
See H\"ormander [8], Theorem 1.8.2, p. 31, and the following Remark, p. 32.

See also Y. Hamada [6], \S 2.

2.3. Levi’s condition and pluri-subharmonic functions.

Let $\phi$ be a real-valued $C^{2}$ function in a neighborhood of $0$ in $C^{n}$ . The
complex Hessian form defined by $\phi$ at $0$ is denoted by $H_{\phi}(\lambda)$ , where $\lambda\in C^{n}$ ,
that is

$H_{\phi}(\lambda)=\sum_{j,k}\frac{\partial^{2}\phi}{\partial z_{j}\partial\overline{z}_{k}}(0)\lambda_{j}\overline{\lambda}_{k}$ .
Let $\Omega$ be a domain in $C^{n}$ and $ 0\in\partial\Omega$ . We say that $\Omega$ is pseudo-convex

at $0$ if there are a neighborhood $U$ of $0$ and a real-valued $C^{2}$ function $\phi$

defined in $U$ such that

(i) $\Omega_{\cap}U=\{z\in U|\phi(z)<0\}$ ,

(ii) if $\sum_{j=1}^{n}\frac{\partial\phi}{\partial z_{j}}(0)w_{j}=0$ , then $H_{\phi}(w)\geqq 0$ .

If (ii) holds with $H_{\phi}(w)>0$ whenever $w\neq 0,$ $\Omega$ is said to be strictly pseudo-
convex at $0$ .

A real-valued $C^{2}$ function $\phi$ in $U$ is called strictly pluri-subharmonic if

the Hessian $(\frac{\partial^{2}}{\partial z_{j}}\phi\overline{\partial\overline{z}_{k}}(z))$ of $\phi$ , is positive definite for all $z\in U$ . Then we
have the following

PROPOSITION 4 (Gunning-Rossi [5], p. 263, Proposition 4). If $\Omega$ has a $C^{z}$

boundary and is strictly Pseudo-convex at $0$ , there exists a strictly Pluri-sub $\cdot$

harmonic function $\phi$ in a neighborhood $U$ of $0$ such that

(i) $\Omega\cap U=\{z\in U|\phi(z)<0\}$ ,
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(ii) $(\frac{\partial\phi}{\partial z_{1}}(z),$ $\cdots$ , $\frac{\partial\phi}{\partial z_{n}}(z))\neq 0$ in $U$.

From this proposition, we may assume that the boundary of the strictly
pseudo-convex domain is defined locally by a strictly pluri-subharmonic func-
tion.

\S 3. Sufficient condition for holomorphic continuation.

In this section we find a sufficient condition for the holomorphic con-
tinuation of local solutions of $P(z, D)u(z)=0$ over the simply characteristic
surface. The coefficients of a differential operator $P(z, D)$ are supposed-i’to
be holomorphic in some open set.

LEMMA 1. Let $U$ be a neighborhood of $0$ in $C^{n}$ and $\phi(z),$ $F(z)$ be two real-
valued $C^{1}$ functions in $U$ such that $\phi(0)=0,$ $grad_{z}F(z)\neq 0$ in $U$, where $grad_{z}F(z)$

$=(\frac{\partial F}{\partial z_{1}},$ $\cdots$ , $\frac{\partial F}{\partial z_{n}}$). We assume the following conditions:

(i) $P_{m}(z, grad_{z}F(z))\neq 0$ in $U$,

there exist constants $C_{0}<C_{1}$ such that

(ii) $C_{0}<F(0)<C_{1}$ ,

(iii) $\{z\in U|F(z)\leqq C_{1}\}\cap\{z\in U|\phi(z)\geqq 0)$ is a compact set in $U$,

(iv) $\{z\in U|F(z)\leqq C_{0}\}\cap\{z\in U|\phi(z)\geqq 0\}=\emptyset$ ,

(v) $\{z\in U|F(z)\leqq C_{0}\}\neq\emptyset$ ,

(vi) $\{z\in U|F(z)<C\}$ is simply connected for all $C(C_{0}<C<C_{1})$ .
Then, every holomorPhic function $u$ in $\{z\in U|\phi(z)<0\}$ which satisfies the
equation $P(z, D)u(z)=0$ can be prolonged to the function holomorPhic in
$\{z\in U|F(z)<C_{1}\}$ .

Remark that the hypersurface $\{z|\phi(z)=0\}$ may be characteristic at $0$ .
PROOF. Let $u(z)$ be a holomorphic function in $\{z\in U|\phi(z)<0\}$ which

satisfies the equation $P(z, D)u(z)=0$ . Then we set

$\alpha=\sup$ { $C|u(z)$ is holomorphic in $\{z\in U|F(z)<C\}$ }.

From the conditions (iv) and (v), there exists such an $\alpha\geqq C_{0}$ . It is sufficient
to show that $\alpha\geqq C_{1}$ . If we suppose that $\alpha<C_{1}$ , then $u(z)$ is holomorphic in
$\{z\in U|F(z)<\alpha\}$ . Since the level surface $\{z\in U|F(z)=\alpha\}$ is non-charac-
teristic, $u(z)$ becomes holomorphic at every boundary point by Proposition 1
in \S 2. Since by the condition (iii), $\{z\in U|F(z)=\alpha\}\cap\{z\in U|\phi(z)\geqq 0\}$ is
compact, we can choose a positive number $\epsilon$ such that $u(z)$ is holomorphic in
$\{z\in U|F(z)<\alpha+\epsilon\}$ . Here we use the monodromy theorem (Fuks [4], p. 93)

by the condition (vi). Then this is the contradiction to the definition of $\alpha_{r}$
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which proves Lemma 1.
Now we state the main theorem in this section which gives a sufficient

condition for the holomorphic continuation of solutions of $P(z, D)u(z)=0$ .
THEOREM 1. Let $V$ be a neighborhood of $0$ in $C^{n}$ and $\phi(z)$ be a real-valued

$C^{k}$ function $(k\geqq 2)$ in $V$ such that $\phi(0)=0$ and $grad_{z}\phi(z)\neq 0$ . We suppOse
that the level surface $\{z\in V|\phi(z)=0\}$ is simply characteristic at $0$ with respect
to a differential operatOr $P(z, D)$ with holomorphic coefficients in $V$, that is

$P_{m}(0, N)=0$ and $P_{m}^{(k)}(0, N)\neq 0$ for some $k$ ,

where $N=grad_{z}\phi(0)$ . Then under the assumptiOns (A1) and (A2) below, every
holomorphic solution $u(z)$ of $P(z, D)u(z)=0$ in $\{z\in V|\phi(z)<0\}$ becomes holo-
morphic near the origin.

AssumptiOns: Let $(z(t), \xi(t))$ be the comPlex bicharacteristic strip of $P(z, D)$

through $(0, N)$ . Then we assume that there exists some constant $t_{0}\neq 0$ such that
for a real parameter $\tau$ ,

$d^{j}$

$’(A1)$ $\overline{d\tau^{j}}\phi(z(\tau t_{0}))|_{\tau=0}=0$ for $j<k$ ,

$\neq 0$ for $j=k$ ( $k$ odd) ,

$<0$ for $j=k$ ( $k$ even) ,

$\wedge(A2)$ $\frac{d^{j}}{d\tau^{f}}[grad.\phi(z(\tau t_{0}))-\xi(\tau t_{0})]|_{r=0}=0$ for $j\leqq(k-1)/2$ .

Before the proof we remark that the conditions in this theorem are
invariant for transformations of coordinates. In fact, that the level surface
$\{z\in V|\phi(z)=0\}$ is simply characteristic at $0$ is invariant (H\"ormander [8],

Definition 1.8.5) and the invariance of (A1) and (A2) follows from Proposition
2 and the following Remark in \S 2. (See also Zachmanoglou [15], p. 520.)

PROOF. Our proof is an adaptation of Zachmanoglou’s proof in [15] and
also Tr\‘eves’ proof of Theorem 6.9 in [12]. We first consider the following
special case: in some neighborhood of $0$ the function $\phi(z)$ has the following
form

$t(2)$ $\phi(z)=\psi(z^{\prime}, x_{n})-y_{n}$ , $z^{\prime}=(z_{1}, z_{n-1})$ , $z_{n}=x_{n}+iy_{n}$ ,

with $\psi(0,0)=0$ and $grad_{z}\phi(0)=N=(0, \cdots , 0, i/2)$ , and the principal part of
the differential operator $P(z, D)$ has the following form

(3) $ P_{m}(z, D)=c(\frac{\partial}{\partial z_{n- 1}})(\frac{\partial}{\partial z_{n}})^{m-1}+\cdots$

where $c$ is a constant and the omitted part consists of terms of order less
than $m-1$ with respect to $(\partial/\partial z_{n})$ . In this case the complex bicharacteristic
strip $(z(t), \xi(t))$ through $(0, N)$ is given by the equations



On the pr0l0ngati0n of local holomorphic solutions 529

$z_{1}(f)=$ $=z_{n-2}(t)=z_{n}(t)=0$ , $z_{n-1}(t)=c(i/2)^{m- 1}t$ ,

$\xi_{1}(t)=\ldots=\xi_{n- 1}(t)=0$ , $\xi_{n}(t)=i/2$ .
Then we may assume that the direction such that the assumptions (A1) and
(A2) hold is the ${\rm Im} z_{n- 1}$ -axis because the rotation in the $z_{n-1}$ -plane, if needed,

is permitted. At this stage we change notations and write $s$ instead of
${\rm Im} z_{n-1}$ and denote $x=$ $(x_{1}, \cdots , x_{n}),$ $y^{\prime\prime}=(y_{1}, \cdots. y_{n- 2})$ , where $z_{j}=x_{j}+iy_{j},$ $j=1$ ,
.. , $n$ . Thus the point $(z_{1}, \cdots , z_{n})$ is denoted by $(x, y^{\prime\prime}, s, y_{n})$ . Since $grad_{z}\phi(0)$

$=$ $(0, \cdots , 0, i/2)$ , we have

(4) $\frac{\partial\psi}{\partial x_{j}}(0)=0$ , $\frac{\partial\psi}{\partial y_{j}}(0)=0$ .

Now, we may write

$\psi(x, y^{\prime\prime}, s)=Q_{0}(s)+\sum_{j=1}^{n}Q_{j}(s)x_{j}+\sum_{j=1}^{n-2}Q_{n+j}(s)y_{j}$

$+Q(x, y^{\prime}, s)+o(|x|^{2}+|y^{\prime\prime}|^{2}+|s|^{k})$ ,

where $Q_{0}(s)$ is a polynomial of degree $\leqq k$ in $s,$ $Q_{j}(s)$ are polynomials of
degree $\leqq k-1$ in $s$ , and $Q(x, y^{\prime\prime}, s)$ is a polynomial of degree $\leqq k$ in $(x, y^{\prime\prime}, s)$

without terms of degree $\leqq 1$ with respect to $(x, y^{\prime\prime})$ , and $|x|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ ,
$|y^{\prime}|^{2}=y_{1}^{2}+\cdots+y_{n-2}^{2}$ . Then by (4) we have

$Q_{j}(0)=0$ , $j=1,$ $\cdots$ , $2n-2$ .
Assumption (A1) implies that $Q_{0}(s)=const$ . $s^{k}$ , where the constant is negative
when $k$ is even. By a real contraction on $z_{n-1}$ -axis, we may assume that
$Q_{0}(s)=-s^{k}$ . We remark that after this contraction only the constants may
be altered in the formula (3) and the ${\rm Im} z_{n-1}$ -axis (except orientation) is
invariant so that the condition (A2) also holds under this new coordinates.
If we apply then (A2), we see that

$|Q_{j}(s)|\leqq M_{1}^{\prime}|s|^{[(k-1)/2]+1}$ $|s|$ small ,

here we set $[\alpha]=integral$ part of $\alpha$ . For $|x|,$ $|y^{\prime\prime}|$ and $|s|$ small, we have

$|Q(x, y^{\prime}, s)|\leqq M_{2}(|x|^{2}+|y^{\prime}|^{2})$ .
Let $e_{1}>0$ be arbitrary. We have for $M_{1}\geqq(n-1)M_{1}^{\prime}$ ,

$\sum_{j=1}^{n}|Q_{j}(s)x_{j}|+\sum_{J=1}^{n-2}|Q_{n+j}(s)y_{j}|\leqq M_{1}\epsilon_{1}|s|^{k}+M_{1}\epsilon_{1}^{-1}(|x|^{2}+|y^{\prime}|^{2})$ .

Then we see that for $|x|,$ $|y^{\prime\prime}|$ and $|s|$ sufficiently small,

(5) $|\psi(x, y^{\prime\prime}, s)+s^{k}|\leqq M_{1}\epsilon_{1}|s|^{k}+M_{1}\epsilon_{1}^{-1}(|x|^{2}+|y^{\prime\prime}|^{2})$

$+M_{2}(|x|^{2}+|y^{\prime}|^{2})+\epsilon_{1}(|x|^{2}+|y^{\prime}|^{2}+|s|^{k})$ .
We construct now the function $F(z)$ which satisfies all the conditions in
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Lemma 1. We set
$F(x, y^{\prime\prime}, s, y_{n})=f(x, y^{\prime}, s)-y_{n}$ ,

with

$f(x, y^{\prime}, s)=-s^{k}+\epsilon(\frac{|x|^{2}+|y^{r}|^{2}}{a^{2}}+\frac{(s-s_{0})^{2}}{s_{0}^{2}(1+\eta)})$ .

Here $\epsilon,$ $a,$ $s_{0},$ $\eta$ are positive numbers with the following relations:

(6) $\epsilon=\frac{k}{2}(1+\eta)s_{0}^{k}$ , $a^{2}=s_{0}^{k+1/2}$ , $0<\eta<1$ .

We have then by (3),

$ P_{m}(z, grad_{z}F(z))=c(\frac{1}{2})^{m}(\frac{\partial f}{\partial x_{n}}+i)^{m-1}(\frac{\partial f}{\partial x_{n-1}}i\frac{\partial f}{\partial s})+\cdots$

$=c(\frac{1}{2})^{m}i^{m- 1}(\frac{\partial f}{\partial x_{n- 1}}i\frac{\partial f}{\partial s})+\cdots$

where the omitted part is a polynomial of $f_{x}=(\frac{\partial f}{\partial x_{1}j},$ $\cdots$ , $\frac{\partial f}{\partial x_{n}}$), $f_{y}.=(\frac{\partial f}{\partial y_{1}}$,

, $\frac{\partial f}{\partial y_{n-2}})$ and $f_{s}=\frac{\partial f}{\partial s}$ without any term of degree $\leqq 1$ . Here we may

suppose that $2^{-m}|c|=1$ . Then, we have for $|f_{x}|,$ $|f_{y^{\prime}}|$ and $|f_{s}|$ sufficiently
small,

(7) $|P_{m}(z, grad_{z}F(z))|\geqq|\frac{\partial f}{\partial s}|-C(|f_{x}|^{2}+|f_{y}.|^{2}+|f_{s}|^{2})$ ,

where $C$ is a positive constant depending only on $P_{m}$ . Now we have

(8) $\frac{\partial f}{\partial x_{j}}=2\epsilon x_{j}/a^{2}$ $\frac{\partial f}{\partial y_{j}}=2\epsilon y_{j}/a^{2}$

and by (6),

$\frac{\partial f}{\partial s}=-ks_{0}^{k-1}((s/s_{0})^{k- 1}-(s/s_{0})+1)$ .

Then for $\frac{(s-s_{0})^{2}}{s_{0}^{2}(1+\eta)}<1$ , there are two positive constant $c(k)$ and $C(k)$ depend-

ing only on $k$ , such that
$c(k)s_{0}^{k-1}\leqq|\frac{\partial f}{\partial s}|\leqq C(k)s_{0}^{k-1}$

Thus we have from (7) and (8),

$|P_{m}(z, grad_{z}F(z))|\geqq c(k)s_{0}^{k-1}-C(4\epsilon^{2}/a^{2}+C(k)^{2}s_{0}^{2(k-1)})$

$\geqq\frac{1}{2}c(k)s_{0}^{k-1}$ ,

for $\frac{|x|^{2}+|y^{\prime\prime}|^{2}}{a^{2}}<1$ , $\frac{(s-s_{0})^{2}}{t_{0}^{2}(1+\eta)}<1$ and $s_{0}$ sufficiently small. Hence

$P_{m}(z, grad_{z}F(z))$ does not vanish there. Here we take, as a neighborhood of
$0$ , the set $U$ defined by the inequalities:
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(9) $\left\{\begin{array}{l}\frac{|x|^{2}+|y^{\prime}|^{2}}{a^{2}}+\frac{(s-s_{0})^{2}}{s_{0}^{2}(1+\eta)}<1,\\|y_{n}|<M_{0},\end{array}\right.$

where the constants are chosen so that the conditions in Lemma 1 are
satisfied.

Observe that in the set of points $(x, y^{\prime\prime}, s)$ dePned in (9), $\psi(x, y^{\prime\prime}, s)$ is
bounded by a constant $B>0$ . We remark that $B$ can be taken arbitrarily

small if $s_{0}$ is sufficiently small because $\psi(0,0,0)=0$ . Now we take $C_{0}$ and
$M_{0}$ as
(10) $-M_{0}<C_{0}<-B-\epsilon-(3s_{0})^{k}$

Then, for $z\in U$,
$\phi(z)\geqq 0$ implies $y_{n}\leqq B$ .

On the other hand, since $f(x, y^{\prime\prime}, s)$ is bounded by $\epsilon+(3s_{0})^{k}$ in $U$ ,

$F(z)\leqq C_{0}$ implies $y_{n}>B$ .
Thus the condition (iv) in Lemma 1 is satisfied. For the condition (v), it
suffices to remark that the point $(x, y^{\prime\prime}, s, y_{n})$ such that $x=0,$ $y^{\prime\prime}=0,$ $s=s_{0}$

and $-C_{0}\leqq y_{n}<M_{0}$ belongs to $U$. As for (iii), it is sufficient to show that
the set $S=\{z\in\overline{U}|F(z)=C_{1}\}\cap\partial U$ is contained in the open set $\{z\in U_{1}|\phi(z)<0\}$ ,

where $U_{1}$ is a suitable open neighborhood of the closure $\overline{U}$ of $U$ . If we take
$0<C_{1}<B$ , we have on $S$

$\frac{|x|^{2}+|y^{\prime}|^{2}}{a^{2}}+\frac{(s-s_{0})^{2}}{s_{0}^{2}(1+\eta)}=1$ ,

therefore
$\phi(z)=\phi(z)-(F(z)-C_{1})$

$=\psi(x, y^{\prime\prime}, s)+s^{k}-\epsilon+C_{1}$ .
In view of (5),

$\phi(z)\leqq-\epsilon+C_{1}+(M_{1}+1)\epsilon_{1}(3s_{0})^{k}+(M_{1}\epsilon_{1}^{-1}+M_{2}+\epsilon_{1})a^{2}$

If we choose

$\epsilon_{1}=\frac{1}{2}\frac{\eta}{1+\eta}\frac{1}{(M_{1}+1)3^{k}}$

and $s_{0}$ small, we have by (6)

$(M_{1}+1)\epsilon_{1}(3s_{0})^{k}+(M_{1}\epsilon_{1}^{-1}+M_{2}+\epsilon_{1})a^{2}\leqq\frac{1}{2}\frac{\eta}{1+\eta}\epsilon$ .
This implies that

$\phi(z)\leqq-\epsilon+C_{1}+\frac{1}{2}\frac{\eta}{1+\eta}\epsilon$ .
Thus if we choose $C_{1}$ as
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(11) $ C_{1}<(1-\frac{1}{2}\frac{\eta}{1+\eta})\epsilon$ ,

the condition (iii) is satisfied. Since $F(O)=\epsilon/(1+\eta)$ , (ii) is true if

(12) $\epsilon/(1+\eta)<C_{1}$ .
Lastly if we show that

(13) $\{z\in\overline{U}|F(z)=C\}\cap\{z\in\overline{U}|y_{n}=M_{0}\}=\emptyset$ ,

then (vi) is fulfilled. $F(z)=C$ and $y_{n}=M_{0}$ implies that $f(x, y^{\prime\prime}, s)=M_{0}+C$,
and in $\overline{U},$ $|f|\leqq\epsilon+(3s_{0})^{k}$ so that if we take

(14) $M_{0}+C_{0}>\epsilon+(3s_{0})^{k}$

then for every $C(C_{0}<C<C_{1})$ (13) is valid. Consequently if the two con-
stants $C_{0}$ and $C_{1}$ are taken so as to satisfy (10), (11), (12), (14) and $0<C_{1}<B$ ,
that is

$-M_{0}<-M_{0}+\epsilon+(3s_{0})^{k}<C_{0}<-B-\epsilon-(3s_{0})^{k}<0$ ,

$0<\frac{\epsilon}{1+\eta}<C_{1}<(1-\frac{1}{2}\frac{\eta}{1+\eta})\epsilon<B$ ,

(which are possible if we first fix $M_{0}$ and $s_{0}$ such that the set $U$ defined
by (9) is contained in the set $V$ in Theorem 1, and secondly we change
$s_{0}$ for a smaller number, if needed, and choose $B$ satisfying $\epsilon<B$ and
$M_{0}>B+2(\epsilon+(3s_{0})^{k}))$ , then all the conditions in Lemma 1 are satisfied. This
completes the proof of Theorem 1 for the special case.

It remains to reduce the general case to the one that we have just studied
(Zachmanoglou [15], P. 525). We first make a linear change of variables so
that $grad_{z}\phi(0)=N=(0, \cdots , 0, i/2)$ . Let $f(z)$ be a function holomorphic in a
meighborhood of $0$ and satisfying the conditions

$P_{m}(z, grad_{z}f(z))=0$ , $f(O)=0$ , $grad_{z}f(O)=N$ .

Existence of such a function $f(z)$ follows from Proposition 3 in \S 2, since
$P_{m}(0, N)=0$ and $P_{m}^{(j)}(0, N)\neq 0$ for some $j$ . Then we define the holomorphic
transformation of coordinates $f$ rom z-variables to w-variables as follows:

$w_{j}=z_{j}$ , $j=1,$ $\cdots$ $n-1$ ,

$w_{n}=-2if(z)$ .

Since the functional matrix of this transformation is an identity matrix at $0$ ,
this is a nonsingular change of variables in a neighborhood of $0$ . We sup-
pose that $P_{m}(z, D_{z})$ is mapped to $P_{m}^{\prime}(w, D_{w})$ under this transformation. Since
the level surfaces $\{f(z)=constant\}$ are simply characteristic with respect to
$P_{m}(z, D_{z})$ , the hyperplanes $\{w_{n}=constant\}$ are simply characteristic with
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respect to $P_{m}^{\prime}(w, D_{w})$ . Moreover we may assume, renaming the variables if
necessary, that $P_{m}^{\prime(n-1)}(0, N)\neq 0$ . At this step, $P_{m}^{\prime}(w, D_{w})$ can be written as
follows:

$ P_{m}^{\prime}(w, D_{w})=(a_{1}(w)\frac{\partial}{\partial w_{1}}+\cdots+a_{n-1}(w)\frac{\partial}{\partial w_{n-1}})(\frac{\partial}{\partial w_{n}})^{m- 1}+\cdots$

where $a_{n-1}(0)\neq 0$ and the omitted part consists of terms of order less than
$m-1$ with respect to $(\partial/\partial w_{n})$ .

We next find the bicharacteristic curve $\{w(t)\}$ with parameter $t=v_{n-1}$

passing through $((v_{1}, \cdots , v_{n- 2},0, v_{n}), N)$ at $t=0$ , so that $w_{j}(v)$ may be written
as the following forms:

$w_{j}=v_{j}+g_{j}(v)$ , $j=1,$ $\cdots$ $n-2$ ,

$w_{n- 1}=g_{n- 1}(v)$ ,

$w_{n}=v_{n}$ ,

where $g_{j}$ are holomorphic near $0$ and $g_{j}(v^{\prime\prime}, 0, v_{n})=0$ with $v‘‘=(v_{1}, \cdots , v_{n- 2})$ .
Moreover it follows from Hamilton’s equation that the Jacobian of $w$ with
respect to $v$ at the origin is equal to $P_{m}^{\prime(n-1)}(0, N)\neq 0$ . Hence there exists a
nonsingular holomorphic transformation from w-coordinates to v-coordinates,
which maps $P_{m}^{\prime}(w, D_{w})$ to $P_{m}^{\prime\prime}(v, D_{v})$ . Since the hyperplanes $\{w_{n}=constant\}$

are transformed to the hyperplanes $\{v_{n}=constant\}$ , these hyperplanes are
also simply characteristic with respect to $P_{m}^{\prime\prime}(v, D_{v})$ . Moreover Hamilton’s
equations are invariant, so that we have

$P_{m}^{\prime\prime(j)}(v, N)=\left\{\begin{array}{ll}0 & for i\neq n-1,\\1 & for j=n-1,\end{array}\right.$

when $v$ is in some neighborhood of $0$ . Therefore we write $P_{m}^{\prime\prime}(v, D_{v})$ as the
following form

$ P_{m}^{\prime\prime}(v, D_{v})=(-2i)^{m-1}(\frac{\partial}{\partial v_{n- 1}})(\frac{\partial}{\partial v_{n}})^{m- 1}+\cdots$

which shows that every differential operator $P(z, D)$ is reduced to the form
(3) under the holomorphic change of coordinates.

Lastly we remark that the boundary function $\phi(z)$ may be supposed to
have the form (2) (Tr\‘eves [12], p. 369). In fact, if $grad_{z}\phi(0)=N=(0,$ $\cdots$ ,
$0,$ $i/2$), the equation

$\phi(z^{\prime}, z_{n})=0$

can be solved with respect to ${\rm Im} z_{n}=y_{n}$ . In other words, there exists a $C^{k}$

function $\psi(z^{\prime\prime}, x_{n})$ in a neighborhood of $0$ such that the sets

$\{z|\phi(z)<0\}$ , $\{z|\psi(z^{\prime}, x_{n})-y_{n}<0\}$
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are identical. Then
$\psi(z^{\prime\prime}, x_{n})-y_{n}=g(z)\phi(z)$ ,

where $g$ is a $C^{k}$ function in $\{z|\phi(z)\neq 0\}$ , which is positive and $C^{k-1}$ near the
origin. Furthermore if $D^{k}$ is any differentiation of order $k$ , the function

$(D^{k}g(z))\phi(z)$

defined when $\phi(z)\neq 0$ , can be extended in a neighborhood of $0$ as a continuous
function, vanishing for $\phi(z)=0$ . Thus if $\phi$ satisfies (A1) and (A2), so does
also $\psi-y_{n}$ .

This completes the proof of Theorem 1.
When $k=2$ , condition (A1) with $j=0,1$ and condition (A2) are always

fulfilled. In fact condition (A1) with $j=0$ and condition (A2) are trivial and
for (A1) with $j=1$ we have

$\overline{d}\overline{\tau}d\phi(z(\tau t_{0}))=\sum_{f=1}^{n}(\frac{\partial\phi}{\partial z_{j}}\frac{dz_{j}}{dt}\frac{dt}{d\tau}+_{\partial}^{\partial}-\frac{\phi}{\overline{z}_{j}}\frac{d\overline{z}_{j}d\overline{t}}{d\overline{t}d\tau})$

$=\sum_{j=1}^{n}(\frac{\partial\phi}{\partial z_{j}}P_{m}^{(j)}(z, \xi)t_{0}+\frac{\partial\phi}{\partial\overline{z}_{j}}\overline{P_{m}^{(j)}(z.\xi})\overline{t}_{0})$ ,

thus, if we set $N=(N_{1}, N_{n})$ , we have for $\tau=0$

$\frac{d}{d\tau}\phi(z(\tau t_{0}))|_{\tau=0}=\sum_{j=\iota}^{n}(N_{j}t_{0}P_{m}^{(j)}(0, N)+\overline{N}_{j}\overline{t}\overline{{}_{0}P_{m}^{(j)}(0,N)})$

$=mt_{0}P_{m}(0, N)+mF_{0}\overline{P_{m}(0,N)}$

$=0$ .

Therefore we have the next corollary.

COROLLARY 1. Let $P(z, D)$ be a differential operator with holomorphic co-
efficients in an open set $U$ in $C^{n}$ and let $\phi(z)$ be a real-valued $C^{2}$ function in
$U$ whose gradient never vanish. Let $z_{0}\in U$ be a simply characteristic point of
the hypersurface $\{z\in U|\phi(z)=\phi(z_{0})\}$ . We make the following assumption:

(C) Let $z(t)$ be the complex bicharacteristic curve through ( $z_{0}$ , grad $\phi(z_{0})$ ).

Then there is a constant $t_{0}\neq 0$ such that for a real parameter $\tau$ ,

$\frac{d^{2}}{d\tau^{2}}\phi(z(\tau t_{0}))|_{\tau=0}<0$ .

Then there is an open set $U^{\prime}\ni z_{0}$ such that every holomorphic function $u(z)$ in
$\{z\in U|\phi(z)<\phi(z_{0})\}$ which satisfies $P(z, D)u(z)=0$ , becomes holomorphic in $U$‘.

Condition (C) in the above corollary is, more explicitly stating, as
follows:
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(15) $\sum_{j.k}\{\frac{\partial^{2}}{\partial z_{j}}\partial\overline{z_{k}}(z_{0})t_{0}P_{m}^{(j)}(z_{0}, N)t_{0}P_{m}^{(k)}(z_{0}, N)\phi$

$+2_{\partial\overline{\overline{z}_{k}}}^{\frac{\partial^{2}}{\partial z_{j}}\phi}(z_{0})t_{0}P_{m}^{(j)}(z_{0}, N)\overline{t}_{0}\overline{P_{m}^{(k)}(z_{0},N})$

$+\frac{\partial^{2}}{\partial\overline{z}_{j}}\partial\phi\overline{\overline{z}_{k}}(z_{0})\overline{t}_{0}\overline{P_{m}^{(j)}(z_{0},N)}\overline{t}\overline{{}_{0}P_{m}^{(k)}(z_{0},N})\}$

$+\sum_{j}\{P_{m}^{(f)}(z_{0}, N)P_{m,j}(z_{0}N)t_{0}^{2}+\overline{P_{m}^{(j)}(z_{0},N)}\overline{P_{m,j}(z_{0},N})\overline{t}_{0}^{2}\}$

$<0$ ,

where $N=grad_{z}\phi(z_{0})$ . This follows from the bicharacteristic equations and
Euler’s identity for homogeneous polynomials.

We say that a domain $\Omega$ in $C^{n}$ is a domain of holomorPhy with respect
to $P(z, D)$ , whose coefficients are holomorphic in a neighborhood of $\overline{\Omega}$ , if for
every point in $\partial\Omega$ there exists a solution $u(z)$ of $P(z, D)u(z)=0$ , which is
holomorphic in $\Omega$ but cannot be holomorphically continued over that point.
For example Bengel [1] showed that a convex domain is a domain of holo-
morphy with respect to $P(D)$ whose coefficients are constants, if there is a
characteristic supporting hyperplane of the convex domain at every boundary
point. Now we suppose that $\Omega$ has a $C^{2}$ boundary. Zerner [16] proved that
if $\Omega$ is a domain of holomorphy with respect to $P(z, D)$ , then every boundary
point is characteristic. We give here more precise result.

COROLLARY 2. Let $\Omega=\{z|\phi(z)<0\}$ be a domain of holomorPhy $wi$th respect
to $P(z, D)$ , where $\phi(z)$ is a real-valued $C^{2}$ function. Then at every boundary
Point the tangent Plane of the surface $\partial\Omega$ is characteristic with resPect to
$P(z, D)$ , and if it is simply characteristic then the left part of the inequality
(15) is non-negative.

\S 4. Holomorphic solutions with singularities.

Let $P(z, D)=\sum_{|\alpha|\leqq m}a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}$ be a differential operator with holomorphic

coefficients in a neighborhood $U$ of $0$ in $C^{n}$ and $P_{m}(z, D)=\sum_{|\alpha|=m}a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}$

be its principal part. Let $\phi(z)$ be a function holomorphic in $U$ and satisfying
$P_{m}$( $z$, grad $\phi$ ) $=0,$ $\phi(0)=0$ and grad $\phi(z)\neq 0$ . We assume that

\langle 16) ( $P_{m}^{(1)}$ ( $z$, grad $\phi(z)$ ), $\cdots$ , $P_{m}^{(n)}(z$, grad $\phi(z))$) $\neq 0$

in $U$. Then we construct the solution $u(z)$ of $P(z, D)u(z)=0$ which has
singularities on the analytic set $\{z\in U|\phi(z)=0\}$ . The method of the con-
struction is based on the decomposition of a solution in terms of the func-
tion $\phi$ , and this was effectively used in Y. Hamada [6] to study the Cauchy



536 Y. TSUNO

problem with singular initial data.
Under the above conditions on $P(z, D)$ and $\phi(z)$ , we have
THEOREM 2. There exists a solution $u(z)$ of $P(z, D)u=0$ in a neighborhood

of $0$ with the following form:

$u(z)=\frac{F(z)}{\phi(z)}+G(z)$ log $\phi(z)+H(z)$ ,

where $F(z),$ $G(z)$ and $H(z)$ are holomorPhic at $0$ and $u(z)$ is not holomorphic
at $0$ .

The proof of this theorem consists of two parts. In the first step, 4.1,
we construct the formal solution. In the next step, 4.2, we discuss its con-
vergence.

We remark that this theorem is also proved in T. Kawai [9]. But our
proof of the convergence of the formal solution is self-contained and may be
more elementary than that of T. Kawai, so we reproduce it here.

Now, in view of (16), we make a change of variables, if needed, so that
$P_{m}^{(1)}$ ( $z$, grad $\phi(z)$ ) does not vanish in a neighborhood of $0$ . Therefore we may
suppose that

(17) $P_{m}^{(1)}$ ( $z$ , grad $\phi(z)$ ) $=1$

in a neighborhood of $0$ . Under this situation, we construct the solution.

4.1. Construction of formal solution.

Let $f_{j}(s)(j=0, \pm 1, \pm 2, \cdots)$ be functions defined by

(18)
$\int f_{1}(s)=\log sf_{-l}(s)=(-1)^{l}l$

! $s^{-l- 1}$ $l=0,1,2,$ $\cdots$

1
$f_{k}(s)=\frac{s^{k- 1}}{(k-1)!}$ log $s-\frac{A_{k}}{(k-1)!}s^{k- 1}$ $k=2,3,$ $\cdots$

where $A_{k}=1+\frac{1}{2}+\cdots+\frac{1}{k-1}$ . Thus we have

(19) $\frac{d}{ds}f_{j}(s)=f_{j- 1}(s)$ .

We then assume that the solution $u(z)$ has the form

(20) $u(z)=\sum_{k=0}^{\infty}f_{k}(\phi(z))u_{k}(z)$ ,

where $u_{k}(z)$ are functions to be determined. Now we have



On the pr0l0ngati0n of local holomorphjc solutions 537

$P(z, D)[f(\phi)u]=f^{(m)}(\phi)P_{m}$( $z$, grad $\phi$ ) $u$

$+f^{(m- 1)}(\phi)\{\sum_{J=1}^{n}P_{m}^{(j)}$ ( $z$, grad $\phi$ ) $\frac{\partial u}{\partial z_{j}}+c(z)u(z)\}$

$+f^{(m- 2)}(\phi)L_{2}[u]+\cdots+f(\phi)L_{m}[u]$ ,

where $c(z)$ is holomorphic and $L_{p}$ ( $p=2,$ $\cdots$ , m) are linear differential opera-
tors of order $p$ with holomorphic coefficients. We remark that these depend
only on $P(z, D)$ . Therefore using (19) we have formally

$P(z, D)u(z)=\sum_{k=0}^{\infty}[f_{k- m}(\phi)P_{m}$( $z$ , grad $\phi$ ) $u_{k}(z)$

$+f_{k- m+1}(\phi)\{\sum_{j=1}^{n}P_{m}^{(j)}$ ( $z$, grad $\phi$ ) $\underline{\partial}\partial\frac{u_{k}}{z_{j}}+c(z)u_{k}(z)\}$

$+f_{k- m+2}(\phi)L_{2}[u_{k}]+\cdots+f_{k}(\phi)L_{m}[u_{k}]]$

$=0$ .

Setting each of the coefficients of $f_{k- m+1}(\phi)$ equal to zero, we have

$\sum_{j=1}^{n}P_{m}^{(j)}$ ( $z$, grad $\phi$ ) $\frac{\partial u_{k}}{\partial z_{j}}+c(z)u_{k}(z)+L_{2}[u_{k- 1}]+\cdots+L_{m}[u_{k- m+1}]=0$ ,

where we set $u_{k}(z)=0$ if $k<0$ .
If we define the operator $L$ as

’
$L[v]=\sum_{j=1}^{n}P_{m}^{\omega}$ ( $z$, grad $\phi$ ) $\frac{\partial v}{\partial z_{j}}+c(z)v(z)$ ,

we then have the next recursion formulas,

(21) $\left\{\begin{array}{l}L[u_{0}]=0\\L[u_{k}]=-\Sigma L_{j}[u_{k+1-j}]m\end{array}\right.$

$k=1,2,$ $\cdots$

Here we change the notations for the convenience and write $t$ instead of $z_{1}$

and again $(z_{1}, \cdots , z_{n})$ instead of $(z_{2}, \cdots , z_{n})$ . Then, by (17), we can rewrite
the equation (21) as follows:

(22) $\left\{\begin{array}{l}L[u_{0}]=\frac{\partial u_{0}}{\partial t}+\sum_{j=1}^{n}a_{J}(t,z)\frac{\partial u_{0}}{\partial z_{j}}+c(t,z)u_{0}(t,z)=0\\L[u_{k}]=-\Sigma L_{j}[u_{k+1- j}]m k=1,2,\ldots\end{array}\right.j=2$

We now impose the initial conditions on $u_{k}(t, z)$ at $t=0$ as

(23) $u_{0}(0, z)=1$ , $u_{k}(0, z)=0$ , $k=1,2,$ $\cdots$

Since the hyperplane $\{t=0\}$ is non-characteristic with respect to the operator
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$L$ , we can find, by the Cauchy-Kovalevsky theorem, recursively the solutions
$u_{k}(t, z)$ of the initial value problem(22) and (23). Thus we obtain the formal
solution.

4.2. Convergence of formal solution.

We prove the convergence of the formal solution given above by the
method of majorant functions. The technique used here is due to C.
Wagschal [13].

For two holomorphic functions at $0,$ $u(t, z),$ $U(t, z)$ , we say that $U(t, z)$ is
a majorant of $u(t, z)$ if, for every multi-index $\alpha,$

$|D_{t.z}^{a}u(0)|\leqq D_{t,z}^{a}U(0)$ , and we
denote this by $u\ll U$. Then we have readily that $u\ll U$ implies $D^{\alpha}u\ll D^{\alpha}U$

and $u\ll U,$ $v\ll V$ implies $uv\ll UV$ and $u+v\ll U+V$.
We set $\Delta=\{(t, z)||t|\leqq R, |z_{j}|\leqq R\}$ . Then we have the next lemma.
LEMMA 2. For every function $u$ holomorphjc in a neighborhood of $\Delta$ , there

exists a constant $M$ such that

$u(t, z)\ll M/(R-(t+\sum_{j=1}^{n}z_{j}))$ .

The proof is easy from Cauchy’s inequalities.
Now we introduce the functions $U_{k}(t, z)$ as follows:

(24) $U_{k}(f, z)=\frac{d^{k}}{d\xi^{k}}\frac{1}{r-\xi}=\frac{k!}{(r-\xi)^{k+1}}$ ,

where $0<r<R,$ $\xi=\alpha t+\sum_{j=1}^{n}z_{j}$ and $\alpha\geqq 1$ .
Then, we have
LEMMA 3 (C. Wagschal [13]).

(25) $U_{k}\ll rU_{k+1}$ ,

(26) $\frac{1}{R-\xi}U_{k}\ll\frac{1}{R-r}U_{k}$ ,

(27) $u\ll U_{k}$ implies $D^{\beta}u\ll\alpha^{\beta 0}U_{k+1\beta \mathfrak{l}}$ ,

where $\beta=$ $(\beta_{0}, \beta_{1}, \cdots , \beta_{n})$ is any multi-index.
The proof is omitted.
We now construct the majorants of the solutions $u_{k}(t, z)$ of the initial

value problem (22) and (23). At first, we choose $R>0$ and $M>0$ such that
all the coefficients of $L,$ $L_{j}$ $(j=2, \cdots , m)$ and $u_{0}(t, z)$ are holomorphic in a
neighborhood of $\Delta$ and, using Lemma 2, $M/(R-(t+\sum_{j=1}z_{j}))n$ is a majorant of

these functions. Then we show the next proposition.
PROPOSITION 5. There exists a constant $c>0$ such that
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(28) $u_{k}(t, z)\ll c^{k+1}U_{k}(t, z)$ , $k=0,1,2,$ $\cdots$ .
PROOF. We prove this by induction on $k$ . When $k=0,$ (28) is true be-

cause $u_{0}(t, z)\ll M/(R-(t+\sum_{j=1}z_{j}))n\ll cU_{0}(t, z)$ if $c\geqq Mr/R$ . We then suppose that

(28) is valid for $k=0,1,$ $\cdots$ , 1–1. We remark that the Taylor coefficients of
$u_{k}(t, z)$ are uniquely determined by the equations (22) and (23), so that to
prove (28) with $k=l$ , it is sufficient to show that

(29) $\frac{\partial}{\partial t}c^{l+1}U_{l}(t, z)\gg\frac{M}{R-\xi}${ $\sum_{j=1}^{n}\frac{\partial}{\partial z_{j}}c^{l+1}U_{l}(t, z)$

$+c^{l+1}U_{l}(t, z)\}+\sum_{j=2}^{m}\tilde{L}_{j}[c^{l+2-j}U_{l+1-j}(t, z)]$ ,

where $\tilde{L}_{j}$ is an operator obtained by exchanging the coefficients of $L_{j}$ by
those majorants. We have, using (25) and (26),

$\frac{M}{R-\xi}\frac{\partial}{\partial z_{j}}U_{l}(t, z)=\frac{M}{R-\xi}U_{l+1}(t, z)$

$\ll\frac{M}{R-r}U_{l+1}(t, z)$ ,

$\frac{M}{R-\xi}U_{l}(t, z)\ll\frac{M}{R-r}rU_{l+1}(t, z)$ .
Thus we have

(30) $c^{l+1}\frac{M}{R-\xi}${ $\sum_{J=1}^{n}\frac{\partial}{\partial z_{j}}U_{l}(t, z)+U_{l}(t, z)\}$

$\ll c^{l+1}(\frac{Mn}{R-r}+\frac{Mr}{R-r})U_{l+1}(t, z)$ .

Further for a multi-index $\beta=$ $(\beta_{0}\beta_{1}, \cdots , \beta_{n})$ ,

$\frac{M}{R-\xi}D^{\beta}U_{k}(t, z)=\frac{M}{R-\xi}\alpha^{\beta_{0}}U_{k+|\beta|}(t, z)\ll\frac{M}{R-r}\alpha^{\beta_{0}}r^{p- 1\beta I}U_{k+p}(t, z)$ ,

and since the order of $\tilde{L}_{j}$ is $i$ , we have

$Z_{j}[U_{l+1-j}]\ll\frac{M}{R-r}\alpha^{j}(\sum_{|\beta|\leqq j}r^{j-|\beta|})U_{l+1}(t, z)$ ,

so that

\langle 31) $\sum_{J=2}^{m}L_{j}[c^{l+2-j}U_{l+1-j}]\ll\frac{M}{R-r}(\sum_{j=2}^{m}\sum_{|\beta|\leqq j}\alpha^{j}c^{l+2-j}r^{j-1\beta}\mathfrak{h}U_{l+1}(t, z)$

$\ll\frac{M}{R-r}c^{l}(\sum_{\{j=2\beta}^{m}F^{\alpha^{j}r^{j-|\beta|})U_{l+1}(t,z)}\leqq J$

Here we assumed that $c\geqq 1$ . Thus from (30) and (31),
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$\{c^{l+1}\frac{M}{R-r}(n+r)+\frac{M}{R-r}c^{l}c(\alpha, r, m)\}U_{l+1}(t, z)$

is a majorant of the right hand side of (29), where $c(\alpha, r, m)=\sum_{j=2}^{m}\sum_{|\beta|\leqq j}\alpha^{j}r^{J-1\beta I}$ .
On the other hand,

$\frac{\partial}{\partial t}c^{l+1}U_{l}(t, z)=c^{l+1}\alpha U_{l+1}(t, z)$ .

Therefore if we choose constants $c$ and $\alpha$ as
$\alpha\geqq\max(1,2M(n+r)/(R-r))$ ,

and

$c\geqq\max(1,$ $\frac{Mr}{R},$ $\frac{2}{\alpha}\frac{M}{R-r}c(\alpha, r, m))$ ,

then we have (29). This completes the proof.
We remark that from this proposition every $f$ unction $u_{k}(t, z)$ is holomor-

phic in $\{(t, z)|\alpha|t|+\sum_{j=1}^{n}|z_{j}|<r\}$ . Now we study the convergence of the

formal solution (20). At first we have, by Proposition 5 and (24),

$|u_{k}(t, z)|\leqq c^{k+1}\frac{k!}{(r-\hat{\xi})^{k+1}}$ ,

where $\hat{\xi}=\alpha|t|+\sum_{j=1}^{n}|z_{j}|$ . Then if $|\phi(t, z)c(r-\hat{\xi})^{-1}|<1$ ,

$G(t, z)=\sum_{k=0}^{\infty}(kt)^{-1}\phi^{k}u_{k+1}$ ,

and

$H(t, z)=-\sum_{k=1}^{\infty}(k!)^{-1}A_{k+1}\phi^{k}u_{k+1}$

are holomorphic. Thus we have with $F(t, z)=u_{0}(t, z)$ ,

$u(t, z)=F(t, z)/\phi(t, z)+G(t, z)$ log $\phi(t, z)+H(t, z)$ ,

where $F,$ $G$ and $H$ are holomorphic at $0$ . We remark that by (23) $F(O, z)=$

$u_{0}(0, z)=1$ and $\phi(0,0)=0$ , so that $u(t, z)$ is not holomorphic at $0$ . This com-
pletes the proof of Theorem 2.

COROLLARY 3. Let $\phi(z)$ be a holomorphic function in a neighborhood of $0$

in $C^{n}$ satisfying $P_{m}$ ( $z$, grad $\phi$ ) $=0,$ $\phi(0)=0$ , grad $\phi(z)\neq 0$ and ( $P_{m}^{(1)}$ ( $z$, grad $\phi$),
, $P_{m}^{(n)}$ ( $z$, grad $\phi$ )) $\neq 0$ . Then there exists a solution $u$ of $P(z, D)u(z)=0$ which

is holomorphjc in $\{z|{\rm Re}\phi(z)<0\}$ and cannot be pr0l0nged over the origin.

\S 5. Necessary condition for holomorphic continuation.

Let $P(z, D)$ be a differential operator with holomorphic coefficients in a
neighborhood of $0$ in $C^{n}$ and $\phi(z)$ be a real-valued $C^{2}$ function such that
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$grad_{z}\phi(z)\neq 0$ and $\phi(0)=0$ . Then we seek the conditions on $P(z, D)$ and $\phi(z)$ ,
for which the solution $u(z)$ of $P(z, D)u(z)=0$ which is holomorphic in
$\{z|\phi(z)<0\}$ can be holomorphically prolonged over $0$ or not. For example

if $\phi(z)$ does not satisfy the Levi condition at $0$ , then every holomorphic func-
tion in $\{z|\phi(z)<0\}$ can be prolonged over the origin (see $e$ . $g$ . M. Herv\’e [7],

P. 44). When the surface $\{z|\phi(z)=0\}$ is simply characteristic, we have proved
in Corollary 1 in \S 3 that if the second derivative of $\phi(z)$ along some direc-
tion in the complex bicharacteristic curve is negative at $0$ , then every solu-
tion can be prolonged. Now we study the converse of this corollary.

Let $\Omega$ be a domain in $C^{n}$ with $C^{2}$ boundary and $ 0\in\partial\Omega$ . We assume
that $\Omega$ is strictly pseudo-convex at $0$ . Then by Proposition 4 in \S 2, we find
a strictly pluri-subharmonic $C^{2}$ function $\phi(z)$ in a neighborhood $U$ of $0$ such
that

(i) $\Omega_{\cap}U=\{z\in U|\phi(z)<0\}$ ,

(ii) $grad_{z}\phi(z)\neq 0$ in $U$ .
We suppose that the surface $\{z\in U|\phi(z)=0\}$ is simply characteristic at $0$

with respect to a differential operator $P(z, D)$ . Under this situation, we have
the following theorem.

THEOREM 3. If assumptiOns (B1) and (B2) below are fulfilled, then we can
find a solution $u(z)$ of $P(z, D)u(z)=0$ which is holomorphic in $\{z\in V|\phi(z)<0\}$

and cannot be holomorphic near the origin, where $V$ is some neighborhood of $0$ .
AssumptiOns: Let $(z(t), \xi(t))$ be the complex bicharacteristic strip of $P(z, D)$

through $(0, grad_{z}\phi(0))$ . Then we assume that for every comPlex number $t_{0}\neq 0$

and a real Parameter $\tau$ ,

(B1) $\frac{d^{2}}{d\tau^{2}}\phi(z(\tau t_{0}))|_{\tau=0}>0$ ,

(B2) $\sum_{j,k}\{\lambda_{k}\frac{\partial^{2}}{\partial z_{j}\partial}\frac{\phi}{z_{k}}(0)+\overline{\lambda}_{k}\frac{\partial^{2}\phi}{\partial z_{j}\partial\overline{z}_{k}}(0)\}P_{m}^{(j)}(0, N)+\sum_{k}\lambda_{k}P_{m,k}(0, N)=0$

for all \‘A= $(\lambda_{1}, \cdots , \lambda_{n})$ in $C^{n}$ , satisfying the equation

$\sum_{j}\lambda_{j}P_{m}^{(j)}(0, N)=0$

where $N=grad_{z}\phi(0)$ .
Since the left hand side of the equality (B2) is the first directional deriva-

tive of $P_{m}$ ( $z$, grad $\phi(z)$ ) at $z=0$ and $P_{m}$ ( $z$, grad $\phi(z)$ ) is invariantly defined,
we can change variables if the Jacobian matrix at $0$ is a complex orthogonal

matrix.
PROOF. We first consider the next special case: the principal part of

$P(z, D)$ has the following form
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(32) $ P_{m}(z, D)=(a_{1}(z)\frac{\partial}{\partial z_{1}}+\cdots+a_{n-2}(z)\frac{\partial}{\partial z_{n- 2}}+a_{n}(z)\frac{\partial}{\partial z_{n}})(\frac{\partial}{\partial z_{n- 1}})^{m- 1}+\cdots$ ,

where the omitted part consists of terms of order less than $m-1$ with respect
to $(\partial/\partial z_{n-1})$ and $a_{j}(z)$ are holomorphic in $U$ and satisfy

(33) $\left\{\begin{array}{ll}a_{j}(0, & 0, z_{n})=0, j=1, \cdots , n-2,\\a_{n}(0, & 0, z_{n})=1.\end{array}\right.$

Further we assume that $grad_{z}\phi(0)=N=(0, \cdots , 0,1,0)$ . In this case the com-
plex bicharacteristic strip $(z(t), \xi(t))$ through $(0, N)$ at $t=0$ is given by the
equations

$z_{1}(t)=\ldots=z_{n- 1}(t)=0$ , $z_{n}(t)=t$ ,

$\xi_{1}(t)=\ldots=\xi_{n- 2}(t)=\xi_{n}(t)=0$ , $\xi_{n-1}(t)=1$ .
Moreover we have from (32) and (33),

(34) $\left\{\begin{array}{ll}P_{m}^{(j)}(0, N)=0, & j=1, \cdots n-1, P_{m}^{(n)}(0, N)=1\\P_{m,j}(0, N)=0, & j=1, \cdots n\end{array}\right.$

therefore assumption (B1) means from (15) that there is a constant $\alpha>0$

such that

(35) $\frac{\partial^{2}\phi}{\partial z_{n}^{2}}(0)z_{n}^{2}+2_{\partial}\frac{\partial^{2}}{\partial z_{n}}\frac{\phi}{\overline{z}_{n}}(0)z_{n}\overline{z}_{n}+\frac{\partial^{2}}{\partial\overline{z}}\frac{\phi}{n2}(0)\overline{z}_{n}^{2}\geqq\alpha|z_{n}|^{2}$

For the condition (B2), we have by (34)

(36) $\frac{\partial^{2}}{\partial z_{j}\partial}\emptyset\overline{z_{n}}(0)=0$ , $\frac{\partial^{2}}{\partial z_{j}\partial}\phi\overline{z_{n}}(0)=0$ , $i=1,$ $\cdots$ $n-1$ .

Since $\phi(z)$ is strictly pluri-subharmonic in $(z_{1}, \cdots , z_{n})$ variables, it is also
strictly pluri-subharmonic in $(z_{1}, \cdots , z_{n-1})$ variables in the $\{z_{n}=0\}$ plane.
Thus we have

(37) $\sum_{j.k=1}^{n-1}\frac{\partial^{2}\phi}{\partial z_{j}\partial\overline{z}_{k}}(0)z_{j}\overline{z}_{k}\geqq\gamma|z^{\prime}|^{2}$

for some constant $\gamma>0$ , where we denote $(z_{1}, \cdots , z_{n-1})$ by $z^{\prime}$ . Now we have

(38) $\phi(z^{\prime}, 0)=z_{n-1}+\overline{z}_{n-1}+\frac{1}{2}\sum_{j.k=1}^{n-1}\{\frac{\partial^{2}}{\partial z_{j}}\frac{\phi}{z_{k}}(0)z_{j}z_{k}\partial$

$+2_{\partial\overline{\overline{z}_{k}}}^{\phi}\frac{\partial^{2}}{\partial z_{j}}(0)z_{j}\overline{z}_{k}+\frac{\partial^{2}\phi}{\partial\overline{z}_{j}\partial\overline{z}_{k}}(0)\overline{z}_{j}\overline{z}_{k}\}+o(|z^{\prime}|^{2})$ .
Then we set

(39) $f(z^{\prime})=z_{n-1}+\frac{1}{2}\sum_{j,k=1}^{n-1}\frac{\partial^{2}\phi}{\partial z_{j}\partial z_{k}}(0)z_{j}z_{k}$ .

We remark that from (37), (38) and (39), $f(z^{\prime})=0$ implies that $\phi(z^{\prime}, 0)>0$ in
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a neighborhood of $0$ in the $\{z_{n}=0\}$ plane except $z^{\prime}=0$ . We then apply the
initial value problem, Proposition3 in \S 2 with $\psi(z)=f(z^{\prime})$ . Therefore we
have a holomorphic function $F(z)$ such that

(40) $P_{m}$ ( $z$, grad $F(z)$ ) $=0$ ,

(41) $F(z^{\prime}, 0)=f(z^{\prime})$ ,

(42) $grad_{z}F(0)=N=(0, \cdots , 0,1,0)$ .
Then we show the next lemma in order to estimate the above function $F(z)$ .

LEMMA 4. For a holomorphic function $F(z)$ which satisfies (40) and (42)
we have

$\partial^{2}F$

(43)
$\overline{\partial z_{j}\partial z_{n}}(0)=0$ , $j=1,$ $n$ .

PROOF. From (40) we have

(44) $\frac{\partial}{\partial z_{j}}P_{m}$ ( $z$, grad $F(z)$ )

$=\sum_{k=1}^{n}P_{m}^{(k)}$ ( $z$, grad $F(z)$ ) $\frac{\partial^{2}F}{\partial z_{k}\partial z_{j}}(z)+P_{m,j}$ ( $z$, grad $F(z)$ )

$=0$ .
If we set $z=0$ in (44), we obtain (43) by using (34), which proves this lemma.

We now continue the proof of Theorem 3. From (41), (42) and (43), $ F(z\rangle$

may be written as
(45) $F(z)=f(z^{\prime})+z_{n}g(z)$ ,

where
$g(z)=O(|z|^{2})$ .

Thus if ${\rm Re} F(z)\geqq 0$ , then for some constant $C$ and $|z|$ small, we have

(46) ${\rm Re} f(z^{\prime})\geqq-C|z_{n}||z|^{2}$

On the other hand, in a neighborhood of $0$ , we have

$\phi(z)=z_{n- 1}+\overline{z}_{n-1}+\frac{1}{2}\sum_{J^{k=1}}^{n}\{\frac{\partial^{2}\phi}{\partial z_{j}\partial z_{k}}(0)z_{j}z_{k}$

$+2_{\partial_{\overline{\overline{Z}_{k}}}}^{\phi}\frac{\partial^{2}}{\partial z_{j}}(0)z_{j}\overline{z}_{k}+\frac{\partial^{2}}{\partial\overline{z}_{j}}\overline{\partial_{\overline{Z}_{k}}}\phi(0)\overline{z}_{j}\overline{z}_{k}\}+o(|z|^{2})$

$=f(z^{\prime})+\overline{f(z^{\prime})}+\sum_{j,k=1}^{n-1}\frac{\partial^{2}\phi}{\partial z_{j}\partial\overline{z}_{k}}(0)z_{j}\overline{z}_{k}$

$+\sum_{j=1}^{n-1}\{\frac{\partial^{2}\phi}{\partial z_{j}\partial z_{n}}(0)z_{j}z_{n}+\frac{\partial^{2}\phi}{\partial z_{j}\partial\overline{z}_{n}}(0)z_{j}\overline{z}_{n}+\frac{\partial^{2}\phi}{\partial\overline{z}_{j}\partial z_{n}}(0)\overline{z}_{j}z_{n}$
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$+\frac{\partial^{2}\phi}{\partial\overline{z}_{j}\partial\overline{z}_{n}}(0)\overline{z}_{j}\overline{z}_{n}\}+\frac{1}{2}\{\frac{\partial^{2}\phi}{\partial z_{n}^{2}}(0)z_{n}^{2}$

$+2_{\partial\overline{\overline{z}_{n}}}^{\phi}\frac{\partial^{2}}{\partial z_{n}}(0)z_{n}\overline{z}_{n}+\frac{\partial^{2}\phi}{\partial\overline{z}_{n}^{2}}(0)\overline{z}_{n}^{2}\}+o(|z|^{2})$ .
Then by (35), (36) and (37), we have

(47) $\phi(z)\geqq f(z^{\prime})+\overline{f(z^{\prime})}+\gamma|z^{\prime}|^{2}+\frac{1}{2}\alpha|z_{n}|^{2}+o(|z|^{2})$ .

Thus if ${\rm Re} F(z)\geqq 0$ , we have by (46) and (47),

$\phi(z)\geqq-2C|z_{n}||z|^{2}+\epsilon(|z^{\prime}|^{2}+|z_{n}|^{2})$ ,

for some constant $\epsilon>0$ and $|z_{n}|,$ $|z^{\prime}|$ sufficiently small. If $|z_{n}|<\epsilon/4C$, we
have then

$\phi(z)\geqq(\epsilon/2)|z|^{2}\geqq 0$ .
Therefore there exists a neighborhood $V$ of $0$ such that

\langle 48) $\{z\in V|{\rm Re} F(z)\geqq 0\}\subset\{z\in V|\phi(z)\geqq 0\}$ .
Now we construct the solution $u(z)$ of $P(z, D)u(z)=0$ which is holomorphic
in $\{z\in V|\phi(z)<0\}$ and cannot be holomorphic near the origin. By Theorem
2 in \S 4 we obtain the function $u(z)$ of the form

$u_{1}(z)/F(z)+u_{2}(z)$ log $F(z)+u_{3}(z)$ ,

where $u_{1}(z),$ $u_{2}(z)$ and $u_{3}(z)$ are holomorphic in $V$ ( $V$ is sufficiently small)

and $u(z)$ is not holomorphic at the origin. Then by (48), $\phi(z)<0$ implies that
${\rm Re} F(z)<0$ . Therefore we can choose some branch of log $F(z)$ in $\{z\in V|\phi(z)$

$<0\}$ . Thus $u(z)$ given by Theorem 2 is holomorphic in $\{z\in V|\phi(z)<0\}$ but
’cannot be holomorphic at $0$ . This completes the proof of Theorem 3 for the
special case.

It remains to reduce the general case to the one we have just studied.
We first make a holomorphic linear orthogonal change of variables so that
$grad_{z}\phi(0)=N=(0, \cdots , 0,1,0)$ and $P_{m}^{(j)}(0, N)=0,$ $j=1,$ $n-1,$ $P_{m}^{(n)}(0, N)=1$

because $N$ is orthogonal to $(P_{m}^{(1)}(0, N),$ $\cdots$ , $P_{m}^{(n)}(0, N))$ by Euler’s identity. Then
we find a holomorphic function $f(z)$ which satisfies

$P_{m}(z, grad_{z}f(z))=0$ ,

$f(z^{\prime}, 0)=z_{n-1},$ $grad_{z}f(O)=N$ .
Existence of such a function follows from Proposition 3 in \S 2. Now we
define the holomorphic transformation of coordinates from z-variables to w-
variables as follows:

$\left\{\begin{array}{ll}w_{j}=z_{j}, & j=1, \cdots n-2, n,\\w_{n-1}=f(z) & \end{array}\right.$
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Since the Jacobian matrix of this transformation is an identity matrix at $0$ ,
this transformation is available in this proof (see the remark before this
proof). We suppose that $P_{m}(z, D_{z})$ is mapped to $P_{m}^{\prime}(w, D_{w})$ under this trans-
formation, then $P_{m}^{\prime}(w, D_{w})$ can be written as follows

(49) $P_{m}^{\prime}(w, D_{w})$

$=(a_{1}(w)\frac{\partial}{\partial w_{1}}+\cdots+a_{n-2}(w)\frac{\partial}{\partial w_{n-2}}+a_{n}(w)\frac{\partial}{\partial w_{n}})(\frac{\partial}{\partial w_{n-1}})^{m- 1}+\cdots$ ,

where the omitted part consists of terms of order less than $m-1$ with respect

to $(\partial/\partial w_{n-1})$ (see the proof of Theorem 1). Since $P_{m}^{\prime(j)}(w, \eta)=\sum_{k=1}^{n}P_{m}^{(k)}(z, \xi)\frac{\partial w_{j}}{\partial z_{k}}$ ,

we have at $w=0$

(50) $P_{m}^{\prime(j)}(0, N)=0$ , $i=1,2,$ $\cdots$ , $n-1$ , $P_{m}^{\prime(n)}(0, N)=1$ .

We next Pnd the bicharacteristic strip $(w(t), \eta(t))$ of $P_{m}^{\prime}(w, \eta)$ through
$(0, N)$ at $t=0$ . Then by (49) and (50)

(51) $\left\{\begin{array}{l}\frac{dw_{j}}{dt}(0)=P_{m}^{\prime(j)}(0,N)=0,\\\frac{dw_{n}}{dt}(0)=P_{m}^{\prime(n)}(0,N)=1,\end{array}\right.$ $j=1,2,.n-1w_{n-1}(t)=0$

We denote $t$ by $v_{n}$ and define the transformation

$\left\{\begin{array}{l}w_{j}=w_{j}(v_{n})+v_{j},\\w_{n-1}=v_{n-1},\\w_{n}=w_{n}(v_{n}),\end{array}\right.$

$j=1,$
’
$n-2$ ,

then, the Jacobian matrix of this transformation becomes an identity by (51)
and is also permissible in our proof. Let $P_{m}^{\prime\prime}(v, \lambda)$ be the transform of $P_{m}^{\prime}(w, \eta)$ ,
then $P_{m}^{\prime\prime}(v, D_{v})$ can also be written in the following form:

(52) $P_{m}^{\prime\prime}(v, D_{v})$

$=(b_{1}(v)\frac{\partial}{\partial v_{1}}+\cdots+b_{n- 2}(v)\frac{\partial}{\partial v_{n-2}}+b_{n}(v)\frac{\partial}{\partial v_{n}})(\frac{\partial}{\partial v_{n-1}})^{m-1}+\cdots$

Under this system of coordinates, the bicharacteristic strip $(v(t), \lambda(t))$ through
$(0, N)$ is given by the next equations

$v_{j}(t)=0$ , $j=1,$ $\cdots$ $n-1$ , $v_{n}(t)=t$ ,

$\lambda_{j}(t)=0$ , $j=1,$ $\cdots$ , $n-2,$ $n$ , $\lambda_{n- 1}(t)=1$ .
Then, by Hamilton’s equation we have in (52) that
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$b_{1}(0, 0, v_{n})=\ldots=b_{n- 2}(0, \cdots , 0, v_{n})=0$ ,

$b_{n}(0, 0, v_{n})=1$ .
Therefore $P_{m}^{\prime\prime}(v, D_{v})$ obtained above satisfies the conditions (32) and (33),

which completes the proof of Theorem 3.
Until now we study only the local properties of holomorphic solutions.

Here we have some global problem: For a given domain $\Omega$ in $C^{n}$ , we seek
a condition under which $\Omega$ becomes a domain of holomorphy with respect
to $P(z, D)$ , or not. We give a necessary condition in Corollary 2 in \S 3. We
now $lfind$ a sufficient condition.

Let $P(z, D)$ be a differential operator with holomorphic coefficients in
some open set $U$ containing the closure of a given domain $\Omega$ . Then we
suppose that its principal symbol $P_{m}(z, \xi)$ does not vanish identically in $U$ .
Thus by the Cauchy-Kovalevsky theorem the equation $P(z, D)u(z)=f(z)$ is
locally solvable, that is, the following sequence is exact

(53)
$0-S\rightarrow 0^{P}\rightarrow \mathcal{O}(z, D)\rightarrow 0$

,

where $O$ is the sheaf of germs of holomorphic functions on $U$ and $S$ is a
solution sheaf of $P(z, D)$ of $\mathcal{O}$ ( $i$ . $e$ . $\mathcal{S}=$ kernel of $P(z,$ $D)$ in $\mathcal{O}$). We now
consider the next condition (P),

(P) there exists a fundamental system of neighborhoods $\{\Omega_{n}\}$ of $\overline{\Omega}$ such
that

(54) (i) each $\Omega_{n}$ is a domain of holomorphy,

(55) (ii) the equation $P(z, D)u(z)=f(z)$ has a solution $u(z)$ holomorphic in
$\Omega_{n}$ for any $f(z)$ holomorphic in $\Omega_{n}$ .

Then we have the next theorem.
THEOREM 4. Let $\Omega$ be a domain and $P(z, D)$ be a differential operatOr which

is locally solvable in $U\supset\overline{\Omega}$ . We suPpose that $\Omega$ has a Property (P). Then if
for some pOint $ z_{0}\in\partial\Omega$ and a neighborhood $V$ of $z_{0}$ there is a function $v(z)$

which is holomorphic on $[\overline{\Omega}-\{z_{0}\}]\cap V$ and satisfies $P(z, D)v(z)=0$ but not
holomorphic at $z_{0}$ , we can find a function $u(z)$ which is holomorPhic in the
whole of $\Omega$ and satisfies $P(z, D)u(z)=0$ but cannot be holomorPhic at $z_{0}$ .

PROOF. Let $W$ be an open set in $V$ containing $[\overline{\Omega}-\{z_{0}\}]\cap V$ and $v(z)$ is
holomorphic in $W$ . Then for some $\Omega_{n},$ $K=W^{c}\cap\overline{\Omega}_{n}\cap V$ is a compact set in
V. We set $\delta=distance(K, \partial V)>0$ and set

$V_{1}=\{z\in\Omega_{n}|distance(z, K)>\delta/2\}$ ,

$V_{2}=V\cap\Omega_{n}$ .
Then $\Omega_{n}=V_{1}\cup V_{2}$ and $v(z)$ is holomorphic in $V_{1}\cap V_{2}$ because $V_{1}\cap V_{2}\subset W$.
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On the other hand, we have by (53), (54) and (55)

(56) $H^{1}(\Omega_{n}, S)=0$ .
For a locally finite covering $\mathcal{U}$ of $\Omega_{n}$ , we denote by $H^{1}(\mathcal{U}, S)$ the first $\check{C}ech$

cohomology group with respect to $\mathcal{U}$ . Then $\Pi;H^{1}(\mathcal{U}, S)\rightarrow H^{1}(\Omega_{n}, S)$ is injec-
tive (see J. Morrow and K. Kodaira [11], Proposition 2.2, p. 34). Therefore
we have by (56)

$H^{1}(\mathcal{U}, S)=0$ .
We now take $\mathcal{U}=\{V_{1}, V_{2}\}$ . Then $v(z)\in\Gamma(V_{1}\cap V_{2}, S)$ is a l-cocycle, there-
fore there are O-cochains $f_{j}\in\Gamma(V_{j}, S)$ such that $v(z)=f_{1}(z)-f_{2}(z)$ . Now we
define the function $u(z)$ as follows

$u(z)=\left\{\begin{array}{l}f_{1}(z) for z\in\Omega\cap V_{1},\\f_{2}(z)+v(z) for z\in\Omega_{\cap}V_{2}\end{array}\right.$

Then $u(z)$ is holomorphic in $\Omega$ and satisfies $P(z, D)u(z)=0$ . Moreover $f_{2}(z)$

is holomorphic near $z_{0}$ and $v(z)$ is not holomorphic at $z_{0}$ . Hence $u(z)$ is
singular at $z_{0}$ . This completes the proof.
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