On deformations of holomorphic maps I

By Eiji HORIKAWA

(Received Feb. 12, 1972)

Notation.

C: the field of complex numbers.

X, Y, Z: compact complex manifolds.

 \mathcal{X} , \mathcal{Y} , \mathcal{Z} , M, M', N: (connected) complex manifolds.

If $f: X \rightarrow Y$ is a holomorphic map,

 $\Theta_{X/Y}$: the sheaf of germs of relative vector fields,

 $\Theta_X = \Theta_{X/C}$: the sheaf of germs of holomorphic vector fields on X.

If E is a vector bundle (or a locally free sheaf) on X,

 $\mathcal{A}^{0,q}(E)$: the sheaf of germs of differentiable (0,q)-forms with coefficients in E,

$$A^{0,q}(E) = \Gamma(X, \mathcal{A}^{0,q}(E)).$$

If $p: \mathcal{X} \to M$ is a family of compact complex manifolds,

 X_t : the fibre over $t \in M$.

If $q: \mathcal{Q} \to N$ is another family of compact complex manifolds and if

 $(\Phi, s): (\mathcal{X}, p, M) \rightarrow (\mathcal{Y}, q, N)$ is a morphism of families (i. e., $\Phi: \mathcal{X} \rightarrow \mathcal{Y}$,

 $s: M \rightarrow N, q \circ \Phi = s \circ p),$

 $\Phi_t: X_t \to Y_{s(t)}$: the holomorphic map induced by Φ .

If $\{U_i\}$ is an open covering of X

$$U_{ij\cdots k} = U_i \cap U_j \cap \cdots \cap U_k$$
.

For any vector $t = (t_1, t_2, \dots, t_r)$,

$$|t| = \max_{\lambda} |t_{\lambda}|.$$

We denote by ν the multi-index (ν_1, \dots, ν_r) , and

$$t^{\nu} = t_1^{\nu_1} t_2^{\nu_2} \cdots t_r^{\nu_r}$$

$$|\nu| = \nu_1 + \nu_2 + \cdots + \nu_r.$$

Introduction.

The modern deformation theory has begun with the splendid work of Kodaira-Spencer [5] followed by [6], [7]. Moreover Kodaira has investigated families of submanifolds of a fixed complex manifold in [8]. The next natural problem is to investigate "deformations of holomorphic maps." First

we define the notion of families of holomorphic maps. There are several aspects.

i) A family of holomorphic maps is a collection $\{f_t \colon X \to Y | t \in M\}$ parametrized by M (X, Y being fixed).

If we allow the complex manifold X to vary, we obtain the second definition:

ii) A family of holomorphic maps consists of a family $\{X_t | t \in M\}$ plus a collection $\{f_t \colon X_t \to Y | t \in M\}$ (Y being fixed).

Moreover, we may also allow the complex manifold Y to vary. But we fix once for all a family ${}^{Q} \rightarrow S$, e.g., a complete family of deformations of some given Y_0 , in which Y should vary. From this aspect we obtain the third definition:

iii) A family of holomorphic maps consists of a family $\{X_t|t\in M\}$, a holomorphic map $s:M\to S$ and a collection $\{f_t\colon X_t\to Y_{s(t)}|t\in M\}$ (${}^{Q}_t\to S$ being fixed).

This paper is the first part of a study of "germs" of deformations of holomorphic maps. The main results of this study were announced in a short note [4].

In this paper, we take the second definition, and define a characteristic map τ , then prove two fundamental theorems which correspond to the results of [6], [7], under the assumption that holomorphic maps in consideration are non-degenerate, i. e., the rank of the Jacobian matrix at some point $x \in X$ is equal to dim X.

In the Appendix, we give an elementary proof of the existence of effectively parametrized complete family as a formal analytic space. The author does not know whether one can prove convergences from this approach.

§ 1. Infinitesimal deformations.

In this section we define a characteristic map for deformations of nondegenerate holomorphic maps, which plays a fundamental role.

Let Y be a fixed compact complex manifold.

DEFINITION 1.1. By a family of holomorphic maps into Y, we mean a quadruplet $(\mathcal{X}, \Phi, p, M)$ of complex manifolds \mathcal{X} , M and holomorphic maps $\Phi: \mathcal{X} \rightarrow \mathcal{Y} = Y \times M$, $p: \mathcal{X} \rightarrow M$ with following properties:

- i) p is a surjective smooth proper holomorphic map,
- ii) $q \circ \Phi = p$ where $q: \mathcal{Y} \to M$ is the projection onto the second factor.

Two families $(\mathcal{X}, \Phi, p, M)$ and $(\mathcal{X}', \Phi', p', M')$ of holomorphic maps into Y are said to be *equivalent* if there exist analytic isomorphisms $\Psi: \mathcal{X} \to \mathcal{X}'$ and $\phi: M \to M'$ such that the following diagram

is commutative.

If $(\mathcal{X}, \Phi, p, M)$ is a family of holomorphic maps into Y, and if $h: N \to M$ is a holomorphic map, we can define the family $(\mathcal{X}', \Phi', p', N)$ induced by h as follows:

- i) $\mathcal{X}' = \mathcal{X} \times_{M} N$,
- ii) $\Phi' = \Phi \times id : \mathcal{X}' \to (Y \times M) \times_M N = Y \times N$,
- iii) $p' = p_N : \mathcal{X}' \to N$

(for the notation, see [2]).

In particular, if N is a submanifold of M and if h is the natural injection, we call $(\mathcal{X}', \Phi', p', N)$ the restriction on N and denote it by $(\mathcal{X}|_{N}, \Phi|_{N}, p|_{N}, N)$.

DEFINITION 1.2. A family $(\mathcal{X}, \Phi, p, M)$ of holomorphic maps into Y is complete at $o \in M$ if, for any family $(\mathcal{X}', \Phi', p', N)$ such that $\Phi'_o \colon X'_o \to Y$ is equivalent to $\Phi_o \colon X_o \to Y$ for a point $o' \in N$, there exists a holomorphic map h of a neighborhood U of o' in N into M with h(o') = o such that the restriction of $(\mathcal{X}', \Phi', p', N)$ on U is equivalent to the family induced by h from $(\mathcal{X}, \Phi, p, M)$.

Now we define a characteristic map. Let $(\mathcal{X}, \Phi, p, M)$ be a family of holomorphic maps into Y, $o \in M$, $X = X_o$ and $f = \Phi_o \colon X \to Y$. Then we have an exact sequence

$$0 \longrightarrow \Theta_{X/Y} \longrightarrow \Theta_X \xrightarrow{F} f * \Theta_Y$$

of coherent sheaves on X ([2], VII). Let $\mathcal{I} = \mathcal{I}_{X/Y}$ be the cokernel of the canonical homomorphism F, then we have an exact sequence

$$(1.1) 0 \longrightarrow \Theta_{X/Y} \longrightarrow \Theta_X \xrightarrow{F} f * \Theta_Y \xrightarrow{P} \mathcal{I} \longrightarrow 0.$$

Restricting M on a neighborhood of o if necessary, we may assume the following:

- i) M is an open set in C^r with coordinates $t = (t_1, \dots, t_r)$ and $o = (0, \dots, 0)$.
- ii) \mathcal{X} is covered by a finite number of Stein coordinate neighborhoods \mathcal{U}_i . Each \mathcal{U}_i is covered by a system of coordinates (z_i, t) such that $p(z_i, t) = t$ (we indicate by (z_i, t) a set of n+r complex numbers $z_i^1, \dots, z_i^n, t_1, \dots, t_r$, and the point on \mathcal{U}_i with the coordinates $(z_i^1, \dots, z_i^n, t_1, \dots, t_r)$).
- iii) Y is covered by a finite number of Stein coordinate neighborhoods V_i with a system of coordinates $w_i = (w_i^1, \dots, w_i^m)$, $\Phi(U_i) \subset V_i = V_i \times M$, and in terms of these coordinates Φ is given by

$$w_i = \Phi_i(z_i, t)$$
,

and let $f_i(z_i) = \Phi_i(z_i, 0)$.

iv) (z_i, t) coincides with (z_j, t) if and only if

$$z_i = \phi_{ij}(z_j, t)$$
.

v) (w_i) coincides with (w_i) if and only if

$$w_i = \psi_{i,i}(w_i)$$
.

Then we have

(1.2)
$$\boldsymbol{\Phi}_{i}(\phi_{ij}(z_{j},t),t) = \psi_{ij}(\boldsymbol{\Phi}_{j}(z_{j},t)).$$

Let $T_0(M)$ denote the tangent space of M at 0. For any $\frac{\partial}{\partial t} \in T_0(M)$, let

(1.3)
$$\tau_i = \sum_{\rho} \left. \frac{\partial \Phi_i^{\rho}}{\partial t} \right|_{t=0} \frac{\partial}{\partial w_i^{\rho}}$$

(where $\frac{\partial \Phi}{\partial t} = \sum v_{\lambda} \frac{\partial \Phi}{\partial t_{\lambda}}$ for $\frac{\partial}{\partial t} = \sum v_{\lambda} \frac{\partial}{\partial t_{\lambda}}$) which is regarded as an element of $\Gamma(U_i, f^*\Theta_Y)$ $(U_i = X \cap U_i)$. Then from the equality (1.2) we infer that

(1.4)
$$\tau_{j} - \tau_{i} = F\left(\sum_{\sigma} \frac{\partial \phi_{ij}^{\sigma}}{\partial t} \Big|_{t=0} \frac{\partial}{\partial z_{i}^{\sigma}}\right).$$

Therefore the collection $\{P\tau_i\}$ defines an element of $H^0(X, \mathcal{I})$. Thus we define a linear map

$$\tau: T_0(M) \longrightarrow H^0(X, \mathcal{G})$$

which we call the (partial) characteristic map of the family of holomorphic maps into Y at o.

PROPOSITION 1.3. The linear map τ , defined above, is independent of the choice of coverings and systems of coordinates.

PROOF. Clearly τ is invariant under a refinement of coverings. Hence it suffices to consider the case of fixed coverings. Let (z_i', t) and (w_i') be other systems of coordinates on U_i and on V_i , respectively, then

i) (z'_i, t) coincides with (z_i, t) if and only if

$$z_i' = h_i(z_i, t)$$
,

ii) (w_i) coincides with (w_i) if and only if

$$w_i = g_i(w_i)$$
,

iii) Φ is given in terms of new coordinates by

$$w_i' = \Phi_i'(z_i', t)$$
.

We must have the equality:

(1.5)
$$\Phi_i(z_i, t) = g_i(\Phi'_i(h_i(z_i, t), t)).$$

Let τ'_i be the element of $\Gamma(U_i, f^*\Theta_Y)$ defined by the formula (1.3) with the aid of Φ'_i , then from (1.5) it follows that

$$\tau_i - \tau_i' = F\left(\sum \frac{\partial h_i^{\sigma}}{\partial t} \Big|_{t=0} \frac{\partial}{\partial z_i^{\sigma}}\right).$$

This proves the assertion.

A holomorphic map $f: X \to Y$ is called *non-degenerate*, if $\operatorname{rank}_z df = \dim X$ for some point $z \in X$. If f is non-degenerate, the set of $z \in X$ such that $\operatorname{rank}_z df < \dim X$ forms a proper analytic subset of X, and the exact sequence (1.1) reduces to

$$(1.1)' 0 \longrightarrow \Theta_X \xrightarrow{F} f^*\Theta_Y \xrightarrow{P} \mathcal{I} \longrightarrow 0.$$

A family $(\mathcal{X}, \Phi, p, M)$ of holomorphic maps into Y is called a family of non-degenerate holomorphic maps into Y if $\Phi_t: X_t \to Y_t$ is non-degenerate for any point $t \in M$.

In this paper, we restrict ourselves to families of non-degenerate holomorphic maps (general case will be discussed in a future).

PROPOSITION 1.4. Let $(\mathfrak{X}, \Phi, p, M)$ be a family of non-degenerate holomorphic maps into Y, $o \in M$ and $X = X_0$, then the diagram

$$T_{0}(M) \xrightarrow{\tau} H^{0}(X, \mathcal{I})$$

$$\rho \searrow \int \delta$$

$$H^{1}(X, \Theta_{X})$$

is commutative, where ρ is the infinitesimal deformation map of the family (\mathcal{X}, p, M) at o [Kodaira-Spencer 5, chap. II, 5] and δ is the coboundary map of cohomology groups.

PROOF. By definition, $\rho\left(\frac{\partial}{\partial t}\right)$ is the cohomology class of the 1-cocycle $\sum \frac{\partial \phi_{ij}^{\sigma}}{\partial t}\Big|_{t=0} \frac{\partial}{\partial z_i^{\sigma}}$. Our assertion follows from the equality (1.4).

REMARK 1.5. Proposition 1.4 assures that in the case of a family of non-degenerate holomorphic maps into Y, the characteristic map τ completely describes the infinitesimal deformations. Or more explicitly, given a non-degenerate holomorphic map $f\colon X\to Y$, the set of classes of "families" of holomorphic maps into Y "with base space Spec $(C[t]/t^2)$ " (cf. Grothendieck [2]) extending f, has a natural structure of principal homogeneous space under the group $H^0(X,\mathcal{T})$.

§ 2. A theorem of completeness.

In this section we prove the following theorem analogous to [6]. Theorem 2.1. Let $(\mathcal{X}, \Phi, p, M)$ be a family of non-degenerate holomorphic

maps into Y, $o \in M$, $X = X_o$ and $f = \Phi_o$: $X \to Y$. If the characteristic map τ : $T_o(M) \to H^o(X, \mathfrak{T})$ at o is surjective, then the family is complete at o (in the sense of Definition 1.2).

To prove the theorem, it suffices to prove that, for any family $(\mathcal{X}', \Phi', \Phi', M')$ of holomorphic maps into Y, such that $\Phi'_{o'}: X'_{o'} \to Y$ is equivalent to $f: X \to Y$ for some $o' \in M'$, there exist a holomorphic map $t: M' \to M$ with t(o') = o (restricting M' on a neighborhood of o' if necessary) and a holomorphic map $g: \mathcal{X}' \to \mathcal{X}$ over t which maps $X'_{t'}$ biregularly onto $X_{t(t')}$.

We employ the notation of § 1 ("'" indicates something on \mathcal{X}'). Moreover we assume that M, M', U_i , U'_i and V_i are open balls in some affine spaces. Since $\Phi'_{o'}$ is equivalent to Φ_o , we may assume that $U'_i = U_i$, $z'_i = z_i$ on U_i , $\Phi'_i(z_i, 0) = \Phi_i(z_i, 0) = f_i(z_i)$, $\phi'_{ij}(z_j, 0) = \phi_{ij}(z_j, 0) = b_{ij}(z_j)$. Let $M'_{\varepsilon} = \{t' \in M' : |t'| < \varepsilon\}$ with $\varepsilon > 0$ sufficiently small. We construct holomorphic maps $t : M'_{\varepsilon} \to M$ and $g_i : U_i \times M'_{\varepsilon} \to C^n$ which satisfy the following conditions:

(2.0)
$$g_i(z_i, 0) = z_i, \quad t(0) = 0,$$

(2.1)
$$g_i(\phi'_{ij}, t') = \phi_{ij}(g_j, t(t')),$$

$$\mathbf{\Phi}_{i}(g_{i}, t(t')) = \mathbf{\Phi}'_{i}.$$

(We do not indicate the domain where the equality should hold, if no confusion arises.)

I) Existence of formal solutions. We first prove the existence of formal power series g_i and t' satisfying (2.0)—(2.2). For this purpose, we introduce some notations. Let $P(s) = P(s_1, \dots, s_r)$, Q(s) be power series in s with coefficients in some module. We write

$$P(s) = P_0(s) + P_1(s) + \cdots + P_n(s) + \cdots$$

where $P_{\mu}(s)$ is a homogeneous polynomial in s of degree μ . We indicate by $P^{\mu}(s)$ the polynomial

$$P^{\mu}(s) = P_0(s) + P_1(s) + \cdots + P_{\mu}(s)$$
.

Moreover we write $P(s) \equiv 0$ if $P^{\mu}(s) = 0$, and $P(s) \equiv Q(s)$ if $P(s) - Q(s) \equiv 0$. We identify a holomorphic function with its power series expansion.

With these notations, (2.1) and (2.2) are equivalent to the following systems of congruences:

$$(2.3)_{\mu} g_{i}^{\mu}(\phi_{ij}', t') \equiv \phi_{ij}(g_{j}^{\mu}, t^{\mu}) \mu = 0, 1, \cdots,$$

$$(2.4)_{\mu} \qquad \qquad \boldsymbol{\Phi}_{i}(g_{i}^{\mu}, t^{\mu}) \equiv \boldsymbol{\Phi}_{i}' \qquad \qquad \mu = 0, 1, \cdots.$$

We construct g_i^{μ} and t^{μ} satisfying $(2.3)_{\mu}$ and $(2.4)_{\mu}$ by induction on μ . Suppose therefore that $t^{\mu-1}$ and $g_i^{\mu-1}$ satisfying $(2.3)_{\mu-1}$ and $(2.4)_{\mu-1}$ are already

determined.

We define $\Gamma_{ij|\mu} \in \Gamma(U_{ij}, \Theta_X)$ (resp. $\gamma_{i|\mu} \in \Gamma(U_i, f^*\Theta_Y)$) (by this we mean that $\Gamma_{ij|\mu}$ is a homogeneous polynomial of degree μ with coefficients in $\Gamma(U_{ij}, \Theta_X)$ and so on, by abuse of notation), by the congruence

(2.5)
$$\Gamma_{ij|\mu} \equiv (g_i^{\mu-1}(\phi'_{ij}, t') - \phi_{ij}(g_j^{\mu-1}, t^{\mu-1})) \cdot \frac{\partial}{\partial z_i}$$

(resp.

(2.6)
$$\gamma_{i|\mu} \equiv (\Phi'_i - \Phi_i(g_i^{\mu-1}, t^{\mu-1})) \cdot \frac{\partial}{\partial w_i}),$$

(where we use the following notation: $h \cdot \frac{\partial}{\partial z_i} = \sum h^{\sigma} \frac{\partial}{\partial z_i^{\sigma}}$ for any *n*-vector $h = (h^{\sigma})$).

Now we prove that we have the following equalities:

$$\Gamma_{jk|\mu} - \Gamma_{ik|\mu} + \Gamma_{ij|\mu} = 0,$$

$$F\Gamma_{ij|\mu} = \gamma_{j|\mu} - \gamma_{i|\mu}.$$

PROOF. The equality (2.7) is proved in [6, Lemma 2]. The equality (2.8) can be proved in a similar way as follows (we omit the indices μ -1, if no confusion is possible).

$$\begin{split} \boldsymbol{\Phi}_{i}'(\phi_{ij}', t') &= \psi_{ij}(\boldsymbol{\Phi}_{j}') \\ &= \underset{\mu}{=} \psi_{ij}(\boldsymbol{\Phi}_{j}(g_{j}, t) + \gamma_{j|\mu}) \\ &= \underset{\mu}{=} \psi_{ij}(\boldsymbol{\Phi}_{j}(g_{j}, t)) + C_{ij}\gamma_{j|\mu} \quad \text{where } C_{ij} = \left(\frac{\partial \psi_{ij}}{\partial w_{j}}\right). \end{split}$$

On the other hand, we have

$$\begin{split} \psi_{ij}(\pmb{\Phi}_j(g_j,\,t)) &\equiv \pmb{\Phi}_i(\phi_{ij}(g_j,\,t)) \\ &\equiv \pmb{\Phi}_i(g_i(\phi'_{ij},\,t') - \pmb{\Gamma}_{ij\,|\mu}) \\ &\equiv \pmb{\Phi}_i(g_i(\phi'_{ij},\,t')) - F_i \pmb{\Gamma}_{ij\,|\mu} \quad \text{ where } F_i = \left(\frac{\partial f_i}{\partial z_i}\right). \end{split}$$

It follows that

$$\gamma_{i|\mu} \equiv \gamma_{i|\mu}(\phi'_{ij}, t') \equiv C_{ij}\gamma_{j|\mu} - F_i \Gamma_{ij|\mu}. \qquad q. e. d.$$

Our purpose is to determine

$$t^{\mu}(t') = t^{\mu-1}(t') + t_{\mu}(t')$$

and

$$g_i^{\mu}(z_i, t') = g_i^{\mu-1}(t') + g_{i|\mu}(t')$$
,

which satisfy $(2.3)_{\mu}$ and $(2.4)_{\mu}$.

We prove that $(2.3)_{\mu}$ and $(2.4)_{\mu}$ are equivalent to

(2.9)
$$\Gamma_{ij|\mu} = g_{j|\mu} - g_{i|\mu} + \sum t_{\lambda|\mu} \rho_{ij\lambda},$$

$$\gamma_{i|\mu} = F g_{i|\mu} + \sum t_{\lambda|\mu} \tau_{i\lambda},$$

where we denote by the same letter g the section $\sum g^{\rho} \frac{\partial}{\partial w^{\rho}}$ of the sheaf $f^*\Theta_Y$, etc., and

$$\left.
ho_{ij\lambda} = rac{\partial \phi_{ij}}{\partial t_{\lambda}} \right|_{t=0}, \quad \left. au_{i\lambda} = rac{\partial \Phi_{i}}{\partial t_{\lambda}} \right|_{t=0}.$$

PROOF. The first equivalence is proved in [6, p. 290]. The second equivalence follows from the congruence

$$\begin{aligned} \boldsymbol{\Phi}_{i}(g_{i}^{\mu}, t^{\mu}) &= \boldsymbol{\Phi}_{i}(g_{i}^{\mu-1} + g_{i|\mu}, t^{\mu-1} + t_{\mu}) \\ &= \boldsymbol{\Phi}_{i}(g_{i}^{\mu-1}, t^{\mu-1}) + F_{i}g_{i|\mu} + \sum t_{\lambda|\mu}\tau_{i\lambda}. \end{aligned}$$

Now we prove the existence of t_{μ} and $g_{i|\mu}$.

LEMMA 2.2. We can find t_{μ} and $g_{i|\mu}$ which satisfy (2.9) and (2.10).

PROOF. First note that the equality (2.10) implies (2.9), for F is injective. The equality (2.8) shows that the collection $\{P_{\gamma_i|\mu}\}$ determines a homogeneous polynomial of degree μ with coefficients in $H^0(X, \mathcal{I})$. Since the characteristic map τ is assumed to be surjective, we can find $t_{\lambda|\mu}$ such that

$$P\gamma_{i|\mu} = \sum t_{\lambda|\mu} P\tau_{i\lambda}$$
.

This proves the lemma.

This lemma completes our inductive construction of $t^{\mu}(t')$ and $g_i^{\mu}(z_i, t')$.

II) Proof of convergence. Now we prove that, if we choose solutions $t_{\mu}(t')$ and $g_{i|\mu}(z_i, t')$ of the equations (2.9) and (2.10) properly in each step of the above construction, the power series

$$t(t') = t_1(t') + t_2(t') + \dots + t_{\mu}(t') + \dots$$
$$g_i(z_i, t') = z_i + g_{i|1}(z_i, t') + \dots + g_{i|\mu}(z_i, t') + \dots$$

converge absolutely and uniformly for $|t'| < \varepsilon$ provided that $\varepsilon > 0$ is sufficiently small.

Consider a power series

$$g(s) = \sum g_{\nu_1 \nu_2 \cdots \nu_r} s_1^{\nu_1} s_2^{\nu_2} \cdots s_r^{\nu_r}$$

whose coefficients $g_{\nu_1\nu_2\cdots\nu_r}$ are vectors, and a power series

$$a(s) = \sum a_{\nu_1 \nu_2 \cdots \nu_r} S_1^{\nu_1} S_2^{\nu_2} \cdots S_r^{\nu_r}$$

with non-negative coefficients. We indicate by writing $g(s) \ll a(s)$ that $|g_{\nu_1\nu_2\cdots\nu_r}| \leq a_{\nu_1\nu_2\cdots\nu_r}$.

Let

$$A(s) = \frac{b}{16c} \sum_{\mu=1}^{\infty} \frac{1}{\mu^2} c^{\mu} (s_1 + s_2 + \dots + s_r)^{\mu}.$$

We remark that

$$A(s)^{\nu} \ll \left(\frac{b}{c}\right)^{\nu-1} A(s)$$
 for $\nu = 2, 3, 4, \cdots$.

For our purpose it suffices to derive the estimates

$$(2.11)_{\mu}$$
 $t^{\mu}(t') \ll A(t')$, $g_i^{\mu}(z_i, t') - z_i \ll A(t')$

by induction on μ provided that the coefficients b, c are chosen properly. For $\mu=1$ the estimates $(2.11)_1$ are obvious if b is sufficiently large. Assume therefore that the estimates $(2.11)_{\mu-1}$ are established for some μ . Then we have

(2.12)
$$\Gamma_{ij|\mu}(z_i, t') \ll \left(\frac{K_1}{b} + \frac{K_2}{c} + \frac{K_3b}{c}\right) A(t'),$$

(2.13)
$$\gamma_{i|\mu}(z_i, t') \ll \left(\frac{K_4}{b} + \frac{K_5 b}{c}\right) A(t')$$

where K_1, K_2, \dots, K_5 are constants independent of μ .

PROOF. The estimate (2.12) is proved in [6, pp. 292-294]. So we prove only the estimate (2.13). We expand $\Phi_i(z_i+y,t)$ into power series in n+r variables $y_1, \dots, y_n, t_1, \dots, t_r$ and let

$$L_i(z_i, y, t) = \lceil \boldsymbol{\Phi}_i(z_i + y, t) \rceil_1$$

be the linear term of the power series. Then we may assume that the power series expansion of $\Phi_i(z_i+y, t)$ in (y, t) satisfies

$$\Phi_{i}(z_{i}+y, t)-f_{i}(z_{i})-L_{i}(z_{i}, y, t)
\ll \frac{b_{0}}{c_{0}} \sum_{n=2}^{\infty} c_{0}^{\mu}(y_{1}+\cdots+y_{n}+t_{1}+\cdots+t_{r})^{\mu}.$$

Letting $y = g_i^{\mu-1}(z_i, t') - z_i$, $t = t^{\mu-1}(t')$ and using our inductive assumption $(2.11)_{\mu-1}$ we obtain the estimate

$$[\Phi_i(g_i^{\mu-1}(z_i, t'), t^{\mu-1}(t'))]_{\mu} \ll \frac{b_0}{c_0} \sum_{\mu=2}^{\infty} c_0^{\mu}(n+r)^{\mu} A(t')^{\mu}.$$

Assume that

$$\frac{(n+r)bc_0}{c} < \frac{1}{2}.$$

Then we have

$$\sum_{\mu=2}^{\infty} c_0^{\mu} (n+r)^{\mu} A(t')^{\mu} \ll \sum_{\mu=2}^{\infty} c_0^{\mu} (n+r)^{\mu} \left(\frac{b}{c}\right)^{\mu-1} A(t')$$

$$\ll \frac{2(n+r)^2 b c_0^2}{c} A(t')$$

and therefore

$$[\Phi_i(g_i^{\mu-1}(z_i, t'), t^{\mu-1}(t'))]_{\mu} \ll \frac{2(n+r)^2 b b_0 c_0}{c} A(t').$$

While we may assume

$$\Phi'_i(z_i, t') - f_i(z_i) \ll \frac{b_0}{c_0} \sum_{\mu=1}^{\infty} c_0^{\mu} (t'_1 + \cdots + t'_{r'})^{\mu}$$
.

Assume that

(2.15)
$$b > b_0$$
, $c > c_0$

then we obtain the estimate (2.13).

g. e. d.

We may assume that ρ_{ij} , τ_i , F_i , C_{ij} and $B_{ij} = \frac{\partial b_{ij}}{\partial z_i}$ are uniformly bounded.

For any pair $\sigma = (\Gamma, \gamma)$ of a 1-cocycle $\{\Gamma_{ij}\}$ and a 0-cochain $\{\gamma_i\}$ satisfying

$$(2.8)' F\Gamma_{ij} = \gamma_j - \gamma_i,$$

we define the norm $\|\sigma\|$ by

$$\|\sigma\| = \|\Gamma\| + \|\gamma\|,$$

where

$$\|\Gamma\| = \max_{i,j} \sup_{z_i} |\Gamma_{ij}(z_i)|, \qquad \|\gamma\| = \max_i \sup_{z_i} |\gamma_i(z_i)|.$$

LEMMA 2.3. For any pair $\sigma = (\Gamma, \gamma)$ of a 1-cocycle Γ and a 0-cochain γ satisfying (2.8), we can find $g_i(z_i)$ and t_{λ} satisfying

$$(2.9)' \Gamma_{ij} = g_j - g_i + \sum t_{\lambda} \rho_{ij\lambda},$$

$$(2.10)' \gamma_i = Fg_i + \sum t_{\lambda} \tau_{i\lambda},$$

$$|g_i(z_i)| \leq K_{\epsilon} \|\sigma\|$$
 , $|t| \leq K_{\epsilon} \|\sigma\|$,

where K_6 is a constant independent of σ .

PROOF. We define

$$\iota(\sigma) = \inf \max \{ \sup_{z_i} |g_i(z_i)|, |t| \}$$

where the "inf" is taken with respect to all solutions $g_i(z_i)$, t_{λ} of the equations (2.9)' and (2.10)'. It suffices to prove the existence of a constant K_6 such that $\iota(\sigma) \leq K_6 \|\sigma\|$. Suppose that such a constant K_6 does not exist. Then we can find a sequence $\sigma^{(1)}$, $\sigma^{(2)}$, \cdots , $\sigma^{(\nu)}$, \cdots of pairs $\sigma^{(\nu)} = (\Gamma^{(\nu)}, \gamma^{(\nu)})$ satisfying (2.8)' such that $\iota(\sigma^{(\nu)}) = 1$, $\|\sigma^{(\nu)}\| < 1/\nu$. $\iota(\sigma^{(\nu)}) = 1$ implies that there exist $g^{(\nu)}$ and $t^{(\nu)}$ such that

(2.16)
$$\Gamma_{ij}^{(\nu)} = g_{i}^{(\nu)} - g_{i}^{(\nu)} + \sum t_{\lambda}^{(\nu)} \rho_{ij\lambda},$$

(2.17)
$$\gamma_{i}^{(\nu)} = F g_{i}^{(\nu)} + \sum t_{\lambda}^{(\nu)} \tau_{i\lambda} ,$$

$$|g_{i}^{(\nu)}(z_{i})| < 2 , \qquad |t^{(\nu)}| < 2 .$$

Hence replacing $\sigma^{(1)}$, $\sigma^{(2)}$, \cdots by a suitable subsequence if necessary, we may suppose that $g_i(z_i) = \lim g_i^{(\nu)}(z_i)$ and $t_\lambda = \lim t_\lambda^{(\nu)}$ exist, where the convergence $g_i^{(\nu)}(z_i) \rightarrow g_i(z_i)$ is uniform on each compact subset of U_i and $g_i(z_i)$ is holomorphic on U_i . Since

$$(2.18) |\Gamma_{ij}^{(\nu)}(z_i)| \longrightarrow 0, |\gamma_i^{(\nu)}(z_i)| \longrightarrow 0 (\nu \longrightarrow \infty)$$

we obtain

$$(2.19) 0 = g_i - g_i + \sum t_i \rho_{iji},$$

$$(2.20) 0 = Fg_i + \sum t_{\lambda} \tau_{i\lambda}.$$

Let $\{U_i^*\}$ be a covering of X such that U_i^* is a relatively compact subset of U_i . For each point $z_i \in U_i$ there exists at least one U_j^* such that $z_i \in U_i \cap U_j^*$. Hence we infer from (2.16) and (2.18) that $g_i^{(\nu)}(z_i)$ converges to $g_i(z_i)$ uniformly on the whole of U_i . Letting $g_i'(z_i) = g_i^{(\nu)}(z_i) - g_i(z_i)$ and $t_\lambda' = t_\lambda^{(\nu)} - t_\lambda$ for a sufficiently large integer ν , we have therefore

$$|g_i'(z_i)| < 1/2$$
, $|t_{\lambda}'| < 1/2$,

while we infer from (2.16), (2.17), (2.19) and (2.20) that

$$\Gamma_{ij}^{(\nu)} = g'_j - g'_i + \sum t'_{\lambda} \rho_{ij\lambda}$$

$$\gamma_i^{(\nu)} = Fg_i' + \sum t_\lambda' \tau_{i\lambda}$$
.

This contradicts $\ell(\sigma^{(\nu)}) = 1$.

q. e. d.

Consequently we can choose solutions $g_{i|\mu}(z_i, t')$ and $t_{\mu}(t')$ of the equations (2.9) and (2.10) such that

$$g_{i|\mu}(z_i, t') \ll K_6 K^* A(t')$$
 and $t_{\mu}(t') \ll K_6 K^* A(t')$

where

$$K^* = \frac{K_1 + K_4}{b} + \frac{K_2}{c} + \frac{(K_3 + K_5)b}{c}$$
.

On the other hand, by a proper choice of the constants b and c satisfying (2.14) and (2.15), we obtain

$$K_6K^* < 1$$
,

and we infer that $g_{i|\mu}(z_i, t') \ll A(t')$ and $t_{\mu}(t') \ll A(t')$. This proves $(2.11)_{\mu}$.
q. e. d.

§ 3. A theorem of existence.

The purpose of this section is to prove the following theorem.

THEOREM 3.1. Let $f: X \to Y$ be a non-degenerate holomorphic map. If $H^1(X, \mathcal{F}_{X/Y}) = 0$, then there exist a family $(\mathcal{X}, \Phi, p, M)$ of non-degenerate holomorphic maps into Y and a point $o \in M$ such that

- i) $\Phi_o: X_o \to Y$ is equivalent to $f: X \to Y$,
- ii) $\tau: T_o(M) \to H^o(X, \mathcal{I}_{X/Y})$ is bijective.

First we define the Poisson bracket of differentiable vector (0, q)-forms. We denote by $A^{0,q}(\Theta_x)$ the linear space of differentiable vector (0, q)-forms

$$\psi = (\phi^1, \dots, \phi^{\alpha}, \dots, \phi^n)$$

$$\phi^{\alpha} = \frac{1}{q!} \sum \phi^{\alpha}_{\overline{\mu}_1 \cdots \overline{\mu}_q} d\overline{z}^{\mu_1} \wedge \dots \wedge d\overline{z}^{\mu_q}.$$

The exterior derivative $\bar{\partial} \psi$ of ψ is defined by

$$\bar{\partial} \psi = (\bar{\partial} \psi^1, \cdots, \bar{\partial} \psi^\alpha, \cdots, \bar{\partial} \psi^n)$$
.

We define the Poisson bracket

$$[\phi,\phi] = ([\phi,\phi]^1,\cdots,[\phi,\phi]^\alpha,\cdots,[\phi,\phi]^n)$$

of $\phi \in A^{0,p}(\Theta_X)$ and $\phi \in A^{0,q}(\Theta_X)$ by

$$[\phi,\psi]^{\alpha} = \sum_{\mu=1}^{n} (\phi^{\mu} \wedge \partial_{\mu} \psi^{\alpha} + (-1)^{pq+1} \psi^{\mu} \wedge \partial_{\mu} \phi^{\alpha})$$

where

$$\partial_{\mu}\phi^{\alpha} = \frac{1}{q!} \sum \frac{\partial \phi^{\alpha}_{\bar{\mu}_{1}\cdots\bar{\mu}_{q}}}{\partial z^{\mu}} d\bar{z}^{\mu_{1}} \wedge \cdots \wedge d\bar{z}^{\mu_{q}}.$$

 $[\phi, \psi]$ is a vector form in $A^{0,p+q}(\Theta_X)$.

For any locally free sheaf E (of finite rank), we denote by $\mathcal{A}^{0,q}(E)$ the sheaf of germs of differentiable vector (0,q)-forms with coefficients in E, and let $A^{0,q}(E) = \Gamma(X,\mathcal{A}^{0,q}(E))$. Then we have the Dolbeault isomorphisms

$$H^{q}_{\overline{\partial}}(A^{0,*}(E)) \cong H^{q}(X, E)$$
.

The canonical homomorphism $F \colon \Theta_X \to f^*\Theta_Y$ can be extended to a homomorphism $\mathcal{A}^{0,q}(\Theta_X) \to \mathcal{A}^{0,q}(f^*\Theta_Y)$ which we denote by the same letter F. Since f is assumed to be non-degenerate, each F is injective. Let $\mathcal{A}^{0,q}(\mathfrak{T})$ be the cokernel of $F \colon \mathcal{A}^{0,q}(\Theta_X) \to \mathcal{A}^{0,q}(f^*\Theta_Y)$, $P \colon \mathcal{A}^{0,q}(f^*\Theta_Y) \to \mathcal{A}^{0,q}(\mathfrak{T})$ the natural projection. Then the exterior derivative induces $\bar{\partial} \colon \mathcal{A}^{0,q}(\mathfrak{T}) \to \mathcal{A}^{0,q+1}(\mathfrak{T})$ and we have the following commutative diagram:

where all horizontal and vertical lines are exact.

Since $\mathcal{A}^{0,q}(\Theta_X)$ and $\mathcal{A}^{0,q}(f^*\Theta_Y)$ are fine sheaves, we have

$$H^p(X, \mathcal{A}^{0,q}(\mathfrak{T})) = 0$$
 for $p > 0$.

Hence the spectral sequence

$$H^{\underline{p}}_{\overline{\theta}}(H^q(X, \mathcal{A}^{0,*}(\mathfrak{T}))) \underset{p}{\Longrightarrow} H^n(X, \mathfrak{T})$$
 [3, Ch. II, 4.5]

degenerates, and we have an isomorphism

$$H^{p}_{\overline{\partial}}(A^{0,*}(\mathcal{I})) \cong H^{p}(X,\mathcal{I})$$
.

Note that this isomorphism is compatible with the Dolbeault isomorphisms for Θ_X and for $f^*\Theta_Y$.

With these preparations we prove Theorem 3.1 following the idea of Kodaira-Nirenberg-Spencer [7].

We may assume the following:

i) X is covered by a finite number of coordinate neighborhoods U_i with a system of coordinates (z_i^1, \dots, z_i^n) and

$$U_i = \{(z_i) \in \mathbb{C}^n | |z_i| < 1\}$$
.

ii) Y is covered by a finite number of coordinate neighborhoods V_i with a system of coordinates (w_i^1, \dots, w_i^n) and

$$V_i = \{(w_i) \in C^m | |w_i| < 1\}$$
.

iii) $f(U_i) \subset V_i$, and in terms of above coordinates f is given by

$$w_i = f_i(z_i)$$
.

iv) $z_i \in U_i$ coincides with $z_j \in U_j$ if and only if

$$z_i = b_{i,i}(z_i)$$
.

v) $w_i \in V_i$ coincides with $w_j \in V_j$ if and only if

$$w_i = g_{ij}(w_i)$$
.

Let $r=\dim H^0(X,\mathcal{I})$ and $M=\{t\in C^r|\ |t|<\varepsilon\}$ with $\varepsilon>0$ sufficiently small. We regard $X\times M$ as a differentiable manifold and prove the existence of a vector (0,1)-form

$$\phi(t) = \sum \phi_i^{\nu}(z_i, t) - \frac{\partial}{\partial z_i^{\nu}} = \sum \phi_{i\bar{\alpha}}^{\nu}(z_i, t) d\bar{z}_i^{\alpha} - \frac{\partial}{\partial z_i^{\nu}}$$

depending holomorphically on t and a vector valued differentiable functions $\Phi_i(z_i, t)$ on $U_i \times M$ depending holomorphically on t which satisfy the following equalities:

$$\phi(0) = 0 \,,$$

$$[3.2) \qquad \bar{\partial}\phi - (1/2)[\phi, \phi] = 0,$$

$$\mathbf{\Phi}_{i}(z_{i},0) = f_{i}(z_{i}),$$

(3.5)
$$\Phi_i(b_{ij}(z_j), t) = g_{ij}(\Phi_j(z_j, t)).$$

I) Existence of formal solutions. Using the notation of § 2, let

$$\phi(t) = \sum \phi_{\mu}(t)$$
, $\Phi_{i}(z_{i}, t) = \sum \Phi_{i \mid \mu}(z_{i}, t)$

where $\phi_{\mu}(t)$ and $\Phi_{i|\mu}(z_i,t)$ are homogeneous in t of degree μ , and let

$$\phi^{\mu}(t) = \phi_0(t) + \phi_1(t) + \dots + \phi_{\mu}(t)$$

$$\Phi^{\mu}_{i}(z_i, t) = \Phi_{i|0}(z_i, t) + \Phi_{i|1}(z_i, t) + \dots + \Phi_{i|\mu}(z_i, t).$$

In view of (3.1) and (3.3), we set

(3.6)
$$\phi_0 = 0$$
, $\Phi_{i|0}(z_i, t) = f_i(z_i)$.

Clearly (3.2), (3.4) and (3.5) are equivalent to the following systems of congruences:

$$(3.7)_{\mu}$$
 $\bar{\partial}\phi^{\mu}-(1/2)[\phi^{\mu},\phi^{\mu}]\equiv 0$,

$$(3.8)_{\mu} \qquad \qquad \tilde{\partial} \boldsymbol{\Phi}_{i}^{\mu} - \boldsymbol{\phi}^{\mu} \cdot \boldsymbol{\Phi}_{i}^{\mu} \equiv 0 ,$$

$$(3.9)_{\mu} \qquad \qquad \Phi_i^{\mu}(b_{ij}(z_j), t) \equiv g_{ij}(\Phi_j^{\mu}(z_j, t)),$$

for $\mu = 1, 2, 3, \cdots$ (we do not indicate domains on which the equations should hold, if no confusion is possible).

We construct solutions of (3.1)—(3.5) by induction on μ . We suppose that $\phi^{\mu-1}$ and $\Phi_{i}^{\mu-1}$ satisfying $(3.7)_{\mu-1}$, $(3.8)_{\mu-1}$ and $(3.9)_{\mu-1}$ are already determined.

We define homogeneous polynomials $\xi_{\mu} \in A^{0,2}(\Theta_X)$, $\mathcal{Z}_{i|\mu} \in \Gamma(U_i, \mathcal{A}^{0,1}(f^*\Theta_Y))$ and $\Gamma_{ij|\mu} \in \Gamma(U_{ij}, \mathcal{A}^{0,0}(f^*\Theta_Y))$ (for the convention of notation, see § 2) by the following congruences:

$$\xi_{\mu} \equiv \bar{\partial} \phi^{\mu-1} - (1/2) [\phi^{\mu-1}, \phi^{\mu-1}],$$

$$-\mathcal{E}_{i\mid\mu} \equiv (\bar{\delta}\boldsymbol{\Phi}_{i}^{\mu-1} - \boldsymbol{\phi}^{\mu-1} \cdot \boldsymbol{\Phi}_{i}^{\mu-1}) \cdot \frac{\partial}{\partial w_{i}},$$

$$\Gamma_{ij\mid\mu} \equiv (\Phi_i^{\mu-1} - g_{ij}(\Phi_j^{\mu-1})) \cdot \frac{\partial}{\partial w_i}.$$

Then we have the following equalities:

(3.13)
$$\bar{\partial}\xi_{\mu} = 0 \quad \text{in } \Gamma(X, \mathcal{A}^{0,3}(\Theta_X)),$$

$$(3.14) \bar{\partial} \mathcal{Z}_{i,l,u} = F \xi_{i,l} \text{ in } \Gamma(U_i, \mathcal{A}^{0,2}(f * \Theta_v)).$$

(3.15)
$$\Xi_{i|\mu} - \Xi_{i|\mu} = \bar{\partial} \Gamma_{ij|\mu} \quad \text{in } \Gamma(U_{ij}, \mathcal{A}^{0,1}(f * \Theta_Y)),$$

(3.16)
$$\Gamma_{jk|\mu} - \Gamma_{ik|\mu} + \Gamma_{ij|\mu} = 0 \quad \text{in } \Gamma(U_{ijk}, \mathcal{A}^{0,0}(f * \Theta_Y)).$$

PROOF OF (3.13). This equality is proved in [7, p. 454].

PROOF OF (3.14). We suppress the indices μ -1, if no confusion is possible. Also we suppress the subscript i. With these conventions, we have

$$\begin{split} \bar{\partial} \Xi_{\mu} &\equiv \sum_{\mu} \bar{\partial} \phi^{\sigma} \partial_{\sigma} \Phi - \sum_{\mu} \phi^{\nu} \wedge \partial_{\nu} \bar{\partial} \Phi \equiv \sum_{\mu} \bar{\partial} \phi^{\sigma} \partial_{\sigma} \Phi - \sum_{\mu} \phi^{\nu} \wedge \partial_{\nu} \phi^{\sigma} \partial_{\sigma} \Phi \\ &\equiv \sum_{\mu} \xi_{\mu}^{\sigma} \partial_{\sigma} \Phi \equiv F \xi_{\mu} \,. \end{split}$$

PROOF OF (3.15). We suppress the indices $\mu-1$. Let $G_{ij\lambda}^{\rho} = \frac{\partial g_{ij}^{\rho}}{\partial w_{j}^{\lambda}}$ as in § 2. Then we have

$$\begin{split} \mathcal{E}_{i|\mu}^{\rho} &= \left[\sum \phi_{i}^{\sigma} \partial_{i\sigma} \Phi_{i}^{\sigma}\right]_{\mu} = \left[\sum \phi_{i}^{\sigma} \partial_{i\sigma} (g_{ij}^{\rho}(\Phi_{j}))\right]_{\mu} \\ &= \left[\sum \phi_{j}^{\sigma} G_{ij\lambda}^{\rho}(\Phi_{j}) \partial_{j\sigma} \Phi_{j}^{\lambda}\right]_{\mu} \\ &- \tilde{\delta} \Gamma_{ij\mu}^{\rho} = \left[\tilde{\delta} g_{ij}^{\rho}(\Phi_{j})\right]_{\mu} = \left[\sum G_{ij\lambda}^{\rho}(\Phi_{j}) \tilde{\delta} \Phi_{j}^{\lambda}\right]_{\mu} \\ &= -\sum G_{i\lambda}^{\rho} \mathcal{E}_{i|\mu} + \left[\sum G_{i\lambda}^{\rho}(\Phi_{j}) \phi_{j}^{\sigma} \partial_{i\sigma} \Phi_{j}^{\lambda}\right]_{\mu}. \end{split} \qquad \text{q. e. d.}$$

PROOF OF (3.16). Since $g_{ij}(g_{jk}(w_k)) = g_{ik}(w_k)$, we have

$$\begin{split} g_{ik}(\pmb{\Phi}_k) &= g_{ij}(g_{jk}(\pmb{\Phi}_k)) \underset{\pmb{\mu}}{\equiv} g_{ij}(\pmb{\Phi}_j - \pmb{\Gamma}_{jk|\pmb{\mu}}) \\ &\stackrel{\equiv}{\equiv} g_{ij}(\pmb{\Phi}_j) - G_{ij}(\pmb{\Phi}_j) \pmb{\Gamma}_{jk|\pmb{\mu}} \\ &\stackrel{\equiv}{\equiv} \pmb{\Phi}_i - \pmb{\Gamma}_{ij|\pmb{\mu}} - G_{ij}(f_j) \pmb{\Gamma}_{jk|\pmb{\mu}}. \end{split} \qquad \text{q. e. d.}$$

Our purpose is to determine

$$\phi^{\mu} = \phi^{\mu-1} + \phi_{\mu}, \qquad \Phi_{i}^{\mu} = \Phi_{i}^{\mu-1} + \Phi_{i\mu}$$

which satisfy $(3.7)_{\mu}$, $(3.8)_{\mu}$ and $(3.9)_{\mu}$.

We prove that $(3.7)_{\mu}$, $(3.8)_{\mu}$ and $(3.9)_{\mu}$ are equivalent to the following equalities:

$$(3.17) \bar{\partial}\phi_{\mu} = -\xi_{\mu},$$

$$\mathcal{Z}_{i|\mu} = \bar{\partial} \Phi_{i|\mu} - F \phi_{\mu},$$

$$(3.19) \hspace{3.1em} \varGamma_{ij\mid\mu} = \varPhi_{j\mid\mu} - \varPhi_{i\mid\mu} \,,$$

where as in § 2, we denote by the same letter Φ_i the section $\sum \Phi_i^{\rho} \frac{\partial}{\partial w_i^{\rho}}$ of the sheaf $f * \Theta_Y$, etc.

PROOF. The first equivalence is easy to prove, so we omit it. We have a congruence

$$\begin{split} \phi^{\mu} \cdot \boldsymbol{\Phi}^{\rho,\mu} &= (\phi^{\mu-1} + \phi_{\mu})(\boldsymbol{\Phi}^{\rho,\mu-1} + \boldsymbol{\Phi}^{\rho}_{\mu}) \\ &= \phi^{\mu-1} \cdot \boldsymbol{\Phi}^{\rho,\mu-1} + \phi_{\mu} \cdot f^{\rho} \; . \end{split}$$

It follows that $(3.8)_{\mu}$ is equivalent to

$$0 \equiv (\bar{\partial} \boldsymbol{\Phi}^{\mu-1} - \phi^{\mu-1} \cdot \boldsymbol{\Phi}^{\mu-1}) + \bar{\partial} \boldsymbol{\Phi}_{\mu} - F \phi_{\mu}$$

This proves the assertion.

As to the last equivalence, we have a congruence (Φ should be regarded as a vector (Φ^1, \dots, Φ^m))

$$\begin{split} g_{ij}(\mathbf{\Phi}_{j}^{\mu}) &= g_{ij}(\mathbf{\Phi}_{j}^{\mu-1} + \mathbf{\Phi}_{j\mid\mu}) \\ & \stackrel{=}{=} g_{ij}(\mathbf{\Phi}_{j}^{\mu-1}) + G_{ij}(f_{j})\mathbf{\Phi}_{j\mid\mu} \\ & \stackrel{=}{=} \mathbf{\Phi}_{i}^{\mu-1} - \mathbf{\Gamma}_{ij\mid\mu} + G_{ij}(f_{j})\mathbf{\Phi}_{j\mid\mu} \,. \end{split}$$

It follows that $(3.9)_{\mu}$ is equivalent to

$$0 \equiv \Phi_{i|\mu} + \Gamma_{ij|\mu} - G_{ij}(f_j)\Phi_{j|\mu}.$$

This completes the proof.

The final step of I) is to prove the following lemma:

LEMMA 3.2. Under the hypothesis of Theorem 3.1 we can find

$$\phi_{\mu} \in A^{0,1}(\Theta_X)$$
 and $\Phi_{i|\mu} \in \Gamma(U_i, \mathcal{A}^{0,0}(f*\Theta_Y))$

satisfying (3.17), (3.18) and (3.19).

PROOF. In virtue of the equality (3.16), we can find $\Gamma_{i|\mu} \in \Gamma(U_i, \mathcal{A}^{0,0}(f^*\Theta_Y))$ such that

$$(3.20) \Gamma_{ij|\mu} = \Gamma_{j|\mu} - \Gamma_{i|\mu}.$$

From the equalities (3.15) and (3.20), we infer that

$$\Xi'_{i} = \Xi_{i+\mu} - \bar{\delta} \Gamma_{i+\mu}$$

determines a global section $\mathcal{E}'_{\mu} \in A^{0,1}(f*\Theta_Y)$, and from (3.14) it follows that $\bar{\partial}\mathcal{E}'_{\mu} = F\xi_{\mu}$; consequently $P\mathcal{E}'_{\mu} \in A^{0,1}(\mathcal{I})$ is $\bar{\partial}$ -closed.

By hypothesis $H^1(X, \mathcal{I}) = 0$, $P\mathcal{Z}'_{\mu}$ is $\bar{\partial}$ -exact; this implies that we can find $\phi'_{\mu} \in A^{0,1}(\Theta_X)$ and $\Phi''_{\mu} \in A^{0,0}(f^*\Theta_Y)$ such that

$$\bar{\partial} \Phi''_{\mu} = \Xi'_{\mu} + F \phi'_{\mu}$$
.

Then it follows that $F\bar{\partial}\phi'_{\mu} = -F\xi_{\mu}$. Since F is injective, we obtain

$$\bar{\partial}\phi'_{\mu} = -\xi_{\mu}.$$

Reversing the process, take any $\phi' \in A^{0,1}(\Theta_X)$ satisfying the equality (3.22).

Then it follows that

$$\bar{\partial}(\Xi'_{\mu}+F\phi')=0.$$

In the exact sequence

$$H^{1}(X,\Theta_{X}) \xrightarrow{F} H^{1}(X,f*\Theta_{Y}) \xrightarrow{P} H^{1}(X,\mathcal{I})$$

the cohomology class (in $H^1(X, f*\Theta_Y)$) corresponding to the $\bar{\partial}$ -closed form $\Xi'_{\mu}+F\phi'_{\mu}$ (by the Dolbeault isomorphism) is in Ker P. It follows that we can find $\chi_{\mu}\in A^{0,1}(\Theta_X)$ and $\Phi'_{\mu}\in A^{0,0}(f*\Theta_Y)$ such that

$$\bar{\partial} \chi_{\mu} = 0 ,$$

Let

$$\phi_{\mu} = \phi_{\mu}' - \chi_{\mu},$$

$$\mathbf{\Phi}_{i|\mu} = \mathbf{\Phi}'_{\mu} + \Gamma_{i|\mu}.$$

Then from (3.26), (3.24) and (3.22) it follows that

$$\bar{\partial}\phi_\mu = \bar{\partial}\phi'_\mu = -\xi_\mu$$
 .

From (3.27), (3.25), (3.26) and (3.21) it follows that

$$\bar{\partial} \Phi_{i|\mu} = \Xi'_{\mu} + F \phi_{\mu} + \bar{\partial} \Gamma_{i|\mu} = \Xi_{i|\mu} + F \phi_{\mu}$$
.

From (3.27) and (3.20) it follows that

$$\Phi_{j|\mu} - \Phi_{i|\mu} = \Gamma_{j|\mu} - \Gamma_{i|\mu} = \Gamma_{ij|\mu}$$
.

This proves the lemma.

For $\mu=1$, we determine ϕ_1 and Φ_1 as follows: Take $\Phi_{1\lambda} \in A^{0,0}(f^*\Theta_Y)$ such that $\{P\Phi_{1\lambda}\}$ $(\lambda=1,\,2,\,\cdots,\,r)$ forms a basis of the linear space $H^0(X,\,\mathcal{I})$. Then we can find $\phi_{1\lambda} \in A^{0,1}(\Theta_X)$ such that $\bar{\partial} \Phi_{1\lambda} = F\phi_{1\lambda}$, and let $\phi_1 = \sum \phi_{1\lambda} t_\lambda$ and $\Phi_1 = \sum \Phi_{1\lambda} t_\lambda$. It is clear that ϕ_1 and Φ_1 satisfy the congruences $(3.7)_1$, $(3.8)_1$ and $(3.9)_1$.

Once we determine ϕ_1 and Φ_1 , we can extend them to formal power series in t satisfying (3.1)—(3.5), as we have already seen.

II) Proof of convergence. Let E be a locally free sheaf of rank r on X, such that $E|_{U_i}$ is trivial. We define a norm $|\cdot|_{k+\alpha}(k)$: an integer ≥ 2 , $0 < \alpha < 1$) for sections of $\mathcal{A}^{0,q}(E)$ as follows: Let $\psi \in \Gamma(U_i, \mathcal{A}^{0,q}(E))$ and we write ψ explicitly in the form

$$\phi = (\phi^1, \, \cdots, \, \phi^\beta, \, \cdots, \, \phi^r) \qquad \phi^\beta = \frac{1}{q\,!} \sum \phi^\beta_{i\bar{\mu}_1\cdots\bar{\mu}_q}(z_i) d\bar{z}_i^{\mu_1} \wedge \, \cdots \, \wedge d\bar{z}_i^{\mu_q}$$

in terms of local coordinates (z_i^1, \dots, z_i^n) and let

(3.28)
$$|\psi|_{k+\alpha}^{\mathcal{U}_{i}} = \sum_{h=0}^{k} \sup |D_{i}^{h} \psi_{i\bar{\mu}_{1}\cdots\bar{\mu}_{q}}^{\beta}(z_{i})|$$

$$+ \sup \frac{|D_{i}^{k} \psi_{i\bar{\mu}_{1}\cdots\bar{\mu}_{q}}^{\beta}(z_{i}) - D_{i}^{k} \psi_{i\bar{\mu}_{1}\cdots\bar{\mu}_{q}}^{\beta}(y_{i})|}{|z_{i} - y_{i}|^{\alpha}}$$

where the "sup" is extended over all points z_i , $y_i \in U_i$, all indices β , $\bar{\mu}_1, \dots, \bar{\mu}_q$ and all partial derivatives D_i^h , D_i^k of order h, k with respect to z_i^1, \dots, z_i^n , \bar{z}_i^1 , \dots , \bar{z}_i^n . For $\phi \in A^{0,q}(E)$ we define

$$|\psi|_{k+\alpha} = \max_{i} |\psi|_{k+\alpha}^{U_i}$$
.

For $\phi \in \Gamma(U_{ij}, \mathcal{A}^{0,q}(E))$ we define a norm $|\phi|_{k+\alpha}^{U_{ij}}$ by the formula (3.28) with additional restriction z_i , $y_i \in U_{ij}$. We do not indicate explicitly the domain, if no confusion is possible.

We introduce a harmonic theory on the sheaf Θ_X , denote by ϑ the adjoint operator of $\bar{\partial}$, and let $\Box = \vartheta \bar{\partial} + \bar{\partial} \vartheta$ be the complex Laplace-Beltrami operator and G the Green's operator.

Consider a formal power series

$$\phi = \phi(t) = \sum \phi_{\nu_1 \cdots \nu_r} t_1^{\nu_1} \cdots t_r^{\nu_r}$$

with coefficients in $A^{0,q}(E)$ (or in $\Gamma(U_i, \mathcal{A}^{0,q}(E))$ or in $\Gamma(U_{ij}, \mathcal{A}^{0,q}(E))$) and a power series

$$a(t) = \sum a_{\nu_1\cdots\nu_r}t_1^{\nu_1}\cdots t_r^{\nu_r} \qquad a_{\nu_1\cdots\nu_r} \geq 0$$
.

We indicate by $|\psi|_{k+\alpha} \ll a(t)$ that

$$|\phi_{\nu_1\cdots\nu_r}|_{k+\alpha} \leq a_{\nu_1\cdots\nu_r}$$
.

Let

$$A(t) = \frac{b}{16c} \sum_{\mu=1}^{\infty} \frac{1}{\mu^2} c^{\mu} (t_1 + \dots + t_r)^{\mu}.$$

Now we show that for a fixed integer $k \ge 2$ and α , $0 < \alpha < 1$, the construction of ϕ and Φ_i can be carried out in such a way that

$$(3.29) |\phi|_{k+\alpha} \ll A(t),$$

$$(3.30) |\boldsymbol{\Phi}_i - f_i|_{k+\alpha} \ll A(t).$$

For this purpose it suffices to prove

$$(3.29)_{\mu}$$
 $|\phi^{\mu}|_{k+\alpha} \ll A(t)$,

$$|\boldsymbol{\Phi}_{i}^{\mu}-f_{i}|_{k+\alpha}\ll A(t),$$

for $\mu = 1, 2, \cdots$.

The estimates $(3.29)_1$ and $(3.30)_1$ hold for sufficiently large b. Therefore we may assume that $\phi^{\mu-1}$ and $\Phi_i^{\mu-1}$ are already determined in such a way that $(3.29)_{\mu-1}$ and $(3.30)_{\mu-1}$ hold.

In (3.22), we may assume

$$\phi'_{\mu} = -\vartheta G \xi_{\mu},$$

and we infer from the results of Douglis-Nirenberg [1], that

$$|\phi'_{\mu}|_{k+\alpha} \ll K_1 |\xi_{\mu}|_{k-1+\alpha}$$

where K_1 is a constant which is independent of ξ_{μ} and μ . Moreover, we may amplify the condition (3.24) by

$$(3.24)^* \qquad \qquad \Box \chi_{\mu} = 0.$$

Now we prove the following key lemma:

LEMMA 3.3. Suppose that $\phi \in A^{0,1}(\Theta_X)$ and $\Xi \in A^{0,1}(f^*\Theta_Y)$ satisfying $\bar{\partial}(\Xi + F\phi) = 0$ are given. Then we can find $\chi \in A^{0,1}(\Theta_X)$ and $\Phi \in A^{0,0}(f^*\Theta_Y)$ in such a way that

$$(3.24)^* \qquad \qquad \Box \chi = 0 \,,$$

$$(3.33) |\chi|_{k+\alpha} \ll K_2(|\phi|_{k+\alpha} + |\Xi|_{k-1+\alpha}),$$

$$|\Phi|_{k+\alpha} \ll K_2(|\phi|_{k+\alpha} + |\Xi|_{k-1+\alpha}),$$

where K_2 is a constant which is independent of ϕ and Ξ .

PROOF. For any pair $\sigma = (\phi, \Xi)$ as above, let

$$\|\sigma\| = |\phi|_{k+\alpha} + |\mathcal{Z}|_{k-1+\alpha},$$

$$\iota(\sigma) = \inf |\chi|_{k+\alpha},$$

where the "inf" is taken with respect to all solutions (χ, Φ) of the equalities $(3.24)^*$ and (3.25).

We introduce a harmonic theory on the sheaf $f^*\Theta_Y$, and denote by ϑ' and G', respectively the adjoint operator of $\bar{\partial}$ and Green's operator. It suffices to prove the existence of a constant K_2 such that

$$\iota(\sigma) \leq K_2 \|\sigma\|$$
 for all pairs σ .

In fact, if the assertion is valid, we can find χ and Φ , satisfying (3.24)*, (3.25) and (3.33) (replacing K_2 by a larger constant if necessary). Then we can replace Φ by $\vartheta'G'(\Xi+F\phi-F\chi)$, and we obtain (3.34) from (3.33) (replacing K_2 by a larger constant, if necessary).

Now we prove the existence of such a constant K_2 . Assume that there is no such constant. Then we can find a sequence $\sigma^{(1)}$, $\sigma^{(2)}$, \cdots , $\sigma^{(\nu)}$, \cdots of pairs $\sigma^{(\nu)} = (\phi^{(\nu)}, \Xi^{(\nu)})$ such that

$$\ell(\sigma^{(\nu)}) = 1$$
 and $\|\sigma^{(\nu)}\| < 1/\nu$.

The first equality implies the existence of $\chi^{(\nu)} \in A^{0,1}(\Theta_X)$ and $\Phi^{(\nu)} \in A^{0,0}(f^*\Theta_Y)$ such that

$$(3.35) \qquad \qquad \Box \chi^{(\nu)} = 0.$$

(3.37)
$$|\chi^{(\nu)}|_{k+\alpha} < 2$$
.

Moreover we may assume that $\Phi^{(\nu)} = \vartheta'G'(\Xi^{(\nu)} + F\phi^{(\nu)} - F\chi^{(\nu)})$. From (3.37), it follows that, replacing $\sigma^{(1)}$, $\sigma^{(2)}$, \cdots by a suitable subsequence if necessary, we may assume that

$$\chi = \lim_{\nu \to \infty} \chi^{(\nu)}$$

exists in the norm $| \cdot |_{k}$. A priori, χ is of class C^{k} . But by virtue of [1] Theorem 5, χ is in fact of class C^{∞} , for χ satisfies an elliptic partial differential equation $\Box \chi = 0$. Moreover, from [1] Theorem 4 it follows that

$$|\chi^{(\nu)} - \chi|_{k+\alpha} \leq \text{const.} |\chi^{(\nu)} - \chi|_{0}$$
.

Hence $\chi^{(\nu)}$ converges to χ in the norm $|\cdot|_{k+\alpha}$. Moreover by the construction of $\Phi^{(\nu)}$, $\Phi^{(\nu)}$ converges to a C^{∞} section Φ . From (3.36) it follows that

$$(3.38) 0 = F\chi + \bar{\partial}\Phi.$$

Consequently we infer from (3.36) and (3.38) that

$$\Xi^{(\nu)} + F\phi^{(\nu)} = F(\chi^{(\nu)} - \chi) + \bar{\partial}(\phi^{(\nu)} - \phi)$$

On the other hand, we have

$$|\chi^{(\nu)} - \chi|_{k+\alpha} < 1/2$$

for sufficiently large integer ν ; this contradicts $\iota(\sigma) = 1$. q. e. d. Now we prove the following inequalities:

$$(3.39) |\xi_{\mu}|_{k-1+\alpha} \ll \frac{K_3 b}{c} A(t)$$

$$|\mathcal{Z}_{i|\mu}|_{k-1+\alpha} \ll \frac{K_4 b}{c} A(t)$$

$$|\Gamma_{ij|\mu}|_{k+\alpha} \ll \frac{K_5 b}{c} A(t)$$

where K_3 , K_4 and K_5 are constants which are independent of μ .

PROOF. The inequalities (3.39) and (3.40) can be easily deduced from induction hypotheses $(3.29)_{\mu-1}$ and $(3.30)_{\mu-1}$.

Now we prove the inequality (3.41). Let $w_j + u = (w_j^1 + u_1, \dots, w_j^m + u_m)$. We expand $g_{ij}(w_j + u)$ into a power series in m variables u_1, \dots, u_m , and let $L_{ij}(w_j, u) = [g_{ij}(w_j + u)]_1$ be the linear term of the power series. We may assume that

$$|g_{ij}(w_j+u)-g_{ij}(w_j)-L_{ij}(w_j, u)|_{k+\alpha}$$

$$\ll \frac{b_0}{c_0}\sum_{\mu=2}^{\infty}c_0^{\mu}(u_1+\cdots+u_m)^{\mu}.$$

Let $u(z_j, t) = \Phi_j^{\mu-1}(z_j, t) - f_j(z_j)$. Then, by inductive hypothesis, $|u|_{k+\alpha} \ll A(t)$. Let K_0 be a constant such that

$$|\phi\psi|_{k+\alpha} < K_0 |\phi|_{k+\alpha} |\psi|_{k+\alpha}$$

for any ϕ and ψ . Then it follows that

$$\begin{split} | \left[g_{ij}(\mathbf{\Phi}_{j}^{\mu-1}(z_{j}, t)) \right]_{\mu} |_{k+\alpha} & \ll \frac{b_{0}}{c_{0}} \sum_{\mu=2}^{\infty} K_{0} c_{0}^{\mu} | (u_{1} + \cdots + u_{m})^{\mu} |_{k+\alpha} \\ & \ll \frac{b_{0}}{c_{0}} \sum_{\mu=2}^{\infty} c_{0}^{\mu} m^{\mu} K_{0}^{\mu} A(t)^{\mu} \,. \end{split}$$

Assume that

$$\frac{mbc_0K_0}{c} < \frac{1}{2}.$$

Then we have

$$\sum_{\mu=2}^{\infty} c_0^{\mu} m^{\mu} K_0^{\mu} A(t)^{\mu} \ll \sum_{\mu=2}^{\infty} c_0^{\mu} m^{\mu} K_0^{\mu} (b/c)^{\mu-1} A(t) \ll \frac{2m^2 b c_0^2 K_0^2}{c} A(t) .$$

This proves the inequality (3.41).

Let $\{p_i(z)\}$ be a partition of unity subordinate to the covering $\{U_i\}$. As a solution $\Gamma_{i|\mu}$ of the equations (3.20), we take

$$\Gamma_{i|\mu} = \sum_{i} p_{j}(z) \Gamma_{ji|\mu}$$
 defined on U_{i} .

Then there exists a constant K_6 (which is independent of μ) such that

$$(3.43) |\Gamma_{i|\mu}|_{k+\alpha} \ll K_{\epsilon} |\Gamma_{ij|\mu}|_{k+\alpha}.$$

Consequently, from (3.32) and (3.39), it follows that

$$|\phi'_{\mu}|_{k+\alpha} \ll \frac{K_3 K_1 b}{c} A(t).$$

From (3.21), (3.40), (3.41) and (3.43), it follows that

$$|\mathcal{E}'_{\mu}|_{k-1+\alpha} \ll \left(\frac{K_4 b}{c} + \frac{K_5 K_6 b}{c}\right) A(t).$$

Combining these with Lemma 3.3, we can find χ_{μ} and Φ'_{μ} satisfying (3.24)* and (3.25) in such a way that

$$|\chi_{\mu}|_{k+\alpha} \ll K_2 K^* A(t),$$

$$|\Phi'_{\mu}|_{k+\alpha} \ll K_2 K^* A(t) ,$$

where

q. e. d.

$$K^* = \frac{K_3 K_1 b}{c} + \frac{K_4 b}{c} + \frac{K_5 K_6 b}{c} .$$

It follows from (3.26), (3.44) and (3.46) that

$$|\phi_{\mu}|_{k+\alpha} \ll \left(\frac{K_3K_1b}{c} + K_2K^*\right)A(t)$$
.

From (3.27), (3.41), (3.43) and (3.46) we get

$$|\boldsymbol{\Phi}_{i|\mu}|_{k+\alpha} \ll \left(\frac{K_5 K_6 b}{c} + 2K_2 K^*\right) A(t)$$
.

On the other hand, we can choose b and c satisfying (3.42) such that

$$\frac{K_{3}K_{1}b}{c} + 2K_{2}K^{*} < 1$$
, $\frac{K_{5}K_{6}b}{c} + 2K_{2}K^{*} < 1$.

Consequently we obtain

$$|\phi_{\mu}|_{k+\alpha} \ll A(t)$$
, $|\Phi_{i|\mu}|_{k+\alpha} \ll A(t)$.

This proves $(3.29)_{\mu}$ and $(3.30)_{\mu}$.

III) Final step. We fix an integer $k \ge 2$ and α , $0 < \alpha < 1$. It follows from (3.29) that

$$\phi(t) = \phi_1(t) + \phi_2(t) + \cdots + \phi_n(t) + \cdots$$

converges in the norm $| \ |_{k+\alpha}$ for sufficiently small |t|. Note that (3.31) and (3.24)* imply that $\vartheta\phi_{\mu}(t)=0$ for $\mu\geq 2$. Hence the argument of Kodaira-Nirenberg-Spencer ([8], pp. 458-459) can be applied to prove that there exists a complex analytic family $p: \mathcal{X} \to M$ of deformations of X, where each fibre $p^{-1}(t)$ is endowed with a complex structure determined by $\phi(t)$. By the equalities (3.3), (3.5), the collection $\{\Phi_i(z_i, t)\}$ defines a differentiable map $\Phi: \mathcal{X} \to Y \times M$ of class C^k which coincides with f on X. From (3.4) it follows that Φ is holomorphic.

The characteristic map is given by the formula

$$\tau\left(\frac{\partial}{\partial t_{\lambda}}\right) = P\Phi_{1\lambda}.$$

Hence, by the construction, $\tau: T_o(M) \to H^o(X, \mathcal{I})$ is bijective.

Appendix. Elementary proof of formal existence theorem.

THEOREM. Let $f: X \to Y$ be a non-degenerate holomorphic map. If $H^1(X, \mathcal{I}_{X/Y}) = 0$, then there exists a formal family $(\mathcal{X}, \Phi, p, M)$ of non-degenerate holomorphic maps into Y and a point $o \in M$ such that

i) $\Phi_o: X_o \to Y$ is equivalent to $f: X \to Y$,

ii)
$$\tau: T_o(M) \to H^o(X, \mathcal{I}_{X/Y})$$
 is bijective.

PROOF. We may assume the conditions i)—v) in the proof of Theorem 3.1. We prove the existence of formal power series $\phi_{ij}(z_j, t)$ and $\Phi_i(z_i, t)$ which satisfy

(A.1)
$$\phi_{i,i}(z_i, 0) = b_{i,i}(z_i)$$
,

(A.2)
$$\phi_{ij}(\phi_{jk}(z_k, t), t) = \phi_{ik}(z_k, t)$$
,

$$\mathbf{\Phi}_{i}(z_{i}, 0) = f_{i}(z_{i}),$$

(A.4)
$$\Phi_i(\phi_{ij}(z_i, t), t) = g_{ij}(\Phi_i(z_i, t))$$
.

Clearly (A.2) and (A.4) are equivalent to the following systems of congruences:

$$(A.5)_{\mu} \qquad \qquad \phi^{\mu}_{ij}(\phi^{\mu}_{jk}(z_k, t), t) \equiv \phi^{\mu}_{ik}(z_k, t) ,$$

$$(A.6)_{\mu} \qquad \qquad \boldsymbol{\Phi}_{i}^{\mu}(\phi_{ij}^{\mu}(z_{j}, t), t) \equiv g_{ij}(\boldsymbol{\Phi}_{j}^{\mu}(z_{j}, t)).$$

Assume that $\phi_{ij}^{\mu-1}(z_j, t)$ and $\Phi_i^{\mu-1}(z_i, t)$ satisfying $(A.5)_{\mu-1}$ and $(A.6)_{\mu-1}$ are already determined. We define homogeneous polynomials in t of degree μ by the following congruences:

(A.7)
$$\gamma_{ijk|\mu}(z_i, t) \equiv \phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1}(z_k, t), t) - \phi_{ik}^{\mu-1}(z_k, t) ,$$

(A.8)
$$\Gamma_{ij|\mu}(z_i, t) \equiv \Phi_i^{\mu-1}(\phi_{ij}^{\mu-1}(z_j, t), t) - g_{ij}(\Phi_j^{\mu-1}(z_j, t)),$$

where $z_i = b_{ij}(z_i)$.

Then we have the following equalities:

(A.9)
$$G_{ij}(f_j(z_j))\Gamma_{jk|\mu}(z_j, t) + \Gamma_{ik|\mu}(z_i, t) + \Gamma_{ij|\mu}(z_i, t) = F_i(z_i)\gamma_{ijk|\mu}(z_i, t)$$
,

(A.10)
$$B_{ij}\gamma_{jkl|\mu} - \gamma_{ikl|\mu} + \gamma_{ijl|\mu} - \gamma_{ijk|\mu} = 0, \quad {F_i, G_{ij} \text{ and } B_{ij} \text{ are the same as in § 3}}.$$

PROOF. (A.10) follows from (A.9) because F is injective. We prove the equality (A.9).

$$\begin{split} \varGamma_{ik\,|\mu} &\equiv \varPhi_i^{\mu-1}(\phi_{ik}^{\mu-1},\,t) - g_{ik}(\varPhi_k^{\mu-1}) \\ &\equiv \varPhi_i^{\mu-1}(\phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1},\,t) - \gamma_{ijk\,|\mu},\,t) - g_{ij}(g_{jk}(\varPhi_k^{\mu-1})) \\ &\equiv \varPhi_i^{\mu-1}(\phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1},\,t)) - F_i\gamma_{ijk\,|\mu} - g_{ij}(\varPhi_j^{\mu-1}(\phi_{jk}^{\mu-1},\,t) - \varGamma_{jk\,|\mu}) \\ &\equiv \varPhi_i^{\mu-1}(\phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1},\,t),\,t) - g_{ij}(\varPhi_j^{\mu-1}(\phi_{jk}^{\mu-1},\,t)) + G_{ij}\varGamma_{jk\,|\mu} - F_i\gamma_{ijk\,|\mu} \\ &\equiv \varGamma_{ij\,|\mu} + G_{ij}\varGamma_{jk\,|\mu} - F_i\gamma_{ijk\,|\mu} \,. \end{split} \qquad \qquad \text{q. e. d.}$$

We prove that $(A.5)_{\mu}$ and $(A.6)_{\mu}$ are equivalent to the following:

$$(A.11) -\gamma_{ijk|\mu} = B_{ij}\phi_{jk|\mu} - \phi_{ik|\mu} + \phi_{ij|\mu},$$

(A.12)
$$\Gamma_{ij|\mu} = G_{ij}(f) \Phi_{j|\mu} - \Phi_{i|\mu} - F_i \phi_{ij|\mu}.$$

PROOF. We have

$$\begin{aligned} \phi_{ij}^{\mu}(\phi_{jk}^{\mu}, t) &= \phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1} + \phi_{jk|\mu}, t) + \phi_{ij|\mu}(\phi_{jk}^{\mu}, t) \\ &\equiv \phi_{ij}^{\mu-1}(\phi_{jk}^{\mu-1}, t) + B_{ij}\phi_{jk|\mu} + \phi_{ij|\mu}. \end{aligned}$$

Hence $(A.5)_{\mu}$ is equivalent to (A.11).

Similarly

$$\begin{split} \boldsymbol{\varPhi}_{i}^{\mu}(\boldsymbol{\varPhi}_{ij}^{\mu},\,t) &= \boldsymbol{\varPhi}_{i}^{\mu-1}(\boldsymbol{\varPhi}_{ij}^{\mu-1} + \boldsymbol{\varPhi}_{i\,j\,\mid\mu},\,t) + \boldsymbol{\varPhi}_{i\,\mid\mu}(\boldsymbol{\varPhi}_{ij}^{\mu},\,t) \\ & \equiv \boldsymbol{\varPhi}_{i}^{\mu-1}(\boldsymbol{\varPhi}_{ij}^{\mu-1},\,t) + F_{i}\boldsymbol{\varPhi}_{i\,j\mid\mu} + \boldsymbol{\varPhi}_{i\,\mid\mu}\,, \\ g_{ij}(\boldsymbol{\varPhi}_{j}^{\mu}) &\equiv g_{ij}(\boldsymbol{\varPhi}_{j}^{\mu-1}) + G_{ij}(f)\boldsymbol{\varPhi}_{j\mid\mu}\,. \end{split}$$

It follows that $(A.6)_{\mu}$ is equivalent to (A.12).

LEMMA. (A.12) implies (A.11).

This lemma follows from the fact that F is injective.

Take a basis $\tau_{\lambda}(1 \leq \lambda \leq r)$ of $H^0(X, \mathcal{I})$. Then τ_{λ} is locally represented by $\sum \Phi_{\lambda i}^{\rho} \frac{\partial}{\partial w_i^{\rho}} \in \Gamma(U_i, f^*\Theta_Y)$ and we can find $\phi_{\lambda ij} \in \Gamma(U_{ij}, \Theta_X)$ such that

$$\sum \Phi_{\lambda j}^{\rho} \frac{\partial}{\partial w_{i}^{\rho}} - \sum \Phi_{\lambda i}^{\rho} \frac{\partial}{\partial w_{i}^{\rho}} = F \phi_{\lambda i j}.$$

It follows that $\phi_{ij|1} = \sum \phi_{\lambda ij} t_{\lambda}$ and $\Phi_{i|1} = \sum \Phi_{\lambda i} t_{\lambda}$ satisfy (A.12).

Now assume that $\phi_{ij}^{\mu-1}(z_j,t)$ and $\Phi_i^{\mu-1}(z_i,t)$ are already determined. Then, by the equality (A.9), $\{P\Gamma_{ij|\mu}\}$ represents a 1-cocycle with coefficients in \mathcal{I} . Hence, by hypothesis, this is a coboundary. Hence we can find $\phi_{ij|\mu}$ and $\Phi_{i|\mu}$ satisfying (A.12). This proves the existence of a formal family, and by the construction τ is bijective.

References

- [1] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538.
- [2] A. Grothendieck, Techniques de construction en géométrie analytique I-X, Sém. H. Cartan, 13 (1960/61).
- [3] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
- [4] E. Horikawa, On deformations of holomorphic maps, Proc. Japan Acad., 48 (1972), 52-55.
- [5] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures I, II, Ann. of Math., 67 (1958), 328-466.

- [6] K. Kodaira and D.C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math., 100 (1958), 281-294.
- [7] K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68 (1958), 450-459.
- [8] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 75 (1962), 146-162.

Eiji HORIKAWA
Department of Mathematics
University of Tokyo
Hongo, Bunkyo-ku, Tokyo
Japan