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Notation.

C': the field of complex numbers.
X, Y, Z: compact complex manifolds.
%, Y, &, M, M, N: (connected) complex manifolds.
If f: X—Y is a holomorphic map,
O y,v: the sheaf of germs of relative vector fields,
Oy =0y, the sheaf of germs of holomorphic vector fields on X.
If E is a vector bundle (or a locally free sheaf) on X,
A%YE): the sheaf of germs of differentiable (0, ¢)-forms with coef-
ficients in E,
AY(E)Y=T'(X, A%(E)).
If p: £— M is a family of compact complex manifolds,
X, : the fibre over t M.
If g: 94— N is another family of compact complex manifolds and if
(@, s): (¢, p, M)— (Y, q, N) is a morphism of families (i.e., @: X — Y,
s: M— N, qo® =sop),
@,: X,— Y,4,: the holomorphic map induced by @.
If {U;} is an open covering of X
Ui =U:n"U; N\ - N Uy

For any vector t=(t,, t,, -+, t,),
ltl::m'ilx]t;].
We denote by v the multi-index (vy, -*-, v,), and

P =gre ... P

[vl=v,+v,+ - v,

Introduction.

The modern deformation theory has begun with the splendid work of
Kodaira-Spencer followed by [6], [7]. Moreover Kodaira has investigated
families of submanifolds of a fixed complex manifold in [8] The next
natural problem is to investigate “deformations of holomorphic maps.” First
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we define the notion of families of holomorphic maps. There are several
aspects.

i) A family of holomorphic maps is a collection {f;: X— Y|t M} para-
metrized by M (X, Y being fixed).

If we allow the complex manifold X to vary, we obtain the second de-
finition :

ii) A family of holomorphic maps consists of a family {X,|te M} plus
a collection {f,: X,—Y|te M} (Y being fixed).

Moreover, we may also allow the complex manifold Y to vary. But we
fix once for all a family 4—S, e.g., a complete family of deformations of
some given Y, in which Y should vary. From this aspect we obtain the
third definition:

iii) A family of holomorphic maps consists of a family {X,|te M}, a
holomorphic map s: M— S and a collection {f,: X;— Y, |t€ M} (4— S being
fixed).

This paper is the first part of a study of “germs” of deformations of
holomorphic maps. The main results of this study were announced in a
short note [4].

In this paper, we take the second definition, and define a characteristic
map 7, then prove two fundamental theorems which correspond to the results
of [6], [7], under the assumption that holomorphic maps in consideration are
non-degenerate, i.e., the rank of the Jacobian matrix at some point x< X is
equal to dim X.

In the Appendix, we give an elementary proof of the existence of effec-
tively parametrized complete family as a formal analytic space. The author
does not know whether one can prove convergences from this approach.

§1. Infinitesimal deformations.

In this section we define a characteristic map for deformations of non-
degenerate holomorphic maps, which plays a fundamental role.

Let Y be a fixed compact complex manifold.

DEFINITION 1.1. By a family of holomorphic maps into Y, we mean a
quadruplet (X, @, p, M) of complex manifolds %, M and holomorphic maps
Q: X—-Y=Y X M, p: £— M with following properties:

i) p is a surjective smooth proper holomorphic map,

ii) gqo®=p where ¢: Y— M is the projection onto the second factor.

Two families (¥, @, p, M) and (X, @/, p’, M’) of holomorphic maps into
Y are said to be equivalent if there exist analytic isomorphisms ¥ : ¥ — ¥’/
and ¢: M— M’ such that the following diagram
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r
X —— X

!
? l idX ¢ l ?
YXM-———m— VXM
is commutative.

If (¢,®,p, M) is a family of holomorphic maps into Y, and if h: N- M
is a holomorphic map, we can define the family (¥, @', p’, N) induced by h
as follows:

i) X'=X%xyN,.

i) @ =0Xid: X'—>(YXM)XyN=YXN,

ili) p/=py: X'—>N
(for the notation, see [2]).

In particular, if N is a submanifold of M and if & is the natural injec-
tion, we call (¥’, @', p’, N) the restriction on N and denote it by (X |y, Dly,
plw, N).

DEFINITION 1.2. A family (%, @, p, M) of holomorphic maps into Y is
complete at o= M if, for any family (¥’, @, p’, N) such that @,: X,— 7Y is
equivalent to @,: X,— Y for a point 0o’ € N, there exists a holomorphic map
h of a neighborhood U of o’ in N into M with h(0’) =0 such that the restric-
tion of (X/, @/, p’, N) on U is equivalent to the family induced by i from
(x,0, p, M).

Now we define a characteristic map. Let (£, @, p, M) be a family of
holomorphic maps into Y, oe M, X=X, and f=®,: X—Y. Then we have
an exact sequence

F
0 @X/Y @X f*@Y
of coherent sheaves on X ([2], VII). Let =94, be the cokernel of the
canonical homomorphism F, then we have an exact sequence

F P
(1.1) O—éax/y_‘»@x—)f*@y—ég—)().

Restricting M on a neighborhood of o if necessary, we may assume the fol-
lowing :

i) M is an open set in C” with coordinates t = (¢, -, £,) and 0=(0, --+, 0).

ii) 2 is covered by a finite number of Stein coordinate neighborhoods
U;. Each 9J; is covered by a system of coordinates (z;, ) such that p(z, 1)
=1t (we indicate by (z;, t) a set of n+7 complex numbers z}, ---, 2z, t,, -+, t,,
and the point on U; with the coordinates (2, ---, 27, t,, -+, £,)).

iii) Y is covered by a finite number of Stein coordinate neighborhoods
V, with a system of coordinates w;= W}, ---, wp), O(U,)CV;=V;X M, and
in terms of these coordinates @ is given by
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w; =0z, 1),
and let f(z;) =Dz, 0).
iv) (z; t) coincides with (z; t) if and only if
z;=04(z; 1).

v) (w;) coincides with (w;) if and only if

w;= Sbtj(wj) .
Then we have

(1.2) D(Dii(z;, 1), =Dz, 1)).

Let T,(M) denote the tangent space of M at 0. For any aitET"(M)’ let
_<w 00l a4

@3 =2 5 au

(where —%31 = vz--%% for _aat_ = sz%> which is regarded as an element

of I'(U,, f*@y) (U;=XN\U;). Then from the equality we infer that
0

=0 02

(14 T—— F(gﬁ%ﬁ

Therefore the collection {Pr;} defines an element of H%X, 9). Thus we

define a linear map
v Ty(M)— H (X, I)

which we call the (partial) characteristic map of the family of holomorphic
maps into Y at o.

PROPOSITION 1.3. The linear map z, defined above, is independent of the
choice of coverings and systems of coordinates.

PrROOF. Clearly 7 is invariant under a refinement of coverings. Hence
it suffices to consider the case of fixed coverings. Let (2}, #) and (w}) be other
systems of coordinates on U; and on V;, respectively, then

i) (z}, t) coincides with (z;, f) if and only if

z;=hyz;, 1),
ii) (wj) coincides with (w,) if and only if
w; = g(wy),
iii) @ is given in terms of new coordinates by

w;=@i(z;, 1) .

We must have the equality :
(1.5) D (z;, t) = gi(Di(hi(zy, 1), 1)) .
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Let z; be the element of I'(U,, f*@y) definéd by the formula [1.3) with the
aid of @}, then from [1.5) it follows that
he
Ti‘—ngF(E‘*aa;* Fo“azg ) .
This proves the assertion.

A holomorphic map f: X— Y is called non-degenerate, if rank,df =dim X
for some point z< X. If f is non-degenerate, the set of z< X such that
rank, df < dim X forms a proper analytic subset of X, and the exact sequence
(1.1) reduces to

F P

1.1y 0 Oy f*Oy T 0.
A family (¢, @, p, M) of holomorphic maps into Y is called a family of non-
degenerate holomorphic maps into Y if @,: X,— Y, is non-degenerate for any
point t= M.

In this paper, we restrict ourselves to families of non-degenerate holo-
morphic maps (general case will be discussed in a future).

PROPOSITION 1.4. Let (2, @, p, M) be a family of non-degenerate holomor-
phic maps into Y, o= M and X=X, then the diagram

T(M) —> HY(X, )
P l5
HY(X, Oy)
is commutative, where p is the infinitesimal deformation map of the family

(%, p, M) at o [Kodaira-Spencer 5, chap. Il, 5] and & is the coboundary map
of cohomology groups.

PROOF. By definition, ‘0<—aat—> is the cohomology class of the 1l-cocycle

Z*Q%L *52,—. Our assertion follows from the equality {(1.4).
=0 3

REMARK 1.5. [Proposition 1.4] assures that in the case of a family of non-
degenerate holomorphic maps into Y, the characteristic map = completely
describes the infinitesimal deformations. Or more explicitly, given a non-
degenerate holomorphic map f: X— Y, the set of classes of “families” of
holomorphic maps into Y “with base space Spec (C[t]/t*)” (cf. Grothendieck
[2]) extending f, has a natural structure of principal homogeneous space
under the group HYX, a).

§2. A theorem of completeness.

In this section we prove the following theorem analogous to [6].
THEOREM 2.1. Let (X,®D, p, M) be a family of non-degenerate holomorphic



On deformations of holomorphic maps I 377

maps into Y, 0e M, X=X, and f=®@,: X—Y. If the characteristic map 7
T(M)— HX, ) at o is surjective, then the family is complete at o (in the
sense of Definition 1.2).

To prove the theorem, it suffices to prove that, for any famlly (=, 0,
p’, M') of holomorphic maps into Y, such that @, : X, —Y is equivalent to
f: X—=Y for some o’ = M, there exist a holomorphic map t: M'— M with
t(0’)=o (restricting M’ on a neighborhood of o’ if necessary) and a holomor-
phic map g: X/— X over ¢{ which maps X; biregularly onto X;..

We employ the notation of §1 (“’” indicates something on X’). More-
over we assume that M, M’, U,, U} and V; are open balls in some affine spaées.
Since @, is equivalent to @, we may assume that U;=U,, z;=2z; on U,

(21, 0) = D(z;, 0) = fi(22), Pisz;, 0)=@is(z;, 0)=1bij(z;). Let Mi={'e M : |V
< e} with ¢ >0 sufficiently small. We construct holomorphic maps {: M:— M
and g;: U;Xx M;— C™ which satisfy the following conditions:

(2.0) gz, 0)=2z;, (0)=0
2.1) gi(Pi;, t1) = ¢i(g;, 1)),
(2.2) 0,(g;, 1) =Di.

(We do not indicate the domain where the equality should hold, if no confu-
sion arises.)

I) Existence of formal solutions. We first prove the existence of formal
power series g; and t’ satisfying (2.00—(2.2). For this purpose, we introduce
some notations. Let P(s)=P(s, -, S;), Q(s) be power series in s with co-
efficients in some module. We write

P(5) = Py(s)+ Py(s)+ -+ +Pu(s)+ -

where P.(s) is a homogeneous polynomial in s of degree g. We indicate by
P#(s) the polynomial

P#(s) = Py(s)+Py(s)+ -+ +P,u(s) .
Moreover we write P(s)*O if P#(s)=0, and P(s)._Q(s) if P(s)— Q(s)_O We

identify a holomorphic functlon with its power ser1es expansion. ‘
With these notations, [2.1] and [2.2) are equivalent to the following systems
of congruences:

(2'3)# g5 (¢1J7 t/) f ¢1.](g79 tﬁ) #:0? 11 Tty
(2~4>/t (Di(gli‘, t‘u) = @{ ﬂ:(), 1, oo
7

We construct g# and #* satisfying (2.3). and (2.4), by induction on g.
Suppose therefore that t*~* and g#~* satisfying (2.3),.-, and (2.4),.-, are already
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determined.

We define I';; ., I'(U;;, Ox) (resp. .. ['(U;, f*¥0y)) (by this we mean
that I';;, is a homogeneous polynomial of degree p with coefficients in
I'(U;;, ©x) and so on, by abuse of notation), by the congruence

0

(2.5) Lijn= (g,“(%, ) =¢85 7)) - -
(resp.
26) o = @i=(gt™, 147 - 50-)
(where we use the following notation: - aa =>h° 8%5 for any n-vector
h=(h)).
Now we prove that we have the following equalities:
2.7 L= iept+151,=0,
(2.8) FLu=7ju—Tiw-

PROOF. The equality is proved in [6, Lemma 2]. The equality
can be proved in a similar way as follows (we omit the indices g—1, if no
confusion is possible).

O @is 1) = i J(DF)
f ¢ij(¢j(gj, t)‘{‘ij,)

'ﬂ:—c/)i,-(@j(gj, )+Cijrjie  where Cy;= (ﬂfL) )
On the other hand, we have
$:/( @585 ) = Di($:,(2; 1)
= ¢z(g1.(¢ljv )=

‘ o _ (L.
——: @i<gi(¢ij, ) Fﬂrijlu where F; _< 0z; )
It follows that

Vi _7_ T l,u(¢£jv ) f Cij)’jm—Fi['ijm . g.e.d.

Our purpose is to determine

t(d) = 1)+ 1) ,
and
gz, ) =g# 7' () +gu ) ,
which satisfy (2.3), and (2.4),.
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We prove that (2.3), and (2.4), are equivalent to
(2.9 Fijsngjl,u—gi m+2tuy,0m ,
(2.10) Tie=Fgipt2t0uTia,

where we denote by the same letter g the section Z}gp-'a%,;— of the sheaf
f*Oy, etc., and

’ 3¢” a@;

e B e T

Pis 0ty li=o “ 0ty |i=o

PROOF. The first equivalence is proved in [6, p. 290]. The second equi-
valence follows from the congruence

D,(g#, t") = @i(g{"'l"{"ng, e )
=Q,(gt " D)+ Figuut DtauTia.
u

Now we prove the existence of {, and g;.

LEMMA 2.2. We can find t, and g;, which satisfy (2.9) and (2.10).

PROOF. First note that the equality [2.10) implies [2.9), for F is injective.
The equality shows that the collection {Py;} determines a homogeneous
polynomial of degree p with coefficients in H°(X, ). Since the characteristic
map 7 is assumed to be surjective, we can find £, such that

Pryu=2Zt.Pri.
This proves the lemma.
This lemma completes our inductive construction of #(¢') and g#(z,, t').
II) Proof of convergence. Now we prove that, if we choose solutions
t(t") and gz, t') of the equations [2.9) and [2.10) properly in each step
of the above construction, the power series

HE) = K)o )+ -
8z, t) =2zt gz, V)4 - +gi!y(ziy )4 .-

converge absolutely and uniformly for || <e provided that ¢>0 is suffi-
ciently small.
Consider a power series

8(8) =2 8upgvy Syt Sy2 e ST
whose coefficients g,,,.., are vectors, and a power series
a(S) = 2 Ay pyny SYIS52 -0 S)T

with non-negative coefficients. We indicate by writing g(s) < a(s) that

Igvluz---ur é avlv2---l-77-'

Let
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A= g B~ cHlsisit s

c =
We remark that

v-1
Ay < (—lcj-) A(s) for v=2,3,4, ---.

For our purpose it suffices to derive the estimates
(2.11), ) CAW),  gie, 1)~z < At

by induction on g provided that the coefficients b, ¢ are chosen properly.
For =1 the estimates (2.11), are obvious if & is sufficiently large. Assume
therefore that the estimates (2.11),., are established for some g Then we
have

K K Kb
2.12) Tiples, 1) < (54 S0+ =2 AW,
(2.13) rondzo ) € (0 -5y 4y
where K,, K,, -, K; are constants independent of .

PROOF. The estimate is proved in [6, pp. 292-294]. So we prove
only the estimate [2.13) We expand @,(z;+y, ) into power series in n+47
variables y;, -+, ¥, t;, -+, I, and let

Li(zi’ Y, t) = [¢‘L(zl+y’ t)]l

be the linear term of the power series. Then we may assume that the power
series expansion of @,(z;+y, t) in (¥, t) satisfies

D (z;+y, )—fi(z)—Li(z, 3, 1)

b S ot vkt e Y

Co p=2

L

Letting y=g4# %z, t")—z;, t=1t*"'(t) and using our inductive assumption
-1 We obtain the estimate
[Pt (20 1), HEN]u € 2 S chlnrIACY.
0 p=
Assume that
(n+nbc, ~ 1
(2.14) =<5
Then we have

3% et Ay < 3 et re(-2) A
p=2

u=2

2H A2
& MAOQ
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and therefore .
2
(D gz, 1), (1)L 2LT DIl g4y

While we may assume

b
¢

Difz, 1) —fiz) € 20 3 et + - +EL)=.
0 ;131

Assume that

(2.15) b>b,, c>Co,
then we obtain the estimate [2.13). g.e.d.
We may assume that p;;, 7;, F;, C;; and B;; = gzlﬁ are uniformly bounded.
i

For any pair 6 =(I", y) of a 1-cocycle {I’;;} and a 0-cochain {r;} satisfying

(2.8 FIy=71;—713,
we define the norm |jg|| by
lell = 1L1+1rlt,
where
17l = max sup IT:5(zal,  llyll=max sup lyi(za)].

LEMMA 23. For any pair o=, 7) of a l-cocycle I' and a 0-cochain 7y
satisfying (2.8)’, we can find g,(z;) and t, satisfying
2.9y Iij=g;—g+2Ztpiu,
(2.10) 7i=Fgi+2tra,
lgi(z) | = Kelloll, |t = Klall,

where K, is a constant independent of o.
PrROOF. We define

t(0) = inf max {sup |g«(z;)|, |1}

where the “inf” is taken with respect to all solutions g;(z;), {; of the equa-
tions [2.9) and [2.10}. It suffices to prove the existence of a constant K
such that ¢(o) = Ki|lo|. Suppose that such a constant K, does not exist. Then
we can find a sequence ¢, 6®, ---, ¢, --- of pairs ¢® = (I"", y*”) satisfying
2.8} such that ¢((6*’)=1, [|6*’| <1/v. ¢(6*’)=1 implies that there exist g®
and {* such that

(2.16) ' =g9—g¥+2tPpijz,
(2.17) T =Fg¥P+3t¥ri,
lgP(z)|<2, []<2.
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Hence replacing ¢, 0¥, --- by a suitable subsequence if necessary, we may
suppose that g;(z;)=1im g{”(z;) and t;=1im ¢} exist, where the convergence
g¥(z;)— g(z;) is uniform on each compact subset of U; and g;(z;) is holo-
morphic on U,. Since

(2.18) [I'H @) —0, [1P@E)—0 (v—> )
we obtain

(2.19) O0=g,—g;+2t0:1,

(2.20) 0=Fg;+>2t7.

Let {U¥} be a covering of X such that U¥ is a relatively compact subset of
U;. For each point z; < U, there exists at least one U¥ such that z;,eU,NU¥.
Hence we infer from [2.16) and [(2.18) that g’(z,) converges to g;(z;) uniformly
on the whole of U;. Letting gi(z;) =g (z)—gi(z;) and t)=1ty—t, for a suf-
ficiently large integer v, we have therefore
lgi(z)| <1/2, |#1<1/2,
while we infer from (2.16), (2.17), (2.19) and [(2.20) that
F‘é;) =g} —g£+2tipm ,
1P =Fgi+2titiz.
This contradicts ¢(¢®*’) =1. g.e.d.

Consequently we can choose solutions g;.(2;, t') and £,(¢) of the equations
[2.9) and [(2.10) such that

& ,y(zi, t/) < KGK*A(t/) and t‘u(t/) L KGK*A(t/)

where

K*= Kl'b|'K4

K. (K34-Ky)b
+ Cz+ ¢ .

On the other hand, by a proper choice of the constants b and ¢ satisfying
(2.14) and [(2.15), we obtain
KK*<1,
and we infer that g;.(z;, t') < A(t") and t.(t') K A(’). This proves (2.11),.
g.e.d.

§3. A theorem of existence.

The purpose of this section is to prove the following theorem.

THEOREM 3.1. Let f: X—Y be a non-degenerate holomorphic map. If
HY (X, Txy) =0, then there exist a family (%, @, p, M) of non-degenerate holo-
morphic maps into Y and a point o= M such that

i) @,: Xo— Y is equivalent to f: X—Y,

i) 7: To{(M)— H"X, Tx/v) is bijective.
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First we define the Poisson bracket of differentiable vector (0, ¢)-forms.
We denote by A"%(@y) the linear space of differentiable vector (0, ¢)-forms

¢':(¢1’ ) ¢a’ Tty ¢,n)
o= % X D5 pgQZIN -+ AdZFa,

The exterior derivative d¢ of ¢ is defined by
5¢:(39{;1’ . 39[)“, e 5¢") .
We define the Poisson bracket

Lo, p1=([9, ¢1', -, L@, ¢1%, -, [9, ¢1")
of ¢ = A%(@) and ¢ = A%(O) by

(6, ¢17= (8 A 8,40 +(= 1" 1 8,4")
where g

I G R _
0% = g1 2 azlﬂ Ldzm A -+ N dzfa.

[#, ¢] is a vector form in A%?*9(Oy).

For any locally free sheaf E (of finite rank), we denote by A%YE) the
sheaf of germs of differentiable vector (0, ¢)-forms with coefficients in E,
and let A%YE)=TI"(X, A%(E)). Then we have the Dolbeault isomorphisms

H% (A>*(E) = HYX, E).
The canonical homomorphism F: @y— f*@, can be extended to a homomor-
phism A6 z)— A*(f*Oy) which we denote by the same letter F. Since f
is assumed to be non-degenerate, each F is injective. Let A%%Z) be the
cokernel of F: A%(Ox)— A"Y(f*Oy), P: AYY(f*Op)— A»(T) the natural
projection. Then the exterior derivative induces d: A*4(I)— A"»*(I) and
we have the following commutative diagram:

0 0 0 0
0— @X —> u40’0(@1‘:) —> L22[0’1(@,\') -_—> JD’Z(@X) -
0 —> f*Oy —> A"(f*Oy) —> A" (f*Oy) —> A (f*Oy) —>

0O— 9 — Ag) — Ag) — A9g) —>
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where all horizontal and vertical lines are exact.
Since A%(@x) and A%Y(f*@y) are fine sheaves, we have

H?(X, A%Y(T)=0 for p>0.
Hence the spectral sequence

He2(HY(X, A@)) = H™(X, T) [3, Ch. II, 4.5]

degenerates, and we have an isomorphism

H2(A(@) = H(X, 9).

Note that this isomorphism is compatible with the Dolbeault isomorphisms
for ©y and for f*Oy.

With these preparations we prove following the idea of
Kodaira-Nirenberg-Spencer [7].

We may assume the following:

i) X is covered by a finite number of coordinate neighborhoods U, with
a system of coordinates (z}, ---, z?) and

Ui={(z)eC"| |z]<1}.

ii) Y is covered by a finite number of coordinate neighborhoods V; with
a system of coordinates (w}, ---, w?) and

Vi={(w;)eC™| |w;|<1}.

i) f(U,)C V;, and in terms of above coordinates f is given by

w; = fi(z;) .
iv) z;€ U, coincides with z; U; if and only if

z;=b;;(z;).
v) w;e V; coincides with w; e V; if and only if

w;=g;;(w;).
Let r=dim H(X, 9) and M= {t= C"| |t] <&} with ¢ > 0 sufficiently small.

We regard XX M as a differentiable manifold and prove the existence of
a vector (0, 1)-form

B = S92, 050 = D otalz, N0

depending holomorphically on ¢ and a vector valued differentiable functions
Dz, 1) on U;x M depending holomorphically on ¢ which satisfy the following
equalities:

3.1 $(0)=0,
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(3.2) op—(1/2)[¢, $1=0,

3.3) D(z,, 0)=fi(z),

(3.4) 00,—¢- 0, =0 where ¢-@=2¢‘{~gg' ,
(3.5) Q(b;j(z)), 1) =gi;(D;(zj, 1)) .

I) Existence of formal solutions. Using the notation of §2, let
o) = Z¢y(t> , Dz, )= EQiI#(Ziy )]
where ¢,(t) and @, .(z;, t) are homogeneous in ¢ of degree y, and let
()= GO+ SO+ +8,0)
Oz, ) =Dy (2, )P (24, D+ -+ +Dy 25, 1)
In view of and [3.3), we set
(3.6) ¢0 =0, Doz, )=fi(2y).

Clearly [3.2), [3.4) and [3.5] are equivalent to the following systems of
congruences :

(3.7, ogr—(1/2)[¢", ¢*] f 0,
(3.8),. 09— D4t =0,

u
(3.9 Q#(by;(z)), 1) f i, P4(z;, 1),

for p=1,2,3, -+ (we do not indicate domains on which the equations should
hold, if no confusion is possible).
We construct solutions of (3.1)—(3.5) by induction on ¢. We suppose that
¢! and @#7! satisfying (3.7).-,, (3.8),-; and (3.9),., are already determined.
We define homogeneous polynomials &, € A%*(Oy), &, I'(U;, A" (f*Oy))
and I';; ., I'(U;;, A%°(f*By)) (for the convention of notation, see §2) by the
following congruences:

(3.10) §p= 06 —(U/ALg, 9710,

(3.11) —E, ~:p— (g@g—l_¢y—l.@ép~l),_ag}:‘ i
- - 0

3.12) Lijiu= D=8 (@575

Then we have the following equalities:
(3.13) 0&,=0 in I'(X, A%*@y)),
(3.14) 05:1,=F&, in T(U, A(f*6y)),
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(3-15) Ejlﬂ_Eily:arijlﬂ in F(UU, uj{o’l(f*@Y)) ’
(3-16) ijlp_rikly+rijl,u:0 in F(Uijk, uqo’o(f*@Y))-

PrOOF OF (3.13). This equality is proved in [7, p. 454].
PROOF OF (3.14). We suppress the indices p¢—1, if no confusion is possi-
ble. Also we suppress the subscript i. With these conventions, we have

05, = 300°0,0— 3 ¢* N0, 0D = X 0¢°0,0— 3 ¢* N0,¢°0,D
A Iz
= 3£5,0,0 = F&,.
n 7

0
PrROOF OF (3.15). We suppress the indices y—1. Let Gf;= gi:j as in
§ 2. Then we have !

50 =2 670:0¢1u=[Z $70:(8 (P )
= [ 63 Gi(P ;)0 0P}
—0I't, = [0g4/(P )], =[Z Glu(@;)001],
==X G jutH [ZGu(D,)$50,;0P5 ], . q. e. d.
PROOF,OF (3.16). Since g;;(g;x(wi) =gi(ws), we have
8ir( D) = 8i5(g;1(Py)) = 8i5 D=1 jiws)
= 850 )—Gi;( PN jue

EQi—Fijl,u_Gij(fj)ijlﬂ- q €. d.

i

Our purpose is to determine

O =o' 40, Q¢ = Q40

which satisfy (3.7),, (3.8), and (3.9),..
We prove that (3.7),, (3.8), and (3.9), are equivalent to the following
equalities :

(3.17) 0Pp=—&u,
(3.18) Eip=00;,—F¢,,
3.19 I'iju=P;u— P,

where as in §2, we denote by the same letter @; the section X @f ka%gf of
the sheaf f*Oy, etc.

PrROOF. The first equivalence is easy to prove, so we omit it. We have
a congruence



On deformations of holomorphic maps I 387

P# @Ok = (§#~ 4§ NP+ DY)
f P QoE 4B L P

It follows that (3.8), is equivalent to
0=(0Q#'—¢p#-1-@*1)1-00 ,—Fg,,.
V]
This proves the assertion.

As to the last equivalence, we have a congruence (@ should be regarded
as a vector (@, ---, O™))

:;(04) =g, (047 +D )
f Zi;( @4 ) +Gii(fDjip

=@ =1, +Gij(f)Djip-

7

It follows that (3.9), is equivalent to
Of @ily+Fijl,'z—Gij(fj)¢jl#'

This completes the proof.
The final step of I) is to prove the following lemma:
LEMMA 3.2. Under the hypothesis of Theorem 3.1 we can find

Pppe A(Ox) and Qi< I'(U;, A (f*Oy))

satisfying (3.17), (8.18) and (3.19).
PROOF. In virtue of the equality (3.16), we can find I'; . € I'(U;, A%(f*Oy))
such that

(3.20) I'iju=T;,—1T;,.
From the equalities (3.15) and [(3.20), we infer that
(321) E;:Eim'—arim

determines a global section &) € A% (f*@y), and from it follows that
05!, =F¢&,; consequently P5/, & A%() is o-closed.

By hypothesis H'(X, 9)=0, PZ/, is d-exact; this implies that we can find
¢, € A% (Ox) and @), € AY(f*Oy) such that

00, =5, +Fdo,,.

Then it follows that Fd¢), = —F¢,. Since F is injective, we obtain
(3.22) 0¢y=—Ep.

Reversing the process, take any ¢’ € A%(0 ) satisfying the equality [3.22).
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Then it follows that
(3.23) o(&,+Fo)=0.
In the exact sequence
F P
HY(X, ©x) — H'(X, [*0y) — H'(X, 9)

the cohomology class (in H'(X, f*@y)) corresponding to the o¢-closed form
&'+ F¢, (by the Dolbeault isomorphism) is in Ker P. It follows that we can
find X, A%'(O%) and @), = A" (f*Oy) such that

(3.24) 0x,=0,

(3.25) E+F¢,=FX,+o0),.
Let

(3.26) P.=¢,—X,,

(3.27) D=0, +1..

Then from (3.26), and it follows that
0pp=0¢,=—E,.
From [3.27), (3.25), [3.26) and it follows that
-a-¢i|lu—'——E;‘+F¢#+5Fim:5“#+F¢ﬂ.
From [(3.27) and [(3.20) it follows that

¢j|;z“@i|ﬂ:ij_pi;/zzrijl/z-

This proves the lemma.

For =1, we determine ¢, and @, as follows: Take @,; = A%°(f*@y) such
that {P®,;} A=1,2,---,7) forms a basis of the linear space H°(X, I). Then
we can find ¢,; & A% (@ y) such that §@,,=F¢,;, and let ¢,=D¢;t; and @,
=20,;t,. It is clear that ¢, and @, satisfy the congruences (3.7);, (3.8); and
(3.9).

Once we determine ¢, and @,, we can extend them to formal power
series in ¢ satisfying (3.1)—(3.5), as we have already seen.

II) Proof of convergence. Let E be a locally free sheaf of rank » on
X, such that E|y, is trivial. We define a norm | |4, (k: an integer =2,
0<a<1) for sections of A%(E) as follows: Let ¢ = I'(U;, A%Y(E)) and we
write ¢ explicitly in the form

5 5 1 - -
¢ = (Sbli Tty ngy Tty SbT) Sb"j - ngb?ﬁlﬂq(Zl)dzé’n/\ v /\dzélq

in terms of local coordinates (2, ---, 27) and let



On deformations of holomorphic maps I 389

k
(3.28) || Ria= 2 Sup | D} P, 54(2:) |
+Sup ‘ Df gbﬁiﬁl"-ﬁq(zi)—D;c Sbatﬁlﬁq(.yz) ‘
|z;—:]*

where the “sup” is extended over all points z;, y; € U,, all indices B, f;, -+, fq
and all partial derivatives D}, D¥ of order h, £ with respect to zj, -+, 2%, 2,
-+, 28, For ¢ € AY(E) we define

|§[’|k+a:m?x Iﬂblllc]fa

For ¢ € I'(U;;, A%Y(E)) we define a norm |¢ |/ by the formula with
additional restriction z;, y; € U;;. We do not indicate explicitly the domain,
if no confusion is possible.

We introduce a harmonic theory on the sheaf @y, denote by 9 the ad-
joint operator of 4, and let O =9%0+d9 be the complex Laplace-Beltrami
operator and G the Green’s operator.

Consider a formal power series

=) = DDy, - 7
with coefficients in A%(E) (or in I'(U;, AYE)) or in I'(U;;, A(E))) and a
power series
at) =D @y, 87 4y, 20.

We indicate by |¢|x+a < a(f) that

l‘ﬁul-.-ur I k+a§ au1-~-vr .
Let
A(t):—b— i—l—cﬁ(t e et
16C =] #2 1 T,
Now we show that for a fixed integer £ =2 and a, 0 <a <1, the construc-
tion of ¢ and @, can be carried out in such a way that

(3.29) | @] ke <A@,
(3.30) |0 —filkra < A(Y) .

For this purpose it suffices to prove
(3.29),, [9#] tra < A,
(3.30),, |0 —filkra < AW,
for p=1,2, ---.

The estimates (3.29); and (3.30), hold for sufficiently large b. Therefore
we may assume that ¢#~! and @#* are already determined in such a way
that (3.29),-, and (3.30),-; hold.
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In (3.22), we may assume

(3.31) ¢, =—I9GE,,
and we infer from the results of Douglis-Nirenberg [1], that
(3.32) | Pl kra K Kil&plk-14a

where K, is a constant which is independent of &, and p.
Moreover, we may amplify the condition by

(3.24)* 0X.=0.

Now we prove the following key lemma:

LEMMA 33. Suppose that ¢ < A" (Oy) and E A% (f*Oy) satisfying
(5 +F¢)=0 are given. Then we can find X € A% (@) and @ € A% (f*Oy) in
such a way that

(3.24)* Ox=0,

{3.25) E+F¢=FX+dD,

(3.33) 1 X | ra € Ko(1D | krat | E 1 k-14a) s
(334) l@|k+a<<K2<[¢|k+a+lEIk—1+a) ’

where K, is a constant which is independent of ¢ and X.
PROOF. For any pair ¢ =(¢, &) as above, let

”0” - |¢lk+a+ |‘E'7 l k-1+a s
t(0) =inf [X]esa,

where the “inf” is taken with respect to all solutions (X, @) of the equalities
(3.24)* and [(3.25).

We introduce a harmonic theory on the sheaf /*@, and denote by ¥’
and G’, respectively the adjoint operator of ¢ and Green’s operator. It suffices
to prove the existence of a constant K, such that

o) < Kol for all pairs o.

In fact, if the assertion is valid, we can find X and @, satisfying (3.24)%,
and (replacing K, by a larger constant if necessary). Then we
can replace @ by ¢'G'(5§+F¢—FX), and we obtain from (replacing
K, by a larger constant, if necessary).

Now we prove the existence of such a constant K,. Assume that there
is no such constant. Then we can find a sequence ¢, ¢®, --- ¢, .- of
pairs ¢® = (¢, £*) such that

t(6®)=1 and [o®|<1/v.
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The first equality implies the existence of X*> € A% (@) and @ € A%°(f*Oy)
such that

(3.35) Ox» =0,
<336) 5(V)+F¢(D) — Fx(u)+3d)(v) ,
(3.37) 1A | e < 2.

Moreover we may assume that @ =9'G'(E¥+F¢»—Fx*). From [3.37), it
follows that, replacing ¢, ¢®, --- by a suitable subsequence if necessary, we
may assume that

X =1lm X%

exists in the norm | |,. A priori, ¥ is of class C*. But by virtue of
Theorem 5, X is in fact of class C=, for X satisfies an elliptic partial differ-
ential equation OX=0. Moreover, from Theorem 4 it follows that

[ X —X| psa = const. | X —X],.

Hence X*” converges to X in the norm | |;+«. Moreover by the construction
of @, @ converges to a C> section @. From [3.36) it follows that

(3.38) 0=FX+00.
Consequently we infer from [3.36) and that
F® 4 F¢® = F(AP— 1)+ @ —d).

On the other hand, we have
XY =X gaa < 1/2

for sufficiently large integer v; this contradicts ¢(¢)=1. g. e. d.
Now we prove the following inequalities:

(3.39) [l esea € L2 AG)

(340) RN LY 6

(3.41) Tl € 252 At

where K;, K, and K; are constants which are independent of p.

PRrROOF. The inequalities [(3.39) and [3.40) can be easily deduced from
induction hypotheses (3.29),-, and (3.30),-.

Now we prove the inequality [3.40) Let w;-+u=(W}4uy, -, Wr+uy).
We expand g;;(w;+u) into a power series in m variables u,, ---, #,, and let
L;jw;, wy=[g;w;+u)], be the linear term of the power series. We may
assume that
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lg(w+u)—g;i j(w;)—Li(w;, u)| pia

b, & ,
30 oy o ).
Co =2

<

Let u(z;, t) =04 (z;, t)—f;(z;). Then, by inductive hypothesis, [u]zi.< A().
Let K, be a constant such that

19O ke <Kol PliralPlira
for any ¢ and ¢. Then it follows that

[[gij(@lf_l(zj,- t)):]/l{k+a<< —lzf‘ izKoc'l(‘)[(uf{‘ +um)ﬂlk+u
u=

< IC’—" S cemeK g Ay

0 u=2
Assume that

(3.42) mbe, K, 1

c S
Then we have

oo 00 2 2 2

S cemEEKE A < 3 comPKa(b/ o)A < Jﬂ—%ﬁfl(t) .
u=2 p=2

This proves the inequality [(3.41).
Let {p;(2)} be a partition of unity subordinate to the covering {U;}. As

a solution ;. of the equations [3.20), we take
Fuy=4?pj(z)l1jm defined on Uj;.

Then there exists a constant K, (which is independent of x) such that

(343 [ ) ke K Kol Lijipl kv -
Consequently, from [3.32) and [(3.39), it follows that
(344 FAMRE SO

From ((3.21), [3.40), [3.41) and [3.43), it follows that

Kb | KKpb
¢ T

AP

A®).

Combining these with we can find X, and @), satisfying (3.24)*
and in such a way that

(3.45) | Xl ke K K,K*A(D)

(3.46) [ D] kea K K,K*A(Y)

where
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_ K,Kb , Kb | KK
- c + c + c :

K*

It follows from [(3.26), (3.44) and [(3.46) that

K Kb
4

| Bl ksa < ( +ELK*) A®).

From [3.27), [(3.41), (3.43) and ((3.46) we get
KKeb
c

[P +2K,K*) AQ).

On the other hand, we can choose b and ¢ satisfying such that

_ng(lb +2K2K*<1’ K_i(£+2K2K*<1'
Consequently we obtain
|Pulkra < A®),  [Qipliia < AQD).

This proves (3.29), and (3.30),.
III) Final step. We fix an integer 2=2 and a, 0<a<1. It follows
from that

P = i)+ P+ -+ +Put)+ -

converges in the norm | |.., for sufficiently small |f|. Note that and
(3.24)* imply that 9¢,()=0 for p#=2. Hence the argument of Kodaira-
Nirenberg-Spencer ([8], pp. 458-459) can be applied to prove that there exists
a complex analytic family p: X — M of deformations of X, where each fibre
p~'() is endowed with a complex structure determined by ¢&(f). By the

equalities [3.3), [3.5), the collection {@.(z; )} defines a differentiable map
@:x—YXM of class C* which coincides with f on X. From [3.4) it follows
that @ is holomorphic.

The characteristic map is given by the formula

P
r(faﬁ) =P,,.

Hence, by the construction, z: T,(M)— H°(X, ) is bijective. g.e.d.

Appendix. Elementary proof of formal existence theorem.

THEOREM. Let f: X—Y be a non-degenerate holomorphic map. If H*(X,

Txy)=0, then there exists a formal family (¥,®,p, M) of non-degenerate
holomorphic maps into Y and a point o € M such that
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i) @,: Xo—Y is equivalent to f: X—Y,

il) 7: To(M)— HX, T y,y) is bijective.

PROOF. We may assume the conditions i)—v) in the proof of [Theoreml
3.1. We prove the existence of formal power series ¢;;(z;, ) and @z, ?)
which satisfy

(A1) Pii(z5, 0) =bi;(z)),
(A.2) P /(P (21, 1), 1) = a2, 1)
(A3 Di(z;, 0) =1z,
(A4) D(Pij(z;, 1), 1) =g8:;(D(2;, D) .
Clearly (A.2) and (A.4) are equivalent to the following systems of con-
gruences:
(A5 P55 (P5(zi, 1), t) = Gf(zi, 1),
(A.6), Di(pi(z;, 1), 1) —gw(d% (2, 1) -

Assume that ¢%7'(z;, t) and @47 (z,, 1) satisfying (A.5),-; and (A.6),-, are already
determined. We define homogeneous polynomials in ¢ of degree g by the
following congruences:

(A7) TiselZe, 1) ’l‘:_ L4z, 1), ) — D87 (20, 1)
(A8 Iz, 1) _ﬂi QY Pz, 1), )—gi (@4 (2, 1)),

where z;=0,,(z;).
Then we have the following equalities:

(A9) Gij(.fj(zj)>ijlﬂ(Zj7 t)+riklﬂ<ziv t)+Fijly(Ziv 1y :Fi(zi)rijkl,u(ziv £,

F,, G;; and B,; are
(A.10) Bijrjkll/z_rikl!p‘{'rijl[#_Tijk\,u:07 the Sajme as i;l §3/ -

PRrOOF. (A.10) follows from (A.9) because F is injective. We prove the
equality (A.9).

Lk = P, H)—gu( @)
—(D/‘ R4, D—Tigerm D—8i(8(@F)
"fl)ﬂ W@, ) —Fitijee—8i( @5 (@57 )1 e
—W Wt (5 ", 1), D—8i (PP, D) +Gisl jw—Fiyijuin

f Fijl/t"_Giijkl/z——Firijkly . g.e.d.
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We prove that (A.5), and (A.6), are equivalent to the following:
(A.11) —Viike= Bi;@ k= Purrat Pijie s
(A.12) Lie=Gif{(NPp—Piy—Fi®i.
ProOOF. We have
P15 (P, 1) = G4 DM '+ B iy D+ B (B, )
= DL (D5, D+ Bijjnint Pijin -

Hence (A.5), is equivalent to (A.11).
Similarly
DH(plhy, 1) = Oy (i + i )+ D98, 1)

= @é“1<¢%417 t)+F1¢7.]|/l+@l Ige s
©
g:;(0%) —;—; i (D4 +Gi(NDj..

It follows that (A.6), is equivalent to (A.12).

LEMMA. (A.12) implies (A.11).

This lemma follows from the fact that F is injective.

Take a basis 7;(1=<1=7) of H°(X, g). Then z, is locally represented by
z@gi-@%~ e I'(U;, f*0y) and we can find ¢y, € I'(Us,, Ox) such that

0 0
E@ﬁ’jm —E@‘}uW:F%U-

It follows that ¢;;, =2 ¢4;t, and @, = 2 0,;t; satisfy (A.12).

Now assume that ¢#7%(z,, t) and @#7'(z,, {) are already determined. Then,
by the equality (A.9), {PI;;,} represents a 1l-cocycle with coefficients in &.
Hence, by hypothesis, this is a coboundary. Hence we can find ¢;;, and @,
satisfying (A.12). This proves the existence of a formal family, and by the
construction z is bijective.

References

[1] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial
differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538.

[2] A. Grothendieck, Techniques de construction en géométrie analytique I[-X,
Sém. H. Cartan, 13 (1960/61).

[3] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris,
1958.

[4] E. Horikawa, On deformations of holomorphic maps, Proc. Japan Acad., 48
(1972), 52-55.

[5] K. Kodaira and D.C. Spencer, On deformations of complex analytic structures
I, II, Ann. of Math., 67 (1958), 328-466.



396 E. HoriIKAWA

[6] K. Kodaira and D.C. Spencer, A theorem of completeness for complex analytic
fibre spaces, Acta Math., 100 (1958), 281-294.

[7] K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations
of complex analytic structures, Ann. of Math., 68 (1958), 450-459.

[8] K. Kodaira, A theorem of completeness of characteristic systems for analytic

families of compact submanifolds of complex manifolds, Ann. of Math., 75
(1962), 146-162.

Eiji HORIKAWA
Department of Mathematics
University of Tokyo
Hongo, Bunkyo-ku, Tokyo
Japan




	Introduction.
	\S 1. Infinitesimal deformations.
	\S 2. A theorem of completeness.
	THEOREM 2.1. ...

	\S 3. A theorem of existence.
	THEOREM 3.1. ...

	Appendix. Elementary proof ...
	THEOREM. Let ...

	References

