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§1. Introduction.

This paper is a continuation of the previous paper [4]. Throughout
this paper G(z) and H(¢) denote LCA groups with underlying groups G and
H, and with topologies 7 and o, respectively. In the previous paper [4], we
introduced the closed subalgebra L*(G(z)) of M(G(z)), and determined all the
homomorphisms of L*G(z)) into M(H(s)) as a generalization of Cohen’s
theorem. In this paper we prove that every homomorphism of L*(G(z)) into
M(H(o)) has a natural norm-preserving extension to a homomorphism of
M(G(z)) into M(H(o)) as a generalization of Cohen’s theorem:.

In §2 we give some preliminaries, and in § 3 we give the proof of our
result for the special case that H(¢) is compact. §4 contains some results
on the topology of the maximal ideal space of M(G(z)), which is used in §5
to prove our result for the general case.

§2. Preliminaries.

We denote by T(G(z)) the set of all the locally compact group topologies
on G which are at least as strong as the original topology r. Let z; and 7,
be elements of Z(G(zr)) with r;C 7z,. We denote by 7% the natural continuous
isomorphism of G(z,) onto G(r,). I';; denotes the dual group of G(z;) and
o7, denotes the natural continuous isomorphism of /7., onto a dense subgroup
of /', such that (cf. Lemma 2.3 of [4])

x ou(r) =@ax), n  (xeG(), rely).

For each 7/ € T(G(r)), there exists a natural norm-preserving isomorphism
m. of M(G(z’)) into M(G(r)) such that (cf. Proposition 2.1 of [4])

o ()(E)=p(ni"(E))  (E: Borel set of G(z); ue M(G(z"))).

We identify LY(G(z")) and M(G(z’)) with the closed subalgebras of M(G(z))
through 7., respectively. M(G(z")* = {p s M(G(z)): p Ly;ve M(G())} is an
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ideal of M(G(r)) and the projection P, of M(G(zr)) onto M(G(z")) is a homo-
morphism.

M denotes the maximal ideal space of M(G(r)) and [™* denotes the
maximal ideal space of L*(G(z)) constructed in §3 of [4]. If p<= M(G(z)), #
denotes the Fourier-Stieltjes transform of p, and £ denotes the Gelfand

transform of p. If we express by £ the function of I'* defined by (3.10) of
[4], each = I'* has an extension to a complex homomorphism

MG(z) 2 p— f(r)eC,

and in this way we consider I'* as a subset of M. In this point of view we
have

An=pt) (rel*; pe MGE).

By the Remark in p. 291 of [4], '~ can be considered as a subset of %,
and so as a subset of M, and it is easy to see that the relative topology of
I'. in M is equal to the topology of I'. (z/ € T(G(z))).

If pe M(G(z") (' € T(G(7))), we express the Fourier-Stieltjes transform
of ¢ with respect to /'+ and the Fourier-Stieltjes transform of g with respect
to I'. by the same symbol £, and we make a difference between them by
indicating the domain of 2. We constantly refer to the previous paper [4],
and the notations used in this paper are chosen so that they are consistent
with those in [4] as far as possible.

§3. Consideration of the case when H(s) is compact.

THEOREM 3.1. Suppose that t,, ---, t, are a finite number of elements in
F(G(z)), then there exists a unique t,< T(G(r)) such that ﬁ M(G(zy)) = M(G(zy)).
=1

PrROOF. We may suppose n=2. Let 74, be the discrete topology on G,
then I';; is the Bohr compactification of I';. Choose zi, ;& 3([';,) so that

/

0ot Iey —> Iey(z)  (i=1,2)

is an open continuous isomorphism, where 7; is the natural continuous iso-
morphism of I'.,(z}) onto I';;. By Theorem 2.8 of [4], there exists z;& T([';,)
such that

(3.1) LT oz * LN g79) C LN 24(70))
70 71, T3 .
Furthermore for this z;, we see from the proof of Theorem 2.8 of that

Frd(fi)x Frd(fé) > (x,y)— 77"1(771(x))+77’"1(%(y)) & Frd(fé)
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is an open continuous map, where 7’ denotes the natural continuous isomor-
phism of [';,(z5) onto I'r;,. Thus if we put
(3.2) I =/ i)+ 051 -y)

then I/ is an open subgroup of [ ,(z0).

r.,
ra( 75)
b 0%
fd(To)
Iy
Fig. 1.

Let G’ be the dual group of II. For each xe G’ 7,(x) =xo9/ lo¢ is an
element of G(z;), and it is easy to see that 7, is a continuous homomorphism
of G’ onto G(z;) (1=1, 2).

Let x= G’ such that 7,(x)=0. Since

(I ) N e(Ie,) Doty ,

and since ¢(I.) is dense in ['-, we have 7% '(7,(x))=0 and consequently
7,(x)=0. If we remember that /I is generated by %’ (@[ ",)\J ¢2(I.,)),
72(x) =0 reduces to x=0. This shows that %, is an isomorphism and in the
same way 7, is an isomorphism. It follows from this that we can choose
7, € I(G(7)) such that 7,D 7y, 72 G = G(z,), and thus we can identify G’ with
G(t,) in the natural way.

Let v be an arbitrary element of M(G(z,)) "\ M(G(z,)). By Proposition 2.1
of [4], there exists a o-compact set K; in G(z;) (i=1, 2) such that v is con-
centrated on 7§,(K,), and hence v is concentrated on 7%, (K;) N\7L(K,). Let

K;; (j=1,2, ) be a sequence of compact subsets of G(r;) such that OOK“
i=1

=K; (i=1,2). For each positive integer j;, (i=1,2), we can find v;;; €
L* (I, (z})) such that

{3.3) Di,(0) =1 (xe Kij),

v;;; is concentrated on 7} (¢t (I':,)) .
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From we have v,; *v,;, € L'(I'(7g)) and from (3.2) v,;,*v,;, is concent-
rated on II. Using the fact that I7 is open in I'.(z(), we get vy, *v,;,& L(II).
Consequently we get

/\ " . —1 -1
(3.4) Vi, *V5,(0) =Dy, (05,,,(0) =1 (x € pa (Ky;) N5 (Kyy,))

./\
Vij ¥V, € Co(G(zy)) .

(3.4) means that there exists a compact subset C(j,,j,) of G(z,) such that

(3.5) 75(C(J1, 7)) D 77;1<K1j1) N 77:2(sz2) .
Summing for j, and j,, we get

(36) U (G DD ) K N LK)

J1,72=1
=70 Ky ) Nl Ko ) = 75(K) N7 (Ky)
1= 2=

From and the fact that v is concentrated on %%,(K;) N 7%,(K,), we obtaim
using Proposition 2.1 of that v belongs to M(G(z,)).

Thus M(G(z)) "\ M(G(z,)) is contained in M(G(z,)) and it is clear that
M(G(z,)) is contained in M(G(z,) N\ M(G(z,)). Since the uniqueness of 7, is
obvious from Theorem 2.5 of [4], this completes the proof of [Theorem 3.1l

We introduce a partial ordering in %(G(z)) such that if z,, z,= 3(G(z)),
then z,< 7, if and only if 7,C 7,.

COROLLARY 3.2P. Z(G(7)) is a lattice under the partial ordering <.

PROOF. Let 73, 7, %(G(r)). By Theorem 2.8 of [4], there exists ¢,
I(G(7)), l.u.b. of =, and 7z, such that

LYG(zy) x LY (G(zy)) C LH(G(zy)) .
By there exists 7, Z(G(r)), g.1.b. of 7, and 7, such that
M(G(z1)) N M(G(75) = M(G(z,)),

and this completes the proof.

COROLLARY 3.3. Let 7, 7, and t, be elements of 2(G(r)) such that
M(G(z))N M(G(zy)) = M(G(z)). We regard each I'.; (1=0, 1, 2) as a subgroup of
the semigroup I'* (cf. Proposition 3.2 and p. 291 Remark of [4]), then we have

I'o+I',=I,.

PROOF. In the proof of the [Theorem 3.1, we can identify I',, with Il and
that we have o)+ o2(,) =7 "o )+02(I".,)=1II. Thus we have

1) But T(G(r)) is not generally a g-complete lattice (cf. §5 example).
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Fsrl—f*]_’sf2 = {(Sotr-’(r))r'esn—}‘(203(7’/))7'6.9,2; rel., rel,}
= {(pBM)+ 1 Neesey; TE Ly, v/ E 1}
= {(SD;(')(T’))T'ESTO; rell = Fro} = FS.,-O .

If we identify I'.; with I's we get the conclusion of

PROPOSITION 3.4. Suppose that H(c) is compact, then every homomorphism
& of L¥(G(z)) into M(H(0)) has a natural norm-preserving extension to a homo-
morphism of M(G(z)) into M(H(0)).

PROOF. Let 4, denote the dual group of H(s). By [Theorem 41 of [4],
there exists a subset Y of 4, and a map a of Y into I'* such that for each
7/ € 3(G(z)) Y. is an element of the coset ring of 4, and «, is a piecewise
affine map of Y. into I, where Y. and a., is defined by (4.3) of [4].

Let ¢ be an element of M(G(z)) and put

57 o Mar)=Aat); rey
(3. A7) =
) a ; red,—Y.

We show that B, B(4,) and ||, < [|A]llel, and this will complete the proof
of [Proposition 3.4] (cf. p. 32 and p. 83 of [5).

n
Let P(x):g‘iai(x, r;) be a non-zero trigonometric polynomial on H(o),

and let ¢ >0. Suppose thata(r,))e['s, (=1, .-, m)andr, &€ Y =m+1, ---, n)

{cf. Definition 3.2 of [4]). By [Proposition 3.4 of [4], we have a decomposi-
tion of g such that

) . S —— R N

(3.8) p=pl+p?, we b2 MG(z), pe Z}g M(G(z) (=1, -, m).
T =0y T =93

Remembering that S; is a directed set, we may write

(39 aO=1im Pop) (=1, m),

' £8;

and there exists z; € S; such that
(3.10) | — P S ¢/2m(I+e) max [lae] ; k=1, -, m] (=1, -, m).

We have from (3.7) and the definition of £ (cf. p. 292 of [4) that

G | Buro— P i) | = AS2(atr))— Pt )|
= P =Pl = e/2m(1+e) max [l ; k=1, -, m] (=1, -+, m).
By induction on m, we can find g, € M(G(z)) (AC {ry, -+, Tn}) such that
(3.12) ta € M(G(z)* (r;€ {1y, =, T} —A),
ta € M(G(zy)) (z; € A4),
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Ha=p.

AC(ry, - tm)

By there exists 7, € T(G(r)) such that
(3.13) M(G(z 4)) =1QAM(G(TI‘)) (AC{zy, =+, tal),

where we put 7,=rc if A=0. Choosing 1, LYG(z,) (AC {zy, -+, Tm}) such
that

(319 124l S 1+e; Lu@i(atra) =1 (€ 4),

and putting Z:Ac{f:%‘rm',? 4%y, we have

(3.15) 12l = A+ellel, 1€ LXG().

It is easy to see from [3.12), and the definition of A that
(3.16) talpas ({7, oy tn} DA A A+ A,

Pri()u) =A§1#A ’

P®=, % Pullasp)=3 dasta

Again by Proposition 3.4] of [4], we decompose 2 and p, (AC {z}, **; Tm}) SO
that

(3.17) A=2+2P, pa=pd:i+pd,,
N (i=1, -, m).
v, AP e ESM(G(T’)), s AP e X M(G(")
€8¢ ' e8;
Since ;€ S; =1, ---, m), we have
(3.18) Ut = a4 Aa* 5y Etlé'M(G(T’)) (A>7,).

- 1
Here remembering that 'ES.M(G(r’)) is an ideal and using (3.10), (3.14), (3.16),
(3.17) and [(3.18) we obtain

3.19) 129 =P (DI = | (Agrih * p+ A%.lile * #A)—-g“h * el

égﬁllhll £l = A+e)|| el — Pr, ()]
ée/zmmaxtlakl;kzly "'7m] (i=1,---,m).
From [3.19) we get at once
2 5
(3.20) 4P (a(r))—Pry(W)(a(r)| = e/2m max [la| ; k=1, -+ ,m].
Using (3.11), [(8.14), [3.16), [[3.17) and (3.20) we obtain
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B2D) | Burd)—2a(rd)| =| Bulr)— AP (a(r)]

™ P
= | Pry()(a(r))— Pey(A)(a(r)) | +-¢/m max [lax| ; k=1, -, m]

=| T falatr))— X falalrDiaesatr)|

A=zg
+e/mmax[lagl; k=1, -, m]

:E/mmaxt‘ak|;k:17 ’m:l (izl,"',ﬁ’l).
From we have
(3.22) la.Bur)—adar)) | Se/m (=1, ,m).

Summing from ¢=1 to m, and using the fact that ﬁ#(ri):ﬁ(l)(ri):O
(i=m+1, ---, n), we have

(3.23) | B asuro— B addr) £ 2 lapdro—adaty)] ¢,
From ((3.15) applying the Bochner-Eberlein’s theorem we obtain
(3.24 | 2 k)l < IRDIIPI- < AN Pl < IAIA+l £l Pl

Combining [3.23) and [3.24) and letting ¢e— 0 to obtain

(3.25) | 2 aurd | S 1A 1P,

and again by the Bochner-Eberlein’s theorem we obtain 8, B(4,), [B.] =
lAlllgll. This completes the proof of Proposition 3.4

§4. Some results on the topology of the maximal ideal space of M(G(7)).

THEOREM 4.1. Let 7, be an element of IT(G(z)), then we have

(a) If pe M(G(r)) such that there exists 0 >0 and a non-empty open set
U in I'., with
4.1) 121 >6>0  (reen ),
then p is not an element of M(G(z,))*.

o

(0) 2wz 1Pl (1 & M(G(2))).

() DI, (I'. denotes the closure of I'. in M).

(c) was proved by T. Shimizu [6] for a special class of elements in
Z(G(r)) which contains the discrete topology on G. Also (b) and (c) were
proved independently by C. Dunkl and D. Ramirez [2], [3] for each element
of T(G(z)). Since (a) is easily led from (b), is essentially con-
tained in and [3]. But, for the completeness, we give here the proof of
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which is somewhat different from their proof.

We denote by P,.G(z)) (resp. P,(G(z,))) the set of all continuous positive-
definite functions of G(z) (resp. G(z,)) with compact support, and by spt. p
the support of p < P,(G(z)) (resp. P.(G(zy))) in G(z) (resp. G(z,)). We denote
by m the Haar measure on G(z,). If p € P.(G(z)) and f < P,(G(z,)), we define

Dpxflx)= fG(ro)p(y)f(x—y)dm(y) _(x e G). Since px*f is G(r)-continuous and has

a compact support in G(z), pxf belongs to LY(G(z)). p=fe LY(G(z)) is just
the convolution of p € LY (G(z)) and fe L'(G(z,)) in M(G(z)), and thus pxfe
P.(G(r)) by the inversion theorem.

The following lemma is due to C. Dunkl and D. Ramirez [2]

LEMMA 4.2. Let p, € P(G(z,)), and let W be an open set in G(tr) such that
W Dspt.p,. Then, for each ¢ >0, there exists p = P(G(z)) such that

“4.2) spt. pC W, [p(x)—po(x)| <e (x&spt.p,).

PROOF. Let ¢ >0 and put K=spt.p,. Since p, is uniformly continuous
on G(z,), there exists (0 )U & 7, such that

4.3) [Do(x+3)—po()| <e (x€G;yel); U=—U, mlU)<co.

K—K is G(r,)-compact, and the induced topology on K—K from G(r) agree
with G(z,)-topology on K—K. Thus we can choose (0 )V €t such that

4.4) VNI K—K)cUnNK—-K); V+KCW.
Let g P,(G(z)) such that
(4.5) spt.gC V; [ gdm=1; g=0.

We have from (4.3), and that

@ 1gxp)—p@ = g0Ip—y)dm() )|

=|f D b= —pNdm|<e  (xeK).

If we put p=gx*p, € P,(G(z)), we have
4.7 spt.pCspt. g+ KC V4+KC W.

This completes the proof.
THE PROOF OF THEOREM 4.1. (a) Suppose p< M(G(z,)*. Let 0#=ge
L(G(z,)) be a continuous positive-definite function on G(zr,) such that

(4.8) 0= <|am)|®  (reem ),
gN=0 (re ¢ (),
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and let p, € P,(G(z,)) with p,*g=+0. If we put K =spt.p,, then |[Z*p|(K)=0
by Proposition 2.1 of [4], and we can choose ¢ >0 and W&t such that

4.9) Doxg(0)>e>0; WoOK,
L% p| (W) < (poxg(0)—e)/204(0) ,

200§ lg(@)]dm(x)<e/2.

By there exists p € P,(G(z)) such that
(4.10) p()—po(0)| <O  (x€K); spt.pCW,

where € =min {pO(O), a/2y [g(x)ldm(x)}. We have from (4.10)

(4.11) max {|p(x)], |p(x)—po(x)|} <2p,0) (x€G6),
and from [4.9), (4.10) and (4.11) we get

(4.12) prixp(Q) = p(—x)dfix u(x) < 2po(0)| x| (W) < o+ 8 (0)—e
=p+2O+] [(p—plelDdm(D)+[ _ |(p—p)gl(x)dm(x)—s

<prgO)+0[ |g@|dm(x+2p0)|  lg()dm(x)—e
K w—K
<pxg(0).
On the other hand we have by the inversion theorem and from that

prixp@ =] B0)|aw)|*dr

z [, B0endr=p+g(0).

This contradicts (4.12) and thus (a) follows.

(b) Suppose that there exists pEM(G(r)) such that Il.ull.,o<lleo(#)llm
Then there exists ¢ >0 and a non-empty open set U in [y, such that

413) ) < | PN = (re g5 (UY).
Since |#(r)| 2 | Po(@)(r)| — | fi— Poz)(r)], we have from

/\\ -1
=P > (re o, (U),
and this contradicts (a).

(c) Suppose that there exists r, [z, such that 7, is not in I, then
there exists ¢>0 and g, -+, ¢, € M(G(z)) such that
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in{rem: [ﬁi(r)-—~ﬁi(ro)]<5}mrr:0.

Put li:pi—ﬁi(ro)ﬁo (i=1, -, n), A= 1;*1;, where §, denotes the unit mass
i=1
at 0= G, then we have

(4.14) reM: A< ALC A reM: || <e nT=0.
=1
Since fl(ro) = é |ii(ro>|2:o, we can choose a neighborhood W of 7, in I,
i=1
such that

N A 2
[ PN (= P D) = A1) < /2 (re W),
and we have

[ 8 T T
(4.15) LA | = | Peo( D)) [ 4 | 2= P (A)(1) |
< &% /24 | A—=Pr(A)(1)| (rees, (W)).
From we get |4 =i =e* (reI.), and if we combine this with
(4.15) we have
/2 < |A—Po(A)(1)| (re et (W)).
Since A—P.,(A) € M(G(zy))*, this contradicts (a).

§5. Consideration of the general case.

LEMMA 5.1. Suppose that H(o) is an open subgroup of a LCA group H'.
We consider M(H (o)) as a closed subalgebra of M(H') in the natural way. We
denote by A’ and A, the dual groups of H and H(o) respectively, and by ¢ we
denote the natural open continuous homomorphism of A’ onto A, such that

(x, () =(x, 1) (xe H(o), re A’).

Suppose that there exist ro< A, a sequence [W, 15— of elements of the coset
ring of A, and sequences [A, s M(H(0))13=y, [4, € M(H )N M(H(0))* I3y such
that
(5.1) WIDWZD ng b 57"0,

W=7 =0 (re& o (W)
. . (n=1,2,-)
An(1) = An4r(7) (re o' (Waiy)

N
lim sup |4+ 4.(n]=0,

n—o0 r&p~1(Wy)
then we have

(5.2) (=0 (ree(r+F)),
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where F denotes the connected component of 0€ A,.

PROOF. Since {1’: 2 = M(H(0))} and {1: 2€ M(H")  M(H(¢))*} are trans-
lation invariant and A,/F is totally disconnected, we may assume without
loss of generality that »,=0 and each W, (n=1, 2, ---) is an open compact
subgroup of 4.,.

First we consider the case that F' is compact. We assume that does
not hold, that is, there exists 7€ ¢ }(r,-+F) such that |{,(r5)|=20>0, and
derive a contradiction. Also we may assume 7;=0 since each W, contains
F. Choose neighborhoods U and V of #;=0 in 4’ such that

(5.3 e (W)DUDV+V,
| 2,(r)| > 8/2 relUnme X (Wy,); n=12,-).

Since Ker ¢ is equal to the annihilator of H(o) in A’, we have that Ker ¢ is
compact. Combining this with the assumption that F is compact, we get
that ¢ (F) is compact. From this it follows that there exists a finite num-
ber of elements 7y, 7,, ---, 7, € o }(F) such that

{
(5.4) ‘\=Jl (V+r) D (F).
From and we have
i [
(6.5) iszl(U+Ti)DiK=JI(V+ Vtr) Do ' (F)+V.

Since (¢ '(F)+V)/¢ ' (F) is a neighborhood of 0 of the totally disconnected
group A’/¢ ' (F), we can choose an open compact subgroup W of A’ such
that

(5.6) O (UAr) D WD o i(F).
121

Again observe that we can assume without loss of generality that go(W): W..
~ 1
For each element v = ¢ '(W,) (Co (W) =WC U (U+r;)) there exists a posi-
i=1

tive integer ¢ such that U+r;> 7, that is U>7r—r, Since ¢ *(W,) Do }(F)
=7, we have ¢ YW, 2r—r; and thus Un¢ (W, =r—r,. This shows
Une(W,+r; =27 and hence

5.7) u (U Ao (W) 4r) Do (W),

If we denote by ?, the number of elements of the finite group W,/W, (n=
1,2, --+), then we have from [5.3), [5.6) and [5.7) that
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538) Ve 2all = (VE/DI 2 1A=,
= (VE/DIG/2) Z Lawng-sormsroll

= (0vV1,/2D) X gmraw wolle = (3/2D) 1%l > 0 (n=1, 2, -+),

where X,~1w, denotes the characteristic function of ¢™*(W,) and etc.
On the other hand, since ¢ '(W,) is compact we have

S
Antip € AN L) (n=12, ),

and by the inversion theorem, we have 1,, A, L'(H’). If we choose Borel
functions f, and f, on H such that

fodm=d,,  fhdm=dZ, n=1,2 -,

where m denotes the Haar measure on H’, then we have f, f.€<

L*H YN L*H"), and from the last condition of using the Plancherel
theorem we get

59 lim v/t futFile = lim VeIt 2y, =0,

Since 2, L 2, (n=1,2, ---), we have from [5.9), using the Plancherel theorem
again that

fim V2, 2alle = lim ~/4,]| full =0,

and this contradicts [5.8) Hence we conclude that holds in the case
that F is compact.

Suppose next that F is not compact and that does not hold, that is
there exists r{< ¢ ' (r,-+F) such that |1,(r})| =6>0. As before we can
assume without loss of generality that (=0 and that W,=R™x K, where K
is a compact subgroup of 4, and R™ is a closed subgroup of A, isomorphic
with the m(> 0)-dimensional real vector group.

Let H, be the annihilator of ¢ *K) and let i, and 2, be elements of
M(H'/H,) such that (cf. p. 53 [5]))

(5.10) fﬂ,f (P(x)dA,(x) = IH,/,, Fdi,
1 (fE CO(H//HI)) ’
[ @ =] i,

where ¢ is the natural continuous homomorphism of H’ onto H'/H,. Since
also holds for any bounded Borel function on H’/H,, we have

(5.11) L=, AO=A0  (reeK), n=12 ),
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and it is easy to see from that
(5.12) e M(H(o)/H), 2,& M(H(o)/H)*.
From and ((5.12), and by the discussion of the compact case, we get

WO =2.0=0 (ree(KY),

where K’ is the connected component of 0 in K,. Since ¢ (K’) DKer ¢=7,=0,
this contradicts the first assumption and thus holds in this case and
is proved.

THEOREM b5.2. Let h be a homomorphism of L*(G(z)) into M(H(o)), then
there exists a natural norm-preserving extension of h to a homomorphism of
M(G(z)) into M(H(0)).

PrOOF. Let H be the Bohr compactification of H(s), let 4, be the dual
group of H(o), and let o, be the discrete topology on 4,. We can find an
element o, of T(H) such that 7’ =7;lon is an open continuous map of H(o)
into H(s,), where 7 is the natural continuous isomorphism of H(¢) onto a dense
subgroup of H, and 7., is the natural continuous isomorphism of H(s,) onto H.

H(0)-——————— == ——m—mmm—— - /8
A
4
i o’
Y
i ﬁ(”o) ———————————————————— —/ia’o (4
)
770'0 (Pao
r /
H ——————————————————— /1 a(gd)
Fig. 2.

If we denote by 4,, the dual group of H(s,), and if we put ¢/(r)=ron’
(re 4,,), then ¢’ is an open continuous homomorphism of A, onto 4, If
we denote by ¢ and ¢,, the natural continuous isomorphism of 4,s,;) onto
A, and the natural continuous isomorphism of 4,(c;) onto a dense subgroup
of 4,, respectively, then we have ¢’o@, =¢. Clearly the annihilator of
7/(H(o)) is the kernel of ¢’ and that A,z 4,,/Ker ¢’.

By of [4], there exist a subset ¥ of /4, and a map a of ¥
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into /™ such that [V, @] and the corresponding [@., Y, AcJeerwey Satisfies
(4.1) of and conditions 1), 2) of [Theorem 4.1 of [4] We put Y'=¢ X(Y),
a’=ao@. Then it is easy to see that the corresponding [as, Yo, heJrezcoy
satisfies the conditions 1), 2) of [Theorem 4.1 of [4], and there exists a homo-
morphism h’ of L*(G(z)) into M(H) such that for each g < L*(G(z)) we have

pla'(r): re v’

0 :redlo)—Y".

() =

By [Proposition 3.4, there exists a norm-preserving extension of A’ to a homo-
morphism A’ of M(G(z)) into M(H) such that

[ B/ = pa/(r): re Y
L 7€ Afa)—Y

Let P,, be the projection of M(H) onto M(H(s,)), and put i = P.,0h’. We
identify M(H(o)) with the closed subalgebra {¢# < M(H): p is concentrated on
n(H(o))} of M(H). In this point of view A’ is a homomorphism of L*(G(r))
into M(H(o)) (C M(H)), and each h. ('’ €%(G(r)) is a homomorphism of
LYG(z") into M(H(0)) (C M(H)), and that A’ =h, hl. =h.. Therefore if we
show that i(g) (¢ e M(G(z))) is concentrated in 7(H(c)), this will complete the
proof of We extend k% (/€ T(G(r))) to the natural homomor-
phism of M(G(z’)) into M(H(s)) (cf. Theorem 1, ii of [4]) and denote this
extension by the same symbol A%.

Let ¢ be an element of M(G(z)) and write A'(g)= g+ o+ s, Where
€ M(H(o)), p, s M(H(o,)) N M(H(o))* and p,< M(H(o,))*. Our task is to
show that g, =0.

Suppose that u,+0, then there exists r*e 4,(0,) such that 2,(r*)+0.
Choose a neighborhood W of ¢, (r*) such that 2,(r)#0 (re ;X (W)), and
choose an open coset W, in 4, such that o(r*) e W,C ¢/ (W)+F and W,/F is
compact, where F is the connected component of 0 € 4,. Therefore for each
r & W, there exists ' € ¢’ '(r+F) such that

) = (1= MG@)).

(5.13) fy(r')#0.

Put M,=sup sup [||P.()|], then there exists r, = W,, S,CZ(G(z)) and
S

r<Wo a(r)e
=

7, € 8, such that o
’(5.14:) a(?"]) == Fsl ’ Ml é Hprl(ﬂ>”+1/2 .
‘We have from (5.14)

N
[(p—Po,()ar NI =1/2  (re WinYq).
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Put W,=Y ,NW, and put M,= s%) (s)up LI Po(wll], then there exist r,& Wy,
ey s

S, C %(G(z)) and 7, S, such that

(5.15) alryels,, M, < | P(pf+1/2%.

From we get

N
(= Pe,()a(r)| =1/28  (re WinYsy).

If we put W,=W,NY, and continue in the same way, we get a sequence
[Wn, Vry Tny Sn]:,G:] such that

(5.16) [W,x_, is a decreasing sequence of elements of
the coset ring of A,.

£ S Wn—ly O((Vn) € FSn’ Th = Sm Wn: Wn—lm an (71 - 1, 2, "'):

/\\
Pl @) S1/28 (re Wy,

Since W,/F is compact, ﬁan is not empty.
Let v, Fj\ W, and let v, M(H(s)) such that ©, is the characteristic
function of TI;';, and put
(5.17) R (= Pey(19)) = pf™ =+ ™+ ™
where p{® € M(H(0)), 14 € M(H(a,)) N M(H(0))*, and 4™ € M(H(o,))*. We have
from the definition of v, and A’ that
(5.18) vn*/:i’(Prn(‘u)) =y, *he,(Pe, () € M(H(o)) n=1,2, ).
From [5.17) and we can lead the relations
(5.19) Yok p§™ =,k py, Yok P = v, % n=1,2, ).
From the last condition of (5.16), we have by (b) that
(5.20) |2 +am ()] £1/20 (re e (W,), n=1,2, ).
Since @q(¢ ' (W,)) is dense in ¢’ *(W,), we have from

(5.21) AP+ 2P =1/20 (ree ™ (W), n=1,2, ).
If we put
(5.22) Vak P =R, kP =2, (0=1,2, ),

it follows from that we can apply to [Ar]e= and [A,]5- of
(5.22), and we have
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(5.23) HPN) =1, =0 (e 't +F).

On the other hand, since 7, is an element of W,, we have from that
there exists ri € ¢’ '(r,+F) such that 2,(r5) = A5™(r;) + 0 and this contradicts
(5.23). This shows that x,=0, and thus we have A(y) = p, € M(H(s)). Q.E.D.

REMARK. The following example shows the reason why the discussion
in §3 is not enough to solve our problem in the general case.

EXAMPLE. Let H(o) be a discrete group such that its dual group A4, is
an infinite totally disconnected group, and let G(r) be a LCA group such

that there exists an open subgroup G’ of G(z) isomorphic with ﬁT‘” and

n=1

G(7)/G’ = H(o), where T (n=1, 2, --+) is the circle group. We identify G’
with f[T‘"”. We choose open compact subgroups {W,: n=1,2, .} of 4,
such ntiat

(5.24) W, DW,DW,D -,

(e

N W, is not an open subgroup of 4,.

n=1

Let 7, (n=1,2, ---) be an element of I(G(zr)) such that v;;l(klo'o[+ T®) is
=n+1

an open compact subgroup of G(z,). If we put S={c/€IGC{K): 'L 1,,
n=1,2, -}, then S is a directed subset of T(G(z)) (cf. p. 288 [4]). Since the
annihilator of G’ is an open compact subgroup of I, isomorphic with 4,
there exists an open continuous isomorphism & of W, into I'.. Put Y=W,.

For each r& Y— N W, there exists a positive integer m such that re W,

n=1
re& Wy and put a(r) = ¢, (a(r)). Ifre ﬁ W, we put a(r)=(0i(&(r))ces< [ 's.
n=1

Then « is a map of Y into /™ and the corresponding a., Y. and h. (v/ €
F(G(r))) satisfies the conditions 1), 2) of [Theorem 4.1 of [4], and there exists
a homomorphism & of L*(G(z)) into M(H(s)) such that

o~ flaP)): rey
) = | (ne LHGE)).
0 cred,—Y
The fact that [a., Yo, Acodeeso, satisfies the condition 2) of
of is shown as follows. For each v/ € T(G(z)) let h* be a homomorphism
of LYG(z")) into M(H(c)) such that

G = | Herarsr= Y (ne DG
= (1) = pe v’
0 cred,—-Y
and for each positive integer n let v, be an idempotent measure in M(H(0))
such that 9, is the characteristic function of W,—W,, then we have || A [=1
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and |y, <2 (cf. p. 79, 42.1 of [6]). If ¢’ & S, there exists a positive integer
m such that v/ <z,_,, 7/ £ ., and thus we have h.(p)=v,, *hE (@) (ps L (G(z")).
If 7S, h.. =h¥, and consequently we get g;l(g( ))|1hfll|§2, and thus the
condition 2) holds.
Next we choose a sequence {x™ =T, n=1, 2, ---} such that

(5.25) {x®, x®, e, x™ (m=1,2, )

is independent as a subset of a circle group, and that each x* (k=1,2, --)
has an infinite order (we use addition as group operation of T; cf. p. 97

[5]). We put C:ﬁ {0, x™}, then C is a compact subset of G’, and there
n=1

exists a continuous measure p < M(G(z)) such that

(5.26) | 1](C) =] pl(G(z),  A0)+0.

Let z, be an arbitrary element of S and let F be the connected com-
ponent of 0 in G(z,). Since 7, <7, (n=1,2, --), F is contained in n;{l(k:HHT(k))
(n=1,2, ), that is

(P N (I T®)= (0},
and thus G(z,) is totally disconnected.

Let G” be an open compact subgroup of G(z,), and let x;, =(x{®)p,, x,=
(x$")z_, be elements of 7% '(C) such that x,—x, € G”. If x;# x,, there exists

a non-empty set N of positive integers such that x{® # x{ if and only if
ke N. By virtue of [5.25), 0 is the only character on I 7T which annihilates
k=N

X;—X,, and thus {n(x;,—x,): n=0, =1, +2, ---} is a dense subgroup of HNT”‘).
ks

Since G” is compact, 7%,|¢- is a homeomorphism, and hence G” contains
i} HVT"”) as a compact subgroup of G”. This contradicts the fact that
k=T

G” is totally disconnected. Consequently we conclude that each coset of G”
contains at most one element of 7%, '(C). Combining this with the fact that

C is contained in the finite union of cosets of I T (n=1,2, ---), we get

k=n+1

(5.27) pe MG(z)) (=12 ); pe& MG(zy),
and this shows that is not valid for infinite n.
Let B8, be a function on /4, such that
fla() = platr): re Y
rred,—Y.
Using we can lead another expression of £, namely

ﬁy(r) =



186 J. INnoUE

(Foa—(Roa)l §wp)): rEY

(r) =
Pulr) 0 cred,—Y,

where X% w, denotes the characteristic function of (\1 W,. Since ﬂan is
1 n= n=

il
not a neighborhood of 0 in 4, 2(@)) =2(0)+0 and fioa is continuous at 0,
we can see that S, is not continuous at 0 & /4, (this is the reason why the
discussion in § 3 is not enough to solve our problem in the general case).

Next we show that {r,}>; has no L u.b. in T(G(z)), that is, T(G(z)) is not
a o-complete lattice with respect to the partial ordering =. For this it is
enough to show that there exists 7o < S such that 7, <7, Since G” is totally
disconnected and compact, G” "\7%E (T™) is a finite group. Choose a finite
subgroup D, of T such that D, 295, (G")N\T®. By the same way choose
a finite subgroup D, of T such that D,2 i (G")+D)NT®. If we con-
tinue this process, we get a sequence of subgroups {D,CT™:n=1,2, -}
such that

(5.28) Doy 205G+ BDINT™  (n=0,1,2, ).
=1
Put D:kﬁ(Dk). Given an arbitrary positive integer n, there exists a finite
=1

number of elements x,, x,, ---, x; € G(zr) such that

{ o
(5.29) U@+ II T®)DD.

i=1 k=n+1
Again choose a finite number of elements y;, ¥, -+, ¥n € G(r) such that
(5.30 U (it I T®)D75,(G7).

This choice is possible since 7, <r7,. Summing [5.29] and [5.30) we get

oo

(5.31) M Gty (I TOND DAme(G7).
i=1,--,1
Let z; be an element of T(G(z)) such that 2 =75 (D+7%,(G”)) is an open
compact subgroup of G(z;). From [5.28), (%, '(D)+G”)/G” is an infinite group
and this shows that 7, < 4.
For each positive integer 1, the restriction of 7%," on ‘ 1U L(xi-{—yﬂt(kﬁ% T &)
i=1, -, =n+1
=1, m
is continuous and by we have that 7% 'o7%,.| g is a continuous function.
Since £ is open in G(zy), we have 75 <7, and hence 7} S. This was what
we wanted to show.
Nagoya Institute of Technology
Gokiso-cho, Showa-ku

Nagoya, Japan
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