Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem II

By Jyunji INOUE

(Received Nov. 29, 1971) (Revised Aug. 7, 1972)

§ 1. Introduction.

This paper is a continuation of the previous paper [4]. Throughout this paper $G(\tau)$ and $H(\sigma)$ denote LCA groups with underlying groups G and H, and with topologies τ and σ , respectively. In the previous paper [4], we introduced the closed subalgebra $L^*(G(\tau))$ of $M(G(\tau))$, and determined all the homomorphisms of $L^*(G(\tau))$ into $M(H(\sigma))$ as a generalization of Cohen's theorem. In this paper we prove that every homomorphism of $L^*(G(\tau))$ into $M(H(\sigma))$ has a natural norm-preserving extension to a homomorphism of $M(G(\tau))$ into $M(H(\sigma))$ as a generalization of Cohen's theorem.

In § 2 we give some preliminaries, and in § 3 we give the proof of our result for the special case that $H(\sigma)$ is compact. § 4 contains some results on the topology of the maximal ideal space of $M(G(\tau))$, which is used in § 5 to prove our result for the general case.

§ 2. Preliminaries.

We denote by $\mathfrak{T}(G(\tau))$ the set of all the locally compact group topologies on G which are at least as strong as the original topology τ . Let τ_1 and τ_2 be elements of $\mathfrak{T}(G(\tau))$ with $\tau_1 \subset \tau_2$. We denote by $\eta_{\tau_2}^{\tau_1}$ the natural continuous isomorphism of $G(\tau_2)$ onto $G(\tau_1)$. Γ_{τ_i} denotes the dual group of $G(\tau_i)$ and $\varphi_{\tau_2}^{\tau_1}$ denotes the natural continuous isomorphism of Γ_{τ_1} onto a dense subgroup of Γ_{τ_2} such that (cf. Lemma 2.3 of [4])

$$(x, \varphi_{\tau_2}^{\tau_1}(r)) = (\eta_{\tau_2}^{\tau_1}(x), r) \qquad (x \in G(\tau_2), r \in \Gamma_{\tau_1}).$$

For each $\tau' \in \mathfrak{T}(G(\tau))$, there exists a natural norm-preserving isomorphism $\pi_{\tau'}$ of $M(G(\tau'))$ into $M(G(\tau))$ such that (cf. Proposition 2.1 of $\lceil 4 \rceil$)

$$\pi_{\tau'}(\mu)(E) = \mu(\eta_{\tau'}^{\tau^{-1}}(E))$$
 (E: Borel set of $G(\tau)$; $\mu \in M(G(\tau'))$).

We identify $L^1(G(\tau'))$ and $M(G(\tau'))$ with the closed subalgebras of $M(G(\tau))$ through $\pi_{\tau'}$, respectively. $M(G(\tau'))^{\perp} = \{ \mu \in M(G(\tau)) : \mu \perp \nu ; \nu \in M(G(\tau')) \}$ is an

ideal of $M(G(\tau))$ and the projection $P_{\tau'}$ of $M(G(\tau))$ onto $M(G(\tau'))$ is a homomorphism.

 \mathfrak{M} denotes the maximal ideal space of $M(G(\tau))$ and Γ^* denotes the maximal ideal space of $L^*(G(\tau))$ constructed in § 3 of [4]. If $\mu \in M(G(\tau))$, $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ , and $\hat{\mu}$ denotes the Gelfand transform of μ . If we express by $\hat{\hat{\mu}}$ the function of Γ^* defined by (3.10) of [4], each $r \in \Gamma^*$ has an extension to a complex homomorphism

$$M(G(\tau)) \ni \mu \longmapsto \hat{\hat{\mu}}(r) \in C$$
,

and in this way we consider Γ^* as a subset of \mathfrak{M} . In this point of view we have

$$\hat{\hat{\mu}}(r) = \hat{\hat{\mu}}(r) \qquad (r \in \varGamma^* \; ; \; \mu \in M(G(\tau))) \; .$$

By the Remark in p. 291 of [4], $\Gamma_{\tau'}$ can be considered as a subset of Γ^* , and so as a subset of \mathfrak{M} , and it is easy to see that the relative topology of $\Gamma_{\tau'}$ in \mathfrak{M} is equal to the topology of $\Gamma_{\tau'}$ ($\tau' \in \mathfrak{T}(G(\tau))$).

If $\mu \in M(G(\tau'))$ $(\tau' \in \mathfrak{T}(G(\tau)))$, we express the Fourier-Stieltjes transform of μ with respect to $\Gamma_{\tau'}$ and the Fourier-Stieltjes transform of μ with respect to Γ_{τ} by the same symbol $\hat{\mu}$, and we make a difference between them by indicating the domain of $\hat{\mu}$. We constantly refer to the previous paper [4], and the notations used in this paper are chosen so that they are consistent with those in [4] as far as possible.

§ 3. Consideration of the case when $H(\sigma)$ is compact.

THEOREM 3.1. Suppose that τ_1, \dots, τ_n are a finite number of elements in $\mathfrak{T}(G(\tau))$, then there exists a unique $\tau_0 \in \mathfrak{T}(G(\tau))$ such that $\bigcap_{i=1}^n M(G(\tau_i)) = M(G(\tau_0))$.

PROOF. We may suppose n=2. Let τ_d be the discrete topology on G, then $\Gamma_{\tau d}$ is the Bohr compactification of Γ_{τ} . Choose τ_1' , $\tau_2' \in \mathfrak{T}(\Gamma_{\tau d})$ so that

$$\eta_i^{\prime^{-1}} \circ \varphi_{\tau_d}^{\tau_i} \colon \varGamma_{\tau_i} \longrightarrow \varGamma_{\tau_d}(\tau_i^{\prime}) \qquad (i = 1, 2)$$

is an open continuous isomorphism, where η_i' is the natural continuous isomorphism of $\Gamma_{\tau_d}(\tau_i')$ onto Γ_{τ_d} . By Theorem 2.8 of [4], there exists $\tau_0' \in \mathfrak{T}(\Gamma_{\tau_d})$ such that

$$(3.1) L^1(\Gamma_{\tau_d}(\tau_1')) * L^1(\Gamma_{\tau_d}(\tau_2')) \subset L^1(\Gamma_{\tau_d}(\tau_0')),$$
$$\tau_0' \subset \tau_1', \ \tau_2'.$$

Furthermore for this τ'_0 , we see from the proof of Theorem 2.8 of [4] that

$$\Gamma_{\tau_d}(\tau_1') \times \Gamma_{\tau_d}(\tau_2') \ni (x, y) \longmapsto \eta'^{-1}(\eta_1'(x)) + \eta'^{-1}(\eta_2'(y)) \in \Gamma_{\tau_d}(\tau_0')$$

is an open continuous map, where η' denotes the natural continuous isomorphism of $\Gamma_{\tau_d}(\tau_0')$ onto Γ_{τ_d} . Thus if we put

(3.2)
$$II = \eta'^{-1}(\varphi_{\tau d}^{\tau_1}(\Gamma_{\tau_1}) + \varphi_{\tau d}^{\tau_2}(\Gamma_{\tau_2})),$$

then Π is an open subgroup of $\Gamma_{\tau_d}(\tau'_0)$.

Let G' be the dual group of Π . For each $x \in G'$ $\eta_i(x) = x \circ \eta'^{-1} \circ \varphi_{\tau d}^{\tau_i}$ is an element of $G(\tau_i)$, and it is easy to see that η_i is a continuous homomorphism of G' onto $G(\tau_i)$ (i=1, 2).

Let $x \in G'$ such that $\eta_1(x) = 0$. Since

$$\varphi_{\tau d}^{\tau_1}(\Gamma_{\tau_1}) \cap \varphi_{\tau d}^{\tau_2}(\Gamma_{\tau_2}) \supset \varphi_{\tau d}^{\tau}(\Gamma_{\tau})$$
,

and since $\varphi_{\tau_d}^{\tau}(\Gamma_{\tau})$ is dense in Γ_{τ_d} , we have $\eta_{\tau_d}^{\tau_2^{-1}}(\eta_2(x))=0$ and consequently $\eta_2(x)=0$. If we remember that Π is generated by $\eta'^{-1}(\varphi_{\tau_d}^{\tau_1}(\Gamma_{\tau_1})\cup\varphi_{\tau_d}^{\tau_2}(\Gamma_{\tau_2}))$, $\eta_2(x)=0$ reduces to x=0. This shows that η_1 is an isomorphism and in the same way η_2 is an isomorphism. It follows from this that we can choose $\tau_0\in\mathfrak{T}(G(\tau))$ such that $\tau_0\supset\tau_1,\,\tau_2,\,G'\cong G(\tau_0)$, and thus we can identify G' with $G(\tau_0)$ in the natural way.

Let ν be an arbitrary element of $M(G(\tau_1)) \cap M(G(\tau_2))$. By Proposition 2.1 of [4], there exists a σ -compact set K_i in $G(\tau_i)$ (i=1,2) such that ν is concentrated on $\eta^{\tau}_{\tau_i}(K_i)$, and hence ν is concentrated on $\eta^{\tau}_{\tau_1}(K_1) \cap \eta^{\tau}_{\tau_2}(K_2)$. Let K_{ij} $(j=1,2,\cdots)$ be a sequence of compact subsets of $G(\tau_i)$ such that $\bigcup_{j=1}^{\infty} K_{ij} = K_i$ (i=1,2). For each positive integer j_i (i=1,2), we can find $\nu_{iji} \in L^1$ $(\Gamma_{\tau_d}(\tau_i'))$ such that

$$\hat{\nu}_{ij_i}(x) = 1 \qquad (x \in K_{ij_i}),$$

$$\nu_{ij_i} \text{ is concentrated on } \eta_i'^{-1}(\varphi_{\tau_d}^{\tau_i}(\Gamma_{\tau_i})).$$

From (3.1) we have $\nu_{1j_1}*\nu_{2j_2} \in L^1(\Gamma_{\tau_d}(\tau_0'))$ and from (3.2) $\nu_{1j_1}*\nu_{2j_2}$ is concentrated on Π . Using the fact that Π is open in $\Gamma_{\tau_d}(\tau_0')$, we get $\nu_{1j_1}*\nu_{2j_2} \in L^1(\Pi)$. Consequently we get

$$(3.4) \qquad \widehat{\nu_{1j_1} * \nu_{2j_2}}(x) = \widehat{\nu}_{1j_1}(x)\widehat{\nu}_{2j_2}(x) = 1 \qquad (x \in \eta_{\tau_0}^{\tau_1^{-1}}(K_{1j_1}) \cap \eta_{\tau_0}^{\tau_2^{-1}}(K_{2j_2})),$$

$$\widehat{\nu_{1j_1} * \nu_{2j_2}} \in C_0(G(\tau_0)).$$

(3.4) means that there exists a compact subset $C(j_1, j_2)$ of $G(\tau_0)$ such that

(3.5)
$$\eta_{\tau_0}^{\tau}(C(j_1, j_2)) \supset \eta_{\tau_1}^{\tau}(K_{1j_1}) \cap \eta_{\tau_2}^{\tau}(K_{2j_2})$$
.

Summing (3.5) for j_1 and j_2 , we get

(3.6)
$$\bigcup_{j_{1}, j_{2}=1}^{\infty} \eta_{\tau_{0}}^{\tau}(C(j_{1}, j_{2})) \supset \bigcup_{j_{1}, j_{2}=1}^{\infty} (\eta_{\tau_{1}}^{\tau}(K_{1j_{1}}) \cap \eta_{\tau_{2}}^{\tau}(K_{2j_{2}}))$$

$$= \eta_{\tau_{1}}^{\tau}(\bigcup_{j_{1}=1}^{\infty} K_{1j_{1}}) \cap \eta_{\tau_{2}}^{\tau}(\bigcup_{j_{2}=1}^{\infty} K_{2j_{2}}) = \eta_{\tau_{1}}^{\tau}(K_{1}) \cap \eta_{\tau_{2}}^{\tau}(K_{2}) .$$

From (3.6) and the fact that ν is concentrated on $\eta_{\tau_1}^{\tau}(K_1) \cap \eta_{\tau_2}^{\tau}(K_2)$, we obtain using Proposition 2.1 of [4] that ν belongs to $M(G(\tau_0))$.

Thus $M(G(\tau_1)) \cap M(G(\tau_2))$ is contained in $M(G(\tau_0))$ and it is clear that $M(G(\tau_0))$ is contained in $M(G(\tau_1)) \cap M(G(\tau_2))$. Since the uniqueness of τ_0 is obvious from Theorem 2.5 of [4], this completes the proof of Theorem 3.1.

We introduce a partial ordering in $\mathfrak{T}(G(\tau))$ such that if τ_1 , $\tau_2 \in \mathfrak{T}(G(\tau))$, then $\tau_2 \leq \tau_1$ if and only if $\tau_1 \subset \tau_2$.

COROLLARY 3.21). $\mathfrak{T}(G(\tau))$ is a lattice under the partial ordering \leq .

PROOF. Let τ_1 , $\tau_2 \in \mathfrak{T}(G(\tau))$. By Theorem 2.8 of [4], there exists $\tau_3 \in \mathfrak{T}(G(\tau))$, l. u. b. of τ_1 and τ_2 such that

$$L^1(G(\tau_1))*L^1(G(\tau_2)) \subset L^1(G(\tau_3))$$
.

By Theorem 3.1 there exists $\tau_0 \in \mathfrak{T}(G(\tau))$, g.l.b. of τ_1 and τ_2 such that

$$M(G(\tau_1)) \cap M(G(\tau_2)) = M(G(\tau_0))$$
,

and this completes the proof.

COROLLARY 3.3. Let τ_0 , τ_1 and τ_2 be elements of $\mathfrak{T}(G(\tau))$ such that $M(G(\tau_1)) \cap M(G(\tau_2)) = M(G(\tau_0))$. We regard each Γ_{τ_i} (i = 0, 1, 2) as a subgroup of the semigroup Γ^* (cf. Proposition 3.2 and p. 291 Remark of [4]), then we have

$$\Gamma_{\tau_1} + \Gamma_{\tau_2} = \Gamma_{\tau_0}$$
.

PROOF. In the proof of the Theorem 3.1, we can identify Γ_{τ_0} with Π and that we have $\varphi_{\tau_0}^{\tau_1}(\Gamma_{\tau_1}) + \varphi_{\tau_0}^{\tau_2}(\Gamma_{\tau_2}) = {\eta'}^{-1}(\varphi_{\tau_d}^{\tau_1}(\Gamma_{\tau_1}) + \varphi_{\tau_d}^{\tau_2}(\Gamma_{\tau_2})) = \Pi$. Thus we have

¹⁾ But $\mathfrak{T}(G(\tau))$ is not generally a σ -complete lattice (cf. §5 example).

$$\begin{split} \varGamma_{S_{\tau_{1}}} + \varGamma_{S_{\tau_{2}}} &= \{ (\varphi_{\tau'}^{\tau_{1}}(r))_{\tau' \in S_{\tau_{1}}} + (\varphi_{\tau'}^{\tau_{2}}(r'))_{\tau' \in S_{\tau_{2}}}; \ r \in \varGamma_{\tau_{1}}, \ r' \in \varGamma_{\tau_{2}} \} \\ &= \{ (\varphi_{\tau'}^{\tau_{1}}(r) + \varphi_{\tau'}^{\tau_{2}}(r'))_{\tau' \in S_{\tau_{0}}}; \ r \in \varGamma_{\tau_{1}}, \ r' \in \varGamma_{\tau_{2}} \} \\ &= \{ (\varphi_{\tau}^{\tau_{0}}(r))_{\tau' \in S_{\tau_{0}}}; \ r \in \varPi = \varGamma_{\tau_{0}} \} = \varGamma_{S_{\tau_{0}}}. \end{split}$$

If we identify Γ_{τ_i} with $\Gamma_{S_{\tau_i}}$ we get the conclusion of Corollary 3.3.

PROPOSITION 3.4. Suppose that $H(\sigma)$ is compact, then every homomorphism h of $L^*(G(\tau))$ into $M(H(\sigma))$ has a natural norm-preserving extension to a homomorphism of $M(G(\tau))$ into $M(H(\sigma))$.

PROOF. Let Λ_{σ} denote the dual group of $H(\sigma)$. By Theorem 4.1 of [4], there exists a subset Y of Λ_{σ} and a map α of Y into Γ^* such that for each $\tau' \in \mathfrak{T}(G(\tau))$ $Y_{\tau'}$ is an element of the coset ring of Λ_{σ} and $\alpha_{\tau'}$ is a piecewise affine map of $Y_{\tau'}$ into $\Gamma_{\tau'}$, where $Y_{\tau'}$ and $\alpha_{\tau'}$ is defined by (4.3) of [4].

Let μ be an element of $M(G(\tau))$ and put

(3.7)
$$\beta_{\mu}(r) = \begin{cases} \hat{\hat{\mu}}(\alpha(r)) = \hat{\hat{\mu}}(\alpha(r)); & r \in Y \\ 0 & ; r \in \Lambda_{\sigma} - Y. \end{cases}$$

We show that $\beta_{\mu} \in B(\Lambda_{\sigma})$ and $\|\beta_{\mu}\| \leq \|h\| \|\mu\|$, and this will complete the proof of Proposition 3.4 (cf. p. 32 and p. 83 of [5]).

Let $P(x) = \sum_{i=1}^{n} a_i(x, r_i)$ be a non-zero trigonometric polynomial on $H(\sigma)$, and let $\varepsilon > 0$. Suppose that $\alpha(r_i) \in \Gamma_{S_i}$ $(i = 1, \dots, m)$ and $r_i \in Y$ $(i = m+1, \dots, n)$ (cf. Definition 3.2 of [4]). By Proposition 3.4 of [4], we have a decomposition of μ such that

(3.8)
$$\mu = \mu_1^{(i)} + \mu_2^{(i)}, \quad \mu_1^{(i)} \in \overline{\sum_{\tau' = S_i} M(G(\tau'))}, \quad \mu_2^{(i)} \in \overline{\sum_{\tau' = S_i} M(G(\tau'))} \quad (i = 1, \dots, m).$$

Remembering that S_i is a directed set, we may write

(3.9)
$$\mu_1^{(i)} = \lim_{\tau' \in S_i} P_{\tau'}(\mu) \qquad (i = 1, \dots, m),$$

and there exists $\tau_i \in S_i$ such that

We have from (3.7) and the definition of $\hat{\hat{\rho}}$ (cf. p. 292 of [4]) that

$$\begin{aligned} (3.11) \qquad & |\beta_{\mu}(r_{i}) - \widehat{P_{\tau_{i}}(\mu)}(\alpha(r_{i}))| = |\widehat{\hat{\mu}}_{1}^{(i)}(\alpha(r_{i})) - \widehat{P_{\tau_{i}}(\mu)}(\alpha(r_{i}))| \\ & \leq \|\mu_{1}^{(i)} - P_{\tau_{i}}(\mu)\| \leq \varepsilon/2m(1+\varepsilon) \max\left[|a_{k}|; k=1, \cdots, m\right] \quad (i=1, \cdots, m). \end{aligned}$$

By induction on m, we can find $\mu_A \in M(G(\tau))$ $(A \subset \{\tau_1, \dots, \tau_m\})$ such that

$$(3.12) \qquad \mu_A \in M(G(\tau_i))^\perp \qquad (\tau_i \in \{\tau_1, \cdots, \tau_m\} - A),$$

$$\mu_A \in M(G(\tau_i)) \qquad (\tau_i \in A),$$

By Theorem 3.1 there exists $\tau_A \in \mathfrak{T}(G(\tau))$ such that

(3.13)
$$M(G(\tau_A)) = \bigcap_{\tau_i \in A} M(G(\tau_i)) \qquad (A \subset \{\tau_1, \dots, \tau_m\}),$$

where we put $\tau_A = \tau$ if $A = \emptyset$. Choosing $\lambda_A \in L^1(G(\tau_A))$ $(A \subset \{\tau_1, \dots, \tau_m\})$ such that

(3.14)
$$\|\lambda_A\| \leq 1 + \varepsilon; \ \hat{\lambda}_A(\varphi_{\tau_A}^{S_i}(\alpha(r_i))) = 1 \qquad (\tau_i \in A),$$

and putting $\lambda = \sum_{A \subset \{\tau_1, \dots, \tau_m\}} \lambda_A * \mu_A$, we have

(3.15)
$$\|\lambda\| \leq (1+\varepsilon)\|\mu\|, \quad \lambda \in L^*(G(\tau)).$$

It is easy to see from (3.12), (3.13) and the definition of λ that

(3.16)
$$\mu_{A} \perp \mu_{A!} (\{\tau_{1}, \cdots, \tau_{m}\} \supset A, A'; A \neq A'),$$

$$P_{\tau_{i}}(\mu) = \sum_{A \supseteq \tau_{i}} \mu_{A}, \qquad (i = 1, \cdots, m)$$

$$P_{\tau_{i}}(\lambda) = \sum_{A \subseteq \{\tau_{1}, \cdots, \tau_{m}\}} P_{\tau_{i}}(\lambda_{A} * \mu_{A}) = \sum_{A \supseteq \tau_{i}} \lambda_{A} * \mu_{A}$$

Again by Proposition 3.4 of [4], we decompose λ and μ_A $(A \subset \{\tau_1, \dots; \tau_m\})$ so that

(3.17)
$$\lambda = \lambda_{1}^{(i)} + \lambda_{2}^{(i)}, \quad \mu_{A} = \mu_{A,1}^{(i)} + \mu_{A,2}^{(i)}, \\ \mu_{A,1}^{(i)}, \quad \lambda_{1}^{(i)} \in \overline{\sum_{\tau' \in S_{4}} M(G(\tau'))}, \quad \mu_{A,2}^{(i)}, \quad \lambda_{2}^{(i)} \in \overline{\sum_{\tau' \in S_{i}} M(G(\tau'))}$$
 $(i = 1, \dots, m)$.

Since $\tau_i \in S_i$ $(i=1, \dots, m)$, we have

Here remembering that $\sum_{\tau' \in S_i} M(G(\tau'))^{\perp}$ is an ideal and using (3.10), (3.14), (3.16), (3.17) and (3.18) we obtain

From (3.19) we get at once

(3.20)
$$|\hat{\hat{\lambda}}_{i}^{(0)}(\alpha(r_{i})) - \widehat{P_{r_{i}}(\lambda)}(\alpha(r_{i}))| \leq \varepsilon/2m \max[|a_{k}|; k=1, \dots, m].$$

Using (3.11), (3.14), (3.16), (3.17) and (3.20) we obtain

$$(3.21) \qquad |\beta_{\mu}(r_{i}) - \hat{\hat{\lambda}}(\alpha(r_{i}))| = |\beta_{\mu}(r_{i}) - \hat{\hat{\lambda}}_{1}^{(i)}(\alpha(r_{i}))|$$

$$\leq |\widehat{P_{\tau_{i}}(\mu)}(\alpha(r_{i})) - \widehat{P_{\tau_{i}}(\lambda)}(\alpha(r_{i}))| + \varepsilon/m \max [|a_{k}|; k = 1, \dots, m]$$

$$= |\sum_{A = \tau_{i}} \hat{\mu}_{A}(\alpha(r_{i})) - \sum_{A = \tau_{i}} \hat{\mu}_{A}(\alpha(r_{i})) \hat{\lambda}_{A}(\varphi_{\tau_{A}}^{S_{i}}(\alpha(r_{i})))|$$

$$+ \varepsilon/m \max [|a_{k}|; k = 1, \dots, m]$$

$$= \varepsilon/m \max [|a_{k}|; k = 1, \dots, m] \qquad (i = 1, \dots, m).$$

From (3.21) we have

(3.22)
$$|a_i\beta_{\mu}(r_i) - a_i\hat{\lambda}(\alpha(r_i))| \leq \varepsilon/m \qquad (i = 1, \dots, m).$$

Summing (3.22) from i=1 to m, and using the fact that $\beta_{\mu}(r_i) = \hat{h}(\lambda)(r_i) = 0$ $(i=m+1, \dots, n)$, we have

(3.23)
$$|\sum_{i=1}^{n} a_{i} \beta_{\mu}(r_{i}) - \sum_{i=1}^{n} a_{i} \widehat{h(\lambda)}(r_{i})| \leq \sum_{i=1}^{m} |a_{i} \beta_{\mu}(r_{i}) - a_{i} \widehat{\lambda}(\alpha(r_{i}))| \leq \varepsilon.$$

From (3.15) applying the Bochner-Eberlein's theorem we obtain

$$(3.24) |\sum_{i=1}^{n} a_{i} \widehat{h(\lambda)}(r_{i})| \leq ||h(\lambda)|| ||P||_{\infty} \leq ||h|| ||\lambda|| ||P||_{\infty} \leq ||h|| (1+\varepsilon) ||\mu|| ||P||_{\infty}.$$

Combining (3.23) and (3.24) and letting $\varepsilon \rightarrow 0$ to obtain

and again by the Bochner-Eberlein's theorem we obtain $\beta_{\mu} \in B(\Lambda_{\sigma})$, $\|\beta_{\mu}\| \le \|h\| \|\mu\|$. This completes the proof of Proposition 3.4.

§ 4. Some results on the topology of the maximal ideal space of $M(G(\tau))$.

THEOREM 4.1. Let τ_0 be an element of $\mathfrak{T}(G(\tau))$, then we have

(a) If $\mu \in M(G(\tau))$ such that there exists $\delta > 0$ and a non-empty open set \widetilde{U} in Γ_{τ_0} with

$$|\hat{\mu}(r)| > \delta > 0 \qquad (r \in \varphi_{\tau_0}^{\tau^{-1}}(\tilde{U})),$$

then μ is not an element of $M(G(\tau_0))^{\perp}$.

- (b) $\|\hat{\mu}\|_{\infty} \ge \|\widehat{P_{\tau_0}(\mu)}\|_{\infty} \ (\mu \in M(G(\tau))).$
- (c) $\bar{\Gamma}_{\tau} \supset \Gamma_{\tau_0}$ ($\bar{\Gamma}_{\tau}$ denotes the closure of Γ_{τ} in \mathfrak{M}).
- (c) was proved by T. Shimizu [6] for a special class of elements in $\mathfrak{T}(G(\tau))$ which contains the discrete topology on G. Also (b) and (c) were proved independently by C. Dunkl and D. Ramirez [2], [3] for each element of $\mathfrak{T}(G(\tau))$. Since (a) is easily led from (b), Theorem 4.1 is essentially contained in [2] and [3]. But, for the completeness, we give here the proof of

Theorem 4.1 which is somewhat different from their proof.

We denote by $P_c(G(\tau))$ (resp. $P_c(G(\tau_0))$) the set of all continuous positive-definite functions of $G(\tau)$ (resp. $G(\tau_0)$) with compact support, and by spt. p the support of $p \in P_c(G(\tau))$ (resp. $P_c(G(\tau_0))$) in $G(\tau)$ (resp. $G(\tau_0)$). We denote by m the Haar measure on $G(\tau_0)$. If $p \in P_c(G(\tau))$ and $f \in P_c(G(\tau_0))$, we define $p*f(x) = \int_{G(\tau_0)} p(y)f(x-y)dm(y)$ ($x \in G$). Since p*f is $G(\tau)$ -continuous and has a compact support in $G(\tau)$, p*f belongs to $L^1(G(\tau))$. $p*f \in L^1(G(\tau))$ is just the convolution of $p \in L^1(G(\tau))$ and $f \in L^1(G(\tau_0))$ in $M(G(\tau))$, and thus $p*f \in P_c(G(\tau))$ by the inversion theorem.

The following lemma is due to C. Dunkl and D. Ramirez [2].

LEMMA 4.2. Let $p_0 \in P_c(G(\tau_0))$, and let W be an open set in $G(\tau)$ such that $W \supset \operatorname{spt.} p_0$. Then, for each $\varepsilon > 0$, there exists $p \in P_c(G(\tau))$ such that

$$(4.2) \operatorname{spt.} p \subset W ; |p(x) - p_0(x)| < \varepsilon (x \in \operatorname{spt.} p_0) .$$

PROOF. Let $\varepsilon > 0$ and put $K = \operatorname{spt.} p_0$. Since p_0 is uniformly continuous on $G(\tau_0)$, there exists $(0 \in) U \in \tau_0$ such that

(4.3)
$$|p_0(x+y)-p_0(x)| < \varepsilon \quad (x \in G; y \in U); \quad U = -U, m(U) < \infty.$$

K-K is $G(\tau_0)$ -compact, and the induced topology on K-K from $G(\tau)$ agree with $G(\tau_0)$ -topology on K-K. Thus we can choose $(0 \in) V \in \tau$ such that

$$(4.4) V \cap (K-K) \subset U \cap (K-K); V+K \subset W.$$

Let $g \in P_c(G(\tau))$ such that

(4.5) spt.
$$g \subset V$$
; $\int_U g dm = 1$; $g \ge 0$.

We have from (4.3), (4.4) and (4.5) that

If we put $p = g * p_0 \in P_c(G(\tau))$, we have

$$(4.7) spt. $p \subset spt. g + K \subset V + K \subset W.$$$

This completes the proof.

THE PROOF OF THEOREM 4.1. (a) Suppose $\mu \in M(G(\tau_0))^{\perp}$. Let $0 \neq g \in L^1(G(\tau_0))$ be a continuous positive-definite function on $G(\tau_0)$ such that

$$0 \leq \hat{g}(r) < |\hat{\mu}(r)|^2 \qquad (r \in \varphi_{\tau_0}^{\tau^{-1}}(\widetilde{U})),$$

$$\hat{g}(r) = 0 \qquad (r \in \varphi_{\tau_0}^{\tau^{-1}}(\widetilde{U})),$$

and let $p_0 \in P_c(G(\tau_0))$ with $p_0 * g \neq 0$. If we put $K = \operatorname{spt.} p_0$, then $|\tilde{\mu} * \mu|(K) = 0$ by Proposition 2.1 of [4], and we can choose $\varepsilon > 0$ and $W \in \tau$ such that

$$\begin{array}{ll} p_{\scriptscriptstyle 0} * g(0) > \varepsilon > 0 \; ; & W \supset K \; , \\ |\tilde{\mu} * \mu|(W) < (p_{\scriptscriptstyle 0} * g(0) - \varepsilon)/2 p_{\scriptscriptstyle 0}(0) \; , \\ \\ 2 p_{\scriptscriptstyle 0}(0) \cdot \int_{W - K} |g(x)| \, dm(x) < \varepsilon/2 \; . \end{array}$$

By Lemma 4.2, there exists $p \in P_c(G(\tau))$ such that

$$(4.10) |p(x)-p_0(x)| < \theta (x \in K); \text{spt. } p \subset W,$$

where $\theta = \min \{ p_0(0), \varepsilon/2 \int_K |g(x)| dm(x) \}$. We have from (4.10)

(4.11)
$$\max \{|p(x)|, |p(x)-p_0(x)|\} < 2p_0(0) \quad (x \in G),$$

and from (4.9), (4.10) and (4.11) we get

$$(4.12) \qquad p * \tilde{\mu} * \mu(0) = \int_{W} p(-x) d\tilde{\mu} * \mu(x) < 2p_{0}(0) | \tilde{\mu} * \mu | (W) < p_{0} * g(0) - \varepsilon$$

$$\leq p * g(0) + \int_{K} |(p_{0} - p)g|(x) dm(x) + \int_{W - K} |(p_{0} - p)g|(x) dm(x) - \varepsilon$$

$$$$$$$$

On the other hand we have by the inversion theorem and from (4.8) that

$$p * \tilde{\mu} * \mu(0) = \int_{\Gamma_{\tau}} \hat{p}(r) |\hat{\mu}(r)|^2 dr$$

$$\geq \int_{\Gamma_{\tau}} \hat{p}(r) \hat{g}(r) dr = p * g(0).$$

This contradicts (4.12) and thus (a) follows.

(b) Suppose that there exists $\mu \in M(G(\tau))$ such that $\|\hat{\mu}\|_{\infty} < \|\widehat{P}_{\tau_0}(\widehat{\mu})\|_{\infty}$. Then there exists $\varepsilon > 0$ and a non-empty open set U in Γ_{τ_0} such that

$$(4.13) |\hat{p}(r)| < |\widehat{P_{\tau_0}(\mu)}(r)| - \varepsilon (r \in \varphi_{\tau_0}^{\tau^{-1}}(U)).$$

Since $|\hat{\mu}(r)| \ge |\widehat{P_{\tau_0}(\mu)}(r)| - |\widehat{\mu - P_{\tau_0}(\mu)}(r)|$, we have from (4.13)

$$|\widehat{\mu-P_{ au_0}(\mu)}(r)|>arepsilon \qquad (r\in arphi_{ au_0}^{ au-1}(U))$$
 ,

and this contradicts (a).

(c) Suppose that there exists $r_0 \in \Gamma_{\tau_0}$ such that r_0 is not in $\overline{\Gamma}_{\tau}$, then there exists $\varepsilon > 0$ and $\mu_1, \dots, \mu_n \in M(G(\tau))$ such that

$$\bigcap_{i=1}^{n} \{ r \in \mathfrak{M} : |\hat{\mu}_{i}(r) - \hat{\mu}_{i}(r_{0})| < \varepsilon \} \cap \Gamma_{\tau} = \emptyset.$$

Put $\lambda_i = \mu_i - \hat{\mu}_i(r_0)\delta_0$ $(i = 1, \dots, n)$, $\lambda = \sum_{i=1}^n \tilde{\lambda}_i * \lambda_i$, where δ_0 denotes the unit mass at $0 \in G$, then we have

$$(4.14) \{r \in \mathfrak{M}: |\hat{\hat{\lambda}}(r)| < \varepsilon^2\} \cap \Gamma_{\tau} \subset \bigcap_{i=1}^n \{r \in \mathfrak{M}: |\hat{\hat{\lambda}}_i(r)| < \varepsilon\} \cap \Gamma_{\tau} = \emptyset.$$

Since $\hat{\hat{\lambda}}(r_0) = \sum_{i=1}^n |\hat{\hat{\lambda}}_i(r_0)|^2 = 0$, we can choose a neighborhood W of r_0 in Γ_{τ_0} such that

$$|\widehat{P_{ au_0}(\lambda)}(r)| (=\widehat{P_{ au_0}(\lambda)}(r) = \hat{\hat{\lambda}}(r)) < arepsilon^2/2 \qquad (r \in W)$$
 ,

and we have

$$(4.15) |\widehat{\lambda}(r)| \leq |\widehat{P_{\tau_0}(\lambda)}(r)| + |\widehat{\lambda - P_{\tau_0}(\lambda)}(r)|$$

$$< \varepsilon^2/2 + |\widehat{\lambda - P_{\tau_0}(\lambda)}(r)| (r \in \varphi_{\tau_0}^{\tau^{-1}}(W)).$$

From (4.14) we get $|\hat{\hat{\lambda}}(r)| = |\hat{\lambda}(r)| \ge \varepsilon^2$ $(r \in \Gamma_{\tau})$, and if we combine this with (4.15) we have

$$\varepsilon^2/2 < |\widehat{\lambda - P_{\tau_0}(\lambda)}(r)| \qquad (r \in \varphi_{\tau_0}^{\tau^{-1}}(W))$$
.

Since $\lambda - P_{\tau_0}(\lambda) \in M(G(\tau_0))^{\perp}$, this contradicts (a).

§ 5. Consideration of the general case.

LEMMA 5.1. Suppose that $H(\sigma)$ is an open subgroup of a LCA group H'. We consider $M(H(\sigma))$ as a closed subalgebra of M(H') in the natural way. We denote by Λ' and Λ_{σ} the dual groups of H' and $H(\sigma)$ respectively, and by φ we denote the natural open continuous homomorphism of Λ' onto Λ_{σ} such that

$$(x, \varphi(r)) = (x, r)$$
 $(x \in H(\sigma), r \in \Lambda')$.

Suppose that there exist $r_0 \in \Lambda_{\sigma}$, a sequence $[W_n]_{n=1}^{\infty}$ of elements of the coset ring of Λ_{σ} , and sequences $[\lambda'_n \in M(H(\sigma))]_{n=1}^{\infty}$, $[\lambda_n \in M(H') \cap M(H(\sigma))^{\perp}]_{n=1}^{\infty}$ such that

$$(5.1) \hspace{1cm} W_1 \supset W_2 \supset W_3 \supset \cdots \supset r_0 \,,$$

$$\hat{\lambda}'_n(r) = \hat{\lambda}_n(r) = 0 \hspace{0.5cm} (r \in \varphi^{-1}(W_n))$$

$$\hat{\lambda}_n(r) = \hat{\lambda}_{n+1}(r) \hspace{0.5cm} (r \in \varphi^{-1}(W_{n+1}))$$

$$\lim_{n \to \infty} \sup_{r \in \varphi^{-1}(W_n)} |\widehat{\lambda}_n + \widehat{\lambda}'_n(r)| = 0 \,,$$

then we have

(5.2)
$$\hat{\lambda}_{n}(r) = 0 \qquad (r \in \varphi^{-1}(r_{0} + F)),$$

where F denotes the connected component of $0 \in \Lambda_{\sigma}$.

PROOF. Since $\{\hat{\lambda}': \lambda' \in M(H(\sigma))\}$ and $\{\hat{\lambda}: \lambda \in M(H') \cap M(H(\sigma))^{\perp}\}$ are translation invariant and Λ_{σ}/F is totally disconnected, we may assume without loss of generality that $r_0=0$ and each W_n $(n=1,2,\cdots)$ is an open compact subgroup of Λ_{σ} .

First we consider the case that F is compact. We assume that (5.2) does not hold, that is, there exists $r_0' \in \varphi^{-1}(r_0 + F)$ such that $|\hat{\lambda}_n(r_0')| = \delta > 0$, and derive a contradiction. Also we may assume $r_0' = 0$ since each W_n contains F. Choose neighborhoods U and V of $r_0' = 0$ in Λ' such that

(5.3)
$$\varphi^{-1}(W_1) \supset U \supset V + V,$$

$$|\hat{\lambda}_n(r)| > \delta/2 \qquad (r \in U \cap \varphi^{-1}(W_n); n = 1, 2, \cdots).$$

Since Ker φ is equal to the annihilator of $H(\sigma)$ in Λ' , we have that Ker φ is compact. Combining this with the assumption that F is compact, we get that $\varphi^{-1}(F)$ is compact. From this it follows that there exists a finite number of elements $r_1, r_2, \dots, r_l \in \varphi^{-1}(F)$ such that

(5.4)
$$\bigcup_{i=1}^{l} (V+r_i) \supset \varphi^{-1}(F).$$

From (5.3) and (5.4) we have

$$(5.5) \qquad \bigcup_{i=1}^{l} (U+r_i) \supset \bigcup_{i=1}^{l} (V+V+r_i) \supset \varphi^{-1}(F) + V.$$

Since $(\varphi^{-1}(F)+V)/\varphi^{-1}(F)$ is a neighborhood of 0 of the totally disconnected group $\Lambda'/\varphi^{-1}(F)$, we can choose an open compact subgroup \widetilde{W} of Λ' such that

(5.6)
$$\bigcup_{i=1}^{l} (U+r_i) \supset \widetilde{W} \supset \varphi^{-1}(F).$$

Again observe that we can assume without loss of generality that $\varphi(\widetilde{W}) = W_1$. For each element $r \in \varphi^{-1}(W_n)$ ($\subset \varphi^{-1}(W_1) = \widetilde{W} \subset \bigcup_{i=1}^l (U+r_i)$) there exists a positive integer i such that $U+r_i \ni r$, that is $U\ni r-r_i$. Since $\varphi^{-1}(W_n) \supset \varphi^{-1}(F) \ni r_i$, we have $\varphi^{-1}(W_n) \ni r-r_i$ and thus $U \cap \varphi^{-1}(W_n) \ni r-r_i$. This shows $U \cap \varphi^{-1}(W_n) + r_i \ni r$ and hence

$$(5.7) \qquad \qquad \bigcup_{i=1}^{l} (U \cap \varphi^{-1}(W_n) + r_i) \supset \varphi^{-1}(W_n).$$

If we denote by t_n the number of elements of the finite group W_1/W_n $(n = 1, 2, \dots)$, then we have from (5.3), (5.6) and (5.7) that

(5.8)
$$\sqrt{t_n} \|\hat{\lambda}_n\|_2 \ge (\sqrt{t_n}/l) \|\sum_{i=1}^l |\hat{\lambda}_n(r-r_i)| \|_2$$

$$\ge (\sqrt{t_n}/l) \|(\delta/2) \sum_{i=1}^l \chi_{(U \cap \varphi^{-1}(\mathbf{W}_n) + r_i)} \|_2$$

$$\ge (\delta \sqrt{t_n}/2l) \|\chi_{\varphi^{-1}(\mathbf{W}_n)} \|_2 = (\delta/2l) \|\chi_{\widetilde{\mathbf{W}}} \|_2 > 0 \quad (n=1, 2, \cdots),$$

where $\chi_{\varphi^{-1}(W_n)}$ denotes the characteristic function of $\varphi^{-1}(W_n)$ and etc.

On the other hand, since $\varphi^{-1}(W_n)$ is compact we have

$$\widehat{\lambda_n+\lambda_n'}\in L^1(\Lambda')\cap L^2(\Lambda') \qquad (n=1,\,2,\,\cdots),$$

and by the inversion theorem, we have λ_n , $\lambda_n' \in L^1(H')$. If we choose Borel functions f_n and f_n' on H' such that

$$f_n dm = d\lambda_n$$
, $f'_n dm = d\lambda'_n$ $(n = 1, 2, \dots)$,

where m denotes the Haar measure on H', then we have f_n , $f'_n \in L^1(H') \cap L^2(H')$, and from the last condition of (5.1) using the Plancherel theorem we get

(5.9)
$$\lim_{n \to \infty} \sqrt{t_n} \|f_n + f'_n\|_2 = \lim_{n \to \infty} \sqrt{t_n} \|\widehat{\lambda_n + \lambda'_n}\|_2 = 0.$$

Since $\lambda_n \perp \lambda'_n$ $(n=1, 2, \dots)$, we have from (5.9), using the Plancherel theorem again that

$$\lim_{n\to\infty}\sqrt{t_n}\|\hat{\lambda}_n\|_2=\lim_{n\to\infty}\sqrt{t_n}\|f_n\|_2=0,$$

and this contradicts (5.8). Hence we conclude that (5.2) holds in the case that F is compact.

Suppose next that F is not compact and that (5.2) does not hold, that is there exists $r_0' \in \varphi^{-1}(r_0 + F)$ such that $|\hat{\lambda}_n(r_0')| = \delta > 0$. As before we can assume without loss of generality that $r_0' = 0$ and that $W_1 = R^m \times K$, where K is a compact subgroup of Λ_{σ} and R^m is a closed subgroup of Λ_{σ} isomorphic with the m(>0)-dimensional real vector group.

Let H_1 be the annihilator of $\varphi^{-1}(K)$ and let $\overline{\lambda}_n$ and $\overline{\lambda}'_n$ be elements of $M(H'/H_1)$ such that (cf. p. 53 [5])

(5.10)
$$\int_{H'} f(\phi(x)) d\lambda_n(x) = \int_{H'/H_1} f d\overline{\lambda}_n$$

$$\int_{H'} f(\phi(x)) d\lambda'_n(x) = \int_{H'/H_1} f d\overline{\lambda}'_n$$

$$(f \in C_0(H'/H_1)),$$

where ϕ is the natural continuous homomorphism of H' onto H'/H_1 . Since (5.10) also holds for any bounded Borel function on H'/H_1 , we have

(5.11)
$$\hat{\lambda}_n(r) = \hat{\bar{\lambda}}_n(r), \quad \hat{\lambda}'_n(r) = \hat{\bar{\lambda}}'_n(r) \quad (r \in \varphi^{-1}(K), n = 1, 2, \cdots),$$

and it is easy to see from (5.10) that

$$\overline{\lambda}_n' \in \mathit{M}(H(\sigma)/H_1) \text{ , } \qquad \overline{\lambda}_n \in \mathit{M}(H(\sigma)/H_1)^{\perp} \text{ .}$$

From (5.11) and (5.12), and by the discussion of the compact case, we get

$$\hat{\lambda}_n(r) = \hat{\overline{\lambda}}_n(r) = 0 \qquad (r \in \varphi^{-1}(K')),$$

where K' is the connected component of 0 in K_1 . Since $\varphi^{-1}(K') \supset \text{Ker } \varphi \ni r'_0 = 0$, this contradicts the first assumption and thus (5.2) holds in this case and Lemma 5.1 is proved.

THEOREM 5.2. Let h be a homomorphism of $L^*(G(\tau))$ into $M(H(\sigma))$, then there exists a natural norm-preserving extension of h to a homomorphism of $M(G(\tau))$ into $M(H(\sigma))$.

PROOF. Let \overline{H} be the Bohr compactification of $H(\sigma)$, let Λ_{σ} be the dual group of $H(\sigma)$, and let σ_d be the discrete topology on Λ_{σ} . We can find an element σ_0 of $\mathfrak{T}(\overline{H})$ such that $\eta' = \eta_{\sigma_0}^{-1} \circ \eta$ is an open continuous map of $H(\sigma)$ into $\overline{H}(\sigma_0)$, where η is the natural continuous isomorphism of $H(\sigma)$ onto a dense subgroup of \overline{H} , and η_{σ_0} is the natural continuous isomorphism of $\overline{H}(\sigma_0)$ onto \overline{H} .

If we denote by Λ_{σ_0} the dual group of $\overline{H}(\sigma_0)$, and if we put $\varphi'(r) = r \circ \eta'$ $(r \in \Lambda_{\sigma_0})$, then φ' is an open continuous homomorphism of Λ_{σ_0} onto Λ_{σ} . If we denote by φ and φ_{σ_0} the natural continuous isomorphism of $\Lambda_{\sigma}(\sigma_d)$ onto Λ_{σ} and the natural continuous isomorphism of $\Lambda_{\sigma}(\sigma_d)$ onto a dense subgroup of Λ_{σ_0} respectively, then we have $\varphi' \circ \varphi_{\sigma_0} = \varphi$. Clearly the annihilator of

 $\eta'(H(\sigma))$ is the kernel of φ' and that $\Lambda_{\sigma} \cong \Lambda_{\sigma_0}/\mathrm{Ker}\,\varphi'$.

By Theorem 4.1 of [4], there exist a subset Y of Λ_{σ} and a map α of Y

into Γ^* such that $[Y, \alpha]$ and the corresponding $[\alpha_{\tau'}, Y_{\tau'}, h_{\tau'}]_{\tau' \in \mathfrak{X}(G(\tau))}$ satisfies (4.1) of [4] and conditions 1), 2) of Theorem 4.1 of [4]. We put $Y' = \varphi^{-1}(Y)$, $\alpha' = \alpha \circ \varphi$. Then it is easy to see that the corresponding $[\alpha'_{\tau'}, Y'_{\tau'}, h'_{\tau'}]_{\tau' \in \mathfrak{X}(G(\tau))}$ satisfies the conditions 1), 2) of Theorem 4.1 of [4], and there exists a homomorphism h' of $L^*(G(\tau))$ into $M(\overline{H})$ such that for each $\mu \in L^*(G(\tau))$ we have

$$\widehat{h'(\mu)}(r) = \begin{cases} \widehat{\mu}(\alpha'(r)) : r \in Y' \\ 0 : r \in \Lambda_{\sigma}(\sigma_d) - Y'. \end{cases}$$

By Proposition 3.4, there exists a norm-preserving extension of h' to a homomorphism \bar{h}' of $M(G(\tau))$ into $M(\bar{H})$ such that

$$\widehat{\bar{h}'(\mu)}(r) = \begin{cases} \widehat{\hat{\mu}}(\alpha'(r)) = \widehat{\hat{\mu}}(\alpha'(r)) : r \in Y' \\ 0 : r \in \Lambda_{\sigma}(\sigma_d) - Y' \end{cases} \quad (\mu \in M(G(\tau))).$$

Let P_{σ_0} be the projection of $M(\overline{H})$ onto $M(\overline{H}(\sigma_0))$, and put $\overline{h} = P_{\tau_0} \circ \overline{h}'$. We identify $M(H(\sigma))$ with the closed subalgebra $\{\mu \in M(\overline{H}) : \mu \text{ is concentrated on } \eta(H(\sigma))\}$ of $M(\overline{H})$. In this point of view h' is a homomorphism of $L^*(G(\tau))$ into $M(H(\sigma))$ ($\subset M(\overline{H})$), and each $h'_{\tau'}$ ($\tau' \in \mathfrak{T}(G(\tau))$) is a homomorphism of $L^1(G(\tau'))$ into $M(H(\sigma))$ ($\subset M(\overline{H})$), and that h' = h, $h'_{\tau'} = h_{\tau'}$. Therefore if we show that $\overline{h}(\mu)$ ($\mu \in M(G(\tau))$) is concentrated in $\eta(H(\sigma))$, this will complete the proof of Theorem 5.2. We extend $h'_{\tau'}$ ($\tau' \in \mathfrak{T}(G(\tau))$) to the natural homomorphism of $M(G(\tau'))$ into $M(H(\sigma))$ (cf. Theorem 1, ii of [4]) and denote this extension by the same symbol $h'_{\tau'}$.

Let μ be an element of $M(G(\tau))$ and write $\bar{h}'(\mu) = \mu_1 + \mu_2 + \mu_3$, where $\mu_1 \in M(H(\sigma))$, $\mu_2 \in M(\bar{H}(\sigma_0)) \cap M(H(\sigma))^\perp$ and $\mu_3 \in M(\bar{H}(\sigma_0))^\perp$. Our task is to show that $\mu_2 = 0$.

Suppose that $\mu_2 \neq 0$, then there exists $r^* \in \Lambda_{\sigma}(\sigma_d)$ such that $\hat{\mu}_2(r^*) \neq 0$. Choose a neighborhood W of $\varphi_{\sigma_0}(r^*)$ such that $\hat{\mu}_2(r) \neq 0$ $(r \in \varphi_{\sigma_0}^{-1}(W))$, and choose an open coset W_0 in Λ_{σ} such that $\varphi(r^*) \in W_0 \subset \varphi'(W) + F$ and W_0/F is compact, where F is the connected component of $0 \in \Lambda_{\sigma}$. Therefore for each $r \in W_0$ there exists $r' \in {\varphi'}^{-1}(r+F)$ such that

$$\hat{\mu}_2(r') \neq 0$$
.

Put $M_1 = \sup_{\substack{\tau \in W_0 \ \alpha(\tau) \in S \\ \tau' \in S}} [\|P_{\tau'}(\mu)\|]$, then there exists $r_1 \in W_0$, $S_1 \subset \mathfrak{T}(G(\tau))$ and $\sigma_1 \in S_1$ such that

(5.14)
$$\alpha(r_1) \in \Gamma_{S_1}, \quad M_1 \leq ||P_{r_1}(\mu)|| + 1/2.$$

We have from (5.14)

$$|(\mu - P_{\tau_1}(\mu))(\alpha(r))| \leq 1/2 \qquad (r \in W_0 \cap Y_{\tau_1}).$$

Put $W_1=Y_{\tau_1}\cap W_0$, and put $M_2=\sup_{\tau\in W_1}\sup_{\alpha(\tau)\subseteq r\atop S\subseteq \tau'}\lceil \|P_{\tau'}(\mu)\|\rceil$, then there exist $r_2\in W_1$, $S_2\subset \mathfrak{T}(G(\tau))$ and $\tau_2\in S_2$ such that

(5.15)
$$\alpha(r_2) \in \Gamma_{S_2}, \qquad M_2 \leq ||P_{\tau_2}(\mu)|| + 1/2^2.$$

From (5.15) we get

$$|(\widehat{\mu-P_{\tau_2}(\mu)})(\alpha(r))| \leq 1/2^2 \qquad (r \in W_1 \cap Y_{\tau_2}).$$

If we put $W_2 = W_1 \cap Y$, and continue in the same way, we get a sequence $[W_n, r_n, \tau_n, S_n]_{n=1}^{\infty}$ such that

(5.16) $[W_n]_{n=1}^{\infty}$ is a decreasing sequence of elements of the coset ring of Λ_{σ} .

$$r_n \in W_{n-1}, \ \alpha(r_n) \in \Gamma_{S_n}, \ \tau_n \in S_n, \ W_n = W_{n-1} \cap Y_{\tau_n} \quad (n = 1, 2, \cdots),$$

$$|(\widehat{\mu-P_{\tau_n}(\mu)})(\alpha(r))| \leq 1/2^n \qquad (r \in W_n).$$

Since W_0/F is compact, $\bigcap_{n=1}^{\infty} W_n$ is not empty.

Let $r_0\in \bigcap\limits_{n=1}^\infty W_n$ and let $\nu_n\in M(H(\sigma))$ such that $\hat{\nu}_n$ is the characteristic function of W_n , and put

(5.17)
$$\bar{h}'(\mu - P_{\tau_n}(\mu)) = \mu_1^{(n)} + \mu_2^{(n)} + \mu_3^{(n)},$$

where $\mu_1^{(n)} \in M(H(\sigma))$, $\mu_2^{(n)} \in M(\overline{H}(\sigma_0)) \cap M(H(\sigma))^{\perp}$, and $\mu_3^{(n)} \in M(\overline{H}(\sigma_0))^{\perp}$. We have from the definition of ν_n and \overline{h}' that

(5.18)
$$\nu_n * \bar{h}'(P_{\tau_n}(\mu)) = \nu_n * h'_{\tau_n}(P_{\tau_n}(\mu)) \in M(H(\sigma)) \qquad (n = 1, 2, \dots).$$

From (5.17) and (5.18) we can lead the relations

(5.19)
$$\nu_n * \mu_2^{(n)} = \nu_n * \mu_2, \qquad \nu_n * \mu_3^{(n)} = \nu_n * \mu_3 \qquad (n = 1, 2, \dots).$$

From the last condition of (5.16), we have by Theorem 4.1 (b) that

(5.20)
$$|\hat{\mu}_1^{(n)}(r) + \hat{\mu}_2^{(n)}(r)| \leq 1/2^n \quad (r \in \varphi^{-1}(W_n), n = 1, 2, \cdots).$$

Since $\varphi_{\sigma_0}(\varphi^{-1}(W_n))$ is dense in $\varphi'^{-1}(W_n)$, we have from (5.19)

(5.21)
$$|\hat{\mu}_{1}^{(n)}(r) + \hat{\mu}_{2}^{(n)}(r)| \leq 1/2^{n} \qquad (r \in \varphi'^{-1}(W_{n}), \ n = 1, 2, \cdots).$$

If we put

(5.22)
$$\nu_n * \mu_1^{(n)} = \lambda_n', \quad \nu_n * \mu_2^{(n)} = \lambda_n \quad (n = 1, 2, \dots),$$

it follows from (5.21) that we can apply Lemma 5.1 to $[\lambda'_n]_{n=1}^{\infty}$ and $[\lambda_n]_{n=1}^{\infty}$ of (5.22), and we have

(5.23)
$$\hat{\mu}_{2}^{(n)}(r) = \hat{\lambda}_{n}(r) = 0 \qquad (r \in \varphi'^{-1}(r_{0} + F)).$$

On the other hand, since r_0 is an element of W_0 , we have from (5.13) that there exists $r_0' \in \varphi'^{-1}(r_0 + F)$ such that $\hat{\mu}_2(r_0') = \hat{\mu}_2^{(n)}(r_0') \neq 0$ and this contradicts (5.23). This shows that $\mu_2 = 0$, and thus we have $\bar{h}(\mu) = \mu_1 \in M(H(\sigma))$. Q.E.D.

REMARK. The following example shows the reason why the discussion in §3 is not enough to solve our problem in the general case.

EXAMPLE. Let $H(\sigma)$ be a discrete group such that its dual group Λ_{σ} is an infinite totally disconnected group, and let $G(\tau)$ be a LCA group such that there exists an open subgroup G' of $G(\tau)$ isomorphic with $\prod_{n=1}^{\infty} T^{(n)}$ and $G(\tau)/G'\cong H(\sigma)$, where $T^{(n)}$ $(n=1,2,\cdots)$ is the circle group. We identify G' with $\prod_{n=1}^{\infty} T^{(n)}$. We choose open compact subgroups $\{W_n\colon n=1,2,\cdots\}$ of Λ_{σ} such that

$$(5.24) \hspace{1cm} W_1 \supset W_2 \supset W_3 \supset \cdots \,,$$

$$\bigcap_{n=1}^{\infty} W_n \text{ is not an open subgroup of } \varLambda_{\sigma} \,.$$

Let τ_n $(n=1,2,\cdots)$ be an element of $\mathfrak{T}(G(\tau))$ such that $\eta_{\tau_n}^{\tau^{-1}}(\prod_{k=n+1}^{\infty}T^{(k)})$ is an open compact subgroup of $G(\tau_n)$. If we put $S=\{\tau'\in\mathfrak{T}(G(\tau))\colon \tau'\leqq\tau_n,n=1,2,\cdots\}$, then S is a directed subset of $\mathfrak{T}(G(\tau))$ (cf. p. 288 [4]). Since the annihilator of G' is an open compact subgroup of Γ_{τ} isomorphic with Λ_{σ} , there exists an open continuous isomorphism $\tilde{\alpha}$ of W_1 into Γ_{τ} . Put $Y=W_1$. For each $r\in Y-\bigcap_{n=1}^{\infty}W_n$, there exists a positive integer m such that $r\in W_m$, $r\notin W_{m+1}$ and put $\alpha(r)=\varphi_{\tau_m}^{\tau}(\tilde{\alpha}(r))$. If $r\in\bigcap_{n=1}^{\infty}W_n$, we put $\alpha(r)=(\varphi_{\tau'}^{\tau}(\tilde{\alpha}(r)))_{\tau'\in S}\in\Gamma_S$. Then α is a map of Y into Γ^* and the corresponding $\alpha_{\tau'}$, $Y_{\tau'}$ and $h_{\tau'}$ ($\tau'\in\mathfrak{T}(G(\tau))$) satisfies the conditions 1), 2) of Theorem 4.1 of [4], and there exists a homomorphism h of $L^*(G(\tau))$ into $M(H(\sigma))$ such that

$$\widehat{h(\mu)}(r) = \left\{ egin{array}{ll} \widehat{\hat{\mu}}(lpha(r)) : r \in Y \ 0 : r \in arLambda_{\sigma} - Y \end{array}
ight. (\mu \in L^*(G(au))) \, .$$

The fact that $[\alpha_{\tau'}, Y_{\tau'}, h_{\tau'}]_{\tau' \in \mathfrak{T}(G(\tau))}$ satisfies the condition 2) of Theorem 4.1 of [4] is shown as follows. For each $\tau' \in \mathfrak{T}(G(\tau))$ let $h_{\tau'}^*$ be a homomorphism of $L^1(G(\tau'))$ into $M(H(\sigma))$ such that

$$\widehat{h_{\tau'}^*(\mu)}(r) = \begin{cases} \widehat{\mu}(\varphi_{\tau'}^{\tau}(\widetilde{\alpha}(r))) : r \in Y \\ 0 : r \in \varLambda_{\sigma} - Y \end{cases} \qquad (\mu \in L^1(G(\tau')))$$

and for each positive integer n let ν_n be an idempotent measure in $M(H(\sigma))$ such that $\hat{\nu}_n$ is the characteristic function of $W_1 - W_n$, then we have $\|h_{\tau}^*\| = 1$

and $\|\nu_n\| \leq 2$ (cf. p. 79, 42.1 of [5]). If $\tau' \in S$, there exists a positive integer m such that $\tau' \leq \tau_{m-1}$, $\tau' \leq \tau_m$, and thus we have $h_{\tau'}(\mu) = \nu_m * h_{\tau'}^*(\mu)$ ($\mu \in L^1(G(\tau'))$). If $\tau' \in S$, $h_{\tau'} = h_{\tau'}^*$, and consequently we get $\sup_{\tau' \in \mathfrak{X}(G(\tau))} \|h_{\tau'}\| \leq 2$, and thus the condition 2) holds.

Next we choose a sequence $\{x^{(n)} \in T^{(n)}, n = 1, 2, \cdots\}$ such that

$$\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\} \qquad (m = 1, 2, \cdots)$$

is independent as a subset of a circle group, and that each $x^{(k)}$ $(k=1, 2, \cdots)$ has an infinite order (we use addition as group operation of $T^{(n)}$; cf. p. 97 [5]). We put $C = \prod_{n=1}^{\infty} \{0, x^{(n)}\}$, then C is a compact subset of G', and there exists a continuous measure $\mu \in M(G(\tau))$ such that

(5.26)
$$|\mu|(C) = |\mu|(G(\tau)), \qquad \hat{\mu}(0) \neq 0.$$

Let τ_0 be an arbitrary element of S and let F be the connected component of 0 in $G(\tau_0)$. Since $\tau_0 \leq \tau_n$ $(n=1,\,2,\,\cdots)$, F is contained in $\eta_{\tau_0}^{\tau^{-1}}(\prod_{k=n+1}^{\infty} T^{(k)})$ $(n=1,\,2,\,\cdots)$, that is

$$\eta^{\mathfrak{r}}_{\mathfrak{r}_0}(F) \subset igcap_{n=1}^{\infty} (\prod_{k=n+1}^{\infty} T^{(k)}) = \{0\}$$
 ,

and thus $G(\tau_0)$ is totally disconnected.

Let G'' be an open compact subgroup of $G(\tau_0)$, and let $x_1 = (x_1^{(k)})_{k=1}^{\infty}$, $x_2 = (x_2^{(k)})_{k=1}^{\infty}$ be elements of $\eta_{\tau_0}^{\tau-1}(C)$ such that $x_1 - x_2 \in G''$. If $x_1 \neq x_2$, there exists a non-empty set N of positive integers such that $x_1^{(k)} \neq x_2^{(k)}$ if and only if $k \in N$. By virtue of (5.25), 0 is the only character on $\prod_{k \in N} T^{(k)}$ which annihilates $x_1 - x_2$, and thus $\{n(x_1 - x_2) : n = 0, \pm 1, \pm 2, \cdots\}$ is a dense subgroup of $\prod_{k \in N} T^{(k)}$. Since G'' is compact, $\eta_{\tau_0}^{\tau}|_{G'}$ is a homeomorphism, and hence G'' contains $\eta_{\tau_0}^{\tau-1}(\prod_{k \in N} T^{(k)})$ as a compact subgroup of G''. This contradicts the fact that G'' is totally disconnected. Consequently we conclude that each coset of G'' contains at most one element of $\eta_{\tau_0}^{\tau-1}(C)$. Combining this with the fact that C is contained in the finite union of cosets of $\prod_{k=n+1}^{\infty} T^{(k)}$ $(n=1,2,\cdots)$, we get

$$(5.27) \mu \in M(G(\tau_i)) (i=1, 2, \cdots); \ \mu \in M(G(\tau_0)),$$

and this shows that Theorem 3.1 is not valid for infinite n.

Let β_{μ} be a function on Λ_{σ} such that

$$eta_{\mu}(r) = \left\{ egin{array}{ll} \hat{\hat{\mu}}(lpha(r)) = \hat{\hat{\mu}}(lpha(r)) : r \in Y \\ 0 : r \in A_{\sigma} - Y. \end{array}
ight.$$

Using (5.27) we can lead another expression of β_{μ} , namely

$$\beta_{\mu}(r) = \begin{cases} (\hat{\mu} \circ \alpha - (\hat{\mu} \circ \alpha) \chi_{(\bigcap_{n=1}^{\infty} W_n)})(r) : r \in Y \\ 0 : r \in \Lambda_{\sigma} - Y, \end{cases}$$

where $\chi_{(n=1}^{\infty} w_n)$ denotes the characteristic function of $\bigcap_{n=1}^{\infty} W_n$. Since $\bigcap_{n=1}^{\infty} W_n$ is not a neighborhood of 0 in Λ_{σ} , $\hat{\mu}(\tilde{\alpha}(0)) = \hat{\mu}(0) \neq 0$ and $\hat{\mu} \circ \tilde{\alpha}$ is continuous at 0, we can see that β_{μ} is not continuous at $0 \in \Lambda_{\sigma}$ (this is the reason why the discussion in § 3 is not enough to solve our problem in the general case).

Next we show that $\{\tau_n\}_{n=1}^\infty$ has no l. u. b. in $\mathfrak{T}(G(\tau))$, that is, $\mathfrak{T}(G(\tau))$ is not a σ -complete lattice with respect to the partial ordering \leq . For this it is enough to show that there exists $\tau_0' \in S$ such that $\tau_0 \leq \tau_0'$. Since G'' is totally disconnected and compact, $G'' \cap \eta_{\tau_0}^{\tau_{-1}}(T^{(1)})$ is a finite group. Choose a finite subgroup D_1 of $T^{(1)}$ such that $D_1 \supseteq \eta_{\tau_0}^{\tau}(G'') \cap T^{(1)}$. By the same way choose a finite subgroup D_2 of $T^{(2)}$ such that $D_2 \supseteq (\eta_{\tau_0}^{\tau}(G'') + D_1) \cap T^{(2)}$. If we continue this process, we get a sequence of subgroups $\{D_n \subset T^{(n)}: n=1, 2, \cdots\}$ such that

(5.28)
$$D_{n+1} \supseteq (\eta_{\tau_0}^{\tau}(G'') + \sum_{k=1}^n D_k) \cap T^{(n+1)} \qquad (n = 0, 1, 2, \cdots).$$

Put $D = \prod_{k=1}^{\infty} (D_k)$. Given an arbitrary positive integer n, there exists a finite number of elements $x_1, x_2, \dots, x_l \in G(\tau)$ such that

$$(5.29) \qquad \qquad \bigcup_{i=1}^{l} \left(x_i + \left(\prod_{k=n+1}^{\infty} T^{(k)} \right) \right) \supset D.$$

Again choose a finite number of elements $y_1, y_2, \dots, y_m \in G(\tau)$ such that

$$(5.30) \qquad \qquad \bigcup_{i=1}^{m} \left(y_i + \left(\prod_{k=n+1}^{\infty} T^{(k)} \right) \right) \supset \eta_{\tau_0}^{\tau}(G'') .$$

This choice is possible since $\tau_0 \le \tau_n$. Summing (5.29) and (5.30) we get

$$(5.31) \qquad \bigcup_{\substack{j=1,\cdots,m\\i=1,\cdots,l}} (x_i + y_j + (\prod_{k=n+1}^{\infty} T^{(k)})) \supset D + \eta_{\tau_0}^{\tau}(G'').$$

Let τ_0' be an element of $\mathfrak{T}(G(\tau))$ such that $\Omega = \eta_{\tau_0'}^{\tau-1}(D + \eta_{\tau_0}^{\tau}(G''))$ is an open compact subgroup of $G(\tau_0')$. From (5.28), $(\eta_{\tau_0}^{\tau-1}(D) + G'')/G''$ is an infinite group and this shows that $\tau_0 \leq \tau_0'$.

For each positive integer n, the restriction of $\eta_{\tau_n}^{\tau^{-1}}$ on $\bigcup_{\substack{i=1,\cdots,l\\j=1,\cdots,m}} (x_i+y_j+(\prod_{k=n+1}^{\infty} T^{(k)}))$

is continuous and by (5.31) we have that $\eta_{\tau_n}^{\tau^{-1}} \circ \eta_{\tau_0}^{\tau}|_{\mathcal{Q}}$ is a continuous function. Since Ω is open in $G(\tau_0')$, we have $\tau_0' \leq \tau_n$, and hence $\tau_0' \in S$. This was what we wanted to show.

Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya, Japan

References

- [1] P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
- [2] C. Dunkl and D. Ramirez, Bounded projection on Fourier-Stieltjes transforms, Proc. Amer. Math. Soc., 77 (1971), 122-126.
- [3] C. Dunkl and D. Ramirez, C*-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc., 164 (1972), 435-441.
- [4] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem, J. Math. Soc. Japan, 23 (1971), 278-294.
- [5] W. Rudin, Fourier analysis on groups, Interscience Publishers Inc., New York, 1962.
- [6] T. Shimizu, A remark on multiplicative linear functionals on measure algebras, to appear.