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§1. Introduction.

Due to Imschenetsky, we have a method of transforming Monge-Ampére’s
equations, which is a generalization of Laplace’s method of transforming linear
hyperbolic equations. Monge-Ampére’s equation to which an Imschenet-
sky transformation can be applied is said to be of Imschenetsky type.
Generalizing Monge’s method, the author [7], gave a method of inte-
grating Monge-Ampére’s equations by integrable systems. Here, applying
this method of integration to an equation of Imschenetsky type, we shall
prove that the transformed equation is solved by integrable systems of order
n—1 if and only if the original equation is solved by integrable systems of
order n. For an equation of Imschenetsky type, we shall define its invariants
H, (n=0) and [, (n=1), and prove that the given equation can be reduced
by n-times applications of the Imschenetsky transformation to an equation
solved by Monge’s method of integration if and only if H,=0 and [, = --
=1[,=0. In the special cases, these results were obtained in [7], [8]

We shall discuss the problem of solving a hyperbolic equation of the
second order of the form

(1.1 st+xy, 2 0 9=0

by integrating ordinary differential equations along the characteristic dx=
dz—qdy = dp+fdy =0, where s = 0%z/0x0y, p = 0z/0x, q=0z/0y. Monge-Ampere’s
equation whose two characteristics are different is transformed by a contact
transformation to an equation of the form if and only if it has an
intermediate integral of the first order with respect to each of its two
characteristics. The method of integration for solving the Cauchy problem
of by integrable systems given in [7], [8] is as follows: Consider the
Cauchy problem in the space of x, v, z, p, ¢, -+, g, which involves the deriva-
‘tives of higher order ¢;=0'z/0y'(gq, =¢q) with respect to . Then it requires
us to find a two-dimensional submanifold which satisfies the system of
Pfaffian equations
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(1.2) dz—pdx—qdy = dq,+f,dx—q.dy
=dg,t+f1dx—q,dy = -+ =dq,_ 1+ frpdx—q,dy=0

and contains a given initial curve satisfying (1.2). Here, f; is a function of
X, ¥, 2, Dy Gy -+, @411 defined inductively by

0 .

3 fi= (Gt gy )i (2D, fo=F
with

' _d &, 0 _d _ 0 . 9
(1-4) Gi—— dy +;§(Ij+l aq] (lgl)’ Go— dy - ay —H] aZ .
A system of ordinary differential equations
(1.5) dx _dy _ dz _ dp _ dq _  _ dqny _ 4Gy

0 1 0 —f qs qn u

with a function u of x, v, 2, p, q, -+, ¢, is said to be “integrable” if u is a

solution of the following system of two linear partial differential equations

a6 =0 (h-Er e Lt (G g ) fa=0,

where d/dx=0/0x+pd/0z. Suppose that an initial curve is given so that it
satisfies (1.2) and dq,+f,_;.dx—udy=0. Then the surface obtained by inte-
grating under the given initial condition satisfies (1.2) and dg¢,+f,-.dx
—udy=0 for each of such initial curves if and only if the system is
integrable. Hence, if the system is integrable, the surface thus obtained
gives a solution of the Cauchy problem; For the integral surface z= ¢(x, y),
p=¢(x,¥), ¢;=0¢i(x¥), 1=i=<n of the system [1.5) under the given initial
condition satisfies

a¢ "‘¢x y) g?—‘—‘gsl(x’ 3’>; _%?2 :¢i+1’ 1§i<7’£,

O f0y b e 8),  1Si<n

by (1.2), and hence

Here we assumed that » >1. In the case where n=1, the integral surface
also gives a solution of th2 Cauchy problem by dz—pdx—qdy = dq+fdx—udy
=0.
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Any system of linear partial differential equations of the first order with
one unknown function can be prolonged either to a complete system or to
an incompatible system by adding the compatibility conditions. If we get a
complete system consisting of » independent equations by this prolongation,
then the original system is said to have the rank m—7, where m is the
number of the independent variables ([7]). Let n be a positive integer.
Then equation [(1.1) is said to be solved by integrable systems of order n
if the system of linear equations (1.6) has its rank greater than zero ((8J).
In this case, the Cauchy problem is solved by integrating an integrable sys-
tem for any initial curve satisfying (1.2), since we can find such a solution
u of (1.6) that satisfies dq,+f,—,dx—udy =0 along the given initial curve. If
equation (1.1) is solved by Monge’s method of integration, then let us say
that it is solved by integrable systems of order 0. In this case, equation
is solved by integrable systems of the first order, and the Cauchy prob-
lem can be solved by taking as an integrable system the Lagrange-Charpit
system of an intermediate integral of the first order for any initial curve
™.

A set of four relations

(1.7) X=x, Y=y, Z=hxY,229, P =kFxY2q)

between x, ¥, z, p, ¢ and x’/, ¥/, 2/, P’, ¢’ is called an Imschenetsky transfor-
mation if it satisfies
oh o(h, k)

1.8 0

(). It gives the following transformation between the two equations from
' 6h ah

(1.9) ET PR R 8x' k=0

to

oh_, _ag, de oh | dh Ok _
(1.10) 9¢° T8¢ 1T dy a¢ Tdy aq =0

where we replace x, ¥, z, ¢ in by

x=x', y=y, z=n&,y, 2, p) q=k'&, 2, ),

solving with respect to x, ¥, z, ¢. Take a solution z=¢(x,») of [1.9)
Then the surface 2z’ =h(x’,y’, ¢(x',3"), ¢,(x’, ")) gives a solution of
and 0z'/0x’ =k(x’,y’, §, ¢,). Conversely take a solution z’ = ¢'(x’, ¥’) of
Then the surface z="hn'(x, y, ¢'(x, y), ¢u(x,y)) gives a solution of and
0z/0y=Fk'(x,y, ¢, ¢,). These two transformations are the inverse of each
other.

The original equation and the transformed one are linear in
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» and ¢’ respectively. An equation of the form
(1.11) s+M(x, 5, z, 9p+N(x, 3,2, ¢)=0

can be the original equation of an Imschenetsky transformation if and only
if the coefficients M and N satisfy

\ oM . oM oN oN
(1‘12) ‘haT_ANfaq' - az” +M achto

In this case, equation [I.11) is said to be of Imschenetsky type ([8]. The
vanishing of the left-hand member of [(1.12] is a necessary and sufficient
condition that equation [(1.11) be solved by Monge’s method of integration

@D.

Let a, b, ¢ be functions of x, y, and h, be da/ox+ab—c. Then, if h, #0,
the set of four relations

xX'=x, Yy =y, z=qg+az, h,z=p' +bz

defines an Imschenetsky transformation called a Laplace transformation,
which transforms an equation of Laplace linear form

(1.13) s+a(x, y)p+b(x, y)g+c(x, ¥)z2=0
to an equation of the same type
, 0 , , oa ob 0 .
s +(G—Ty‘log ho )t +bg’+(c— Sx 5y b5y log hy)2' =0.

The #, is called the first invariant of equation [1.13). It is equal to the left-
hand member of if we set M=a and N=bqg+cz. The (n+1)-th invari-
ant &, of equation is defined inductively by
h,= aa(;n il gf‘,“}‘hn—l , an = an—f——aaTlOg [ aGy=2a

under the condition that 4, , #0. The &, is proved to be the first invariant
of the n-times transformed equation by the Laplace transformation. Hence,
Laplace linear equation is reduced by n-times applications of the Laplace
transformation to an equation solved by Monge’s method of integration if
and only if its (n+1)-th invariant %, vanishes. This theorem is due to Laplace.

Let us apply the method of integration by integrable systems to equation
of Imschenetsky type. Then we shall obtain the following:

THEOREM 1. Suppose that the Imschenetsky transformation (1.7) transforms
equation (1.11) to an equation s’+f' =0. Then the original equation (1.11) is
solved by integrable systems of order n if and only if the transformed equation
s’+f" =0 is solved by integrable systems of ovder n—1. Here, n is a positive
integer.
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This theorem was proved for n=1 in[[7], and for =2 in [8]. In both
the cases the transformed equation s’+f' =0 was assumed to be linear in p’.

Combining with Laplace’s theorem, we see that Laplace linear
equation [(1.13) is solved by integrable systems of order n if and only if its
(n+1)-th invariant s, vanishes. This result was obtained in [8] by prolong-
ing the system (1.6) for Laplace linear equation to a complete system.

The reduced equation by the Imschenetsky transformation [1.7) is
not linear in p’ in general. An equation of Imschenetsky type was said in
7], to be of Laplace type if one of its reduced equations is linear in p’.
In this case, every reduced equation is linear in p’. Here, we shall call such
an equation of Imschenetsky type an equation of L,-type, and define an
equation of L,-type inductively as an equation of Imschenetsky type one of
whose reduced equations is of L, ;-type (n =2). In this case, every reduced
equation is of L, ,-type. The left-hand member of is called the first
invariant of equation denoted by H, ((8]). We shall define in §3 the
(n+1)-th invariant H, (n=1) of generalizing the &, of [1.13). To give
a condition that equation be of L,-type, we shall define also in §3 the
[-invariants [, (n=1). The H, and [, (n=1) are rational functions of g¢,, ---,
gn+1 Whose coefficients are functions of x, ¥, z, ¢. If equation takes on
the form we have H,=h, (n=0) and [,=0 (n=1). The following
theorem will be proved:

THEOREM 2. Suppose that n=1. Then equation (1.11) is of L,-type if and
only if Hy+0, -+, H,_,+0 and |,= ---=1,=0. Suppose that equation (1.11) is
of L,-type. Then, it is solved by integrable systems of order n if and only if
its (n+1)-th invariant H, vanishes identically.

An equation of Imschenetsky type is of L,-type if one of its reduced
equations is solved by Monge’s method of integration ([7]). In this case,
every reduced equation is solved by Monge’s method. Hence, by Theorems
1 and 2, equation (1.11) can be reduced by n-times applications of the Im-
schenetsky transformation to an equation solved by Monge’s method of inte-

gration if and only if H,+0,--,H, ,#0, H,=1,=-- =1,=0. In order that
[,=0, M and N should satisfy a system of partial differential equations with
independent variables x, v, z, g. The system [,=/,= --- =[,= --- =0 is gener-

ated by [,=0,=1[,=0; if M and N satisfy [,=10,=1,=0, then they satisfy
l,=0 for every n=1. This is a result from the following theorem due to J.
Clairin [5]:

An equation of L,-type is transformed by a contact transformation either
to a Laplace linear equation or to a Moutard equation of the form

S—}—ez;D—I—**ai)—(be'Z)-{—c =0,
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where b, ¢ are functions of x, v.

There exists an example of an equation of L,-type which is not linear
in ¢ ([8]). It can be transformed neither to a Laplace linear equation nor to
a Moutard equation by any contact transformation.

We are always in the category of infinite differentiability. The same
arguments as above can be made along the other characteristic dy =dz—pdx
=dq+fdx=0 of equation [1.1). In this case, the Cauchy problem should be
considered in the space of x, y, z, P, q, Ds -+, Pn, Where p,=0°z/0x".

REMARK 1.1. Consider in general a system Y of Pfaffian equations 6,=
-+ =0,=0. Then an integral vector field £ of 2 is called a characteristic of
2 if at every point we have d#,(&, 7)=0, 1<i<t for all integral vectors 7
of Y. In this case ¢f is a characteristic of 2 for any function ¢. The
characteristic £ of 2 is characterized by the property that 2 is left invariant
by the one-parameter group of transformations generated by §&. The system
of Pfaffian equations for defining the characteristics of 2 is called the
characteristic system of 2, which is proved to be completely integrabie due
to E. Cartan ([1], [2], [3, p. 101]). See Goursat’s memoir (6], pp. 6-7) and
E. Cartan’s one ([4], pp. 50-60, pp. 78-87). Suppose that 2 is generated by
(1.2) and dg,+f,-,dx—udy=0. Then its characteristic system is generated

by and

ou du n ou of 0
Wiy dy={ gL — X fiu 5, 5wt (a5 )fama fdy =0.

These equations and (1.14) are derived respectively from
dx Ndp+dy Ndq=dx N (dp+fdy)=0 mod ()

and df,_;Adx—du Ady=0 mod (). Hence, our system X has its non-trivial
characteristic if and only if u is a solution of (1.6), and in this case it is
given by

ACKNOWLEDGEMENTS. was stated in the author’s note
communicated to the Japan Academy on September 13, 1971. Remark 1.1
was given by K. Aomoto (see [10]). This work of generalizing the author’s
results in [7], was motivated by the discussions with him, to whom the
author wishes to express his sincere gratitude.

§ 2. Imschenetsky transformation.

In this section we shall prove stated in the introduction. By
the definition, the first invariant H, of equation [(1.11) is given by
(2.1) Ho = XlM—ZlN,

where X,, Z, are the operators defined by
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0 0 0 0
=x Nog L=y My

PROPOSITION 2.1. Equation (1.11) can be the original equation of an Im-
schenetsky transformation (1.7) if and only if H,+#0. In this case we have

a0k
2.2) Hy=— a(z, q) ( oq ) :

PROOF. Suppose that equation [(1.11) is the original equation of the
Imschenetsky transformation Then we have

X,

oh oh oh oh
(2.3) Zh‘ N3 M~a~q—_0, Xh=-—>=— Fra N?q—_—k,
since the coefficients M, N of the original equation are given by gz gZ

-1
and ( ) ( k) respectively. By the definition of Imschenetsky trans-
formatlon, h and k satisfy [1.8). Hence, by and [(2.3), we have

-1 —1
Hy= X,M—Z,N = 2—2) (XlM—ZlN)%: —gg—) [Z, X,

_ jg_)"l([Zl, X1+ X,Z)h = (%Z_>_121X1h=<~g§~)_121k

oh \"'s ok ok
~ (5" (3 —Maq>=—< ) (5 534 5
_ ( ) ~2 9(h, k)
a(z, 9)

Conversely, suppose that M and N satisfy H,#0. Take a solution & of Z,k
=0 satisfying 0h/dg+0, and define 2 by X,h=~Fk. Then they satisfy the
identity [2.2). Hence, we have d(h, k)/d(z, ) #+ 0 by the assumption that H, = 0.
Therefore, these 4 and & define an Imschenetsky transformation which can
be applied to equation [(1.11)

PROPOSITION 2.2. Suppose that equation (1.11) is of Imschenetsky type and
reduced to s'+f' =0 by (1.7), and that s*+f*=0 is the reduced equation of
(1.11) by another Imschenetsky transformation. Then from the former we obtain
the latter changing x',y’, 2’ to x*, y*, z¥, where x*=x/, y*=y/, z*¥=A(x', y’, 2’).

PRrOOF. Suppose that h* and k* define the Imschenetsky transformation
which reduces [1.11) to s*+f*=0. Then h* is a solution of Zh*=0. Since

h is a solution of Z.h =0 satisfying oh/dq+0, h* is expressed in the form
h*=2A(x, y, h), where 01/0h +0. The k* is given by

= Xt = X, 1= gx 94 gfl Xh= 22 + gfl k.
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Change x/, y/, 2/ to x*, y* z* where x*=ux’, y*=y’, z*=2(x',y’,2z’). Then
we have

N ah* -1 ak* dk* oh* dh* Ook*
st/ = s*_< ) g ¢ 7+ dy 8¢ ~ dv oq )

- ) 3 3
— () (e aZ — )

LEMMA 2.1. Let f be M(x,v, z, Q)p+N(x, 3, z, q) and f; (1=0) be the func-
tion defined by (1.3). Then the f, takes on the form A;p+B; for each i=0.
Here, A; and B; are the functions of x, 9,2, qy, -+, §uua defined by A,= M,
By,=N and
'(2-4) Ai = GiAi——l_MAi—l , B;= GiBi-r‘NAi—l y 1=1.

PrROOF. Since A,=M and B,=N, we get fo=f=Mp+N=A,p+B,.
Suppose that f,_ ;= A;_;p+B,_;. Then, by (2.4), we have
0
fo= (G f g Vir ={C—Mp+N) S WA p+ B

= (GiAi-l_MAi—l)p+GiBi—1_NAi—l = AiP+Bi .

PROPOSITION 2.3. Let n be a positive integer. Then, equation (1.11) is
solved by integrable systems of order n if and only if the system of two linear
equations

25) Zat DM =0, Xut-S  utN,=0
with independent variables x,y, z, q,, -+, g, has the rank greater than zero,
where Z,, X, are the operators defined by
0 d 0 _ 4 z 0
(2°6) Zn - a E Jj-1 aq] ’ Xn—' ax —ng Bj—l an )
and M,, N, are the functions of x,9, 2, q,, -, 4, defined by
2.7) M,=Gp Ay s:—MA,,, N,=Gp1By-y—NA, .

PROOF. Replace f in (1.6) by Mp-+N. Then, by Lemma 21, the second
equation of (1.6) is written in the form

aM oN

u—I—M)—i—X u+t Er u+N,=0.

p(Z u+

Since the functions A;, B;, dM/dq, 0N/dq, M,, N, do not involve p, the com-
patibility condition between the two equations in (1.6) is given by the first
equation of Hence, the system (1.6) is equivalent to the system con-
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-sisting of and ou/0p=0. Each of the two equations of and every
-equation produced by them as a compatibility condition are compatible with
0u/0p=0. Thus the two systems (1.6) and have the same rank, since
‘the number of independent variables of the second system is diminished
from that of the first system by one.

LEMMA 2.2. Let X;, Z;, G; be the operators defined by (2.6) and (1.4). Then

we have the following identities:

(28) [Zew G = —MZAGA) 52—, iz1,
Givs
29) [Xow, G=—NZ+GB) 52—, iz,
Qi+
PROOF. By the definition (2.4) of A;, we have

[0 &, 0 0 0 &, 0
[Zis1, Gi]—[’az—— > A; aqj "oy ~+q- oz +r§qj'+1 aqj ]

ji=o
=~ Ay B (A—G A ) 5+ GA) 5o
8 8 0

=-—MZz ‘l‘(GiAi)_a—q;T .

‘Similarly we can prove (2.9) by the definition (2.4) of B;.
LEMMA 23. Suppose that n=2, and change the independent variables

’ '
X, Yy 2y Gy 20y Gy to x/; yly Z/v p,: G -ty Qn—1) where

/_. 7 ah
x'=x, 9=y 2=h, p=k ¢ =Gh= dy+8q

«(2.10) 2%
i=G; - Gih=G;_(G;—, - thH"EQi-H ’ 1<i<n,

Here G; (1=1<n) is the operator defined by (1.4), and h, k are functions of
x, ¥, z, q satisfying (1.8) and (2.3). Then, we have

6h8

d n—1
f(212) Xn: dx szl 1 aq/ 'I‘(X k) ap/ .

Here, f} (0<1i1<n—1) is the function defined by

’ / ’_ d LI Ma_ .
fi (G —f ap/ )fz 11 Gi—*dy/ +§_lq,-+1 aq/:, , Z_Zl,

(213) P
=== (5) (=) 5
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PROOF. By (2.8) and [2.3), we have
(2.14) ) an: = Zi+1(Gi b Gl)h - (Gi_‘M)Zi(Gi_]_ b Gl)h -
- =(Gi—M) - (G,—M)Z,h =0

for each ¢ (1 =i < n), since (G-, .- Gh is a function of x,, 2, ¢, ==, ¢;. By
(2.3) and we get

ok ok oh ak
(2.15) Zik=—4 —MG = o )

-1 9(h, k oh
__< ) 6(zq))—°aq‘

Hence, we obtain

Za= (2L H2uy) Lo M2 L 2 S (2t

_goh 0
—'HOW ap/ .

By (2.9), we have
Xoi = Xi41(G; -+ GDh =(G; X;—NZ;)(Gi—y - Gh
=G X(Giey ++ Gh =+ =(Gy -+ G Xih = (G, -+ Gk

for each i(1<i1<n). Here
2.16) o= (Gix') +(G~y’)Aa~*+(G~z’)va—~+(GA M2 S
. - ax, i ay/ b az/ i ap/ = 147 aq;

0 , , 0 9
a'y/ +q az f VAR 2 q]+l aq + E(G q]) aq

= Gé-l—f’*a'b?—l— TZ—“{ (G4} )?E , 1=1,

since we have

dk 1, dh\ 0k
Gie=gytage =5+ (55) (=) G ="
Hence, we obtain
(2.17) Xnqi=(G; - Gk =—(G; - Go)f’
’ V4 a 4 ‘ I4
=—(Gq++ G)(Gi—f'55)f' =~ (G Cfi= e = —f 1,
for each (1=:¢<mn), since fj is a function of x’,y’, 2/, qi, -+, ¢j+». By this

identity and X,h =£%, we have (2.12).
LEMMA 2.4. Suppose that n =2, and change the independent variables x, y,
2, qy, -, 4, and the unknown function u in the system (25) to x',y’,2', ', qi, -

I
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G, and u’ by (2.10) and
2 / — oh ah
(218) W= GGy v+ i) 5 1= Grsamat 5,

where G; (1 =1< n) is the operator defined by (1.14), and h, k are functions of
x, ¥, 2z, q satisfying (1.8) and (2.3). Then the first and the second equations of
(2.5) are transformed to

ou
(2.19) How_o
and

‘(220) ( ) { dx nzfz—l aq/ ‘i‘ """"" u "|‘<Gl—~2 f ap/ )fn 2}

’L_..

respectively, where f} (1=0), f/ are the functions defined by (2.13).
PROOF. Since

of ok / oh
d¢ — ~ oq / aq’
‘we have
oh oM oh _ oM oh
Zlméq aq 2+~ 0g dq  0q 0q°’
(@20 oh oN oh _ ok | ON ok
XIW: e
ak oh 48 oN ﬁ{zﬂ oON _of" )
aq " 9q dq \ 0q aq /)’
and
-1 oM ;s oh \7! oh \7! ON 8f’ -1
e A(B) == B R = -3
By (2.8) and we have
‘(2.23) ZnGnqq;.——l — (Gn——lzn—‘MZn—l—{hGn"lAn-l aq ) Qn—l
0q,_
- -—MZn—1Qn—1+Gn—1An~l 751&;!17
0 , oh
:_M(Zn—!_An—-l q7>Qn—1+Gn—1An—l aq

oh
=(—MA;-1+Gp—1Any) 78(7

oy O

O >
n aq ’ n:2)

since
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Zn_1:Zn+An_1-—ag‘, ‘aaqg_l B gfqz .

By (2.9), and (2.16), we have
228)  XuGrosGor=(Goms Xa=NZyes 4 Goms By 5 )l

- —'Gn-—lfn~2 NAn-—l gh +G7L-an'-lwgﬁ‘

, oh
= —(Gos=Fr g+ Garsthoigay—) heaH(GrmsBoes = NA g

_(G;—2~f/_a?)/_>f;z-2_6n—1qn—-l g]; +Np— aq nz=2,

since

"t og ' 0gny 09"
Hence, by (2.22), (2.23) and (2.24), we obtain

Zu+ gh u+M,=2 {( ) (U —G,- 1‘];—1)}

Zn—lq;l—l = (Zn+An—1*a%T;“)q;_l - A 778L ,affl"2 —_— af/

Lk ) W —Gysgy)+ M, = — M aq ( ) W Gresdyei
+(.m) (Zaw— My )+ S () WGy M,
—(0) "z

Xpu—+ %Nfu—l—N

:X"{("“gg—l(“' Ga-1Ga- 1)}+ dq ( B W= Gasdhy )N,
(AN (Y G

( 5q ) {X u —|—<G —a— f/_a(;)—,)f;l—z“FGn_lq; i gjqf —N,- gz }

and

N h' -1 ’ ’ T
+"*a;]" '”37]*) (W' —GnaGn-0+ N,

oh \~ , , 0 ,
= (3“2‘) 1{Xnu/+<Gn—2—“f ‘*657*)]["—2“{‘* pat’) }

Hence, by the first and the second equations of are trans-
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formed to and (2.20) respectively.

REMARK 2.1. Suppose that z=¢(x, ¥) is a solution of of Imschenetsky
type, and that z’=¢’(x’, y’) is the transformed surface by Then ¢;=
0'¢’/0y”* (i=1) is given by (2.10), where we replace q; by &/¢/dy’.

PROOF OF THEOREM 1. In [7], this theorem was proved for an equation
of L,-type in the case where n=1. Also it was shown that equation [L.I1)
of Imschenetsky type is of L,-type if the reduced equation is solved by
integrable systems of order 0. In [8], it was proved that equation of
Imschenetsky type is of L,-type if it is solved by integrable systems of the
first order. Hence, we have for n=1. The f’ in (2.13) gives the
reduced equation s’+f =0 of by [L.7). Let fi (0=<i<n—2) be the
function defined by (2.13), and n be greater than one. Then, by
the system and the system of and (2.20) have the same rank. The
reduced equation is solved by integrable systems of order n—1 if and only
if the system of two linear equations

/
o,
/ n—1 / 4
S Y (G ) s =0
has the rank greater than zero. This system is equivalent to the system of
and (2.20). By [Proposition 2.3, the original equation is solved by
integrable systems of order n if and only if the system has the rank

greater than zero. Hence, we have for n =2, and hence for every
n=1.

§3. Invariants H, and [,.

In this section we shall define the invariants H, and [, (n =1) of equation
(1.11) and show some of their properties. Let us define the (n+1)-th invariant
H, (n=1) of from H, inductively by

CAY) H,=H,_+ X,.,C,+N@OM/dq)—G,(0N/ag"), nz=1,

under the condition that H,+0, ---, H,_, #0, where C, is a function of x, y,
2, ¢y, ***, Qney defined inductively by

(3.2) C,=Ch1—GrlogH, , (nz=1), Co=M.

Then, H, and C, (n=1) are rational functions of ¢,, ---, ¢,+; whose coefficients:
are functions of x, ¥, z, ¢. Under the condition that H, #0, ---, H,-, #0, we
define the operators Y,; (=0, i1=1) by Y,;,=—Z; and
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: d
Ye= B A (2D,
where Ay; is a function of x, ¥, 2, ¢, -+, ¢4, defined inductively with respect
to 2 by
3.3) HkAk+1,j = Xj+1Akj+ Yk,j+1Bj—7kakj (k=0), Aoj = Aj

for each j=0. Here, we put
n,=0N/oq (k=1), T, =0.

The Ag; (k,j=1) is a rational function of ¢,, -+, ¢;»;, whose coefficients are
functions of x, y, z, ¢. By the definition, we have

3.4) HkYk-!-l,i =[X,, Yki]—ﬂkyki (k= 0) ’ Yu=—2;,1=1.
We define the n-th [-invariant [, of equation [(1.11) by

(35> (_l)nln = Yn—l,n+1Ann_ Yn,n+1An-1,n_en—1Ann
under the condition that H,#0, ---, H,_; #0, where we put

e;=(—1)Ydlog H;_,/0q; (j=1), e,=—0M/dq.
The [, is a rational function of ¢,, ---, ¢,+;, Whose coefficients are functions
of x, 9, z, . By the definition (—1)"1, is the coefficient of 9/0¢,+, in
'the operator [Yn—l,n+1: Yn,n+1]_en—lyn,n+l-
LEMMA 3.1. Suppose that k=0, and that Hy+#0, ---, H,_,#0, L=+ =1,
=0. Then we have the following identities:
D) Ay=00=7<s—1), A= 1=s=k;
(i) Ys+1,s+1Hs+ Xses—mes— Yey =0, 0=s<k—1;
’(iii) [Yy, Vil—eY,; =0 0=s=k—-2, s<i=Zk 1=1;
(iv) YoHe-1=0, 0=s<k—2;
(V) Asi - (Gi_cs)As,i—l—As—l,i—l; 0—§ S é k: lg 1 N
0

Si?%ﬁl

(vi) [Ys 00 Gl=—Y, 1 —CYs—G;A , 0=Ss=k, 121;

(Vi) Ap=(=1FEC, 0=s=k;
i=1

(Vlll) (_l)sHs — Xs+1Ass‘{" Ys,sﬂ-LBs_“ﬂsAssy 0 =s= k s
(IX) ly= Ys—l,s-ncs"“Gs—1es—1+cs—1es—1+es—2: 1<s=<k.

Here, we put Y_, ;=0 (i=1), A_,,;=0 (j=0), e.,=0.
PrROOF. For k=0, we have (v), (vi) and (viii) by (2.4), (2.8) and
respectively. Since Ay, = A,= M, we get (vii). Hence, is valid



Reduction of Monge-Ampere’s equations 57

for £=0. Suppose that H,=#0, .-, H,_,#0, [,=--=1[;.,=0, and that the
identities (i)-(ix) are valid. Then, by (i), Y}; does not involve d/dq; for any
j<k, and its coefficient of d/dq, is (—1)** if i=k. By (v), (vii) and [(3.2),
we have

‘ 0Ay,  0Agi . “___644}”3__ q1Ns 0C; _ < o<
(36) 0k1  0Q 0 =D 0qss1 G Oss=k.

In addition to the above assumption, let us suppose that H,+0 and [,=0,
and prove successively the identities (i)-(ix) for 2+41.

(i). The coefficient of 3/0¢;+; in the right-hand side of vanishes for
any j<k—1, since Y;;B;=0 for such j. For j=%k—1, we have

XkAk,k—1+ YkkBk—1'_7TkAk,k—1 =0,

since
Apeer= (D YiBeoy= (=1 0Be-s/0, = (1) 'm,..

Hence we have Ags,,;=0 for any j<k—1. For j=k, we have
Aps o= Hi (Xis1 Arr+ Y, o1 Br— T Ag) = (—1)*

by (viii). Therefore, Yi.,,=0 for i<k, and the coefficient of 0/0¢s+; in
Yk-l-l,i iS ('—'1)k fOr izk—i_l.
(ii). Suppose that s=0. Then, by [2.1), we have

o .. 9 9
g Ho= 5 (XM)——5-(Z:N)

_ d _oN 0 0 oM 9

= (%54 a0 M= (Zgg =% 2V

=—X,e,— 27, .

Suppose that 1<s=k. Then, by [3.1), we have

0 4,0 0 0 oM~N 0 oN
07541 He= 07541 Hyost 0qs41 (XoaCo)F 04541 <N 0q 00541 (Gl oq

d 9B, © ) 9 _\.ON
:<X3+1 0qs1 '_ 0G5 aqsﬂ‘)Cs_(Gl 0qs41 + 04q;, ) 0q

= (—l)s—l(Xs-Ples—ﬂses_ Yslns-H) ’

. . oM oN .
since H,_,, Na—q, o0 do not involve ¢, and

aB.S_— —_ . ac&;,__ __1)s-1
8qas T g, DT
da oN . 0 N
Yur,= 94, 9q Yy =0=(—1) 1—8% %‘q 1I<szk).

Hence, we obtain (ii) for 0=s=<F% by
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Ys+1,s+1Hs = ("‘Dsa—a“_ H;, 0=s=k.
41

(iii) and (iv). First, we shall prove (iii) for s=k—1 and t=F;
@37 LYe-1,6 Yid—€x1Yie=0, iz1.

Let E; denote the coefficient of 9/d¢; in the left-hand side of [3.7) Then E;
vanishes for any j<k, since Y; does not involve 3/d¢; and Y;;Ax-q,5-1=0
for such j. For j=k, we have

Ep= Y"'J”‘A"”“l—— YkkAk—l:k—l—ek—lAk,k-l
= Yoo =11 —(=1)*"%0/094) Ap-1,5-1—x-1(— 1) =0

by (3.6). For j=£k+1, we have E.,;=(—1)*l, by the definition of .
For j=%, by (v) and (vi), we have

Eji= Yy, 1 Aes— Vi Apos, j— o1 Ar;

= Yi-,541{(G;— Co) A, j-1— A-1,5-1}
Y0 {(G—Co) Aprjor— Aps s} — 41 As,

= (G} Y1,/ Yi-s,1—C1 Vs, ) Ar s
— (Viori1C) Ap jor—CiVios s An jor—Yior i Ao on
(G, Yu— Yir,;—Ce Vi) Apr jor - (VixCrot) Apor, jor
o Coor ViejAuor, st Vi Ao,y
— e {(G—C) Ap yr— Apor o)

= (G—Ci—Croo)(ViiAuor,jor— Vieor,; Ar,s1— s Ag, 1)
— (Yeor201Co—Grosio 1+ Corion) Ar 1

- (Yk—z,jAk,j—l_‘ ijAk—z,j—l) ’

since

YirCror=(—1)*"10C;_,/0g;= —e;_; .
Here, we have

Yios,jAk,jo1— YijAk-z,5-1= €Ay,
by the identity

LYoo Yiid= €Y s

which we obtain from (iii), taking s=%—2 and t=Fk. Hence, by (ix), we
have

(3-8) Ej+1 = (Gj_ck_ck—l)Ej'—lkAk,j—l ’ J = k.

Since we assumed that [,=0, by we have E;=0 for all j>0. Thus
has been proved. Secondly, we shall prove the identity
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(3.9) [Ye, Yienid—esY sy, = —(Yulog H) Y ieys, 121
for each s (0=s=<k—1). From (iii) we obtain
Y Yid=eYr, 0=s<k-—1,
taking t=~%. Hence, by and the Jacobi identity, we have
LYsi, Yiwrid—eYiar,i =Y, Hi'([Xo Yid—meY i)l —esY e
= —(Ysilog H)Y iy, + Hi'[Y iy ([ Xy, Yial— 7Y )1 — €Y kas s
= —(Yylog Hy)Y ay,i—es Y pur,i+ Hi {—(Ym) Y is
= Yy Vi I+ i [ X, Vi 11}
= —(Yylog H)Yiuy,i—es Y i, - Hi {—(Yum+mre) Vi
+ 10X [V Y 1—[0XG, Yl Yild
=—(Yylog H) Y u,i—es YV par, i+ He {—(Yumi+mie) Y
+[ X, e Yl —[H Yot Y Y}
=—(Ylog H)Y yuy,i—Y i+ He' {—(Yampt+mres) Vi
+ (Xie) Viite L Xiy Vi d+(YiaH) Yorr,i— HL Y10, Vil
F+(Yiurn)Ya—n Y, Yiil}
= —(Yalog H)Yier,i—eViar,it He {—(Yumpt- 1) Vi +(Xie) Vs
A e(HyY jan, it 7 Y ki) (Vs H) Ygaa,i— HL Ygar iy Yo J— 7€ Y i}
= —(Yylog H)Y jy1,i+ Hi {(Xies— YVimwou —mse) Y
+(YiiH) Y isr,i— HL Y g, Yial} s

since Y ;w,=0 and Y,n,= Y,r.,. Here, suppose that s=%k—1. Then we
have
(YkiHs) Ys+1,i—Hs[ Ys+1,ir Ykz':l - (Ys+1,iHs) Yki ’

since [ Y, Yril=[Y4, Yiil=0. Suppose that 0=<s<k—1. Then, by (iii)
or we have
LYsrro Yid=eu1 Y,
and
(YiH)Y g 1,i— H Y Y l= —He Vi

s 0
= (=1 (Hi - log H,) Vis= (Vs iH) Vs,

since Y,;H,=0. Hence, for any s (0=<s=<k—1), we obtain

(Xies— Y imoq—mees) Y+ (Vi Hy) Yk+1,i“‘Hs[ Yer,6, Yeal=0
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by (ii). Thus we have the identity for each s (0 =<s=k—1). The co-
efficient of 0/0¢;s, in the left-hand side of vanishes, since we have

Yo i1 Axrn, i Y1 A= s Apas i

0
011

by (3.6). The coefficient of 0/0¢;+, in Yie,,; is (—1)* if i=%k+1. Hence, we
have Y ;log H,=0 (t1=%k+1) and

= Youn(—1F = (=D* Ag—e(—1)=0

LY, Yirrid—eY41,:=0, 0=s=k—1,i=1.

Thus we obtain (iii) and (iv) for k+1.
(v). Let us prove the identity

(3.10) KXiv1Arit+ Y01 Bi— 7 Ags
=(G;—C U X;Ap i1t YiiBioy— i Agio)— HiyAgyyor, 121
By (v), (2.4), (2.9) and (vi), we have
Xir1Arit Y001 Bi— 71 Ars
= Xit1(GiAg,i-1— CrAryior— A-1,i-1)F Yiyiss(GiBi oy — NA; ) — 7 Ags
=(GiXi— NZ)As,i-1— (Xis1C) Ar,i-1— Co Xi Agyi-1— Xy Ag i1
H(GCiYei— Yio1,i— Ce Vi) Bioy— (Y N)A; i — NY i Ai
— (G Agi-1— CreAryioi— Ak-1,i-1)
=(Gi—C ) ( X;Ap,i-1+YiiBiy— 7w Aryio)
— (X1 Cr+ NOM/0q— Gimi) Agyi-1
—(XiAg-1,i-1F Yier,iBioi— T Ak-1,i-1)
—N(Z;Asior+ YiiAioy:— (0M/09) A,i-)—(YiuN)A; -y
Here, suppose that 2=0. Then we have (3.10), since
(Xp1Cr t NOM/0q—G i) Agion - N(Zi AiorH Yii Ay — (OM/09) Ai-)
+(YiuN)A; 1= (X\M—Z N)A; 1= H,A; -y = HAyi-y .
Suppose that £=>1. Then we have

Zi At YkiAi—l—(aM/aQ)Ak,i—l =0,
since we obtain

(Yo, Yid=e, Y

from (iii) or If k=1, then we have 7,= YN and n;_,=7,=0, and if
k>1, then we have 7,=mx,_, and Y,;N=0. Hence, for any k=1, we obtain
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XiAk-l,i—1+ Yk—1,iBi—1’—7TkAk—1,i—1+(YklN)Ai—1
== XiAk—l,i—1+ Yk—l,iBi—1+7rk—1Ak—1,i—1 - Hk-lAk,i—l

by Therefore, for £2=1, we have (3.10) by Thus, for any k=0,
we obtain the identity (3.10). Since we assumed that H, #0, by and
we have

(3.11) Ak+1,i = (Gi—‘ck+1)Ak+1,i—1“‘Ak,i—1 , 1=1
multiplying both sides of (3.10) by H;'.
(vi). By (3.11), we have
0 d

B1D) Ve Gl=[ 2 Aes g0 4

b4

i 0
-+ Ex q f“?q,]

0 i 0
- Ak+1,o"a’£’+ P (Ak+1,j" GjAk+1,j—1)‘a’qj'—“ GiAk—H,Fg(%_;;
0 ‘ 0 0
= Ak+1,o*a?“— ;go (Crr1Agsr,j-1t Ak,j-l)*aij— GtAkH,i*a‘q:l‘ .

- Yki‘“ck-m Yk+1,i_GiAk+1,i*§qa;;‘, 1=0.

(vii). Take i=k+1 in [3.1L) Then we have
Apsa,isr = (Grar— Crar) Agrr,e— Air
= —(Gun—Cua )~ =(—1F 3 C;=(= 1" 3 ;.
(viii). By (2.4) and [(3.12), we have
Yirr,e2Bisr = Vs, kao(Grar Be— NAg)
= (Grr1 Yirskrr— Yigerr— Ciord Vipwr,00) B
— (Y41, N)A—NY i1 11 Ax

N oM
= (‘“1)k<Gl ‘aa;] ”—Ck+17fk+1_‘N”’a?) - Yk,k+1Bk'“(Yk+1,1N)Ak »

since

oM
Yk+1,k+1Bk = (—l)k"a'a%[* = <_1)k75k+1, Yk+1,k+1Ak = (“)ka—q .

Hence we obtain
XieroArsr, o1 YViwr oo Brsr— T Aisr, k41

oM oN
= (_" 1)k+1(Xk+2Ck+1+ Nfa-q~—— Glraq—)

—(Xpir At Yi g1 Be—Tea1 Arie) — (Y1, N ) Ay
by
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(3.13) Ak+1,k+1 =(— 1)k+lck+1_Akk ’ k=0.
Here, suppose that 2=0. Then we have

Xk+]Akk+ Yk,k-HBk—nk+1Akk+(Yk+1,lN)Ak = X1M— Z,N= Ho .
Suppose that £=1. Then we have

X1 A+ Yk,k4-1Bk—7Tk4<1Akk+(Yk-:—1,1N)Ak = (— 1)ka
by (viii), since w4 =m; and Y4, N=0. Hence, for any 2=0, we obtain the
identity (viii) for k+1 by [B.1)
(ix). By (3.6) and [(3.11), we have
Yk»r-l,k+2Ak,k4-1+ekAk-H,k-!'l

0
- (_1>k~ -+ Ak+1,k+1"’ a‘"*" Ak,k+x+ ekAk+1,k+1
011 02

0
= (”‘Dk a’q "*"(Gk+1Ak}c—'CkAkk_Ak—l,k)

k1
0
Qr1

= (—=1)*"Grer— Vi g At (—1D¥(Creptex-y)
Hence, by and (3.13), we obtain
Leay = (—1)*+Y( Yi ko Arsr,kirr— YViews o Ai 1 — e Agrr, i)
= Y, 1k2Crr1— Grex+Crepteg; .

REMARK 3.1. Under the same condition that is assumed in Lemma 3.1,
the operators [ X;, Vi ]—nx Yy and [Yi-y,iy Yiil—ex-1Y% (12=1) do not involve
0/dq; for any j=k, as it was shown in the proof of (i) and of (iii), (iv)
respectively.

By the identity (viii) in Lemma 3.1 we have the following :

COROLLARY 3.1. Under the same condition that is assumed in Lemma 3.1,
the coefficient of 0/0qys, in the operator [ X;, Vi l—n Yy (0= k+1) is (—1)*H,.

PROPOSITION 3.1. Suppose that k=2, and that Hy#0, -, H,_,#0, [,=0,
cee  Ux1=0. Then we have

(3.14) Hyolv=—Yop,00.Hy
PrROOF. For i1=1, let us prove the identity
(3.15) LY kst [ Xy Yid—m Y]
= e ([ Xiy Yiid— 7 Yai)— Heeos({Y -1,60 Yad—€r-1Y 5a) -
By (ii), (iii) in and the Jacobi identity, we have

= (D (G gt ) Aust euAns(~ D et (— e
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(Yoo [ X, Yiid—7 Y]
=Y 0,5 LXi, Vi Jd— (Yoo, i) Yii— [ Yiewn,00 Y
=Xy, [Yios,is Y dd—ILXe, Yioyids Yiid = (Yoo, i) Yii— i —a Y ks
=[X;, ep-sYiid—[Hy o Yoy, i+ T2 Yioo,i, Yiid
—(Yio,ime) Yii—7plr—s Vi ‘
=(Xier-2)Yiiter oL X, Yiidl+ (Vi Hi-)Yiori— Hioo Yo, Vil
F Yiimtion) Yini— kol Yooty Yiid— (Yoo, i) Yei— Thlr-2 Y i
= (Xilpos—Th-2€h-o— Yo, i) Y iitr-ol Xiy Yiil
— He o[ YVier,is Yeid—mrer-2 Vs
==Y p-1He o Yt e o[ Xiy Vi d—Hi o[ Yio1iy Yiid—mrei-oY ks
= er-o([ Xiy Yiid— 71 Y i) — Hioo(LY k-1,50 Yiid—€x-1Y%i)

since Y H,_,=0, Yymy_,=0 and 7,=m,_,. Thus we have By the
definition, (—1)¥/, is the coefficient of 0/0q., in the operator [ Yy k41, Y, x+1]
—ex-yYi s By [Corollary 3.1, (—1)*H, is the coefficient of 0/0¢xs, in the
operator [ Xisi, Y1~ Yire. Hence, comparing the coefficient of 9/0¢y+,
in the left-hand side of for i= k-1 with that of 8/d¢ys, in the right-
hand side, we have

(—1)*Yip s H— (— DfH Ok o g (1)H, L, .
0q141

Since 0Ay-5,1/0qr+; = —ei_,, We obtain (3.14).

REMARK 3.2. A contact transformation leaves the type of equation s+f
=0 invariant for any f if and only if it is a composition of the following
three transformations:

(3-16) X*:x) y*:y’ Z*:2<x,y,2),
(3.17) *=¢(x), V=), F=z,

and x*=y, y*=1x, z¥=12. The last transformation changes one of the two
characteristics of s+f=0 to the other. Under the transformations [(3.16) and
(3.17), the transformed equation s*+f*=0 satisfies

O fop= SR Gr ap),  Biffagt= a3 +/0g)
and

affop = (-40) L @reiop), 2r/ag = G2(-90) arrjage

respectively. Hence the type (1.11) of the equation is left invariant by the
transformations (3.16) and [(3.17). By these transformations, ¢, -+, g;, --- are
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changed to gf, -, ¢f, -+, where ¢f,=Giqf (1=1), ¢ =G, and (d¢/dy)gh.
=Gyq¥ 1=1), (dd/dy)gF= q, respectively. Let H¥f and [} be the (k+1)-th
invariant and k-th l-invariant of the transformed equation s*4f*=0 respec-
tively. Then, under the transformation [3.17), we have

do d dd N\
Ho=-2220 fr,  l=(50) 1, k20.
Suppose that H,#0, -+, H,_,+0 and [,= - =[;=0. Then we have H,= H¥
under the transformation (3.16). In addition to this condition, suppose that
H,#0. Then we have [, = (02/02)¥...

§4. Invariants H, and [/ of the reduced equation.

In this section we shall prove [Theorem 2 stated in the introduction. By
the definition, an equation of Imschenetsky type is of L,-type if and only if
the reduced equation is linear in 7/, and is of L,-type if and only if the
reduced equation is of L, ,-type (n =2).

PROPOSITION 4.1. Suppose that equation (1.11) is of Imschenetsky type.
Then it is of L,-type if and only if I;=0.

PROOF. Suppose that the Imschenetsky transformation can be applied
to Then the function f” in (2.13) gives the reduced equation s'4-f'=0
Let us define the function f} (j =0) of x/, y/, 2/, P/, qi, >+, @5+1 DY and

change the independent variables x, ¥, 2, qy, =+, ¢; to x/, ¥/, 2/, D', g, -+, Qi
by (2.10). Then, by (2.11) and (2.12) we have
Sk LL, ok 0 .
@) Vu=HilZo Xd=-3-(r— B 55 o ) * oy a5 122
since we get
22Xk X,(Hy ) = (1, Yo X, 20— X2,k = Hy 0k
1<31 1 0 aq 0+ 11 141 141 0 aq
by [(2.15). Hence by (2.11) we obtain
2 z 1 aZfJ_l 0 i
(4.2) (2, Vid— M v, = (-2 ;) E g 122
since we have
4 Oh _ OM h.
Y9g = o0q oq°’
ok oM o 0 oM ok
Z aq ( 0 aq> <aq 28 dqg 0q )k’* 0q Zik= dqg dq

by (2.21) and [2.15) By the definition, [, is the coefficient of d/dg, in the
left-hand side of for i=2. Hence we have
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L= o"a&“ <aZf//ap/2)
since
*a_._ — ;a_h'_ _ Aa_d = aqf a >~
43 09, 09 0¢i— i=k aqk 3(1' ! kz2.
Therefore, the reduced equation s’+f" =0 is linear in p’ if and only if [,=0.

Suppose that equation is of L,-type. Then the reduced equation
takes on the form

(4.4) s'+M'(x,y', 2, )0’ +N'(x,y', 2/, ¢')=0

For this equation, let us define the invariants Hj, [; and the operators X,
Zi, Y as we defined them for the equation [1.1I). Suppose that i=2, and
that x/, y/, 2/, 9/, qi, ---, q;—; are functions of x,y, z, ¢,, -, g; defined by (2.10).
Then, by (2.11), (2.12) and (4.1), we have

_oh ok 0
aq 1+ aq apl .

PROPOSITION 4.2. Suppose that equation (1.11) is of L,-type. Then we have
H = H,
PROOF. By and (2.21), we have

45 Xe= Xl 0 2t (X025, Vie= e Zh

@8 X Vid— G Vie= (X go ) Zet (X, %)—W

k oN

G Ly, 2T S 2L~ (Vi Xl — S Vo

- l:Z'L 1 X'E—l]! 122’
since

ok oN 0 0 oN 0k
X = Vauit= (g Xk G 5 Yo gy Kib= G 5o
By [Corollary 3.1, —H, is the coefficient of 9/dq, in [X,, Y;,1—m, Yy, and Hj
is the coefficient of 9/0¢’ in [Z{, X{] by the definition. Hence, taking account
of (4.3}, we have H,= Hj by
PROPOSITION 4.3. Suppose that equation (1.11) is of L,-type, and that H;+0.
Then we have

/ 3% ah
H,= Hi—p'l], [,=— aq I.
PrROOF. Multiplying each side of by Hi'=(H{)™*, we have
@7 Yu=—t v\, iz2.

g
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By this identity and [4.5), we obtain

@8 X V= Vu=—(x ) v,

(X VP T2, Vi DG o Vi

N

— (X, Vi1

Yii)

M

Sy (2t ViD= ¥, iz2,

since we have

x. 0h _ON on _ _ o of on 1 oM’ 6N’>

3¢ T ag 8q ~  8q a¢ — aq \ag P ag

by (2.21). Hence, comparing the coefficient of 0/0¢g, in the left-hand side of
the first identity of for 1=3 with that of /05 in the right-hand side
of the second identity, we have H,— H{—p’l;. By Proposition 3.1, we obtain

oh 0 , ___0h 4,
l,=H;'Z,H,= 30 oy (H,—p'l) = ~ 4 .
LEMMA 4.1. Suppose that k=2, H,+0, ---, H,+0, Hy+0, -, H;,_,+#0,
Lh=-=l=l{=--=1},=0, H.= Hj}_,, and that for i=2 we have
0
@) X Vad= G Ve = G (0K, ViD= G Vhonins).

Then we have

aN ah , , 6N , .
LXe Yign,d— Y}c—!-],i ([X Y i — —Y % 1) 1=2
and
oh ,,
Hywy= Hy, lk+1:_*‘a‘§‘l
PROOF. Multiplying both sides of by Hyz'=(H,_)™*, we have
oh )

(4.10) Yisr,i= ~aq Foim1 5 1=2.
By the identity (iii) in Lemma 3.1, we have

p aM
[Zi-y Yii-d— k1= 0,

since we can take s=0 and {=£% by the assumption that 2=2. Hence, by
and (4.10), we obtain
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A1) [X, Yied— %NY
(X, Vhid G ¥has)
oM
p([zz o Vhid=%0 Vhia)
([XL 1y Ykzl] aN kzl)y 7'22-
By [Corollary 3.1, (—1)**'H,,, is the coefficient of a/aqk+2 in [ Xpss, YVirsered

— a1 Y per, o2, and (—1)*H} is the coefficient of 0/0¢ky in [ Xis, Y]

—7; Y ke, Hence, by [4I1), we have Hy.,=H,. By Proposition 3.1, we
«obtain

oh
liar=~HiY Yo paoHgwn = (Himg) o n - i = —‘a?lk
PROPOSITION 4.4. Suppose that k=3, and that the coefficients M and N of
equation (1.11) satisfy Hy+#0, ---, H,_,#0, ;= ---=1,_,=0. Then we have
, oh
(4.12) Hy=Hj, Ly=— aq A

PROOF. Suppose that k=3. Then, by [Proposition 4.3, we have [i=
-1
——(—g—g) [,=0 and H{=H,+0. Hence, by the identity (iii) in Lemma 3.1,

‘we obtain

7 aM 4

I:ZL I’Y,z 1] Y,t 1—O
and

aN ah

|._.Xl7 Yzz] Y21, <[XL 1 T 1] Yl,z 1>

by [([4.8). Therefore, we have [4.12) and [4.9] for £=3 by Lemma 4.1 Sup-
pose that H,+0, ---, H, #0, 11: .- =1[,=0, and that the identities and
are valid for each of 3, ---, .. Then we have H{,_H o, Hi_y=H, and
d{=-+=1};,=0. Hence, by Lemma 4.1, we have ) and [4.9) - ) for k1.

Let us prove the first part of [] stated in the introduction.

THEOREM 4.1. Egquation (1.11) of Imschenetsky type is of L,-type if and
only if Hy+0, -+, H,.,#0 and l,= ---=1,=0.

Proor. By [Proposition 4.1, this theorem is valid for n=1. Since an
equation of L;-type is of Imschenetsky type and linear in p, an equation of
L,-type is of L,-type. Hence, an equation of L,-type is of L,_,-type. Sup-
pose that is valid for n=~%. Then the reduced equation s’--f’
=0 of is of L,-type if and only if H;+0, ---, Hr_,#0, and l{= --- =1}
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=0. Suppose that equation [1.1I) is of L,,,-type. Then it is of L.type,

and we have H,#0, ---, H,_, #0, [;= -+ =1,=0. Since the reduced equation
is of L,type, we have H;+0, -, H} ,+0 and [{=---=1[;=0. Hence, by
IProposition 4.3 and [Proposition 4.4, we obtain [,,,= —(0h/d¢)lz=0 and Hi
= H;_;#0. Conversely, suppose that H,+0, -, H,#0 and [,= - = [;4,=0.

Then, by [Proposition 4.3] and [Proposition 4.4, we have [;= —(0h/0q) ;=0
and Hj_ = H,+0. Hence, the reduced equation is of L,-type, and the
original equation is of Li.,-type.

Let us prove the second part of stated in the introduction.

THEOREM 4.2. Suppose that equation (1.11) is of L,-type. Then it is solved
by integrable systems of order n if and only if H,=0.

PROOF. In it was proved that an equation of L,-type is solved by
integrable systems of the first order if and only if it is reduced by the
associated Imschenetsky transformation to an equation whose first invariant
Hi vanishes. By [Propesition 4.2 Hj, vanishes if and only if H,=0. Hence:
is valid for n=1. Suppose that is valid for n=
k=1, and equation is of Li.,-type. Then the reduced equation is.
solved by integrable systems of order k if and only if H,=0. By
4.1, we have H,+0, -, H,#0 and [,= - =[;,,=0. Hence, by Propositions.
and we have H,= H,,,. By [Theorem 1, equation of L...-type
is solved by integrable systems of order k-1 if and only if the reduced
equation is solved by integrable systems of order k. Hence, equation
(1.11) of L;.,-type is solved by integrable systems of order k41 if and only
if Hpp. =0.

REMARK 4.1. Suppose that H,+0, ---, H,_, #0, [,= --- =1, =0and H,=0.
Then, by (3.10), we have

[X:, Vi l—m Y =0, 1=1.

For any n =k, the system is prolonged to a complete system consisting
of and
Yiuteu—(Ag+ene) =0, l=s=k

by adding the compatibility conditions. Here, A,,+¢,G,:, is a function of
%Y, 2,4y, -+, qn, since Ag, is linear with respect to ¢4, and 0A4;,/0¢p1= —é;.
Hence the rank of the system [2.5) is n—k+1. Therefore, if equation [(1.11)
is of L,-type and if it is solved by integrable systems of order k, then it is.
solved by integrable systems of order n for every n=k. This argument
gives another proof of Suppose that equation is not of
Imschenetsky type; H,=0. Then equation [1.11) is solved by integrable
systems of order n for every n =0.

REMARK 4.2. In [8], for equation [L.IT) of Imschenetsky type, its invari-
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ant H; (1=i=<4) was defined by

oL dL
H,,= *aq"l"’; Hy, = "'*dy'l’"—MLl_ZlM,
oL dL
H12:—azz', Hy,= dyl —NL,—Z,N-2H,,
‘where-
L,=Z log Ho‘l‘”aaz‘q/l , L,= X, log H0+‘%£€>L .

By these H,;, the invariants [, and H, are expressed in the form

l,=H,q,+H,, H,=—H,q,—H,.

Hence, [Proposition 4.1] gives the same condition H,;= H;,=0 as obtained in
for equation of Imschenetsky type to be of L,-type. In [8], Pro-
position 4.2 was expressed in the identities

oh
A:—Hm/"a‘q"y B=—H,,+ dy

oh
le/’ aa* 3
where A4 and B are the coefficients of H{ which is linear in ¢’ ; Hy= Aq¢'+B.
Also, such identities that are equivalent to those in [Proposition 4.3 were
obtained in [8].

EXAMPLE 4.1 (Moutard equation). Equation of the form

St (@) +p (B =0

is called a Moutard equation, where «, B8, y are functions of x, y. Suppose
that a«=0. Then this equation is transformed to

(4.13) s+pez+%—(be‘z)+c:0
by changing the dependent variable z* to z, where z=z*-+log «, and
2
b—aB, c—p— 01080
For the equation (4.13), we have
., 0b
Hy=—be?q+ P e b,
Suppose that b+ 0. Then, the Imschenetsky transformation
xX'=x ¥y =y, z' = log <q+e ey ),

2
p/ — be—z_b/e—z" b = b—l"”@ Jpgb

0x0y T
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reduces to a Moutard equation

where

c'=b'-b,

Conversely, the equation is reduced from a Moutard equation

4D (e—be ) —ger—c=0

by the Imschenetsky transformation

C1]
£2]

(3]
[4]

[5]
[6]
[7]
(8]
[9]
[10]

x"=x, y'=y, z'=log(p+be?), q"=(b—ce*—e .
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