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Introduction.

Let $k$ be a field and let $G$ be a finite group. Let $V$ be a (finite dimen-
sional) $kG$-module, $i$ . $e.$ , a representation module of $G$ over $k$ . Then $G$ acts
naturally on the quotient field $F$ of the symmetric algebra $S(V)$ of $V$ as k-
automorphisms. We denote the field $F$ with this action of $G$ by $k(V)$ .

An extension $L/k$ is said to be rational if $L$ is finitely generated and
purely transcendental over $k$ .

To simplify our notation, we say that a triple $\langle k, G, V\rangle$ has the property
(R) if $k(V)^{G}/k$ is rational. Especially, if $V$ is the regular representation
module of $G,$ $i$ . $e.$ , if $V=kG$ , then we use $\langle k, G\rangle$ instead of $\langle k, G, V\rangle$ .

The following problem is the classical and basic one (e. g. [11]).
Does $\langle k, G, V\rangle$ have the ProPerty (R) ?
It is well known that the answer to the problem is affirmative in each

of the following cases:
(i) $G$ is the symmetric group, $k$ is any field and $V=kG$ .
(ii) $G$ is an abelian group of exponent $e$ and $k$ is a field whose charac-

teristic does not divide $e$ and which contains a primitive e-th root of unity.
(Fisher [5], etc.)

$(iili)$ $G$ is a $P$-group and $k$ is a field of characteristic $p$ . (Kuniyoshi [6],
etc.)

(iv) $k$ is a field of characteristic $0$ and $G$ is a finite group generated by

reflections of a k-module $V$ (Chevalley [2]).

However the problem has been kept open even in the case where $G$ is
abelian and $k$ is an algebraic number field.

K. Masuda proved in [7] and [8] that $\langle Q, G\rangle$ has the property (R) when
$G$ is a cyclic group of order $n\leqq 7$ or $n=11$ , and reduced the problem to the
one on integral representations, in case $G$ is a cyclic group of order $p$ .
Recently R. G. Swan [15] showed, using the Masuda’s result, that $\langle Q, G\rangle$ does
not have the property(R) when $G$ is a cyclic group of order $P=47,113$ ,
233, $\cdots$

In this paper we will refine the Masuda-Swan’s method and will give
some further consequences on the problem in case $G$ is abelian.
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Our main results in this paper are the following:
[I] Let $G$ be a finite abelian group of expOnent

$e=2^{l_{2}}3^{l_{3}}5^{l_{5}}7^{\iota_{7}}11^{\iota_{l1}}13^{l_{13}}17^{l_{17}}19^{\iota_{1923^{l_{23}}29^{l_{29}}31^{l_{31}}37^{l_{37}}41^{l_{41}}43^{l_{43}}61^{l_{61}}67^{l_{67}}71^{l_{71}}}}$ .
SuppOse that $l_{3}$ is arbitrary, that each of $l_{2},$ $l_{5},$ $l_{7}$ is $0,1$ or 2 and that each of
$l_{11},$ $l_{13},$ $l_{17},$ $\cdots$ $l_{71}$ is $0$ or 1. Then $\langle Q, G\rangle$ has the ProPerty (R).

We denote $\langle k, G\rangle$ by $\langle k, n\rangle$ if $G$ is a cyclic group of order $n$ .
[II] There exist infinitely many Primes, $P$ , such that, for some $l_{0}\geqq 1,$ $\langle Q, p^{l_{0}}\rangle$

does not have the prOperty(R). For example, any of $\langle Q, 2^{3}\rangle,$ $\langle Q, 11^{2}\rangle,$ $\langle Q, 13^{2}\rangle,$ $\cdots$

does not have the prOperty(R). (For the more precise description, see \S 3.)
[III] Let $G$ be a finite abelian group of expOnent $e$ and $k$ be a field of

characteristic $0$ .
(i) Case where $e$ is odd: If $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ for any prime $p$ with $p|e$ ,

then $\langle k, G\rangle$ has the prOperty(R).

(ii) Case where $e$ is even: If $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ for any odd prime $P$ with
$p|e$ and $\zeta_{2}m+\zeta_{2^{m}}^{-1}$ for $m$ such that $Z^{m}|e$ but $2^{m+1}+e$ (or $i=\sqrt{-1}$), then $\langle k, G\rangle$

has the property(R).

Here $\zeta_{n}$ denotes a primitive n-th root of unity.
H. Kuniyoshi conjectured ([9]) that, for any $l\geqq 1,$ $\langle k, p^{l}\rangle$ has the property

\langle $R$), if $k$ contains $\zeta_{p}$ . [IV] implies that this conjecture is valid if (and only
if) $p$ is odd.

[IV] Let $R_{0}$ be the maximal real subfield of the maximal abelian extension
of $Q$ and $k$ be a field containing $R_{0}$ ( $e$ . $g$ . the real number field $R$), Then, for
any finite abelian group $G$ and any $kG$-module $V,$ $\langle k, G, V\rangle$ has the prOperty
(R).

We should remark that, in most of our results, the assumption that the
characteristic of a Peld $k$ is $0$ can be replaced by the weaker one that the
characteristic of $k$ does not divide the order of a group $G$ .

\S 1. Quasi-permutation modules and quasi-rational extensions.

The first proposition is only a restatement of the well-known Hilbert’s
theorem 90 (cf. [14]).

PROPOSITION 1.1. Let $K/k$ be a finite Galois extension with group $\Pi$ and
$K(X_{1}, X_{2}, \cdots , X_{n})$ be the rational function field with n-variables $X_{1},$ $X_{2},$ $\cdots$ , $X_{n}$

over K. SuppOse further that $\Pi$ acts semi-linearly on the vector space $\sum_{t=1}^{n}KX_{i}$ ,
$i$ . $e.$ , as follows:

$\sigma(\alpha X_{i})=\sigma(\alpha)\sum_{j=1}^{n}\alpha_{ij}(\sigma)X_{j}$ , $\alpha,$ $\alpha_{ij}(\sigma)\in K$ .

Then $\Pi$ acts naturally on $K(X_{1}, X_{2}, \cdots , X_{n})$ as $k$ -automorphisms and $K(X_{1},$ $X_{2}$ ,
... , $X_{n})^{\Pi}$ is rational over $k$ .
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PROOF. If we put $\chi(\sigma)=[\alpha_{ij}(\sigma)]$ , then $\chi(\sigma)$ is a l-cocycle of the complex
$\{C^{i}(\Pi, GL(n, K))\}$ . The Hilbert’s theorem 90 means $H^{1}(\Pi, GL(n, K))=1$ .
Hence there exists $P\in GL(n, K)$ such that $\chi(\sigma)=\sigma(P)^{-1}\cdot P$. Now put $[Z_{1},$ $Z_{2}$ ,

, $Z_{n}$] $=[X_{1}, X_{2}, \cdots , X_{n}]\cdot {}^{t}P$. Then it can easily be shown that $K(X_{1},$ $X_{2},$ $\cdots$

$X_{n})^{\Pi}=k(Z_{1}, Z_{2}, ’ Z_{n})$ .
COROLLARY 1.2. Let $K,$ $k,$ $\Pi,$ $K(X_{1}, X_{2}, \cdots X_{n})$ be as in (1.1) and let $F=$

$K(Y_{1}, Y_{2}, \cdots , Y_{m})$ be a subfield of $K(X_{1}, X_{2}, \cdots , X_{n})$ rational over K. SuppOse
that $Y_{1},$ $Y_{2},$ $\cdots$ , $Y_{m}\in k(X_{1}, X_{2}, \cdots , X_{n})$ and that the restrictions of $\prod$ and
$\prime GL(n, K)$ on $F$ induce the automorphisms of F. Then $F^{\Pi}$ is rational over $k$ .

Let $\Pi$ be a finite group. A finitely generated Z-free $ Z\Pi$ -module is called
briefly a $\Pi$ -module. A $\Pi$-module is called a permutation $\Pi$ -module if it is
expressible as a direct sum of some $\{Z\Pi/\Pi_{i}\}$ where each $\Pi_{i}$ is a subgroup
of $\Pi$ . Further a $\Pi$ -module $M$ is called a quasi-permutation $\Pi$ -module if
there exists an exact sequence:

$0\rightarrow M\rightarrow S\rightarrow S^{\prime}\rightarrow 0$

where $S$ and $S$‘ are permutation $\Pi$ -modules.
Let $K/k$ be a finite Galois extension with group $\Pi$ . Let $M$ be a $\Pi$ -module

and $\{x_{1}, x_{2}, \cdots , x_{n}\}$ be a Z-basis of $M$. Let $K(X_{1}, X_{2}, \cdots , X_{n})$ be the rational
function field with n-variables $X_{1},$ $X_{2},$ $\cdots$ , $X_{n}$ and define the action of $\Pi$ on
$K(X_{1}, X_{2}, \cdots , X_{n})$ as follows: for any $\sigma\in\Pi$ and $1\leqq i\leqq n$ ,

$\sigma\cdot X_{i}=\prod_{j=1}^{n}X_{j}^{m_{ij}}$ when $\sigma\cdot x_{i}=\sum_{j=1}^{n}m_{ij}x_{j},$ $m_{ij}\in Z$ .

Then $\Pi$ can be regarded as a subgroup of the automorphism group of
$K(X_{1}, X_{2}, \cdots , X_{n})$ and we denote $K(X_{1}, X_{2}, \cdots , X_{n})$ with this action of $\Pi$ by
$K(M)$ . It is easily seen that $K(M)$ does not depend on the choice of Z-basis
of $M$.

An extension $F/k$ is said to be quasi-rational if there exists a rational
extension of $F$ which is rational over $k$ .

COROLLARY 1.3. Let $K/k$ be a Galois extension with group $\Pi$ . Let $M,$ $N$

be $\Pi$ -modules and $S$ be a permutati0n $\Pi$ -module. Supp0se that there is an
.exact sequence:

$0\rightarrow M\rightarrow N\rightarrow S\rightarrow 0$ .

Then $K(N)^{\Pi}$ is rational over $K(M)^{\Pi}$ . Especially $K(M)^{\Pi}$ is quasi-rational over
$k$ if and only if $K(N)^{\Pi}$ is quasi-rational over $k$ .

COROLLARY 1.4. Let $K/k$ be a Galois extension with group $\Pi$ and let I be
the augmentation ideal of $ Z\Pi$ . Then both $K(Z\Pi)^{\Pi}$ and $K(I)^{\Pi}$ are rational
over $k$ .

PROOF. The assertion for $I$ can be proved by (1.2).
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Swan proved in [15] the following important
THEOREM 1.5 ([15]). Let $K/k$ be a Galois extension with group $\Pi$ and let

$F/K$ be a rational extension with the action of $\Pi$ as $k$ -automorphisms $compati-$

ble with the action on K Let $A$ be a K-subalgebra of $F$ satisfying the follow-
ing conditions:

(i) The quotient field of $A$ is $F$.
(ii) $A$ is finitely generated over $K$ as algebra.
(iii) $A$ is stable under $\Pi$ .
(iv) $A$ is a unique factorization domain.
(v) $U(A)/U(K)$ is a finitely generated abelian group.

If $F^{\pi}/k$ is quasi-rational, then $U(A)/U(K)$ is a quasi-permutatiOn $\Pi$-module.
Here we denote the group of units of a ring $R$ by $U(R)$ .

We should remark that the converse to (1.5) is not true. In fact, am
example which shows it will be given at the end of \S 3.

However, we have
THEOREM 1.6. Let $K/k$ be a Galois extension with group $\Pi$ . Then, for

any $\Pi$ -module $M$, the following conditions are equivalent:
(1) $M$ is a quasi-permutation $\Pi$ -module.
(2) $K(M)^{\Pi}$ is quasi-rational over $k$ .
PROOF. (1) $\Rightarrow(2)$ is an immediate consequence of (1.3) and (2) $\Rightarrow(1)$ is a

special case of (1.5).

COROLLARY 1.7. Let $\Pi$ be a finite group. Let $M,$ $N$ be $\Pi$ -modules and $S$

be a permutation $\Pi$ -module. SuPpose that there is an exact sequence:

$0\rightarrow M\rightarrow N\rightarrow S\rightarrow 0$ .
Then $M$ is a quasi-permutatiOn $\Pi$ -module if and only if $N$ is a quasi-Permuta\sim
tion $\Pi$ -module.

PROPOSITION 1.8. Let $\Pi$ be a finite grouP and $P$ be a projective $\Pi$ -module.,

Then $P$ is a quasi-permutatiOn $\Pi$ -module if and only if there exist Permutation
$\Pi$ -modules $S,$ $S^{\prime}$ such that $P\oplus S^{\prime}\cong S$. If $P$ is a $ quasi- Pem\iota$utation $\Pi- module_{\succ}$

then the dual $P^{*}=Hom_{Z}(P, Z)$ of $P$ is also a quasi-permutation $\Pi$ -module.
PROOF. This is easy, therefore we omit it.
In Chevalley [1] we can find an example of a quasi-permutation $\Pi- module\rightarrow$

$M$ such that $M^{*}$ is not a quasi-permutation module. Here we give a refine-
ment of the Chevalley’s result. (See also [16].)

PROPOSITION 1.9. Let $\Pi$ be a finite nilpotent group and I be the aug-
mentation ideal of $ Z\Pi$ . Let $K/k$ be a Galois extension with grouP $\Pi$ . Then the
following conditions are equivalent:

(1) $\Pi$ is a cyclic group
$\cdot$

(2) $K(I^{*})^{\Pi}$ is rational over $k$ .
(3) $I^{*}$ is a quasi-permutation $\Pi$ -module.
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PROOF. (1) $\Rightarrow(2)$ : If $\Pi$ is cyclic, then $I\cong I^{*}$ , and hence, by (1.4), $K(I^{*})^{\Pi}$

is rational over $k$ . (2) $\Rightarrow(3)$ follows directly from (1.6). (3) $\Rightarrow(1)$ : Suppose
that $I^{*}$ is a quasi-permutation $\Pi$ -module. Then there exists an exact
sequence:

$0\rightarrow S^{\prime}\rightarrow S\rightarrow I\rightarrow 0$

where $S^{\prime}$ and $S$ are permutation $\Pi$ -modules. For any subgroup $\Pi^{\prime}$ of $\Pi$ , we
have $H^{n}(\Pi, Z\Pi/\Pi’)\cong H^{n}(\Pi^{\prime}, Z)$ . Therefore $H^{1}(\Pi, S)=0$ . Hence, considering
the exact sequence of cohomology groups, we obtain

$0\rightarrow H^{1}(\Pi, I)\rightarrow H^{2}(\Pi, S^{\prime})$ (exact).

Since $I$ is the augmentation ideal of $Z\Pi,$ $H^{1}(\Pi, I)$ is a cyclic group of order
$|\Pi|$ . A nilpotent group $\Pi$ is cyclic if and only if $H^{2}(\Pi, Z)$ contains an
element of order $|\Pi|$ . Therefore, if $\Pi$ is not cyclic, then $H^{2}(\Pi, S^{\prime})$ does not
contain any element of order $|\prod|$ , which contradicts the fact that $H^{1}(\prod,$ $ I\rangle$

$\subseteqq H^{2}(\Pi. S^{\prime})$ . Thus $\Pi$ must be cyclic.
PROPOSITION 1.10 ([12]). Let $\Pi$ be a finite group and let

$0\rightarrow M^{\prime}\rightarrow M\rightarrow M^{\prime\prime}\rightarrow 0$

an exact sequence of $\Pi$ -modules. Supp0se that $M^{\prime\prime}$ is a projective $\Pi/\Pi^{r_{-}}$

module, putting $\Pi r=$ { $\sigma\in\prod|\sigma u^{\prime}=u^{\prime\prime}$ for any $u^{\prime}\in M^{r}$ }. Let $K/k$ be a Galois
extension with group $\prod$ . Then $K(M)^{\Pi}$ is $k$ -isomorphic to $K(M^{\prime}\oplus M^{\prime})^{\Pi}$ .

PROOF. See [12], Proposition 1.2.2.
Let $\Pi$ be a cyclic group of order $n$ with generator $T$ and let $\Phi_{m}(X)$ be

the m-th cyclotomic polynomial. Let $M$ be a $\Pi$ -module and let $m|n$ . We
put $M_{\Phi m}=M/\Phi_{m}(T)M$ and $M^{\Phi m}=\{u\in M|\Phi_{m}(T)u=0\}$ . Then both $M^{\Phi m}$ and
$M_{\Phi_{m}}$ can be regarded as $Z[\zeta_{m}]$ -modules. Especially, if $M$ is $\Pi$ -projective,
then, clearly, $M_{\Phi_{m}}\cong M^{\Phi m}$ .

In case $\Pi$ is a cyclic group we give the following remarkable
THEOREM 1.11. Let $\Pi$ be a cyclic group of order $n$ . Then, for any Pro-

jective $\Pi$ -module $P$, the following conditions are equivalent;
(1) $P$ is a quasi-permutation $\Pi$ -module.
(2) For any $m|nP_{\Phi m}$ is a free $Z[\zeta_{m}]$ -module.
(3) For any Galois extension $K/k$ with group $\Pi K(P)^{\Pi}$ is rational over $k$ .
PROOF. We may suppose that $P=\mathfrak{A}$ is a projective ideal of $ Z\Pi$ . If $\mathfrak{A}$

is a quasi-permutation $\Pi$ -module, then, by (1.8), $\mathfrak{A}\oplus S‘\cong S$ for some permuta-
tion $\Pi$-modules $S^{\prime},$ $S$ . For any $m|n\mathfrak{A}^{\Phi m}\oplus S^{\prime 0_{m}}\cong s^{0_{m}}$ and both $S^{\prime\Phi m}$ and $S^{\Phi m}$

are $Z[\zeta_{m}]$ -free. Hence $\mathfrak{A}_{\varpi_{m}}\cong \mathfrak{A}^{\phi_{m}}\cong Z[\zeta_{m}]$ which proves (1) $\Rightarrow(2)$ . (3) $\Rightarrow(1)$ is
a special case of (1.6).

Now we will show (2) $\Rightarrow(3)$ by induction. This is trivial for $n=1$ .
Therefore suppose that $7?>1$ and that $\mathfrak{A}_{\Phi m}$ is $Z[\zeta_{m}]$ -free for any $m|n$ . Let
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$T$ bea generator of $\Pi$ . Using the M\"obius inversion formula, we can con-
struct the following chain of exact sequences:

$0\rightarrow N_{1}\rightarrow M_{1}\rightarrow \mathfrak{A}/(T^{m_{1}}-1)\mathfrak{A}\rightarrow 0$

$0\rightarrow N_{2}\rightarrow M_{1}\rightarrow \mathfrak{A}/(T^{m_{2}}-1)\mathfrak{A}\rightarrow 0$

$0\rightarrow N_{2}\rightarrow M_{2}\rightarrow \mathfrak{U}/(T^{m_{3}}-1)\mathfrak{A}\rightarrow 0$

$0\rightarrow N_{s}\rightarrow M_{s- 1}\rightarrow \mathfrak{A}/(T^{m_{2S-2}}-1)\mathfrak{U}\rightarrow 0$

$0\rightarrow N_{s}\rightarrow M_{s}$ $\rightarrow \mathfrak{A}/(T^{m_{2s-1}}-1)\mathfrak{A}\rightarrow 0$

where $N_{1}=\mathfrak{A}_{\Phi n}\cong Z[\zeta_{n}],$ $M_{s}=\mathfrak{A}$ and every $m_{k}$ is a proper divisor of $n$ . Since
$\mathfrak{A}$ is $\Pi$-projective, each $\mathfrak{A}/(T^{m_{k}}-1)\mathfrak{A}$ is $\Pi/[T^{m_{k}}]$ -projective. Hence, by (1.10),
$K(M_{i})^{\Pi}\cong K(N_{i}\oplus \mathfrak{A}/(T^{m_{2i-1}}-1)\mathfrak{A})^{\Pi}$ and $K(M_{i})^{\Pi}\cong K(N_{i\prec\cdot 1}\oplus \mathfrak{A}/(T^{m_{2i}}-1)\mathfrak{A})^{\Pi}$ over
$k$ . By induction $K(N_{i}\oplus \mathfrak{A}/(T^{m_{2i-1}}-1)\mathfrak{A})^{\Pi}$ is rational over $K(N_{i})^{\Pi}$ and $K(N_{i+1}$

$\oplus \mathfrak{A}/(T^{m_{2i}}-1)\mathfrak{A})^{\Pi}$ is rational over $K(N_{i+1})^{\Pi}$ . Therefore we get

$K(M_{1})^{\Pi}\cong K(Z[\zeta_{n}])^{\Pi}(Y_{1}^{(1)}, Y_{2}^{(1)}, \cdots , Y_{m_{1}}^{(1)})$

$K(M_{1})^{\Pi}\cong K(N_{2})^{\Pi}(Z_{1}^{(1)}, Z_{2}^{(1)}, \cdots , Z_{m_{2}}^{(1)})$

$K(M_{2})^{\Pi}\cong K(N_{2})^{\Pi}(Y_{1}^{(2)}, Y_{2}^{(2)}, \cdots , Y_{m_{3}}^{(2)})$

$K(M_{S- 1})^{\Pi}\cong K(N_{s})^{\Pi}(Z_{1}^{(s-1)}, Z_{2}^{(s-1)}, \cdots , Z_{m_{2s-2}}^{(s-- 1)})$

$K(\mathfrak{A})^{\mathfrak{l}T}\cong K(N_{s})^{\Pi}(Y_{1}^{(S)}, Y_{2}^{(s)}, \cdots , Y_{m_{2s-l}}^{(s)})$

where $\{Y_{i}^{(\alpha)}\}$ and $\{Z_{j}^{(9)}l\}$ are indeterminates. From these we get

$K(\mathfrak{A})^{\Pi}\cong K(Z[\zeta_{n}])^{\Pi}(X_{1}, X_{2}, \cdots , X_{n-\varphi(n)})$

where $X_{1},$ $X_{2},$ $\cdots$ , $X_{n-\varphi(n)}$ are indeterminates. Especially we have

$K(Z\Pi)^{\Pi}\cong K(Z[\zeta_{n}])^{\Pi}(X_{1}, X_{2}, \cdots , X_{n-\varphi(n)})$ ,

hence $K(\mathfrak{A})^{\Pi}$ is k-isomorphic to $K(Z\Pi)^{\Pi}$ . Since $K(Z\Pi)^{\Pi}$ is rational over $k$ by
(1.4), this concludes that $K(\mathfrak{A})^{\Pi}$ is rational over $k$ . Thus the proof of (2) $\Rightarrow$

(3) is completed.
LEMMA 1.12 ([15]). Let $\Pi$ be a cyclic grouP of order $n$ . If $M$ is a quasi-

Permutation $\Pi$ -module, then $M^{\Phi n}$ is a free $Z[\zeta_{n}]$ -module.
PROPOSITION 1.13. Let $\Pi$ be a cyclic group of prime order $P$ and let $K/k$

be a Galois extension with group $\Pi$ . Then for any $\Pi$ -module $M$, the $follo^{\gamma J)}ing$

conditions are equivalent:
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(1) $M$ is a quasi-permutatiOn $\Pi$ -module.
(2) $M^{g_{p}}$ is a free $Z[\zeta_{p}]$ -module.
(3) $K(M)^{\Pi}$ is rational over $k$ .
PROOF. (1) $\Rightarrow(2)$ follows directly from (1.12) and (3) $\Rightarrow(1)$ follows from

(1.6). Further (2) $\Rightarrow(3)$ follows from (1.3), (1.4) and the Diederichsen-Reiner’s
theorem $(e. g. [3])$ .

Generalizations of (1.11) and (1.13) will be given in [4].

\S 2. The properties (R) and (QR) and the Masuda’s modules.

Let $G$ be a finite group and let $k$ be a field. Let $V$ be a (finite dimen-
sional) $kG$-module. We say that a triple $\langle k, G, V\rangle$ has the property (R) if
$k(V)^{G}$ is rational over $k$ and that a triple $\langle k, G, V\rangle$ has the property (QR) if
$k(V)^{G}$ is quasi-rational over $k$ . Especially, if $V$ is a regular representation
module of G. we use $\langle k, G\rangle$ instead of $\langle k, G, V\rangle$ . Further, if $G$ is a cyclic
group of order $n$ , we use $\langle k, n, V\rangle$ (resp. $\langle k,$ $ n\rangle$ ) instead of $\langle k, G, V\rangle$ (resp.
$\langle k, G\rangle)$ .

PROPOSITION 2.1. If $\langle k, G, V\rangle$ has the property(R)( $ resP\cdot$ (QR)), then, for
any extension $L$ of $k,$

$\langle L, G, L\bigotimes_{k}V\rangle$ has the property(R)(resp. (QR)).

PkooF. As this is easy, we omit it.
PROPOSITION 2.2. Let $k$ be a field of characteristic $0$ . If a $kG$-module $V$

has a faithful kG-submodule $W$ such that $\langle k, G, W\rangle$ has the property (R), then
$\langle k, G, V\rangle$ has the Property (R). If there exists a faithful $kG$-module $V_{0}$ such
that $\langle k, G, V_{0}\rangle$ has the property (QR), then, for any faithful $kG$-module $V_{r}$

$\langle k, G, V\rangle$ has the Property (QR).

PROOF. This follows immediately from (1.1).

THEOREM 2.3. Let $G_{1},$ $G_{2},$ $\cdots$ , $G_{s}$ be finite groups and let $k$ be a field of
characteristic $0$ . If every $\langle k, G_{i}\rangle$ has the ProPerty (R) ( $ resP\cdot$ (QR)), then $\langle k_{r}$

$\prod_{i=1}^{l}G_{i}\rangle$ has the Property (R) (resp. (QR)).

PROOF. We will prove only the case of (R). Clearly it is sufficient $t$ (\rangle

prove this in the case of $s=2$ . Let $W_{1},$ $W_{2},$ $W$ be the regular representation
modules of $G_{1},$ $G_{2},$ $G_{1}\times G_{2}$ , respectively and let $V_{1},$ $V_{2}$ be the augmentation
ideals of $kG_{1},$ $kG_{2}$ , respectively. Then $V_{i}$ and $W_{i}$ can be regarded naturally
as $k(G_{1}\times G_{2})$ -modules. Since $k$ is of characteristic $0$ we have $W_{i}\cong V_{i}\oplus T$ ,
$i=1,2$ , where $T$ denotes the one dimensional trivial representation module
of G. $V_{1}\oplus V_{2}$ is a faithful $kG$-module and $V_{1}\oplus V_{2}\oplus T\subseteqq W$. Now suppose
that each $\langle k, G_{i}\rangle$ has the property (R). Then, by (2.2), it suffices to show
that $\langle k, G_{1}\times G_{2}, V_{1}\oplus V_{2}\oplus T\rangle$ has the property(R). We have

$k(V_{1}\oplus V_{2}\oplus T)^{G_{1}\times G_{2}}\cong k(V_{1}\oplus W_{2})^{G_{1}\times G_{2}}=[k(V_{1}\oplus W_{2})^{G_{2}}]^{G_{1}}$ .
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Since $G_{2}$ acts trivially on $k(V_{1}),$ $k(V_{1}\oplus W_{2})^{G_{2}}=k(V_{1})(W_{2})^{G_{2}}$ is rational over
$k(V_{1})$ by (2.1). Here we can choose $G_{1}$ -invariant elements $Y_{1},$ $Y_{2},$ $\cdots$ , $Y_{m}$ of
$k(V_{1}\oplus W_{2})^{G_{2}}$ algebraically independent over $k(V_{1})$ such that $k(V_{1}\oplus W_{2})^{G_{2}}=$

$k(V_{1})(Y_{1}, Y_{2}, \cdots , Y_{m})$ . Therefore we get

$k(V_{1}\oplus V_{2}\oplus T)^{G_{1}\times G_{2}}=k(V_{1}\oplus W_{2})^{G_{1}\times G_{2}}=k(V_{1})^{G_{1}}(Y_{1}, Y_{2}, \cdots , Y_{m})$ .

Further $k(V_{1})^{G_{1}}(Y_{1}, Y_{2}, \cdots Y_{m})=k(V_{1})(T)^{G_{1}}(Y_{2}, Y_{3}, \cdots , Y_{m})\cong k(W_{1})^{G_{1}}(Y_{2},$ $Y_{3},$ $\cdots$ ,
$Y_{m})$ . Since $k(W_{1})^{G_{1}}$ is rational over $k$ , this implies that $k(V_{1}\oplus V_{2}\oplus T)^{G_{1}\times G_{2}}$ is
rational over $k$ , which completes the proof.

It is remarked that both (2.2) and (2.3) can be proved for any field $k$

using a slight generalization of (1.1) (cf. [10]).

We now generalize the Masuda’s results in [8]. Let $G$ be a finite abelian
group of exponent $e$ and let $k$ be a field of characteristic $0$ . Let $\zeta(=\zeta_{e})$ be
a primitive e-th root of unity and put $K=k(\zeta)$ . Then $K/k$ is an abelian
extension and we denote the Galois group of $K/k$ by $\Pi$ . Let $V$ be a kG-
module. Since $K$ is the splitting field of $G,$

$K\bigotimes_{k}V$ can be decomposed to the

direct sum of one dimensional KG-modules $W_{1},$ $W_{2},$ $\cdots$ $W_{s}$ . Here we can
choose a generator $Y_{i}$ of each $W_{i}$ such that $\Pi$ acts on $Y_{1},$ $Y_{2},$ $\cdots$ , $Y_{s}$ as per-
mutations. Let $S_{V}$ be the free abelian group generated multiplicatively by
$Y_{1},$ $Y_{2},$ $\cdots$ , $Y_{s}$ . Then $S_{V}$ is a permutation $\Pi$ -module and $K(V)=K(Y_{1},$ $Y_{2},$ $\cdots$ ,
$Y_{s})=K(S_{V})$ . Let us put $M_{V}=$ { $x\in S_{V}|g(x)=x$ for any $g\in G$}. Then $M_{V}$ is
the $\Pi$-submodule of $S$ and $k(V)^{G}=[K^{\Pi}(V)]^{G}=[K(V)^{G}]^{\Pi}=K(M_{V})^{\Pi}$ . Thus we
get

THEOREM 2.4 ([8]). $k(V)^{G}=K(M_{V})^{\Pi}$ . Especially, if $M_{V}$ is a pemutation
$\Pi$ -module, then $\langle k, G, V\rangle$ has the Property (R), and $M_{V}$ is a quasi-permutation
$\Pi$ -module if and only if $\langle k, G, V\rangle$ has the Property (QR).

PROOF. The rest of the assertions follows from (1.3) and (1.6).
The $\Pi$ -module $M_{V}$ is said to be the Masuda’s module of $V$. Especially

we suppose that $G$ is a cyclic group of order $n$ . Then there exists a faithful
irreducible $kG$-module $V$ . We put $K=k(\zeta_{n})$ and $\Pi_{k}(n)=Ga1(K/k)$ . Then we
have $S_{V}\cong Z\Pi_{k}(n)$ and hence $M_{V}$ can be regarded as an ideal of $Z\Pi_{k}(n)$ . In
this case we call $M_{V}$ the Masuda’s ideal belonging to $\langle k, n\rangle$ and denote it by
$I_{k}(n)$ .

COROLLARY 2.5. Let $G$ be a cyclic group of order $n$ and $W$ be the. regular
representation module of G. Then we have

$k(W)^{G}\cong k(\zeta_{n})(I_{k}(n))^{\Pi(n)}k(X_{1}, X_{2}, \cdots , X_{n-|\Pi(n)|}k)$ ,

where $X_{1},$ $X_{2},$ $\cdots$ , $X_{n-|\Pi}k^{(n)|}$ are indeterminates.
The action of $\Pi_{k}(n)$ on $\zeta_{n}$ induces the natural monomorphism $\varphi;\Pi_{k}(n)\rightarrow$

$U(Z/nZ)$ . Let $T_{1},$ $T_{2},$ $\cdots$ , $T_{s}$ be the generators of $\Pi_{k}(n)$ and $t_{1},$ $t_{2},$ $\cdots$ , $t_{s}$ be
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representatives of $\varphi(T_{1}),$ $\varphi(T_{2}),$ $\cdots$ , $\varphi(T_{s})$ in $Z$, respectively. Then we have

$I_{k}(n)=(T_{1}-t_{1}, T_{2}-t_{2}, \cdots , T_{s}-t_{s}, n)$ .

If $p$ is an odd prime, then $\Pi_{k}(p^{l})$ is a cyclic group for any $l\geqq 1$ , hence

$I_{k}(p^{l})=(T-t, p^{l})$ .
On the other hand, $\Pi_{k}(2^{l})$ is a cyclic group or a product of two cyclic groups,
hence

$I_{k}(2^{l})=(T-t, 2^{l})$ or $(T_{1}-t_{1}, T_{2}-t_{2},2^{l})$ .

PROPOSITION 2.6. If $p$ is an odd prime, then $I_{k}(p^{l})$ is a projective $\Pi_{k}(p^{l})-$

module for any $1\geqq 1$ . For any $l\geqq 2I_{k}(2^{l})$ is a projective $\Pi_{k}(2^{l})$ -module when
and only when $\overline{-1}\not\in\varphi(\Pi_{k}(2^{l}))$ in $U(Z/2^{l}Z)$ .

PROOF. We put $M=z\Pi_{k}(p^{l})/I_{k}(p^{l})$ . Then $M$ has projective dimension
$\leqq 1$ if and only if $\hat{H}^{-1}(\Pi^{\prime}, M)=\hat{H}^{0}(\Pi/, M)=0$ for any Sylow subgroup $\Pi$ ’ of
$\Pi$ $(e. g. [14])$ . The proof of the proposition can be given by computing
directly $\hat{H}^{-1}(\Pi^{\prime}, M)$ and $\hat{H}^{0}(\Pi’, M)$ for each Sylow subgroup $\Pi$ ’ of $\Pi_{k}(p^{l})$ .

\S 3. Case where $G$ is a cyclic p-group.

In this section we will consider only the case where $G$ is a cyclic $p$-group.
Let $p$ be a prime and let $l$ be a positive integer. We denote by $G_{p^{l}}$ the

cyclic group of order $p^{l}$ .
We suppose that $p$ is odd. Let $k$ be a field of characteristic $0$ and put

$[k(\zeta_{p^{l}}):k]=p^{m_{0}}d_{0}$ where $0\leqq m\leqq l-1$ and $d_{0}|p-1$ . Then $\Pi_{k}(p^{l})=Ga1(k(\zeta_{p^{l}})/k)$

is a cyclic group of order $p^{m_{0}}d_{0}$ . Let $T$ be a generator of $\Pi_{k}(p^{l})$ . Then the
Masuda’s ideal belonging to $\langle k, p^{l}\rangle$ has the following form:

$I_{k}(p^{l})=(T-t, p^{l})\subseteqq Z\Pi_{k}(p^{l})$

where $t$ is a primitive $p^{m_{0}}d_{0^{-}}th$ root of unity modulo $p^{l}$ . By virtue of (2.6),
$I_{k}(p^{l})$ is a projective $\Pi_{k}(p^{l})$ -module. Let us denote by $\Phi_{n}(X)$ the n-th cyclo-
tomic polynomial. Then we easily see that

$p|\Phi_{p^{m}d_{0}}(r)$ and $p^{2}+\Phi_{p^{m}d_{0}}(t)$ for any $0<m\leqq m_{0}$ ;

$p^{\iota-ma}|\Phi_{d_{0}}(t)$ ;

$P^{l-m_{0+1}}+\Phi_{a_{0}}(t)$ when $m_{0}>0$ ;

$p+\Phi_{p^{m}d}(t)$ for any $d|d_{0},$ $d<d_{0}$ and $0\leqq m\leqq m_{0}$ .
From this it follows immediately that
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$I_{k}(p^{l})_{o_{p^{m}d}\cong}\{(\zeta_{do}-t,p^{l-m_{0}})\subseteqq Z[\zeta_{do}](\zeta_{p^{m}d_{0}}-t,p)\subseteqq Z[\zeta_{p^{m}d_{0}}]Z[\zeta_{p^{m}d}]$

when $d=d_{0}$ and $0<m\leqq m_{0}$

when $d=d_{0}$ and $m=0(*)$

when $d<d_{0}$ and $d|d_{0}$ .
For any $0\leqq m\leqq m_{0}$ we put $I_{k}^{(m)}(p^{l})=(\zeta_{p^{m}d_{0}}-t, p)$ . Then $It^{m)}(p^{l})$ is a prime
ideal of $Z[\zeta_{p^{m}d_{0}}]$ and $N(J\int^{m)}(p^{l}))=p$ . Further put

$J_{k}(p^{l})=\left\{\begin{array}{ll}Ji^{m_{0})}(p^{l}) & when m_{0}>0\\[Jb^{0)}(p^{l})]^{l} & when m_{0}=0.\end{array}\right.$

Now we give
THEOREM 3.1. Let $p$ be an odd prime and let 1 be a pOsitive integer. Let

$k$ be a field of characteristic $0$ and put $[k(\zeta_{p^{f}}):k]=p^{m_{0}}d_{0}$ . Then the folloWing
conditions are equivalent:

(1) For any faithful $kG_{p^{l}}$ -module $ V\langle k, p^{l}, V\rangle$ has the property (R).
(2) $\langle k, p^{l}\rangle$ has the prOpefty(R).
(3) $I_{k}(p^{l})$ is a quasi-permutation $\Pi_{k}(p^{l})$ -module.
(4) $J_{k}(p^{l})$ is a principal ideal of $Z[\zeta_{p^{m_{0d_{0}}}}]$ .
(5) There exists an element $a$ of $Z[\zeta_{p^{m_{0}}do}]$ such that

$N_{Q(\zeta_{p^{m_{0}}d_{0})/Q}}(\alpha)=\left\{\begin{array}{l}\pm p whenm_{0}>0\\\pm p^{l}\end{array}\right.$

when $m_{0}=0$ .
Further suppOse that $m_{0}>0$ . Then the above conditions are equivalent to each

of the following conditions:
(1) For any $kG_{p^{l}}$ -module $ V\langle k, p^{l}, V\rangle$ has the Property (R).

(2) For any $ 1\leqq 1^{\prime}\leqq l\langle k, p^{l^{\prime}}\rangle$ has the prOperty(R).

PROOF. The implication (1) $\Rightarrow(2)$ is evident and the implications (2) $\Leftarrow\rangle$ (3) $($

follow from (1.11) and (2.5). Since any faithful $kG_{p^{l}}$ -module contains at least
one of faithful irreducible $kG_{p^{l}}$ -modules, the implication (3) $\Rightarrow(1)$ follows
from (2.2). The implication (3) $\Rightarrow(4)$ follows from (1.12) (or (1.11)). Because
of $N(J_{k}^{(m_{0})}(p^{l}))=p,$ (4) $\xi\Rightarrow(5)$ can be shown easily. Suppose that $J_{k}(p^{l})$ is a
principal ideal of $Z[\zeta_{p^{m_{0}}d_{0}}]$ . In case $m_{0}>0,$ $J_{k}(p^{l})=(\zeta_{p^{moa_{0}}}-t, p)$ and there is
$\alpha\in Z[\zeta_{p^{m_{0}}d_{0}}]$ such that $N_{Q(\zeta_{p}m0d_{0})/Q}(\alpha)=\pm p$ . We put

$\alpha_{m}=N_{Q(\zeta mo)/Q(\zeta m)}pdopd_{0}(\alpha)$ for any $0\leqq m\leqq m_{0}$ .

Then $N_{Q(\zeta_{p^{m}d_{0}})/Q}(\alpha_{m})=\pm p$ , hence $J_{k}^{(m)}(p^{l})$ is principal in $Z[\zeta_{p^{m}d_{0}}]$ . Therefore,

by $(*)$ and (1.11), we can conclude that $I_{k}(p^{l})$ is a quasi-permutation $\Pi_{k}(p^{l})-$

module. In case $m_{0}=0$ we can similarly show that $I_{k}(p^{l})$ is a quasi-permuta-
tion $\Pi_{k}(p^{l})$ -module. Thus the implication (4) $\Rightarrow(3)$ is proved, which completes
the proof of the first part of the theorem.

Suppose further that $m_{0}>0$ . To prove the second part it suffices to
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prove that the condition (4) is equivalent to the following condition:
(4) For any $1\leqq l^{\prime}\leqq l,$ $J_{k}(p^{l^{\prime}})$ is a Principal ideal of $Z[\zeta_{p^{m^{\prime}}d_{0}}]$ where

$[k(\zeta_{p^{l^{\prime}}}):k]=p^{m^{r}}d_{0}$ .
We suppose that $J_{k}(p^{l})$ is a principal ideal of $Z[\zeta_{p^{m}0d_{0}}]$ . It has been

shown in the proof of (4) $\Rightarrow(3)$ that $J_{k}^{(m)}(p^{l})$ is principal in $Z[\zeta_{p^{m}d_{0}}]$ for any
$0\leqq m\leqq m_{0}$ . However we easily see that

$J_{k}(p^{l}’)=\{J_{k}^{(m^{\prime})}(p^{\iota})[J_{k}^{(0)}(p^{l})]^{l}$

when $m^{\prime}>0$

when $m^{\prime}=0$ .
Hence $J_{k}(p^{l^{\prime}})$ is also principal in $Z[\zeta_{p^{m^{\prime}}d_{0}}]$ . This proves our assertion.

In [15] Swan proved (2) $\Rightarrow(3)\Rightarrow(4)\Leftrightarrow(5)$ in (3.1) when $k=Q$ and $l=1$ .
It should be remarked that the second part of (3.1) does not hold always

without the assumption that $m_{0}>0$ . In fact, let $k_{0}$ be the subfield of $Q(\zeta_{47^{2}})$

such that $[Q(\zeta_{47^{2}}):k_{0}]=46$ . Then $k_{0}(\zeta_{47})=k_{0}(\zeta_{47^{2}})$ and $[k_{0}(\zeta_{47}):k_{0}]=46$ , and
therefore $\Pi=\Pi_{k_{0}}(47)=\Pi_{k_{0}}(47^{2})$ is a cyclic group of order 46. Hence we have
$J_{k_{0}}(47)=(\zeta_{46}-t, 47)$ and $J_{k_{0}}(47^{2})=(\zeta_{46}-t, 47^{2})=[J_{k_{0}}(47)]^{2}$ where $t$ is a primitive
46-th root of unity modulo $47^{2}$ . By a Swan’s result in [15], $J_{k_{0}}(47)$ is not
principal in $Z[\zeta_{46}],$ $i$ . $e.,$ $\langle k_{0},47\rangle$ does not have the property(R). However
$J_{k_{0}}(47^{2})$ is principal in $Z[\zeta_{46}]$ because the class number of $Q(\zeta_{46})$ is 2. Hence,

by (3.1), $\langle k_{0},47^{2}\rangle$ has the property(R).
PROPOSITION 3.2. Let $P$ be an odd prime and let $k$ be a field of charac-

teristic $0$ . If $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ , then $\langle k, p^{\iota}\rangle$ has the ProPerty (R) for any $1\geqq 1$ .
PROOF. Since $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ , we can put $[k(\zeta_{p^{l}}):k]=e=2P^{m_{0}}$ or $p^{m_{0}}$

for some $0\leqq m_{0}\leqq l-1$ . Now put $\alpha=1-\zeta_{p^{m_{0}}}$ . Then $N_{Q(\zeta_{e})/Q}(\alpha)=p$ , and there-
fore, by (3.1), $\langle k, p^{l}\rangle$ has the property (R). This proves our assertion.

We conjecture that $Q(\zeta_{p}+\zeta_{p}^{-1})$ is the smallest algebraic number field such
that $\langle k, p^{l}\rangle$ has the property(R) for any $1\geqq 1$ . In fact this conjecture is
true if $p$ satisfies one of the following conditions:

(i) $\frac{p-1}{2}$ is a prime $\geqq 23$ congruent to $-1$ modulo 4.

(ii) Any prime divisor of $\frac{p-1}{2}$ is congruent to 1 modulo 4.
Let $Q$ be the rational number field. To simplify our notation, we use

$\langle p^{l}\rangle,$ $\Pi(p^{l}),$ $I(p^{l})$ and $J(p^{l})$ instead of $\langle Q, p^{l}\rangle,$ $\Pi_{Q}(p^{l}),$ $I_{Q}(p^{l})$ and $J_{Q}(p^{l})$ respec-
tively.

Putting $p=3$ in (3.2), we get
COROLLARY 3.3. For any $1\geqq 1\langle 3^{l}\rangle$ has the property(R).
However for $p\geqq 5$ it is difficult to determine $p^{l}$ such that $\langle p^{l}\rangle$ has the

property(R). Here we give only the following
PROPOSITION 3.4. (1) Let $p$ be one of the following Primes: 5, 7, 11, 13,

17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71. Then $\langle p\rangle$ has the Property (R).
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(2) For each of $p=5,7,$ $\langle p^{2}\rangle$ has the property(R).

PROOF. By virtue of (3.1) it suffices to show the existence of $\alpha$ of
$Z[\zeta_{p^{l-1(}p-1)}]$ such that $N_{Q(\zeta_{p}l-1(p-1))/Q}(\alpha)=\pm p$ . By direct computations (or by
[13]), we obtain the following table.

If the class number $c(Q(\zeta_{p^{l-1}(p- 1)}))$ is 1, $\langle p^{l}\rangle$ has the property (R). For exam-
ple, it is known that $c(Q(\zeta_{m}))=1$ for any $m<23$ , and hence, we can conclude
without using the above list that $\langle p^{l}\rangle$ has the property (R) if $p^{l}$ is one of 5,
7, $\cdots$ 23, 25, 31, 43, 49. In fact, for any $p^{l}$ in the proposition, $c(Q(\zeta_{p^{l-1}(p-1)}))$

may be 1.
In [7] and [8] Masuda proved that $I(P)$ is principal for $p\leqq 11$ . One might

have a conjecture: $I(P)$ is principal if $\langle p\rangle$ has the property (R). But this
conjecture is false. In fact the second named author proved in an unpublished
note that $I(13)$ is not principal.

Next, by the Swan’s method, we will determine odd primes, $p$ , such that
$\langle p\rangle$ or $\langle p^{2}\rangle$ does not have the Property (R).

By virtue of (3.1), $\langle p^{l}\rangle$ does not have the property (R) when there exists
a subfield $F$ of $Q(\zeta_{p^{l-1}(p-1)})$ containing no algebraic integer $\gamma$ with $N_{F/Q}(\gamma)$

$=\pm p$ . Swan proved, using the imaginary quadratic subfields, that, for $P=47$ ,
113, 233, $\cdots$ , $\langle p\rangle$ does not have the property (R).

We can Pnd all quadratic subfields of $Q(\zeta_{n})$ by the following

LEMMA 3.5 ([15]). Let $d$ be a square-free integer. Then $Q(\sqrt{d})\subseteqq Q(\zeta_{n})$ if
and only if $d|n$ and, in addition, (i) $d\equiv 1$ mod 4 if $n$ or $n/2$ is odd and (ii) $d$

is odd if $4|n$ but $8+n$ .
As a little more general result containing the Swan’s examples, we have
PROPOSITION 3.6. Let $p$ be an odd Prime satisfying one of the following

conditions:
(i) $p=2q+1$ where $q\equiv-1$ mod 4, $q$ is square-free, and any of $4p-q$ and

$q+1$ is not square.
(ii) $p=8q+1$ where $q\not\equiv-1$ mod 4, $q$ is square-free, and any of $p-q$ and
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$P-4q$ is not square.
Then $\langle p\rangle$ does not have the prOperty(R).

PROOF. This can be done by taking $Q(\sqrt{-q})$ and $Q(\sqrt{-2q})$ respectively.
For the purpose the imaginary quadratic subfields are the most useful,

because their class numbers are fairly big. However, for example, we can
show that $\langle 317\rangle$ does not have the property (R), by using the real quadratic

field $Q(\sqrt{79})$ , and that $\langle 241\rangle$ does not have the property (R) by using the
biquadratic field $Q(\sqrt{2}, \sqrt{-15})$ .

In appendix we will give the table of odd primes $p<2000$ such that $\langle p\rangle$

does not have the property (R), which can be determined by using quadratic
subfields or biquadratic subfields.

For $l=2$ , we have a much better result.
PROPOSITION 3.7. Let $p>7$ be an odd prime which does not satisfy any of

the following conditions:
(i) $P=2\cdot 3^{s}+1,$ $s\geqq 2$ where $s\not\equiv-1$ mod 4.

(ii) $P=2\cdot 11^{2S+1}+1,$ $s\geqq 0$ .
(iii) $p=2\cdot q^{2S+1}+1,$ $s\geqq 1$ where $q$ is an odd prime such that $q\equiv-1$ mod 12,

$q\geqq 23$ .
Then $\langle p^{2}\rangle$ does not have the property(R).

PROOF. We can prove this by taking $Q(\sqrt{-pm})$ for some square-free
positive divisor $m$ of $P-1$ .

For example, for $7<p<10^{5}$ , there exist only seven primes 19, 23, 163,
487, 1459, 2663, 39367, satisfying one of the conditions in (3.7). Further (3.7)
implies the existence of infinitely many primes, $p$ , such that $\langle p^{2}\rangle$ does not
have the Property (R), because there exist inPnitely many primes congruent
to 1 modulo 4. We conjecture that $\langle p^{2}\rangle$ does not have the property (R)
.except $p=3,5,7$ .

$Fin\alpha 1lyweconsiderthecaseofp=2$ . $LetusputR_{1}=Q,$ $R_{m}=Q(\cos(\pi/2^{m}))$

$=Q(\zeta_{2}m+1+\zeta_{2^{m+1}}^{-1}),$ $S_{m}=Q$ ( $i$ sin $(\pi/2^{m})$), $Q_{m}=Q(\zeta_{2^{m}})$ for any $m\geqq 2$ and further
$R_{\infty}=\bigcup_{m\geqq 1}R_{m},$ $Q_{\infty}=CJS_{m}=UQ_{m}m\geqq 2m\geqq 2$ Then we see

These are all the subfields of $Q_{\infty}$ .
Let $k$ be a field of characteristic $0$ . By (2.6), for any $1\geqq 2,$ $I_{k}(2^{l})$ is $\Pi_{k}(2^{l})-$

projective if and only if $k$ contains $i$ or $i$ sin $(\pi/2^{m})$ for some $m\geqq 2$ . If $k$ con-
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tains $i$ or $i$ sin $(\pi/2^{m})$ for some $m\geqq 2$ , then $\Pi_{k}(2^{l})$ is cyclic. Therefore, using-
the same method as in (3.2) we can prove

PROPOSITION 3.8. If $k$ contains $i$ or $i$ sin $(\pi/2^{m})$ for some $m\geqq 2,$ $i$ . $e.$ , if
$k\cap Q_{\infty}=Q_{\infty},$ $Q_{m}$ or $S_{m}$ for some $m\geqq 2$ , then $\langle k, 2^{l}\rangle$ has the Property (R) for
any $l\geqq 1$ .

PROOF. We may assume that $k=Q_{2}$ or that $k=S_{m},$ $m\geqq 2$ . It is evident
that $\langle Q_{2},2^{l}\rangle$ has the property (R) for $l\leqq 2$ . If $1\geqq 3,$ $\Pi_{Q_{2}}(2^{l})$ is of order $2^{l-2^{-}}$

and $I_{Q_{2}}(2^{l})=(T-5,2^{l})$ . Then we easily see that, for any $1\leqq 1^{\prime}\leqq 1-2$ ,

$I_{Q_{2}}(2^{l})_{\Phi_{2^{l^{\prime}}}}\cong(\zeta_{2^{l^{\prime}}}-5,2)=(\zeta_{2^{l^{\prime}}}-1)$ .
According to (1.11) and (2.5) we can conclude that $\langle Q_{2},2^{l}\rangle$ has the property
(R). It is also clear that $\langle S_{m}, 2^{l}\rangle$ has the property (R) for $l\leqq m+1$ because
$\Pi_{s_{m}}(2^{l})$ is of order 2. If $l\geqq m+2,$ $\Pi_{s_{m}}(2^{l})$ is of order $2^{l-m}$ and $I_{s_{m}}(2^{l})=$

$(T+5^{2^{m- 2}},2^{l})$ . For any $1\leqq 1^{\prime}\leqq 1-m$ ,

$I_{Q_{2}}(2^{l})_{\Phi_{2}l^{\prime}}\cong(\zeta_{2^{l^{\prime}}}+5^{2}m-22)=(\zeta_{2^{l^{\prime}}}-1)$ .
Again by (1.11) and (2.5) we see that $\langle S_{m}, 2^{l}\rangle$ has the property (R). Thus $th\triangleright$

proof is completed.
We here remark that (3.2) and (3.8) include the Matsuda’s result in [9].

In the case where $I_{k}(2^{l})$ is not $\Pi_{k}(2^{l})$-projective, we need a different
method.

PROPOSITION 3.9. If $k\cap Q_{\infty}=R_{m}$ for some $m\geqq 1$ , then, for any $l\leqq m+1$ ,
$\langle k, 2^{l}\rangle$ has the ProPerty (R), but, for any $l\geqq m+2,$ $\langle k, 2^{l}\rangle$ does not have the Pro-
perty (QR). If $k\cap Q_{\infty}=R_{\infty}$ , then, for any $1\geqq 1,$ $\langle k, 2^{l}\rangle$ has the Property (R).

PROOF. In any case it is clear that $\langle k, 2\rangle$ has the property (R). Hence
we have only to prove this for $1\geqq 2$ . Now suppose that $k\cap Q_{\infty}=R_{m}$ for
some $m\geqq 1$ . Then, for any $2\leqq l\leqq m+1,$ $[k(\zeta_{2^{l}}):k]=2$ , hence $\Pi_{k}(2^{l})$ is a
cyclic group of order 2. Thus it follows from (2.5) and (1.13) that $\langle k, 2^{l}\rangle$ has
the property (R). Let $l\geqq m+2$ . Then $\Pi_{k}(2^{l})$ can be identified with $\Pi_{R_{m}}(2^{l})$

and, under this identification, $I_{k}(2^{l})=I_{R_{m}}(2^{l})$ . Therefore we may assume
$k=R_{m}$ . If $\langle R_{l-2},2^{l}\rangle$ does not have the property (QR), then $\langle R_{m}, 2^{l}\rangle$ does not
have the property (QR) $((2.1))$ . Hence it suffices to show that $\langle R_{l-2},2^{l}\rangle$ does
not have the property (QR). The group $\Pi=\Pi_{R_{l- 2}}(2^{l})$ is the direct product
of two cyclic groups of order 2, and the Masuda’s ideal has the following
form:

$I=I_{R_{l-2}}(2^{l})=(T_{1}-2^{l-1}-1, T_{2}+1,2^{l})$ .
Let $\tilde{I}=(T_{1}+1, T_{2}+1,2^{l-2}+1)$ and $I^{\prime}=(T_{1}-2^{l-1}-1, T_{2}+1)$ . Then $ I^{\prime}=I\cap I=\sim I\cdot I\sim$

and $\infty l$ is $\Pi$ -projective. As is easily seen, there exists an exact sequence:

$0\rightarrow Z\Pi/(T_{2}+1)\rightarrow\sim I\rightarrow Z\Pi/[T_{2}]\rightarrow 0$ ,
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hence $\acute{\check{I}}$ is a quasi-permutation $\Pi$ -module by (1.7). On the other hand, $I^{\prime}=$

\langle $T_{1}-1-2^{l-2}(T_{2}-1),$ $T_{2}+1$ ) and $I^{\prime}\cap(T_{1}-1, T_{2}-1)=(T_{1}-1+2^{l-2}(T_{2}-1))$ , and hence
we get the exact sequence:

$0\rightarrow(T_{1}-1+2^{l-2}(T_{2}-1))\rightarrow I^{\prime}\rightarrow Z\rightarrow 0$ .

However $(T_{1}-1+2^{l-2}(T_{2}-1))=Z\Pi/(T_{1}T_{2}+T_{1}+T_{2}+1)=(T_{1}-1, T_{2}-1)^{*}$ and, by
virtue of (1.9), $(T_{1}-1, T_{2}-1)^{*}$ is not a quasi-permutation $\Pi$ -module. Again
by (1.7) $I^{\prime}$ is also not a quasi-permutation $\Pi$ -module. Since $ I^{\prime}=l^{-1}\cdot I=\sim$

$ I^{-1}\bigotimes_{Zff}I\sim$, from (1.8) it follows that $I$ is not a quasi-permutation $\Pi$ -module.

Thus $\langle_{\backslash }^{\prime}R_{2^{l-2}},2^{l}\rangle$ does not have the property (QR) by (1.6) and (2.5).

If $k\cap Q_{\infty}=R_{\infty}$ , again using (2.5) and (1.13) we can conclude that $\langle k, 2^{l}\rangle$

has the property(R) for $1\geqq 2$ .
COROLLARY 3.10. For $1\leqq 2\langle 2^{l}\rangle$ has the Property (R), but, for any $l\geqq 3$ ,

$\langle 2^{l}\rangle$ does not have the Property (QR).

Here we give an example which shows that the converse to (1.5) is not
true.

Let $\Pi$ ’ be a cyclic group of order 8 and $\sigma^{\prime}$ be a generator of $\Pi^{\gamma}$ . Let
$\Pi_{=}\Pi’/[\sigma^{\prime 4}]$ and let $V^{\prime},$ $V$ be the regular representation modules of $\Pi/\Pi$

over $Q,$ respectively. Let us put $K=Q(V)$ and $F^{\prime}=Q(V\oplus V^{\prime})=K(V^{\prime})$ . Then,
by (3.9), $K^{\Pi}‘=K^{\Pi}$ is rational over $Q$ and, by (2.2) and (the proof of) (3.9), $F^{\prime}\Pi^{\prime}$

is not quasi-rational over $Q$ . Therefore $F^{\prime\Pi^{\prime}}$ is not quasi-rational over $K^{\Pi^{\prime}}$ .
Let $\{Y_{1}, Y_{2}, \cdots , Y_{8}\}$ be the basis of $V^{\prime}$ such that

$\sigma^{\prime}(Y_{1})=Y_{2}$ , $\sigma^{\prime}(Y_{2})=Y_{3},$ $\cdots$ , $\sigma^{\prime}(Y_{8})=Y_{1}$ .

Further put $V_{0}^{\prime}=Q\cdot(Y_{1}+Y_{5})+Q\cdot(Y_{2}+Y_{6})+Q\cdot(Y_{3}+Y_{7})+Q\cdot(Y_{4}+Y_{8})$ and $V_{1}^{\prime}=$

( $Q\cdot(Y_{1}-Y_{5})+Q\cdot(Y_{2}-Y_{6})+Q\cdot(Y_{3}-Y_{7})+Q\cdot(Y_{4}-Y_{8})$ . Then $V_{0}^{\prime}\cong V$ and $V^{\prime}=$

$V_{0}^{\prime}\oplus V_{1}^{\prime}$ , and $F^{\prime\Pi^{\prime}}$ is rational over $K(V_{1}^{\prime})^{\Pi^{\prime}}$ by (2.2). We put $X_{1}=\frac{Y_{2}-Y_{6}}{Y_{1}-Y_{5}}$ ,

$X_{2}=\frac{Y_{3}-Y_{7}}{Y_{1}-Y_{5}}$ , $X_{3}=\frac{Y_{4}-Y_{8}}{Y_{1}-Y_{5}}$ and $F=K(X_{1}, X_{2}, X_{3})$ . Since $\Pi$ ’ acts naturally

on $F$ and $\sigma^{\prime 4}(X_{i})=X_{i}$ for each $i,$ $\Pi$ acts on $F$. By virtue of [10], Lemma,
we can see that $K(V^{\prime})^{\Pi^{\prime}}$ is rational over $F^{\Pi}$ . Hence $F^{\Pi}$ is not quasi-rational
’over $K^{\Pi}$ . On the other hand, $A=K[X_{1}, X_{1}^{-1}, X_{2}, X_{2}^{-1}, X_{3}, X_{3}^{-1}]$ satisfies the
conditions in (1.5), and $U(A)/U(K)$ is isomorphic to the augmentation ideal
of $Z\Pi,$ $i$ . $e.$ , it is a quasi-permutation $\Pi$-module. Thus $\{K/K^{\Pi}, \Pi, F, A\}$ is as
Tequired.

In this example the group $\Pi$ is a cyclic group of order 4. It is noted
that, for any finite non-cyclic grOup $\Pi$ , such example can be constructed
iusing (1.9).
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\S 4. General case.

By summarizing (2.3), (3.3), (3.4) and (3.10), we get
THEOREM 4.1. Let $G$ be a finite abelian group of exponent $e=2^{l_{2}}3^{l_{3}}5^{l_{5}}7^{\iota_{\tau}}$

$11^{t_{11}}13^{\iota_{13}}17^{l_{17}}19^{\iota_{1923^{l_{23}}29^{l_{29}}31^{l_{31}}37^{l_{37}}41^{l_{41}}43^{l_{43}}61^{l_{61}}67^{l_{67}}71^{l_{71}}}}$ . SuPpose that $l_{3}$ is arbi-
trary, that $l_{2},$ $l_{5},$ $l_{7}$ are $0,1$ or 2, respectively, and that $l_{11},$ $l_{13},$ $l_{17},$ $\cdots$ , $l_{71}$ are (}

or 1, respectively. Then $\langle Q, G\rangle$ has the prOperty(R).
Also, from (2.3), (3.2) and (3.8), we get
THEOREM 4.2. Let $G$ be a finite abelian group of expOnent $e$ and $k$ be a

field of characteristic $0$ .
(i) If $e$ is odd and if $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ for any Prime $p$ with $p|e$ , then

$\langle k, G\rangle$ has the ProPerty (R).
(ii) If $e$ is even and if $k$ contains $\zeta_{p}+\zeta_{p}^{-1}$ for any odd $p\uparrow\dot{\tau}mep$ with $p|e$

and $\zeta_{2m}+\zeta_{2^{m}}^{-1}$ (or $i=\sqrt{-1}$) where $m$ is the integer such that $2^{m}|e$ but $2^{m+1}+e_{r}$

then $\langle k, G\rangle$ has the prOperty(R).

We conjecture that, under the assumptions in (4.2), $\langle k, G, V\rangle$ has the
property (R) for any $kG$-module $V$ . In fact it was shown in \S 3 that the
conjecture is true if $G$ is a cyclic $P$-group. However we did not succeed in
proving this in the general case. Here, as an application of (2.4), we give
only

THEOREM 4.3. Let $R_{0}$ be the maximal real subfield of the maximal abelian
extension of $Q$ and let $k$ be a field containing $R_{0}$ . Then, for any finite abelian
group $G$ and any $kG$ -module $V,$ $\langle k, G, V\rangle$ has the pr0perty (R).

PROOF. Let $e$ be the exponent of $G$ . Then $[k(\zeta_{e}):k]=1$ or 2 by the
assumption. Hence this follows directly from (1.13) and (2.4).

As another application of (2.4) we will show
THEOREM 4.4. Let $G$ be a finite abelian group of odd order and $k$ be a

field of characteristic $0$ . Then there exists an integer $m>0$ such that $\langle k, G^{(m)}\rangle$

has the pr0perty (R).

PROOF. By (2.1) and (2.3) it suffices to prove this in case $G$ is a cyclic
$p$-group and $k=Q$ . Hence we assume that $G$ is a cyclic $p$-group of order $p^{t}$

and that $k=Q$ . Since $P$ is odd, the Masuda’s ideal $I(p^{l})$ is $\Pi(p^{l})$ -projective.
It is well known that the Picard group Pic $(Z\Pi(p^{l}))$ is finite. Therefore
there exists an integer $m>0$ such that $I(p^{l})^{(m)}\cong Z\Pi(p^{l})^{(m)}$ . Now the faithful
irreducible QG-module $V$ can be considered as a $QG^{(m)}$ -module through the
projection of $G^{(m)}$ on the i-th component, $1\leqq i\leqq m$ and we denote it by $V_{i}$ .
If we put $V_{0}=\sum_{l=1}^{m}\oplus V_{i}$ , then $V_{0}$ is a faithful $QG^{(m)}$ -module which is a $QG^{(m)}-$

direct summand of the regular representation module $W$ of $G^{(m)}$ . We easily

see $\Lambda f_{V_{0}}\cong\sum_{i=1}^{m}\oplus M_{V_{i}}\cong I(p^{l})^{(m)}\cong Z\Pi(p^{l})^{(m)}$ , hence $Q(V_{0})^{G(m)}=Q(\zeta_{p^{l}})(Z\Pi(p^{l})^{(m)})^{\Pi_{(p^{l}\rangle}}$
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by (2.4). Therefore $Q(V_{0})^{G(m)}$ is rational over $Q$ . Consequently $Q(W)^{G(m)}$ must
be rational over $Q$ by (2.2), which completes our proof.

The assertion in (4.4) is not always true for a finite abelian group of
even order. For example, if $G$ is a cyclic group of order 8, $\langle Q, G^{(m)}\rangle$ does not
have the property (QR) for any $m>0$ . (See the proofs of (1.9) and (3.9).)

It was shown in (4.4) that the converse to (2.3) is not always true. How-
ever, we have the following partial converse to (2.3).

For any prime $p$ we put $Q_{p}=\cup Q(\zeta_{p^{l}})$ . Further, for any field $k$ of
$l\geqq 1$

characteristic $0$ , we put $k^{(p)}=k\cap Q_{p}$ .
PROPOSITION 4.5. Let $p_{1},$ $p_{2},$ $\cdots$ , $p_{s}$ be primes different from each other. For

each $1\leqq i\leqq s$ let $G_{i}$ be a finite abelian $p_{i}- grouP$ . Let $k$ be a field of characteristic
$0$ such that $k=k^{(p_{1})}\cdot k^{(p_{2})}\cdot\ldots k^{(p_{S})}$ . If $\langle k, G_{1}\times G_{2}\times\cdots\times G_{s}\rangle$ has the ProPerty
(QR), then each $\langle k, G_{i}\rangle$ has the Property (QR).

$PR()OF$ . For each $i$ put exp $G_{i}=p_{i}^{\iota_{i}}$ and $k_{i}=k(\zeta_{nd_{j^{j}} ,j\neq t})$ . Further put $W_{i}=$

$kG_{i},$ $W_{i}^{(j)}=k_{j}G_{i}$ and $G=G_{1}\times G_{2}\times\cdots\times G_{s}$ . Each $W_{i}$ can be considered as a
$kG$-module and then $W_{1}\oplus W_{2}\oplus\cdots\oplus W_{s}$ is a faithful $kG$-module. Now suppose
that $\langle k, G\rangle$ has the property (QR). By (2.2) $\langle k, G, W_{1}\oplus W_{2}\oplus\cdots\oplus W_{s}\rangle$ has
the property (QR) and hence $\langle k_{i}, G, W_{1}^{(i)}\oplus W_{2}^{(i)}\oplus\cdots\oplus W_{s}^{(t)}\rangle$ has also the pro-
perty (QR). We see

$k_{i}(W_{1}^{(i)}\oplus\cdots\oplus W_{i}^{(i)}\oplus\cdots\oplus W_{s}^{(i)})^{G}$

$=k_{i}(W_{i}^{(t)})^{G_{i}}(W_{1}^{(i)}\oplus\cdots\oplus W_{i-1}^{(i)}\oplus W_{t+1}^{(i)}\oplus\cdots\oplus W_{s}^{(l)})^{J\neq\iota^{G_{f}}}\Pi$

Since $\exp\prod_{j\neq i}G_{j}=\prod_{J\neq i}p_{j}^{\iota_{j}}$ and $\zeta_{\Pi,j\neq i^{p_{j^{j}}^{l}}}\in k_{i}$ , this shows that $ k_{i}(W_{1}^{(i)}\oplus\cdots\oplus W_{t}^{(t)}\oplus$

$\oplus W_{s}^{(i)})^{G}$ is rational over $k_{i}(W_{i}^{(t)})^{G_{i}}$ . Therefore $\langle k_{i}, G_{i}\rangle$ has the property
(QR). Since $[k_{i}(\zeta_{p_{i}^{l_{i}}}):k_{i}]=[k(\zeta_{p_{i^{i}}^{l}}):k]$ by the assumption on $k$ , the Masuda’s
module $M_{W_{i}^{(i)}}$ of $W_{i}^{(i)}$ can be identified with the one $M_{W_{i}}$ of $W_{i}$ . Thus it
follows from (2.4) that each $\langle k, G_{i}\rangle$ has the property (QR).

The assertion in (4.5) is not always true without the assumption that
$ k=k^{(p_{1})}\cdot k^{(p_{2})}\cdot$ $k^{(p_{s})}$ . In fact, let $p_{1}=47andp_{2}=139$ and let $k_{0}$ be a subfield
of $Q(\zeta_{p_{1}p_{2}})$ such that $Q(\zeta_{p_{1}})\not\leqq k_{0},$ $Q(\zeta_{p_{2}})\underline{\subseteq\subseteq}k_{0}$ and $[Q(\zeta_{p_{1}p_{2}}):k_{0}]=23$ . Then
$\langle k_{0}, p_{1}p_{2}\rangle$ has the property (R) but any of $\langle k_{0}, p_{1}\rangle$ and $\langle k_{0}, p_{2}\rangle$ does not have
the property (QR).

THEOREM 4.6. For any finite abelian group $G$ the following conditions are
equivalent:

(1) $\langle Q, G\rangle$ has the ProPerty (R).
(2) $\langle Q, G\rangle$ has the Property (QR).
(3) There is a faithful QG-module $V$ such that the Masuda’s module $M_{V}$

is a quasi-permutation module.
PROOF. The implication (1) $\Rightarrow(2)$ is obvious and the implications (2) $\epsilon\Rightarrow(3)$
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follow from (2.2) and (2.4). Hence we have only to prove the implication
(2) $\Rightarrow(1)$ . By (4.5) and (2.3) it suffices to prove this in case $G$ is a p-group.

Let $G$ be a finite abelian $p$-group of exponent $p^{l}(1>0)$ . We decompose
$C$ as follows:

$G\cong H_{\iota_{1}}^{(n1)}\times H_{l_{2^{2)}}}^{(n}\times\cdots\times H_{\iota_{t}}^{(n_{t})}$

where $n_{i}>0,1\leqq l_{1}<l_{2}<\ldots<l_{t}=l$ and each $H_{\iota_{i}}$ is a cyclic group of order
$p^{\iota_{i}}$ . Let $V_{\iota_{l}}$ be a faithful irreducible $QH_{\iota_{i}}$ -module for each $i$ . Let us put
$\Pi=Ga1(Q(\zeta_{p^{l}})/Q)$ . By (2.4) we have

$Q(V_{\iota_{1}}^{(n1)}\oplus V_{\iota_{2}}^{(n_{2)}}\oplus\cdots\oplus V_{\iota_{t}}^{(n_{t)}})^{G}\cong Q(\zeta_{p^{l}})(I(p^{l_{1}})^{(n_{1)}}\oplus I(p^{\iota_{2}})^{(n_{2)}}\oplus\cdots\oplus I(p^{\iota_{t}})^{(n_{t)}})$ .
Here it is remarked that each $I(P^{\iota_{i}})$ can be regarded as a $\Pi$ -module because
$\Pi(p^{l_{i}})$ is the factor group of $\Pi$ .

Now $suPpose$ that $\langle Q, G\rangle$ has the property (QR). Then $I(p^{\iota_{1}})^{(n_{1)}}\oplus I(p^{l_{2}})^{(n_{2})}$

$\oplus\cdots\oplus I(p^{\iota_{t}})^{(n_{l})}$ is a quasi-permutation $\Pi$ -module by (2.2) and (2.4). If $P$ is
odd, $\Pi$ is cyclic and each $I(P^{l_{i}})$ is $\Pi(p^{l_{i}})$-projective. We see

$[I(p^{\iota_{1}})^{(n_{1)}}\oplus I(p^{l_{2}})^{(n_{2)}}\oplus\cdots\oplus I(p^{\iota_{t}})^{(n_{t)}}]_{\varpi_{p}\iota-1(p-1)}\cong J(p^{\iota_{t}})^{(n_{t)}}$

By (1.11) $J(p^{\iota_{t}})^{(n_{t)}}$ is $Z[\zeta_{p^{\iota_{t}-1_{(p- 1)}}}]$ -free. Hence it follows from the proof of
(3.1) that $I(p^{\iota_{t}})^{(n_{t})}$ is a quasi-permutation $\Pi$ -module. Then $I(p^{\iota_{1}})^{(n_{1})}\oplus I(p^{\iota_{2}})^{(n_{2)}}$

$\oplus\cdots\oplus I(P^{l_{t-1}})^{(n_{t-1}})$ is a quasi-permutation $\Pi$-module. It can be shown induc-
tively that, for each $1\leqq i\leqq t,$ $I(p^{l_{i}})^{(n_{i)}}$ is a quasi-permutation $\Pi(p^{\iota_{i}})$-module.
Using (1.11) we can conclude that $\langle Q, V_{\iota_{1}}^{(n1)}\oplus V_{\iota_{2}}^{(n2)}\oplus\cdots\oplus V_{\iota_{t}}^{(nt)}\rangle$ has the pro-
perty (R). On the other hand, if $p=2$ , we have $l_{t}\leqq 2$ (See the proofs of
(1.9) and (3.9)), and therefore, by (1.13), we see also that \langle $Q,$ $ V_{\iota_{1}}^{(n1)}\oplus V_{\iota_{2}}^{(n2)}\oplus\cdots$

$\oplus V_{\iota_{t^{t}}}^{(n)}\rangle$ has the property (R). It is clear that $V_{\iota_{1}}^{(n_{1})}\oplus V_{\iota_{2}}^{(n2)}\oplus\cdots\oplus V_{\iota_{t}}^{(n_{t})}$ can
be regarded as a QG-submodule of $QG$ . Consequently $\langle Q, G\rangle$ has the property
(R) which completes the proof of the theorem.

Appendix
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Added in proof (September 2, 1972). (1) The referee has pointed out to
us that the similar result to (2.3) was given by W. Kuyk: Over het omkeer-
probleem van de Galoistheorie, Thesis, Amsterdam, 1960. However this paper
is not available.

(2) In the case where $k=Q$ and $l=1$ , some of the results in \S 3 have
been shown independently by V. E. Voskresenskii: On the question of the
structure of the subfield of invariants of a cyclic group of automorphisms of
the field $Q(x_{1}, x_{2}, \cdots , x_{n})$ , Izv. Akad. Nauk USSR, 34 (1970), 366-375; Rationality
of certain algebraic tori, Izv. Akad. Nauk USSR, 35 (1971), 1037-1046.

(3) Recently J. Masley has determined all of the positive integers $n$ such



26 S. ENDO and T. MIYATA

that $c(Q(\zeta_{n}))=1$ . From this it follows directly that $c(Q(\zeta_{p^{l}-1(p1)}-))=1$ if and
only if $p$ is one of those in (3.4) $(p\neq 2,3)$ .
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