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\S 1. Introduction and statement of results.

In the paper we shall perform surgery on a compact locally flat m-sub-
manifold in a compact l-connected $(m+2)$ -manifold so that a new submanifold
is relatively highly connected to the ambient manifold. The technique may
be regarded as a generalization of that originated by M. Kervaire ([5],

Chapter III) and J. Levine [8] for studying higher dimensional knot cobordism
in codimension two, and used by M. Kato [4] for embedding spheres in codi-
mension two.

We shall work mainly in the $PL$ category, although required results in
the differentiable category may be obtained via the smoothing theory, which
is now familiar, under appropriate modification, if meaningful. Thus all
manifolds considered will be $PL$ , compact and oriented, and homeomorphisms
of manifolds will be $PL$ and orientation preserving.

Our purpose of the paper is to classify certain locally flat closed m-
submanifolds, called m-knots, in a compact l-connected $(m+2)$ -manifold up to
concordance in terms of their homology classes.

Let $W$ be a compact l-connected $(m+2)$ -manifold.
DEFINITION. By an m-knot in $W$ we shall mean a locally flat closed m-

submanifold $M$ of $W$ satisfying one of the following conditions (1) and (2):
(1) If $m=2n+1$ , then $\pi_{k}(W, M)=0$ for $k\leqq n+1$ and the inclusion map

induces an isomorphism

$H_{n+1}(M)\cong H_{n+1}(W)$ .
(2) If $m=2n$ , then $\pi_{k}(W, M)=0$ for $k\leqq n+1$ .
By an almost m-knot in $W$ we shall mean a closed m-submanifold $M$ in

the interior of $W$ which is locally flat except for at a point and satisfies (1)
$\ovalbox{\tt\small REJECT}\circ r(2)$ .

DEFINITION. A homology class $\mu\in H_{m}(W)$ is a Poincar\’e class, if the cap
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(1) If $m=2n+1$ , then

$\cap\mu:H^{n}(W)\cong H_{n-\cdot 1}’(W)$ and $\cap\mu:H^{n\cdot 1}4(W)\cong H_{n}(W)$ .
(2) If $m=2n$ , then

$\cap\mu:H^{n}(W)\cong H_{n}(W)$ and $\cap\mu:H^{n- 1}(W)\rightarrow H_{n+1}(W)$

is surjective.
It is seen that by computation (Lemma 2.1) an m-knot in $W$ represents

a Poincar\’e class. We ask ourselves if the converse is true: namely, can one $\cdot$

represent a Poincar\’e class $\mu\in H_{m}(W)$ by an m-knot or an almost m-knot in
$W$ ?

THEOREM A (Existence theorem). Let $W$ be a compact l-connected $(m+2)-$

manifold.
(1) If $m=2n+1$ , then any Poincar\’e class of $H_{m}(W)$ can be represented by

an m-knot in $W$, provided that $n\geqq 1$ .
(2) If $m=2n\geqq 6,$ $i$ . $e.,$ $m\neq 2,4$ , then any Poincar\’e class of $H_{m}(W)$ can be

represented by an almost m-knot in $W$.
This is a generalization of M. Kato [4].

DEFINITION. Locally flat closed m-submanifolds $M$ and $L$ in $W$ are locally

flat concordant, if there is a locally flat compact submanifold $V$ in $W\times I$

which is homeomorphic with $M\times I$ and $\partial V=M\times 0\cup(-L)\times 1$ . We shall say
that $M$ and $L$ are locally flat concordant modulo a spherical m-knot, if there
is a locally flat $(m+2, m)$ -sphere pair $(S^{m+2}, \Sigma)$ , called a spherical m-knot, such
that if one takes a relative connected sum of $(W, M)$ and $(S^{m\cdot\vdash 2}, \Sigma)$ along
unknotted $(m+2, m)$ -ball pairs in the interiors of them, then the result $ M\#\Sigma$

is locally flat concordant to $L$ in $W$ .
THEOREM $B$ (Classification theorem). Let $W$ be a compact l-connected

$(m+2)$ -manifold.
(1) If $m=2n+1\geqq 5$ , then m-knots in $W$ are locally flat concordant modulo

a spherical knot if and only if they represent the same homology class.
(2) If $m=2n\geqq 6$ , then m-knots in $W$ are locally flat concordant if and

only if they represent the same homology class.
This is an extension of Kervaire [5].

Part of our arguments works equally well in the non-simply connected
case. Indeed, we perform surgery below the middle dimension without assum-
ing l-connectivity of manifolds involved.

Let $W$ be a compact $(m+2)$ -manifold which is an (oriented non-simply
connected) Poincar\’e complex of dimension $m$ with fundamental class $\mu\in H_{m}(W)$ ,
(for non-simply connected Poincar\’e complex, see Wall [17]).
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In order to find a locally flat spine of $(W, \mu)$ , the obstruction to perform-
ing surgery in the middle dimension will be completely described by the

$5$ . Namely,

we have the following:
THEOREM C. Let $W$ be a compact $(m+2)$ -manifold which is an (oriented

non-simply connected) Poincar\’e complex of dimension $m$ with fundamental class
$\mu\in H_{m}(W)$ . Suppose that $m=2n+1\geqq 5$ . Then there is an obstruction $\theta(W, \mu)$

in the oriented surgery obstruction group $L_{m}(\pi_{1}W)$ such that $\theta(W, \mu)=0$ if and
only if $(W, \mu)$ has a locally flat spine.

Here is a striking example, which implies that Theorem A does not hold
in case $m=4$ .

EXAMPLE D. There is a compact 6-manifold $N$ which is a regular neigh-
bourhood of a l-connected Poincar\’e complex of dimension 4 in $S^{6}$ , but it has
neither spine nor locally flat topological spine.

In the forthcoming paper, part II, we will develop an obstruction theory

to pursue a locally flat surgery in even dimensional case.
This will be done by defining an ”Hermitian form” twisted by a generator

of $\pi_{1}(W-L)$ . Cf. [21], [22].

At this point, the authors would like to express their thanks to Professors
William Browder and Dennis Sullivan for encouraging this work at the very
beginning.

Added in proof: In the proof of the statement in Example $D$ that $N$ has
no locally flat topological spine, we have used a result of Kirby [7] which
asserts that any locally flat topological submanifold with codimension 2 has
a topological normal bundle. However, later, the authors were informed that
there are some gaps in the Kirby’s proof. Of course, the other statements
in Example $D$ remain valid.

\S 2. Poincar\’e classes.

In the section we shall study homological property of a submanifold
satisfying certain homological relative connectivity condition.

Let $W$ be a compact $(m+c)$ -manifold and $M$ a closed m-submanifold of $W$

representing a homology class $\mu\in H_{m}(W)$ . Thus $M$ is oriented by the funda-
mental class $[M]$ so that $ i_{*}[M]=\mu$ , where $i_{*}:$ $H_{*}(M)\rightarrow H_{*}(W)$ is a homomor-
phism induced by the inclusion map $i:M\rightarrow W$ .

DEFINITION. A submanifold $M$ of $W$ is a Poincar\’e submanifold if (1) $i_{*}:$

$H_{k}(M)\cong H_{k}(W)$ for all $k\leqq n+1$ or (2) $H_{k}(W, M)=0$ for all $k\leqq n+1$ , according

as $m=2n+1$ or $m=2n$ .
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The cap product with $\mu$ gives rise to a homomorphism $\cap\mu:H^{m- k}(W)$

$\rightarrow H_{k}(W)$ and we have a commutative diagram:

$H^{m- k- 1}(M)\leftarrow^{i^{*}}H^{m- k- 1}(W)$ $H^{m- k}(M)\leftarrow^{i^{*}}H^{m- k}(W)$

\langle 2.0) $l||\downarrow\cap[M]$ $\downarrow\cap\mu$ $l||\downarrow\cap[M]$ $\downarrow\cap\mu$

$i_{*}$ $i_{*}$

$\rightarrow H_{k+1}(M)\rightarrow H_{k+1}(W)\rightarrow H_{k+1}(W, M)\rightarrow H_{k}(M)-H_{k}(W)\rightarrow\ldots$

where $\cap[M]$ is the so-called Poincar\’e duality isomorphism.
DEFINITION. A homology class $\mu\in H_{m}(W)$ is a Poincar\’e class, if
(1) $\cap\mu:H^{n}(W)\cong H_{n+1}(W)$ and $\cap\mu:H^{n+1}(W)\cong H_{n}(W)$ , or
(2) $\cap\mu:H^{n}(W)\cong H_{n}(W)$ and $\cap\mu:H^{n-1}(W)\rightarrow H_{n+1}(W)$ is surjective, ac-

cording as $m=2n+1$ or $m=2n$ .
LEMMA 2.1. A Poincar\’e submanifold represents a Poincar\’e class.
PROOF. Let $M$ be a Poincar\’e m-submanifold of $W$ representing a homo-

logy class $\mu\in H_{m}(W)$ . We observe the diagram (2.0). In case (1); $m=2n+1$ ,

it follows immediately that $i^{*}:$ $H^{k}(W)\cong H^{k}(M)$ for $k\leqq n$ and $\cap\mu:H^{n}(W)$

$\cong H_{n+1}(W)$ . In order to show that $\mu$ is a Poincar\’e class, it suffices to see
that $\cap\mu:H^{n+1}(W)\cong H_{n}(W)$ . From the condition that $H_{n+1}(M)\cong H_{n+1}(W)$ we
have that by the universal coefficient theorem rank $H^{n+1}(M)=rankH_{n+1}(M)$

$=rankH_{n+1}(W)=rankH^{n+1}(W)$ . On the other hand, we have a commutative
diagram:

$i^{*}$

$\leftarrow H^{n+2}(W, M)-H^{n+1}(M)-H^{n+1}(W)-0$

$l||\downarrow\cap[M]$ $|\cap\mu$

$0\rightarrow H_{n}(M)$ $\cong$ $H_{n}(W)$ $\rightarrow 0$ .
By the universal coefficient theorem, $H^{n+2}(W, M)$ is torsion free, since
$H_{n+1}(W, M)=0$ . Therefore, the cokernel of $i^{*}:$ $H^{n+1}(W)\rightarrow H^{n+1}(M)$ must be
torsion free. Since we have seen that rank $H^{n+1}(M)=rankH^{n+1}(W)$ , it follows
that $i^{*}$ is surjective and hence bijective. This implies that $\cap\mu$ is bijective,
completing the proof of the case (1).

In case (2); $m=2n$ , the result follows immediately from the diagram (2.0)

together with the universal coefficient theorem, completing the proof.
By $K_{k}(M)$ and $K^{k}(M)$ we shall denote the kernel of $i_{*}:$ $H_{k}(M)\rightarrow H_{k}(W)$

and the cokernel of $i^{*}:$ $H^{k}(W)\rightarrow H^{k}(M)$ , respectively. Observing the diagram
(2.0) and applying general non-sense arguments due to Browder [2], we may
deduce the following:

OBSERVATION 2.2. Let $M$ be a closed m-submanifold of $W$ representing a
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(1) In case $m=2n+1$ , then
(i) there are direct sum decompositions

$H_{k}(\Lambda f)\cong K_{k}(M)\oplus H_{k}(W)$ ,

$H^{k}(M)\cong K^{k}(M)\oplus H^{k}(W)$ for $k=n,$ $n+1$ ,

(ii) $K_{n}(M)\cong H_{n+1}(W, M),$ $K^{n}(M)\cong H^{n.1}-\llcorner(W, M)$ , and
(iii) $\cap\mu:K^{n}(M)\cong K_{n+1}(M)$ .
(2) In case $m=2n$ , then

(i) there are direct sum decompositions

$H_{n}(M)\cong K_{n}(M)\oplus H_{n}(W)$ , $H^{n}(M)\cong K^{n}(M)\oplus H^{n}(W)$ ,

(ii) $K_{n}(M)\cong H_{n+1}(W, M)$ is torsion free, and
(iii) $\cap\mu:K^{n}(M)\cong K_{n}(M)$ so that the inters ection pairing $K_{n}(M)\otimes K_{n}(M)$

$\rightarrow Z$ is non-singular.
Next we summarize homology property of an L-equivalence between

Poincar\’e submanifolds. For this, let us recall the notion of L-equivalence
defined by R. Thom [14].

DEFINITION. Two proper submanifolds $M$ and $L$ of $W$ with $\partial M=\partial L$

(possibly $=\emptyset$) are L-equivalent relative to $(\partial W, \partial M)$ , if there is a compact
proper submanifold $V$ in $W\times 1$ such that $\partial V=M\times 0\cup(-L)\times 1\cup\partial M\times I$.

Assuming that $M$ and $L$ are Poincar\’e submanifolds in $W$, we examine
the homology class $\nu$ represented by an L-equivalence (V, $\partial V$ ) in $(W\times I$,
$W\times\partial I)$ . Since $M$ and $L$ represent homologous cycles in $W$, it follows from
Lemma 2.1 that they represent the same Poincar\’e class $\mu\in H_{m}(W)$ .

Thus (V, $\partial V$ ) is oriented by the fundamental class [V] so that $ i_{*}[V]=\nu$

and $\partial\nu=\mu\times 0+(-\mu)\times 1$ , where $i_{*}:$ $H_{m+1}(V, \partial V)\rightarrow H_{m+1}(W\times 1, W\times\partial I)$ and $\partial$ :
$H_{m+1}(W\times I, W\times\partial I)\rightarrow H_{m}(W\times\partial I)$ is the boundary homomorphism. Following
Wall [16], we observe a commutative diagram with exact sequences in the
rows:

$...\rightarrow H^{m- k}(W\times I)\rightarrow H^{m- k}(W\times\partial I)\rightarrow H^{m- k+1}(W\times I, W\times\partial I)\rightarrow\cdots$

$\downarrow i^{*}$ $\downarrow i^{*}$ $\downarrow i^{*}$

$...\rightarrow$ $H^{m- k}(V)$ – $H^{m- k}(\partial V)$ $\rightarrow$ $H^{m\rightarrow k+1}(V, \partial V)$ $\rightarrow\cdots$

$(*)$ $l||\downarrow\cap[V]$ $l||\downarrow\cap[\partial V]$ $l|||\cap[V]$

$\rightarrow H_{k+1}(V, \partial V)\rightarrow$ $H_{k}(\partial V)$ $\rightarrow$ $H_{k}(V)$

$\downarrow i_{*}$ $|i_{*}$ $\downarrow i_{*}$

$\rightarrow H_{k+1}(W\times 1, W\times\partial 1)\rightarrow H_{k}(W\times\partial I)\rightarrow$ $H_{k}(W\times I)$
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cony $\cap$ n $\cap\nu$ preservngecommuavyanarereuce
to splitting short exact sequences:

We shall employ the following notations for kernels and cokernels:

$K_{k}(V, \partial V)=kernel(H_{k}(V, \partial V)\rightarrow H_{k}(W\times I, W\times\partial I))$ ,

$K_{k}(V)=kerne1(H_{k}(V)\rightarrow H_{k}(W\times I))$ ,

$K_{k}(\partial V)=kerne1(H_{k}(\partial V)\rightarrow H_{k}(W\times\partial I))$ ,

$K^{k}(V, \partial V)=cokernel(H^{k}(W\times I, W\times\partial I)\rightarrow H^{k}(V, \partial V))$ ,

$K^{k}(V)=cokerne1(H^{k}(W\times I)\rightarrow H^{k}(V))$ , and

$K^{k}(\partial V)=cokerne1(H^{k}(W\times\partial I)\rightarrow H^{k}(\partial V))$ .
Then the following is deduced by general non-sense (Browder [2]).

OBSERVATION 2.3. Suppose that $M$ and $L$ are Poincar\’e m-submanifolds of
$W$.

(1) In case $m+1=2(n+1)$ , suppose that $H_{k}(W\times I, V)=0$ for all $k\leqq n+1$ .
Then $\partial\nu$ is a Poincar\’e class of $H_{m}(W\times\partial I)$ and hence all columns in the diagram
$(**)$ are isomorphisms for $k=n,$ $n+1$ so that all columns in the diagram ( $*\rangle$

have splitting maps for $k=n,$ $n+1$ to give a commutative diagram:

$0=K^{n}(\partial V)\rightarrow K^{n+1}(V, \partial V)\rightarrow^{\cong}$
$K^{n+1}(V)$ $\rightarrow K^{n+1}(\partial V)=0$

$\downarrow\cap\partial\nu$ $1||\downarrow\cap\nu$ $1||\downarrow\cap\nu$ $\downarrow\cap\partial\nu$

$ 0=K_{n+1}(\partial V)\rightarrow$ $K_{n+1}(V)$
$\rightarrow^{\cong}K_{n+1}(V, \partial V)\rightarrow K_{n}(\partial V)$

$=0$ .
Thus $K_{n+1}(V)\cong K^{n+1}(V)\subset H^{n+2}(W\times I, V)$ is torsion free and the intersection
pairing
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is non-singular.
(2) $1n$ case $m+1=2n+1$ , suppose that $H_{k}(W\times I, V)=0$ for $k\leqq n$ . Then

$\partial\nu$ ‘is a Poincar\’e class and hence all columns in the diagram $(**)$ are isomor-
commutative

diagram with splitting exact sequences in the rows:
$o-K^{n\cdot 1}4(V, \partial V)-H^{n\cdot:1}-(V, \partial V)-H^{n+1}(W\times I, W\times\partial 1)-0$

$ 0\rightarrow$

$[||\downarrow\cap K_{n}(V)^{[V]}\rightarrow$ $H_{n}(V)t||\downarrow\cap[V\rightarrow^{]}$ $ H_{n}(W^{\bigcap_{\times}}I)\downarrow\nu$

$\rightarrow 0$

and that $K_{n}(V)\cong H_{n\neg\cdot 1}(W\times 1, V)$ .
Thus $K_{n}(V)$ is a direct summand of $H_{n}(V)$ and, if one takes a double $D(V)$

of $V$ in $W\times S^{1}=D(W\times I)$ , then the kernel of $H_{n}(D(V))\rightarrow H_{n}(W\times S^{1})$ is exactly
a direct sum $K_{n}(V)\oplus K_{n}(V)$ .

\S 3. Surgery below the middle dimension.

In the section we shall prove a number of lemmas on surgery below the
middle dimension of a locally flat submanifold of codimension $c\geqq 2$ .

Let $W$ be a compact $(m+c)$-manifold and $L$ a locally flat compact m-
submanifold of $W$ . We shall employ the following notations:

$N$ denotes a normal block bundle of $L$ in $W$ ,
$E$ denotes the closure of the complement $W-N$ of $L$ in $W$ , called the

exterior of $N$ in $W$ or an exterior of $L$ in $W$ ,
$\mathcal{F}N$ stands for the frontier of $N$ in $W$ so that $N\cap E=\mathcal{F}N$. As usual,

$\partial W$ and Int $W$ denote the boundary of $W$ and the interior $W-\partial W$

of $W$ .
DEFINITION. A locally flat manifold pair $(W, L)$ is exterior k-connected,

if $\pi_{i}(E, \mathcal{F}N)=0$ for $i\leqq k$ , namely, $(E, \mathcal{F}N)$ is k-connected.
It is clear from the uniqueness of normal block bundles that the defini-

tion does not depend on the choice of $(E, N)$ . In codimension $c=2$ case, we
would like to find an exterior $[m/2]$ -connected locally flat m-submanifold $M$

in $Ww1_{-}i-\vee h$ is locally flat L-equivalent to $L$ relative to $(\partial W, \partial L)$ . For this
we shall perform surgery on $L$ in $W$ . First, let us recall the exchanging
handle process due to Browder ([1], p. 338).

Putting $m=p+q+1$ , let $H=D^{p+1}\times D^{q+c}$ be a handle of index $p+1$ con-
tained in $E\cap IntW$ with $H\cap\partial E=H\cap\partial N=S^{p}\times D^{q+c}$ , where $D^{k}$ stands for
the k-fold cartesian product of $D=[-1,1]$ and $S^{k}=\partial D^{k+1}$ . Then we have
new submanifolds $N^{\prime}=N\cup H$ and $E^{\prime}=c1(E-H)$ . We shall say that $(E^{\prime}, N^{\prime})$

is obtained from $(E, N)$ by exchanging the handle $H$. We investigate the effect
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of t
ung $=\times$ , let be a regular neighborhood of $K$ in $E$ .

We may assume that $U$ is a union of the handle $H$ and a collar neighborhood
of $\mathcal{F}N-S^{p}\times lntD^{q^{L}c}$ in $E-D^{p+1}\times IntD^{q+c}$ . We consider a homotopy group
$\pi_{k}(E,$ . $,$

q

$\rightarrow\pi_{k\cdot 1\cdot 1}(E;E-K, U)\rightarrow\pi_{k}(E-K, U-K)\rightarrow\pi_{k}(E, U)\rightarrow\pi_{k}(E;E-K, U)\rightarrow\cdots$ .

-Note that the homotopy group $\pi_{k}(E;E-K, U)$ may be defined for only $k\geqq 2$ .
However, we make use of the notation in case $k\leqq 1$ , whenever, provided it
vanishes, the exact sequence above still makes sense as an exact sequence
(of pointed sets under a similar convention for the homotopy group of a pair.

By the general position we have that

$\pi_{k}(E;E-K, U)\cong O$ for $k+(p+1)+1\leqq m+c$ ; $i$ . $e$ . $k\leqq q+c-1$ .
It follows from the exact sequence of the triad that

$\pi_{k}(E-K, U-K)\cong\pi_{k}(E, U)$ for $k\leqq q+c-2$

:and $\pi_{q+c- 1}(E-K, U-K)\rightarrow\pi_{q+c- 1}(E, U)$ is surjective. Since $U$ is a regular
neighbourhood of $K$ in $E$ , we have that

$\pi_{k}(E-K, U-K)\cong\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})$

:and
$\pi_{k}(E, U)\cong\pi_{k}(E, K)$ for all $k$ .

Therefore, we may conclude the following:
LEMMA 3.1. We have isomorphisms

$\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})\cong\pi_{k}(E, K)$ for all $k\leqq q+c-2$

$ond$ an epimorphism $\pi_{q+c-1}(E^{\prime}, \mathcal{F}N^{\prime})\rightarrow\pi_{q+c-1}(E, K)\rightarrow 0$ .
Next we transfer the exchanging handle process to a surgery on $L$ in $W$ .
We shall identify $2D^{k}-IntD^{k}$ with $S^{k-1}\times D$ so that $(\partial D^{k}=)S^{k-1}\equiv S^{k-1}\times 1$ ,

where $2D^{k}$ stands for the k-fold cartesian product of [–2, 2]. Thus we may
think of $2D^{k}$ as to be obtained from $D^{k}$ and $S^{k-1}\times D$ by identifying $S^{k-1}$ with
$S^{k-1}x1$ via essentially the identity map. Suppose that we have an $(m+c)$ -ball
$2H=2D^{p^{\mathfrak{u}}1}\times D^{q\cdot- c}$ in Int $W$ such that

$E\cap 2H=H=D^{p\cdot 1}4\times D^{q^{L}c}$ ,

$N\cap 2H=c1(2H-H)=(S^{p}\times D)\times D^{q+c}$ ,

$\partial E\cap 2H=\partial N\cap 2H=(S^{p}\times\partial D)\times D^{q+c}$ $()$ $(S^{p}\times D)\times D^{q\cdot:- 1}\times\partial D^{r- 1}$

and
$L\cap 2H=(S^{p}\times 0)\times D^{q^{\mathfrak{u}}1}\times 0^{c-1}$

where $0^{c-1}$ stands for the origin of $D^{c-1}$ .
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versalto $L$,andwehaveahandle $H_{0}=((\times[,])$

index $p+1$ attached transversally to $L$ in $W$ . We shall say that the handle $\cdot$

$H=D^{p+1}\times D^{q\cdot c}4$ can be extended normally to $L$ to give rise to a normally $\cdot$

.
We are ready to perform surgery on $L$ in $W$ via the normally embeddedi

handle $H_{0}$ to kill an element of $\pi_{p-;\cdot 1}(E, \mathcal{F}N)$ represented by $(D^{p+1}\times 0, S^{p}\times 0).$ .

We put $N^{\prime}=N\cup H,$ $E^{\prime}=c1(E-H)$ , as before, and

$N_{*}=N^{\prime}-2D^{p+1}\times(lnt(1/3)D^{q\cdot\vdash 1})\times D^{C-1}$

$E_{*}=c1(W-N_{*})=E^{\prime}\cup 2D^{p\cdot\vdash 1}\times(1/3)D^{q^{4}1}\times D^{C- 1}$

and
$L_{*}=(L-(S^{p}\times 0)\times(1/2)D^{q+1}\times 0^{C-1})\cup((S^{p}\times[0,1])\cup D^{p+1})\times(1/2)S^{q}\times 0^{C-1}$

We shall say that $L_{*}$ is obtained from $L$ by performing surgery $on\{$

$(S^{p}\times 0)\times 0$ in $W$ via the normally embedded handle $H_{0}$ of index $p+1$ . It is.
not hard to see that $L_{*}$ is locally flat. Since $ 2D^{p+1}\times$ ( $D^{q+1}$ –Int $(1/3)D^{q+1}$) $\times D^{C- 1\downarrow}$

collapses

$(S^{p}\times[0,1]\cup D^{P-\vdash 1})\times(1/2)S^{q}\times 0^{C-1}\cup(S^{p}\times 0)\times$ ( $D^{q+1}$ –Int $(1/2)D^{q+1}$ ) $\chi 0^{C-1}$

$\cup(S^{P}\times D)\times S^{q}\times D^{c-1}$

it follows that $N_{*}$ is a regular neighborhood of a locally flat submanifold $L_{*}$ .

in $W$ so that $N_{*}$ admits a normal block bundle structure.
LEMMA 3.2. Suppose that $c\geqq 2$ and $m\geqq 2p+2$ so that $p+1\leqq q\leqq q+c-2_{-}$

Then we have isomorphis $ms\pi_{k}(E, \mathcal{F}N)\cong\pi_{k}(E_{*}, \mathcal{F}N_{*})$ for $k\leqq p$ and a surjection
$\pi_{p+1}(E, K)\rightarrow\pi_{p+1}(E_{*}, \mathcal{F}N_{*})$ , where $K=\mathcal{F}N\cup D^{p\cdot\vee 1}\times 0$ as in Lemma 3.1.

PROOF. Since $(E^{\prime}, N^{\prime})$ is obtained from $(E, N)$ by exchanging the handle-
$H$ of index $p+1$ , we have that by Lemma 3.1

$\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})\cong\pi_{k}(E, K)$ for $k\leqq\rho+1\leqq q+c-2$ .

Since $\pi_{k}(K, \mathcal{F}N)=0$ for $k\leqq p$ , we have that

$\pi_{k}(E, \mathcal{F}N)\cong\pi_{k}(E, K)$ for $k\leqq p$ .
Hence we have that

$\pi_{p+1}(E, K)\cong\pi_{p+1}(E^{\prime}, \mathcal{F}N^{\prime})$ and
$(*)$

$\pi_{k}(E, \mathcal{F}N)\cong\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})$ for $k\leqq p$ .
On the other hand, $(E^{\prime}, N^{\prime})$ is obtained from $(E_{*}, N_{*})$ by exchanging a handle-
$(1/3)D^{q+1}\times(2D^{p+1}\times D^{C- 1})$ of index $q+1$ . Putting $K_{*}=\mathcal{F}N_{*}\cup(1/3)D^{q+1}\times 0$ , from
Lemma 3.1 we have isomorphisms $\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})\cong\pi_{k}(E_{*}, K_{*})$ for $k\leqq p+c-2$ , and
a surjection $\pi_{p+c- 1}(E^{\prime}, \mathcal{F}N^{\prime})\rightarrow\pi_{p+c- 1}(E_{*}, K_{*})\rightarrow 0$ . Since $\pi_{k}(K_{*}, \mathcal{F}N_{*})=0$ for
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$k\leqq q$ , we have that $\pi_{k}(E_{*}, K_{*})\cong\pi_{k}(E_{*}, \mathcal{F}N_{*})$ for $k\leqq q$ . Since $p+1\leqq q$ , we
have isomorphisms $\pi_{k}(E^{\prime}, \mathcal{F}N^{\prime})\cong\pi_{k}(E_{*}, \mathcal{F}N_{*})$ for $k\leqq p$ and a surjection
$:\pi_{p+1}(E^{\prime}, \mathcal{F}N^{\prime})\rightarrow\pi_{p+1}(E_{*}, \mathcal{F}N_{*})\rightarrow 0$ . This together with $(*)$ completes the proof.

Let $L_{*}$ be obtained from $L$ by performing surgery on $S^{p}$ in $W$ via a
normally embedded handle $H_{0}=D^{p+1}\times D^{q+1}$ . Then we have a locally flat L-
equivalence $V=L\times[0,1/2]\cup H_{0}\times(1/2)\cup L_{*}\times[1/2,1]$ in $W\times I$ from $L$ to $L_{*}$

Telative to $(\partial W, \partial L)$ . Hence if $M$ is obtained from $L$ by surgery on $L$ in $W$

via a finite number of normally embedded handles, then $M$ and $L$ are locally
iflat L-equivalent relative to $(\partial W, \partial L)$ .

Thirdly, we extend a handle $H$ in Int $W\cap E$ to a normally embedded

handle. For this, following Thom [14], we take a Thom map $T(L):W\rightarrow MSPL\sim_{c}$

so that $T(L)|L$ : $ L\rightarrow BSPL_{c}\sim$ is a classifying map of a normal block bundle $N$

’of $L$ in $W$.
We shall say that a Thom map $T(L)$ : $(W, L)\rightarrow(MSPL_{c}\sim, BSPL_{c})\sim$ is trivial

.at $k$ , if

$T(L)_{\#}$ : $\pi_{k}(W, L)\rightarrow\pi_{k}(MSPL_{c}\sim, BSPL_{c})\sim$

:is the zero map.
EXAMPLE. Since $ MSPL_{2}\sim$ and $ BSPL_{2}\sim$ are $K(Z, 2)$ so that the inclusion map

$BSPL\sim_{2}\rightarrow MSPL\sim_{2}$ is a homotopy equivalence, it follows that any Thom map
$ T(L):(W, L)\rightarrow(MSPL_{2}\sim, BSPL_{2})\sim$ is trivial at each $k$ , called simply to be trivial.
$<)n$ the other hand, if $(W, L)$ is k-connected, then $T(L)$ is obviously trivial at
each $i\leqq k^{\rightarrow}$.
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$\partial E\cap H=\partial N\cap H=S^{p}\times D^{q\cdot\vdash c}$ can be extended normally to $L$ .
PROOF. Let $\pi:N\rightarrow L$ be a projection map such that $\pi|\mathcal{F}N:\mathcal{F}N\rightarrow L$ is a

e $m\geqq 2p+1$ ,
we may homotope $\pi|S^{p}\times 0:S^{p}\times 0\rightarrow L$ to a locally flat embedding $S^{p}\subset L$ .
Then we will see that the restricted block bundle $N|S^{p}$ is trivial. Since
$S^{p}\subset L$ is homotopic to $S^{p}\times 0\subset \mathcal{F}N$ bounded by $D^{p_{r}^{\prime}- 1}\times 0$ in $W,$ $S^{p}$ is homo-
topic to zero in $W$ , and hence there is a map $\alpha:(D^{p^{\prime}.\cdot 1}, S^{p})\rightarrow(W, L)$ with
$\alpha|S^{p}=id$ . However, $ T(L):(W, L)\rightarrow(MSPL_{c}\sim, BSPL_{c})\sim$ is trivial at $p+l$ , which
implies that $ T(L)\circ\alpha$ : $(D^{p^{4}1}, S^{p})\rightarrow(MSPL_{c}\sim, BSPL_{c})\sim$ is homotopic to a map’

$\beta:D^{p\cdot- 1}\rightarrow BSPL_{c}$ relative to $\alpha|S^{p}$ . Since $T(L)\wedge\cup\alpha|S^{p}=T(L)|S^{p}$ classifies the
restricted bundle $N|S^{p}$ and is homotopic to zero in $ BSPL_{c}\sim$ with null-homotopy
$\beta$ , it follows that $N|S^{p}$ is a trivial block bundle. Putting $N|S^{p}=(S^{p}\times D^{c})_{r}$

we may assume that $\pi|(S^{p}\times D^{c})$ is the projection onto the first factor. By
the covering homotopy theorem, a homotopy from $\pi|S^{p}\times 0:S^{p}\times 0\rightarrow L$ to.
$S^{p}\subset L$ is covered by a homotopy of the spherical fiber space and hence
$S^{p}\times 0\subset \mathcal{F}N$ is homotopic to a cross-section of $\mathcal{F}N|S^{p}=(S^{p}\times S^{c-1})$ over $S^{p}$ .
Since $m+c-1\geqq 2p+2$ , homotopic embeddings in Int $\mathcal{F}N$ are ambient isotopic.
Hence, after changing the normal bundle structure, if necessary, we may
assume that $S^{p}\times 0$ is just a cross-section of $\mathcal{F}N|S^{p}=(S^{p}\times S^{c-1})$ over $S^{p}\subset L$ .
Let $U$ be a normal block bundle of $S^{p}$ in $L$ . Then $(N|U)|S^{p}$ is a Whitney
sum of $N|S^{p}=(S^{p}\times D^{c})$ and $U$ . On the other hand, $S^{p}\times 0$ has a trivial normal
block bundle $S^{p}\times D^{q+c\cdot\mu 1}$ in $W$ . Since $S^{p}\times 0\subset \mathcal{F}N$ and $S^{p}\subset L$ are homotopic
and hence ambient isotopic in $W$ , they have isomorphic normal block bundles.
Therefore, a normal block bundle $(N|U)|S^{p}$ of $S^{p}$ in $W$ has to be trivial.
This implies that $U$ is stably trivial and, therefore, $U$ is itself trivial, since
the suspension map $\pi_{p- 1}(S\overline{PL}_{q\prec\cdot 1})\rightarrow\pi_{p- 1}(s^{\sim}PL_{q^{\prime}\cdot c\prec\cdot 1}-)$ is an isomorphism for each
$p\leqq q$ .

Let $h:D^{p\cdot\sim 1}\times D^{?^{i_{\sim C}}}\cdot\rightarrow H(=D^{p^{4}1}\times D^{qc}-\llcorner)$ be a homeomorphism defining the
handle $H$ such that $h(S^{p}\times D^{\tau\vdash c})=S^{p}\times D^{q^{\prime}- c}$ . We take a trivialization $\varphi$ : $S^{p}x$

$D^{q^{\llcorner}C+1}\rightarrow N|U$ so that
$\varphi|S^{p}\times D^{q^{L}1}\times D^{c- 1}\times 1=h|S^{p}\times D^{q^{\prime}- c}$

and
$\varphi(S^{p}\times D^{q\cdot\vee 1}\times 0)=U$ .

For this, first we take a trivialization

$\varphi_{0}$ : $S^{p}\times D^{c}\rightarrow N|S^{p}$

of $N|S^{p}$ so that $\varphi_{0}(S^{p}\times 0^{C-1}\times 1)=h(S^{p}\times 0)(=S^{p}\times 0)$ . This is done by smooth-
ing the cross-section $h(S^{p}\times 0)$ as a vector field and then taking the orthogonal
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com

$\varphi_{1}$

by taking a Whitney sum of $\varphi_{0}$ and a trivialization of $U$ so that $\varphi_{1}(S^{p}\times D^{q+1}$

$\times 0)\times 1)$ of
$h(S^{p}\times 0)$ in $\mathcal{F}N$. From the uniqueness of normal block bundles we may
assume that $\varphi_{1}(S^{p}\times D^{q+1}\times D^{c-1}\times 1)=h(S^{p}\times D^{q+c})$ keeping $\varphi_{1}(S^{p}\times 0\times 1)$ fixed.
Thus we have a $(q+1)$ -frame

$\varphi_{1}^{-1}\cdot h|S^{p}\times D^{q+1}\times 0:S^{P}\times D^{q+1}\times 0\rightarrow S^{P}\times D^{q+1}\times D^{C-1}\times 1$ .

Since the suspension homomorphism $\pi_{p}(SPL_{q+1})\sim\rightarrow\pi_{p}(SPL_{q+c})\sim$ is surjective for
$p\leqq q$ , we may further assume that

$\varphi_{1}^{-1}\circ h(S^{P}\times D^{q+1}\times 0)=S^{P}\times D^{q+1}\times 0^{c- 1}\times 1$ .
Regarding $S^{p}\times D^{q+1}\times D^{c- 1}\times 1$ as $S^{p}\times D^{q+1}\times D^{C-1}$ we may extend $\varphi_{1}^{-1}\circ h|S^{p}\times D^{q+1}$

$\times D^{c-1}$ to a homeomorphism $\psi:S^{p}\times D^{q+1}\times D^{c}\rightarrow S^{p}\times D^{q+1}\times D^{c}$ by setting, if
$(x, t)\in(S^{p}\times D^{q+1}\times D^{C-1})\times D,$ $then\psi(x, t)=(\varphi_{1}^{-1}\circ h(x), t)$ . Acomposition $\varphi=\varphi_{1}\circ\psi$

is now the required trivialization of $(N|U)|S^{p}$ . Indeed, $\varphi(x, 1)=(h(x), 1)=h(x)$

for $x\in S^{p}\times D^{q+c}$ and

$\varphi(S^{P}\times D^{q+1}\times 0)=(h(S^{p}\times D^{q+1}\times 0^{C-1}), 0)=\varphi_{1}(S^{p}\times D^{q+1}\times 0)=U$ .
Therefore, a handle $2H=\varphi(S^{p}\times(D^{q+1}\times D^{c- 1})\times D)\cup H$ is the required handle
giving a normally embedded handle $H_{0}=\varphi(S^{p}\times(D^{q+1}\times 0^{c- 1})\times[0,1])\cup D^{p+1}\times D^{q+1}$

$\times 0^{C-1}$ , completing the proof.
We are ready to complete surgery below the middle dimension of a

locally flat submanifold in codimension $c=2$ .
LEMMA 3.4. Let $W$ be a compact $(m+2)$ -manifold and $L$ a locally flat

compact m-submanifold of W. Then $L$ is L-equivalent to an exterior $[m/2]-$

connected locally flat compact m-submanifold $M$ in $W$ relative to $(\partial W, \partial L)$ .
PROOF. Putting $L_{0}=L$ , we have that by the general position $(W, L_{0})$ is

exterior O-connected. Assuming inductively that we have already obtained
an exterior $p$-connected locally flat m-submanifold $L_{p}(0\leqq p\leqq[m/2]-1)$ which
is L-equivalent to $L$ relative to $(\partial W, \partial L)$ , we shall find $L_{p+1}$ by surgery on
$L_{p}$ in $W$ so that $(W, L_{p+1})$ is exterior $(p+1)$ -connected. Since $(E_{p}, \mathcal{F}N_{p})$ is
$p$-connected, it follows that there are only a finite number of $(p+1)$ -cells of
$E_{p}$ relative to $\mathcal{F}N_{p}$ . Since $2(p+1)+1\leqq m+2$ , by the general position, one can
represent them by locally flat mutually disjoint $(p+1)$ -balls $D_{i}^{p+1},$ $i=1,$ $\cdots$ $V$ ,

contained in $E_{p}\cap 1ntW$ with $D_{i}^{p+1}\cap\partial E_{p}=D_{i}^{p+1}\cap\partial N_{p}=S_{i}^{p}$ . By thickening
them, we have handles $H_{i}=D_{i}^{p+1}\times D^{q+2}$ contained in $E_{p}\cap IntW$ with $H_{i}\cap\partial E_{p}$

$=H_{i}\cap\partial N_{p}=S_{i}^{P}\times D^{q+2}$ , where $p+q+1=m$ . Recall that $T(L_{p})$ : $(W, L_{p})\rightarrow$
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$\sim$

handles $H_{0i}$ , simultaneously. Let $L_{p+1}=(L_{p})_{*}$ be a locally flat m-submanifold
obtained from $L_{p}$ by performing surgery on $S_{t}^{p}\subset L_{p}$ in $W$ via the handles

$\pi_{k}(E_{p+1}, \mathcal{F}N_{p+1})\cong\pi_{k}(E_{p}, \mathcal{F}N_{p})=0$ for $k\leqq p$

and
$\pi_{p+1}(E_{p}, K_{p})\rightarrow\pi_{p+1}(E_{p+1}, \mathcal{F}N_{p+1})$ is surjective ,

where $K_{p}=\mathcal{F}N_{p}\cup(\bigcup_{i}D?^{+1})$ . Since $\pi_{p}(K_{p}, \mathcal{F}N_{p})=0$ and $\pi_{p1}=(K_{p}, \mathcal{F}N_{p})\rightarrow\pi_{p+1}(E_{p}$ ,

$\mathcal{F}N_{p})$ is surjective, it follows from the homotopy exact sequence of a triple
\langle $E_{p}$ ; $K_{p},$ $\mathcal{F}N_{p}$) that $\pi_{p+1}(E_{p}, K_{p})=0$ and hence $\pi_{p+1}(E_{p+1}, \mathcal{F}N_{p+1})=0$ . Therefore,
\langle $W,$ $L_{p\dashv\cdot 1}$) is exterior $(p+1)$ -connected. As observed below the proof of
Lemma 3.2, $L_{p}$ and $L_{p+1}$ are L-equivalent relative to $(\partial W, \partial L)$ . This completes

the inductive step and the proof of Lemma 3.4.

\S 4. Surgery in the middle dimension.

First of all, we study exterior connectivity of a pair $(W, L)$ .
LEMMA 4.1. Let $P$ be a p-subpolyhedron of a compact $(p+c)$ -manifold $W$ .

Let $N$ be a derived neighborhood of $P$ in $W$ , and $E=c1(W-N)$ .
(1) If $c\geqq 3$ , then $\pi_{t}(W, P)=0$ for $i\leqq k$ if and only if $\pi_{i}(E, \mathcal{F}N)=0$ for

$i\leqq k$ .
(2) If $c=2$ and $\pi_{i}(E, \mathcal{F}N)=0$ for $i\leqq k$ , then $\pi_{i}(W, P)=0$ for $i\leqq k$ and

$\pi_{k+1}(E, \mathcal{F}N)\rightarrow\pi_{k\neg\cdot 1}(W, N)\cong\pi_{k+1}(W, P)$ is surjective.

PROOF. This is essentially proved by Hudson [3]. For completeness, we
shall give the proof. We observe the homotopy exact sequence of a triad
$(W;W-P, N)$ :

$...\rightarrow\pi_{\iota+1}(W;W-P, N)\rightarrow\pi_{i}(W-P, N-P)$

$\rightarrow\pi_{i}(W, N)\rightarrow\pi_{i}(W ; W-P, N)\rightarrow\cdots$ .
Since $N$ is a derived neighborhood of $P$ in $N$, we have that

$\pi_{i}(W-P, N-P)\cong\pi_{i}(E, \mathcal{F}N)$

and
$\pi_{i}(W, N)\cong\pi_{i}(W, P)$ for all $i$ .

Then by virtue of Hudson’s result ([3], Lemma 12.3) we have that
$\pi_{i}(W;W-P, N)=0$ for $i\leqq k+c-1$ . This implies that if $c\geqq 3$ , then

(1) At this step, we use the codimension condition $c=2$ .
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and
$\pi_{i}(E, \mathcal{F}N)\cong\pi_{i}(W, P)$ for $i\leqq k+c-2$ ,

and if $c=2$ , then $\pi_{i}(E, \mathcal{F}N)\cong\pi_{i}(W, P)=0$ for $i\leqq k$ and

$\pi_{k-1- 1}(E, \mathcal{F}N)\rightarrow\pi_{k-- 1}(W, P)$ is surjective.

Conversely, in case $c\geqq 3$ , suppose that

$\pi_{i}(W, P)=0$ for $i\leqq k$ .
By the general position

$\pi_{i}(W;W-P, N)=0$ for at least $i\leqq c-1$ .
This implies that $\pi_{i}(W, P)\cong\pi_{i}(E, \mathcal{F}N)=0$ for $i\leqq 1$ . Thus if $k\leqq 1$ , this com-
pletes the proof. If $k\geqq 2$ , then the fact that $\pi_{i}(E, \mathcal{F}N)=0$ for $i\leqq i\leqq k-1$

implies that by Hudson $\pi_{i}(W;W-P, N)=0$ for $i\leqq j+c-1$ . This together
with $\pi_{i}(W, P)=0$ for $i\leqq k$ implies that $\pi_{i}(E, \mathcal{F}N)=0$ for $i\leqq i+c-2(>j)$ .
Thus we have that by induction

$\pi_{i}(E, \mathcal{F}N)\cong\pi_{i}(W, P)=0$ for $i\leqq k$ .
This completes the proof of Lemma 4.1.

The technique of simply connected surgery in the middle dimension will
be divided into two cases; even and odd dimensional cases.

In the even dimensional case, it is done by the engulfing technique.
THEOREM 4.2 (The even dimensional case). Let $W$ be a compact l-connected

$’(m+c)$ -manifold and $L$ a locally flat m-submanifold of W. Suppose that
(i) $m=2n\geqq 6,$ $c\geqq 2$ ,

(ii) Thom map $ T(L):(W, L)\rightarrow(MSPL_{c}\sim, BSPL_{c})\sim$ is trivial at $n+1$ ,
(iii) $(W, L)$ is exterior n-connected,
(iv) $K_{n}(L)$ is torsion free and a direct summand of $H_{n}(L)$ , and
(v) the intersection pairing $K_{n}(L)\otimes K_{n}(L)\rightarrow Z$ is defined and non-singular.

Then one can find a proper m-submanifold $M$ in $W$ , which is locally flat except

for at one point of Int $M$, so that $(W, M)$ is n-connected, $K_{n}(M)=0$ and $M$

represents the homology class represented by $L$ .
PROOF. We would like to kill the torsion free group $K_{n}(L)$ , which by n-

$\ovalbox{\tt\small REJECT} connectivity$ of $(W, L)$ is the image of the map $\pi_{n+1}(W, L)\rightarrow H_{n+1}(W, L)\rightarrow H_{n}(L)$ .
For this let $\xi_{1},$ $\cdots$ , $\xi_{\alpha}$ be a basis of $K_{n}(L)$ . Since $L$ is l-connected, it follows

that by the $PL$ embedding theory there is an embedding $f:i=1\ovalbox{\tt\small REJECT}^{\alpha}S_{i}^{n}\rightarrow IntL$

from a wedge (one point union) of n-spheres into Int $L$ such that each $f(S_{i}^{n})$

represents $\xi_{i}$ . Putting $K=f(\ovalbox{\tt\small REJECT}\alpha S_{i}^{n})$ , let $P$ be a regular neighborhood of $K$
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that $\partial P$ is an $(m-1)$ -sphere. Notice that if we put $M=(L-IntP)U(O*\partial P)$ ,
then $\Lambda f$ is the expected manifold. However, we have to take the cone $O*\partial P$

ontracts into
a point in IV and $T(L)$ : $(W, L)\rightarrow(ItlSPL_{c}, BSPL_{c})$ is trivial at $n+1$ , the
restricted normal bundle $N|P$ is trivial, say $N|P=(P\times D^{c})$ . Let $U$ be the

second derived star of the base point $p$ of $K=f(\ovalbox{\tt\small REJECT}^{\alpha}S_{i}^{n})$ in Int $P$ such that
$P$ collapses $K\cup U$ ; written $P\searrow K\cup U$ . In case $c\geqq 3$ , putting $C=(p\times 0^{C-1}\times 1)$

$\in(p\times S^{c-1})$ , we have that $(K\times(0^{c- 1},1))$ is C-inessential, since by Lemma 4.1
we have that $\pi_{n\neg\cdot 1}(E, \mathcal{F}N)\cong\pi_{t\neg\cdot 1}(W, L)\cong H_{n\neg\cdot 1}(W, L)$ , which implies that
$K\times(0^{c- 1},1)$ is contractible in $E$ . Then $C$ is a O-collapsible l-core, since $E$ is
l-connected. Therefore, by the codimension reason, one can find a polyhedron
$J$ in $E$ such that

$(K\times(0^{c-1},1))\subset J\searrow C$

and
$J\cap\partial E=(K\times(0^{C- 1},1))\cap\partial E=(K\times(0^{C-1},1))$ .

We may take a regular neighborhood $A$ of $J$ in $E$ so that $\partial E\cap A=\mathcal{F}N\cap A$

$=(P\times(\epsilon D^{c- 1},1))$ , where $\epsilon$ is a small positive number. In case $c=2$ , putting
$C=(p\times S^{1})$ , we have that $(K\times O\times 1)$ is C-inessential, since by Lemma 4.1,
$\pi_{n+1}(E, \mathcal{F}N)\rightarrow\pi_{n+1}(W, L)\cong H_{n+1}(W, L)$ is surjective, which implies that
$(K\times O\times 1)$ is contractible in $E$ . Then $C$ is a l-collapsible l-core. Because a
fiber $C$ of a circle bundle $\mathcal{F}N$ over $L$ represents a generator of $\pi_{1}(\mathcal{F}N\rangle$

$\cong\pi_{1}(E)$ , since from the exact sequence of fiber spaces we have that

$\pi_{1}(S^{1})\rightarrow\pi_{1}(\mathcal{F}N)\rightarrow\pi_{1}(L)=0$ .
It follows from the codimension reason of $(K\times O\times 1)$ in $\partial E$ and $E$ with respect

to $C$ that by Zeeman ([20], Theorem 21) there is a subpolyhedron $J$ in $E$ such
that $(K\times O\times 1)\subset 1\searrow C$ and $J\cap\partial E=(K\times 0\times 1\cup C)\cap\partial E=K\times 0\times 1\cup C$ . We may
take a regular neighborhood $A$ of $J$ in $E$ so that

$\partial E\cap A=N\cap A=(P\times\epsilon D\times 1)\cup(U\times S^{1})$ .
Now for $c\geqq 2$ , putting $B=(P\times D^{c})\cup A$ , we have that

$B\searrow(P\times D^{c})\cup J\searrow(K\times 0^{c- 1}\times 1)\cup U\times D^{c}\cup J$

$=U\times D^{c}\cup J\searrow U\times D^{c}\cup C=U\times D^{c}\searrow p$ .
This shows that $B$ is an $(m+c)$ -ball with $(P, \partial P)\subset(B, \partial B)$ so that $\partial P$ is a
locally flat $(m-1)$ -sphere in an $(m+c-1)$ -sphere $\partial B$ . Let $M=(L-P)\cup(0*\partial P)$

be a manifold obtained from $L$ by removing $P$ and attaching a cone $O*\partial P$



Simply connected surgery $601$

fro
is a
$(m+2)$ -ball $B$ , it follows that $H_{k}(W, M)=0$ for $k\leqq n$ and $K_{n}(M)=0$ . From
the construction, it is seen that $M$ is locally flat except for the point $O\in IntM$

and roof.
In the odd dimensional case, we may discuss the non-simply connected

case as well as the l-connected case.
Let $W$ be a compact $(m+c)$ -manifold and $L$ a compact exterior n-connected

locally flat m-submanifold of $W$ .
Suppose that $m=2n+1\geqq 5$ and Thom map $T(L):(W, L)\rightarrow(MSPL_{c},$$ BSPL_{c}\lambda\sim\sim$

is trivial at $n+1$ . By $K_{n}(L)$ we shall denote the kernel of $H_{n}(L)\rightarrow H_{n}(W).$ .

In the l-connected case any element of $K_{n}(L)$ is spherical. Let $\xi$ be an ele-
ment of $K_{n}(L)$ . By the general position, Lemmas 4.1 and 3.3, there is $a_{\rightarrow}$

normally embedded handle $H_{0}=(D^{n.- 1}\times D^{n\cdot- 1})$ in $W$ with $ H_{0}\cap L=(S^{n}\times D^{n^{\prime}\sim 1}\lambda$

and $(S^{n}\times 0)$ represents $\xi$ . Let $F:D^{n.- 1}\times D^{n\cdot 1}=\rightarrow H_{0}$ be a homeomorphism with
$F(S^{n}\times D^{n\cdot\downarrow\cdot 1})=H_{0}\cap L=(S^{n}\times D^{n\cdot\vdash 1})$ . Then $F|S^{n}\times D^{n+1}$ gives a framing of $(S^{n}\times 0)\{$

in $L$ . If $H_{0^{\gamma}}=(D^{n^{\ovalbox{\tt\small REJECT}}- 1}\times D^{n+1})^{\prime}$ is a second normally embedded handle such that
$(S^{n}\times 0)^{\prime}$ represents $\xi$ and $F^{\prime}:D^{n+1}\times D^{n+1}\rightarrow H_{0^{\prime}}$ is a homeomorphism with
$F^{\gamma}(S^{n}\times D^{n\cdot 1}L)=H_{0^{\prime}}\cap L=(S^{n}\times D^{n+1})^{\prime}$ , then $F|(D^{n+1}, S^{n})X0$ and $F^{\prime}|(D^{n-\vdash 1}, S^{n})\times 0$

are regularly homotopic in $(W, L)$ . By the stability of $\pi_{n}(SPL)\sim$ , we may
conclude that two framings $F|S^{n}\times D^{n\cdot\vdash 1}$ and $F^{\prime}|S^{n}\times D^{n\cdot\vdash 1}$ are regular homo-
topic modulo a homeomorphism $h:S^{n}\times D^{n\cdot t1}\rightarrow S^{n}\times D^{n+1}$ representing an ele-
ment of the kernel of the suspension homomorphism $\pi_{n}(SPL-|)\sim_{n^{\prime}\cdot 1}\rightarrow\pi_{n}(SPL_{n\prec\cdot c})\sim$ .

Therefore, $\xi$ determines a unique regular homotopy class of a framing.
$F(\xi):S^{n}\times D^{n+1}\rightarrow L$ modulo an action of the kernel of $\pi_{n}(SPL_{n+1})\sim\rightarrow\pi_{n}(SPL_{n+c})\sim,-$

which will be called an admissible framing. If one can attach to $L$ handles.
of index $n+1$ via admissible framings to kill $K_{n}(L)$ , abstractly, then we shall
call such abstract surgery to be admissible. On the other hand, Lemma 3.3.
guarantees us that abstract admissible surgery may be realized by surgery
on $L$ in $W$ . Therefore, we have reduced surgery on $L$ in $W$ to an abstract
admissible surgery. Namely we have the following:

THEOREM 4.3. One can attach normally embedded handles of index $n+1$

to $L$ in $W$ to kill $K_{n}(L)$ if and only if one can perform abstract admissible $\cdot$

surgery on $L$ to kill $K_{n}(L)$ .

\S 5. Proof of Theorems and Examples.

By $\Lambda_{n}(W)$ we shall denote a set of locally flat L-equivalence classes of
locally flat closed m-submanifolds of $W$. Since locally flat L-equivalent sub-
manifolds represent the same homology class, it follows that there is a well-
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fication of codimension two locally flat submanifolds in terms of homology
$|classes$ .

d Sanderson
[12] and Wall [15]). Let $W$ be a compact $(m+2)$ -manifold. Then the natural
map $\Lambda_{m}(W)\rightarrow H_{m}(W)$ is a bijection.

Here is an outline of the proof. If $M$ is a locally flat closed m-submani-
fold representing $\mu\in H_{m}(W)$ , then we have a Thom map $ T(M):W/\partial W\rightarrow$

$\underline{\vee}MSPL_{2}\sim$ . Since L-equivalent locally flat closed m-submanifolds give rise to
homotopic Thom maps, and by the t-regular approximation the converse is
also true, it follows that the Thom construction gives rise to a bijection

$ T:\Lambda_{m}(W)\rightarrow[W/\partial W, MSPL_{2}]\sim$ .

On the other hand, we have that $MSPL_{2}\sim=K(Z, 2)$ and hence $[W/\partial W, MSPL_{2}]\sim$

may be identified with $H^{2}(W, \partial W)$ . (To be precise, we shall specify the

identification as follows: Let $ U\in H^{2}(MSPL_{2};Z)\sim$ be the universal Thom
class, $ g:W/\partial W\rightarrow MSPL_{2}\sim$ a map. We define an element $S(\{g\})\in H^{2}(W, \partial W)$ by

$S(\{g\})=g^{*}(U)$ .

In this way we have a map $S:[W/\partial W, MSPL_{2}]\sim\rightarrow H^{2}(W, \partial W)$ . Clearly $S$ is
an isomorphism.) Furthermore, by Poincar\’e-Lefschetz duality we have that
$H^{2}(W, \partial W)\cong H_{m}(W)$ and the image of $T(M)$ coincides with $\mu$ . Thus we have
a commutative diagram

$\Lambda_{m}(W)H_{/}(W, \partial W)\backslash _{H_{m}}/\swarrow^{2}\underline{T_{(W)}}$

.
Since $T$ is a bijection, it follows that so is the natural map $\Lambda_{m}(W)\rightarrow H_{m}(W)$ ,

completing the outline of the proof. Recall that a Thom map $T(M):(W, M)$
$\rightarrow(MSPL_{2}\sim, BSPL_{2})\sim$ is trivial, since $BSPL_{2}\sim=K(Z, 2)$ so that the inclusion map
$BSPL_{2}\sim\rightarrow MSPL\sim_{2}$ is a homotopy equivalence.

PROOF OF THEOREM A. Let $\mu\in H_{m}(W)$ be a Poincar\’e class of a compact
l-connected $(m+2)$ -manifold $W$. By Thom’s theorem, we may represent $\mu$ by

a locally flat closed m-submanifold $L$ in $W$ . Since $ T(L):(W, L)\rightarrow(MSPL_{2}\sim$ ,
$BS\overline{PL}_{2})$ is trivial for any locally flat closed m-submanifold $L$ of $W$, it follows
from Lemma 3.4 that $(W, L)$ is exterior n-connected, where $m=2n$ or $2n+1$
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sions in Observation 2.2.
In the even dimensional case, since $m\geqq 6,$ $L$ satisfies the hypothesis in

Theo. Theo-
rem 4.2 we may kill $K_{n}(L)\cong H_{n-\dagger 1}(W, L)$ and we have an almost m-knot $M$ in
$W$ representing $\mu$ . In the odd dimensional case, if $m\geqq 5$ , by Novikov [11]

or Browder [2], one can perform an abstract admissible surgery on $L$ killing
$K_{n}(L)\cong H_{n\dashv\cdot 1}(W, L)$ . By Theorem 4.3, this may be realized by surgery of $L$

in $W$ . Thus we have a locally flat closed m-submanifold $M$ in $W$ representing
$\mu$ such that $H_{i}(W, M)=0$ for $i\leqq n+1$ . From (i), (ii) and (iii) in Observation
2.2, we have that $H^{n^{\llcorner}1}(W, M)\cong K^{n}(M)\cong K_{n^{\prime}\cdot 1}|(M)=0$ , since by the universaL
coefficient theorem $H^{n^{\llcorner}1}(W, M)=0$ . This implies that $H_{n\neg\cdot 1}(M)\cong H_{n\dashv\cdot 1}(W)$ and
hence that $M$ is an m-knot in $W$ . If $m=3$ , then since the compact 5-mani-
fold $W$ is l-connected, and $W$ admits a Poincar\’e class $\mu\in H_{3}(W)$ , it follows
that $\cap\mu:H^{1}(W)\cong H_{2}(W)=0$ , and hence that $W$ is 2-connected. It follows
from Kato [4] that the class $\mu\in H_{3}(W)$ can be represented by a locally flat
3-sphere in $W$.

This completes the proof of Theorem A.
PROOF OF THEOREM B. Let $W$ be a compact l-connected $(m+2)$ -manifold.

and $M_{0}$ and $M_{1}$ m-knots representing the same homology class $\mu$ . By Lemma
2.1 $\mu$ is a Poincar\’e class. By Thom’s theorem, there is a locally flat L-
equivalence $V$ in $W\times I$ from $M_{0}$ to $M_{1}$ . By Lemma 3.4, we may assume that
$(W\times I, V)$ is exterior $(n+1)$ -connected or exterior n-connected according as
$m=2n+1$ or $m=2n$ . Thus the homology class $\nu\in H_{m\neg\cdot 1}(W\times I, W\times\partial I)$ repre-
sented by (V, $\partial V$ ) satisfies the conclusions in Observation 2.3. In the case
of $m=2n$ , by Browder [2], we may perform abstract admissible surgery on
$V$ making the inclusion map $V\rightarrow W(n+1)$ -connected.

By Theorem 4.3, this may be realized by surgery on $V$ in $W\times I$. Thus
we have a locally flat L-equivalence $U$ in $W\times I$ from $M_{0}$ to $M_{1}$ such that
$(W\times I, U)$ is $(n+1)$ -connected. We will see that $(U ; M_{0}, M_{1})$ is h-cobordism.
For this, by virtue of the Poincar\’e-Lefschetz duality and the h-cobordism
theorem it suffices to show that $H_{k}(U, M_{0})=0$ for $k\leqq n$ , since $\dim U=2n+1$

$=m+1>5$ . This follows immediately from the exact sequence:

$...\rightarrow H_{k+1}(W\times I, U)\rightarrow H_{k}(U, M_{0})\rightarrow H_{k}(W\times I, M_{0})\rightarrow H_{k}(W\times I, U)\rightarrow\cdots$ ,

and the fact that $H_{k- 1\cdot 1}(W\times I, U)=H_{k}(W\times I, M_{0})=0$ for $k\leqq n$ . Therefore, we
have obtained a locally flat concordance $U$ from $M_{0}$ to $M_{1}$ . In the case of
$m=2n+1$ , by Theorem 4.2, we may find an L-equivalence $U$ in $W\times I$ from
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is a concordance from $M_{0}$ to $M_{1}$ , since $m+1\geqq 7$ . If $U$ is locally flat at $p$ ,
then $M_{0}$ and $M_{1}$ are locally flat concordant. Suppose that $U$ is locally knotted

of $M_{1}$ and
then taking a second derived star pair $(A, B)$ of it in Int $(W\times I, U)$ , one can
get as $(m+3, m+1)$ -ball pair $(A, B)$ in Int $(W\times 1, U)$ such that $\partial(A, B)$ , say

$((s^{m}\cdot:^{\underline{o}}, \Sigma^{m})$ , is a locally flat $(m+2, l7l)$ -sphere pair; namely a spherical m-knot,
{$(A, B)\cap(W\times O, \lrcorner lI_{0}\times 0)=\emptyset$ , and $(A, B)\cap(W\times 1, M_{1}\times 1)=(S^{m^{\prime_{\wedge}}.2}, \Sigma^{m})\cap(W\times 1$ ,
$M_{1}\times 1)$ is an unknotted $(m+2, m)$ -ball pair, say, $(C, D)$ . Therefore, if we put
$|(W^{\prime}, M^{\prime})=((W_{1}, M_{1}\times 1)\cup(S^{m\cdot!^{\wedge}2}, \Sigma^{m}))$ -Int $(C, D)$ , then $(W^{\prime}, M^{\prime})=(W, M_{1})\#(S^{m}42$

$\Sigma^{m})$ . It is not difficult to construct a homeomorphism $ h:c1(W\times I-A)\rightarrow$

$W\times 1$ such that

$h|W\times O^{(j}c1(W\times 1-C)=id$ ,

$h(W^{\prime})=W\times 1$ ,

$h$ ( $S^{m}-$ Int $C$ ) $=C$ .

‘Since $c1(U-B)$ is homeomorphic with $M_{0}\times 1$ and locally flat in $c1(W\times I-A)$ , it
follows that $h(c1(U-B))$ is a locally flat concordance from $M_{0}\times 1$ to $h(M_{1}^{\prime})$ in
$W\times I$. This completes the proof.

In order to prove Theorem $C$ we shall clarify relation between the ab-
stract surgery due to Novikov [11], Browder [2], Wall [17], [18] and our
surgery in codimension two.

Let $X$ be an oriented non-simply connected Poincar\’e complex of dimen-
sion $tn$ , and $\xi$ a stable bundle over $X$. Here, and from now on, a bundle
means a block bundle.

By a pre-tangential map $i:(L, \tau_{L})\rightarrow(X, \xi)$ we shall mean a degree 1 map
$i:L\rightarrow X$ from a closed m-manifold $L$ into a Poincar\’e complex $X$ of dimension
$m$ such that $i^{*}\xi=\tau_{L}$ where $\tau_{L}$ denotes the stable tangent bundle over $L$ . A
second pre-tangential map $j:(M, \tau_{M})\rightarrow(X, \xi)$ is bordant to $i$ , if there are a
(cobordism $(V;L, M)$ and a map $k:V\rightarrow X$ such that $k^{*}\xi=\tau_{V}$ , $k|L=i$ and
$k|M=j$ . According to Wall [18], there is an invariant $\theta(i)\in L_{m}(\pi_{1}X)$ of the
pre-tangential map $i$ under bordism such that $i$ is bordant to a pre-tangential
map $i:(M, \tau_{M})\rightarrow(X, \xi)$ with $j:M\rightarrow X$ a simple homotopy equivalence if and
only if $\theta(i)=0$ , provided $m\geqq 5$ . Now let $W$ be a compact $(m+2)$ -manifold
which is an (oriented non-simply connected) Poincar\’e complex of dimension
$m$ with fundamental class $\mu\in H_{m}(W)$ . Let $T:W/\partial W\rightarrow MSPL_{2}\sim(=K(Z, 2))$ be
a map representing the Poincar\’e dual in $H^{2}(W, \partial W)$ of $\mu$ . Since $ BSPL_{2}\sim$ is a
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bundle over $ BSPL_{2}\sim$ . We fix a pair $(W, \tau_{W}-\nu)$ consisting of a Poincar\’e com-
plex $W$ of dimension $m$ and a stable bundle $\tau_{W}-\nu$ .
Litha

Thom map $ T(L):W/\partial W\rightarrow MSPL_{2}\sim$ . Then a normal 2-block bundle $\nu_{L}$ of $L$ in
$W$ is classified by $ T(L)|L:L\rightarrow BSPL_{2}\sim$ . Let $i:L\rightarrow W$ be the inclusion map.
Since $T$ and $T(L)$ are homotopic, it follows that $ i^{*}\nu=i^{*}\circ T^{*}\eta=i^{*}\circ T(L)^{*}\eta$

$=(T(L)|L)^{*}\eta=\nu_{L}$ . Thus we have a pre-tangential map $i:(L, \tau_{L})\rightarrow(W, \tau_{W}-\nu)$ .
Let $M$ be a second locally flat closed m-submanifold of $W$ representing

$\mu$ with a pre-tangential map $j:(M, \tau_{\mu})\rightarrow(W, \tau_{W}-\nu)$ . Then by Thom’s theorem
there is a locally flat L-equivalence $V$ from $L$ to $M$ with a Thom map $T(L)$ :
$(W\times I/\partial W\times I, V)\rightarrow(MSPL_{2}, BSPL_{2})\sim\sim$ . Let $k:V\rightarrow W$ be a composition of the
inclusion map $V\rightarrow W\times I$ and the projection $W\times I\rightarrow W$ onto the first factor.
Then (V; $L,$ $M$ ) is a cobordism and $k:V\rightarrow W$ is a map such that $k^{*}(\tau_{W}-\nu)$

$=\tau_{V},$ $k|L=i;L\rightarrow W$ and $k|M=j:M\rightarrow W$ . This implies that the bordism
class of $i$ does not depend on the choice of locally flat closed m-submanifolds
representing $\mu$ . Thus we define an invariant $\theta(W, \mu)=\theta(i)$ in $L_{m}(\pi_{1}W)$ .

We have shown the following:
THEOREM 5.1. Let $W$ be a compact $(m+2)$ -manifold which is an oriented

non-simply connected Poincar\’e complex of dimension $m$ with fundamental class
$\mu\in H_{m}(W)$ . Suppose that $m\geqq 5$ . Then there is a well defined invariant $\theta(W, \mu)$

of $(W, \mu)$ in $L_{m}(\pi_{1}W)$ such that for any locally flat closed m-submanifold $L$

representing $\mu$ a pre-tangential map $i:(L, \tau_{L})\rightarrow(W, \tau_{W}-\nu)$ with the inclusion
map $i:L\rightarrow W$ is bordant to a pre-tangential map $f:(M, \tau_{M})\rightarrow(W, \tau_{W}-\nu)$ with
a simple homotopy equivalence if and only if

$\theta(W, \mu)=0$ .

In particular, if $(W, \mu)$ has a locally flat spine, then $\theta(W, \mu)=0$ .
PROOF OF THEOREM C. Suppose that $m=2n+1\geqq 5$ . We have already

defined $\theta(W, \mu)$ and seen that if $(W, \mu)$ has a locally flat spine, then $\theta(W, \mu)$

$=0$ . Suppose that $\theta(W, \mu)=0$ . By Lemma 3.3, we may take a locally flat
closed m-submanifold $L$ of $W$ representing $\mu$ such that $(W, L)$ is exterior
n-connected.

Since $\theta(W, \mu)=0$ , it follows that by Wall [18] one can attach to $L$ handles
of index $n+1$ making a pre-tangential map $i:(L, \tau_{L})\rightarrow(W, \tau_{W}-\nu)$ bordant to
a pre-tangential map $f:(M, \tau_{M})\rightarrow(W, \tau_{W}-\nu)$ with $f:M\rightarrow W$ a simple homo-
topy equivalence.

We have to see that Wall’s tangential surgery is equivalent to our admis-
sible abstract surgery defined in \S 4. For this, let $F:(D^{n+1}\times D^{n+1}, S^{n}\times D^{n+1})$



606 M. $KA^{\prime}\Gamma O$ and Y. MATSUMOTO

handle gives rise to an L-equivalence from $L$ and hence a bordism from
$i:(L, \tau_{L})\rightarrow(W, \tau_{W}-\nu)$ . Thus $F|S^{n}\times D^{n^{\llcorner}1}$ : $S^{n}\times D^{n^{\llcorner}1}\rightarrow L$ gives rise to tangential

., $D^{n^{\llcorner}1}$ is deter-
mined by the homotopy class of $F|S^{n}\times 0$ modulo an action of the kernel of
$\pi_{n}(PL_{n-\cdot 1})\sim\cdot\rightarrow\pi_{n}(PL)\sim$ as well as the admissible framing is. It follows that
$F|S^{n}\times D^{n\cdot\vdash 1}$ induces admissible surgery if and only if it induces tangential
surgery. Hence admissible abstract surgery and tangential surgery are equi-

valent. Thus Theorem 4.3 completes the proof of Theorem C.
PROOF OF EXAMPLE D. It is known that there is a compact parallelizable

l-connected 4-manifold $V$ in $S^{6}$ with a collar neighborhood such that index
of $V$ equals 8, $V$ is a homotopy type of a wedge of 2-spheres and $\partial V$ is a
3-dimensional homology 3-sphere. For example, if we take a Brieskorn
variety $V(3,5,2)$ defined by a complex algebraic equation

$Z_{0^{8}}+Z_{1}^{5}+Z_{2}^{2}=0$ ,

then the intersection of $V(3,5,2)$ with a small 5-sphere $S_{\epsilon}^{5}$ centered at the
origin with radius $\epsilon>0$ is a homology 3-sphere, which bounds such a 4-mani-
fold in $S_{\epsilon}^{5}$ , (see Milnor [9]). Let $K=V\cup 0*\partial V$ be a closed 4-manifold
obtained from $V$ by attaching a cone along the boundary $\partial V$ . Since $\partial V$ is
a homology 3-sphere, it follows that $K$ is a homology 4-manifold and hence
a Poincar\’e complex of dimension 4. Furthermore, $K$ is clearly l-connected.
We will see that $K$ is not of the homotopy type of a closed $(PL)$ 4-manifold.
Suppose that $K$ is homotopy equivalent to a closed $PL$ 4-manifold $L$ . Note that
since $K-\{0\}$ is $PL$ homeomorphic to a parallelizable manifold $V-\partial V$ , the second
Stiefel-Whitney class $w_{2}(K)$ of $K$, which may be defined by the dual of Spivak
normal fiber space, vanishes. By Rohlin’s theorem, a closed almost paralleli-
zable (or $w_{2}=0$) $(PL)$ 4-manifold must have index divisible by 16. Since $L$

is homotopy equivalent to $K$ and hence $w_{2}(L)=0$ , it follows that $L$ has index
8. This contradiction proves that $K$ is not of the homotopy type of a closed
$PL$ 4-manifold. On the other hand, $K$ can be embedded in $S^{6}$ . Indeed, we
have seen that $V$ is embedded in $S^{5}$ . But we may take the cone cap $O*\partial V$

from the center of a 6-ball $D^{6}$ bounding $S^{6}$ . Hence $K$ is embedded in $D^{6}$ and
hence $S^{6}$ . Let $N$ be a regular neighborhood of $K$ in $S^{6}$ . Then, since $N$ is
of the homotopy type of $K,$ $N$ is a l-connected Poincar\’e complex of dimen-
sion 4. If $N$ has a $(PL)$ spine, then $N$ and hence $K$ has the homotopy type

of a closed 4-manifold. This contradicts the assertion above. If $N$ has a
locally flat topological spine $L$ , then by Kirby [7] $L$ has a normal 2-disk
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bun
a
find a compact topological 5-manifold in $S^{6}$ bounded by $L$ . This implies that
index of $L$ equals $0$ . Since $L$ is homotopy equivalent to $K$, index of $L$ must
equalogical
spine, completing the proof.
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