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The purpose of this paper is to improve and generalize some results of
N. Th. Varopoulos [8]. In particular, we shall show that the union of two
Helson sets in a locally compact abelian group is a Helson set.

We begin with introducing some notations. Let $K$ be any non-empty
space, and let Fag $(K)$ be the free abelian (additive) group generated by $K$

with the discrete topology (cf. [3; p. 8]). For any positive integer $l\in Z^{+}$ ,

we denote

$K^{(l)}=\{\sum_{i=1}^{\iota}n_{i}x_{i} ; n_{i}\in Z, x_{i}\in K,\sum_{i=1}^{l}|n_{i}|\leqq l\}$ ,

which is a subset of Fag $(K)$ . Let also $F^{*}(K)$ be the multiplicative group
consisting of all complex-valued functions $f$ on $K$ such that $|f(x)|=1$ for all
$x\in K$. $F^{*}(K)$ is a metric abelian group under the metric

$d(f, g)=\sup_{x\in K}|f(x)-g(x)|$ $(f, g\in F^{*}(K))$ .

Then it is easy to see that every element $x$ of Fag $(K)$ defines a continuous
character of $F^{*}(K)$ by

$\langle f, x\rangle=\prod_{i=1}^{\iota}\{f(x_{i})\}^{n_{i}}$ $(f\in F^{*}(K))$ ,

where $n_{i}\in Z$ and $x_{i}\in K$ are such that $x=\sum_{i=1}^{t}n_{i}x_{i}$ . This fact allows us to

identify $F^{*}(K)$ with a subgroup of $F^{*}(Fag(K))$ .
Suppose now that $D=\{K_{j}\}_{1}^{N}$ be any finite partition of $K$ into pairwise

disjoint, non-empty subsets. We denote by $F_{D}^{*}=F_{D}^{*}(K)$ the closed subgroup
of $F^{*}(K)$ consisting of those functions of $F^{*}(K)$ that are constant on each
set $K_{j}(j=1,2, \cdots N)$ . It is trivial that $F_{D}^{*}$ is topologically isomorphic to
the N-dimensional torus $T^{N}=\{z;|z|=1\}^{N}$ . Let now $p$ be a given, continuous,
positive-definite function on $F_{D}^{*}$ , and let $\{x_{j}\in K_{j}\}_{1}^{N}$ be any choice of points.
We can identify the subgroup of Fag $(K)$

$G_{p}(\{x_{j}\}_{1}^{N})=$ $\{ \sum_{j=1}^{N}n_{j}x_{j} ; n_{j}\in Z, j=1,2, \cdots N\}$

with the dual of $F_{D}^{*}$ in a trivial way. It follows from the classical Bochner
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theorem [5] that there exists a non-negative measure $\lambda\in M(Fag(K))$ such
that

$\lambda[Fag(K)\backslash G_{p}(\{x_{j}\}_{1}^{N})]=0$

and

$p(f)=\int_{Fag(K)}\langle f, x\rangle d\lambda(x)$ $(f\in F_{D}^{*})$ .

We call any such measure $\lambda$ a representing measure of $p$ , which, of course,
depends on the choice $\{x_{j}\in K_{j}\}_{1}^{N}$ of points.

LEMMA 1. Let $H^{*}$ be a subgroup of $F^{*}(K)$ , and $p$ a continuous, positive-
definite function on $H^{*}$ . Then, for any $\epsilon>0$ , there exists a positive integer $1_{\epsilon}$

with the following property; if $D$ is a finite partition of $K$ such that $F_{D}^{*}\subset H^{*}$

and if $\lambda_{D}$ is a representing measure of $p_{D}$ ($=the$ restriction of $p$ to $F_{D}^{*}$), then
we have

$\lambda_{D}[Fag(K)\backslash K^{(t_{\epsilon})}]<\epsilon$ .
PROOF. The proof is essentially identical with that of Lemma 2.3 in [8],

and we omit the details.
THEOREM 1. Let $G$ be a locally compact abelian group, $K$ a compact sub-

set of $G$ , and $B^{*}(K)$ the closed subgroup of $F^{*}(K)$ consisting of all Borel func-
tions in $F^{*}(K)$ . Then, for every continuous, positive-definite function $p$ on
$B^{*}(K)$ , there exists a unique non-negative Radon measure $\mu\in M(G)$ such that

(i) $\mu[G\backslash G_{p}(K)]=0$ ,

and

(ii) $p(\gamma|_{K})=\int_{G}\gamma(x)d\mu(x)$ $(\gamma\in\hat{G})$ ,

where $\hat{G}$ denotes the dual of $G$ .
PROOF. The uniqueness of $\mu$ is trivial. Let $\mathcal{D}$ be the directed family

consisting of all finite partitions of $K$ into pairwise disjoint, non-empty, Borel
subsets. To each partition $D\in \mathcal{D}$ , we associate any representing measure
$\lambda_{D}\in M^{+}(Fag(K))$ of $p_{D}$ ($=the$ restriction of $p$ to $F_{D}^{*}$).

We now consider the identity mapping

$K\rightarrow K\subset G$ ,

and extend it to the natural group homomorphism

$\theta$ : Fag $(K)\rightarrow G_{p}(K)\subset G$ .
For each $D\in \mathcal{D}$ , let us define a discrete measure $\mu_{D}\in M(G)$ by setting

(1) $\mu_{D}(\{x\})=\lambda_{D}(\theta^{-1}(x))$ $(x\in G)$ .
Then we have
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(2) $\int_{G}\gamma(x)d\mu_{D}(x)=\int_{Fag(K)}\langle\gamma|_{K}, x\rangle d\lambda_{D}(x)$
$(\gamma\in\hat{G})$ ,

and

(3) $\mu_{D}\geqq 0;\Vert\mu_{D}\Vert=\Vert\lambda_{D}\Vert=p(1)$

for all $D\in \mathcal{D}$ . It also follows from (1) and Lemma 1 that, for each $\epsilon>0$,
there exists a positive integer $1_{\epsilon}$ such that

(4) $\mu_{D}[G\backslash K_{(l_{\epsilon})}]<\epsilon$ $(D\in \mathcal{D})$ ,

where
$K_{(1)}=K\cup(-K)$ ; $K_{(n)}=K_{(n- 1)}+K_{(1)}$ $(n=2,3, \cdots)$ .

We shall now prove that

(5) $p(\gamma|_{K})=\lim_{D\mathcal{D}}\int_{G}\gamma(x)d\mu_{D}(x)$ $(\gamma\in\hat{G})$ .

To do this, take any $\gamma\in\hat{G}$ and any $\epsilon>0$ . By Lemma 1, we can choose a
positive integer $l=l(\epsilon)$ so that

(6) $ 2\lambda_{D}[Fag(K)\backslash K^{(\iota)}]<\epsilon$ $(D\in \mathcal{D})$ .

Using the continuity of $p$ and the definition of the set $K^{(\iota)}$ , it is easy to find
a partition $D_{0}\in \mathcal{D}$ and an element $f_{0}\in F_{D_{0}}^{*}$ such that

(7)
$\max\{|p(\gamma|_{K})-p(f_{0})|,\sup_{x\in K^{(l)}}|\langle f_{0}, x\rangle-\langle\gamma|_{K}, x\rangle|\}<\epsilon$ .

Then, for all $D\in \mathcal{D}$ with $D\succ D_{0}$ , we have

$|p(\gamma|_{K})-\int_{G}\gamma(x)d\mu_{D}(x)|$

$\leqq|p(\gamma|_{K})-p(f_{0})|+|p_{D}(f_{0})-\int_{G}\gamma(x)d\mu_{D}(x)|$ ,

which together with (2), (3), (6), and (7) yields

$|p(\gamma|_{K})-\int_{G}\gamma(x)d\mu_{D}(x)|\leqq\epsilon+\int_{Fag(K)}|\langle f_{0}, x\rangle-\langle\gamma|_{K}, x\rangle|d\lambda_{D}(x)$

$\leqq\epsilon+\sup_{x\subset- K^{(l)}}|\langle f_{0}, x\rangle-\langle\gamma|_{K}, x\rangle|\cdot\Vert\lambda_{D}\Vert+2\lambda_{D}[Fag(K)\backslash K^{(t)}]$

$<(2+p(1))\epsilon$ .
Since $\epsilon>0$ was arbitrary, we obtain (5). But (3), (4), and (5) guarantee that
the net $\mu_{D}$ of measures converges to some measure $\mu\in M^{+}(G)$ in the weak-
star topology of $M(G)$ , and that $\mu$ satisfies (i) and (ii) in our theorem (cf. [4;
Chapter IV, \S 11 and \S 12]). This completes the proof.

THEOREM 2 (cf. [8; Theorem 2.1]). Let $G$ be a locally compact abelian
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group, $K$ a totally disconnected, compact subset of $G$ , and $C^{*}(K)$ the closed
subgroup of $F^{*}(K)$ consisting of all continuous functions in $F^{*}(K)$ . Then, for
every continuous, positive-definite function $p$ on $C^{*}(K)$ , there exists a unique
non-negative Radon measure $\mu\in M^{+}(G)$ such that

(i) $\mu[G\backslash G_{p}(K)]=0$ ,
and

(ii) $p(\gamma|_{K})=\int_{G}\gamma(x)d\mu(x)$ $(\gamma\in\hat{G})$ .

PROOF. If we use finite partitions of $K$ into clopen subsets (instead of
Borel subsets), then the proof of Theorem 1 is still valid in this case.

COROLLARY 2.1 (due to Varopoulos [7], and [8; Theorem 1.1]). Let $K$ be
a totally disconnected, compact space, and let $C^{*}(K)$ be as in Theorem 2. Then,
for every continuous character $\chi$ of $C^{*}(K)$ , there exists a unique element $x$ of
Fag $(K)$ such that

$\chi(f)=\langle f, x\rangle$ $(f\in C^{*}(K))$ .
PROOF. Let $G_{K}$ be the compact dual of $\hat{G}_{K}$ , the group $C^{*}(K)$ endowed

with the discrete topology. Then $K$ can be regarded as a compact subset of
$G_{K}$ such that

$C^{*}(K)=\{\gamma|_{K} ; \gamma\in\hat{G}_{K}\}$ .
Since $\chi$ is a character of $\hat{G}_{K}$ , it follows that there exists a point $x\in G_{K}$ such
that

(1) $\chi(\gamma|_{K})=\gamma(x)$ $(\gamma\in\hat{G}_{K})$ .
But, since $\chi$ is a continuous, positive-definite function on $C^{*}(K)$ , and since $K$

is totally disconnected, it follows from Theorem 2 that there exists a unique
measure $\mu\in M^{+}(G_{K})$ such that

(2) $\mu[G_{K}\backslash G_{p}(K)]=0$

and

(3) $\chi(\gamma|_{K})=\int_{G_{K}}\gamma(x)d\mu(x)$ $(\gamma\in\hat{G}_{K})$ .

Comparison of (1) and (3) implies that $\mu$ is a dirac measure at $x$, and then
(2) shows $x\in G_{p}(K)$ . Since $G_{p}(K)$ and Fag $(K)$ are algebraically isomorphic,
this yields the desired conclusion.

Let now $(\Omega, \mathcal{B}, \nu)$ be a finite (positive) measure space, and let $S^{*}(\Omega;\nu)$

be the topological group defined as in \S 3 of [8]. We characterize compact

subgroups of $S^{*}(\Omega;\nu)$ as follows.
THEOREM 3 (cf. [8; Proposition 3.3]). Let $G$ be a compact abelian group,

and let $h:G\rightarrow S^{*}(\Omega;\nu)$ be a continuous group homomorphism. Then there
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exists a unique (up to $\nu$ -null equivalence) measurable function $b:\Omega\rightarrow\hat{G}$ such
that

$(i)]iThe$ range of $b$ is countable;

(ii) $ h(x)=\langle b, x\rangle$ $(x\in G)$ .
Conversely, every measurable function $b:\Omega\rightarrow\hat{G}$ that satisfies (i) determines by
(ii) a continuous group homomorphism $h;G\rightarrow S^{*}(\Omega;\nu)$ .

PROOF. We first prove the uniqueness of $b$ . To do this, suppose that $b_{1}$

and $b_{2}$ satisfy (i) and (ii). Then we have two countable partitions of $\Omega$ :

(1) $\Omega=\cup\{b_{1}^{-1}(\gamma);\gamma\in L\}=\cup\{b_{2}^{-1}(\gamma);\gamma\in L\}$ ,

where $L$ is some countable subset of $\hat{G}$ . Take any $\gamma_{1}\in L$ and suppose that

$\nu[b_{1}^{-1}(\gamma_{1})\backslash b_{2}^{-1}(\gamma_{1})]>0$ .
Then we have by (1)

(2) $\nu[b_{1}^{-1}(\gamma_{1})\cap b_{2}^{-1}(\gamma_{2})]>0$

for some $\gamma_{2}\in L$ different from $\gamma_{1}$ . But (ii) implies that

$h(x)=\gamma_{j}(x)$ $a$ . $e$ . on $b_{J^{-1}}(\gamma_{j})$ $(j=1,2)$

for all $x\in G$ . Therefore (2) yields

$\gamma_{1}(x)=\gamma_{2}(x)$ $(x\in G)$ ,

that is, $\gamma_{1}=\gamma_{2}$ , a contradiction. Thus we have

$b_{1}^{-1}(\gamma_{1})\subset b_{2}^{-1}(\gamma_{1})$ $(\gamma_{1}\in L)$

up to $\nu$ -null equivalence, which, combined with (1), implies $b_{1}=b_{2}a$ . $e$ . on $\Omega$.
This proves the uniqueness of $b$ .

Suppose now that $h$ is a continuous group homomorphism from $G$ to
$S^{*}(\Omega;\nu)$ . We take any measurable set $E\in \mathcal{B}$ , and observe that the function

$\chi\rightarrow\int_{E}(h(x))(\omega)d\nu(\omega)$

is a continuous positive-definite function on $G$ . It follows from Bochner’s
theorem [5] that we have

(3) $\int_{E}h(x)d\nu=\sum_{\gamma\in\hat{G}}\alpha_{\gamma}(E)\gamma(x)$
$(x\in G)$ ,

where

(4) $\alpha_{\gamma}(E)\geqq 0$

$(\gamma\in\hat{G});\sum_{\gamma^{-\hat{G}}}\alpha_{\gamma}(E)=\nu(E)$
.

It is also easy to see that, for every $\gamma\in\hat{G},$ $\alpha_{\gamma}(\cdot)$ is a countably additive set-
function on $\mathcal{B}$ . Let us put
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$L=\{\gamma\in 6;\alpha_{\gamma}(\Omega)\neq 0\}$ ,

which is a countable subset of $\hat{G}$ by (4). Radon-Nikodym’s theorem [3] and
(4) assure that there exist measurable functions $\beta_{\gamma}$ on $\Omega(\gamma\in L)$ such that

(5) $\beta_{\gamma}(\omega)\geqq 0$
$(\omega\in\Omega, \gamma\in L);\sum_{\gamma\in L}\beta_{\gamma}(\omega)=1$

$(\omega\in\Omega)$

and

(6) $\alpha_{\gamma}(E)=\int_{E}\beta_{\gamma}(\omega)d\nu(\omega)$ $(\gamma\in L, E\in \mathcal{B})$ .
Substituting (6) into (3), and using (5), we see

$\int_{E}h(x)d\nu=\int_{E}\sum_{\gamma\in L}\beta_{\gamma}(\omega)\gamma(x)d\nu(\omega)$

for all $E\in \mathcal{B}$ and all $x\in G$ , and hence

(7) $(h(x))(\omega)=\sum_{\gamma\in L}\beta_{\gamma}(\omega)\gamma(x)$
$(a. a. \omega\in\Omega)$

for all $x\in G$ . Therefore, the fact that $|h(x)|=1(a. e.)$ for all $x\in G$ and
Fubini’s theorem give

$\nu(E)=\int_{G}dx\int_{E}|\sum_{\gamma\in L}\beta_{\gamma}(\omega)\gamma(x)|^{2}d\nu(\omega)$

$=\int_{E}d\nu(\omega)\int_{a}|\sum_{\gamma\in L}\beta_{\gamma}(\omega)\gamma(x)|^{2}dx$ $(E\in \mathcal{B})$ ,

where $dx$ denotes the normalized Haar measure on $G$ . Thus, by Plancherel’s
theorem [5], we have

$\nu(E)=\int_{E}\sum_{\gamma\in L}\{\beta_{\gamma}(\omega)\}^{2}d\nu(\omega)$ $(E\in \mathcal{B})$ ,

and hence
$\sum_{\gamma\in L}\{\beta_{\gamma}(\omega)\}^{2}=1$

$(a. a. \omega\in\Omega)$ ,

which, combined with (5), implies

$\beta_{\gamma}(\omega)=0$ or 1 $(a. a. \omega\in\Omega, \gamma\in L)$ .
Changing the values of $\beta_{\gamma}$ on a $\nu$ -null set so that

$\sum_{\gamma\subset^{-L}}\beta_{\gamma}(\omega)=\sum_{\gamma--L}\{\beta_{\gamma}(\omega)\}^{2}=1$

$(\omega\in\Omega)$

we now define a measurable function $b:\Omega\rightarrow\hat{G}$ by setting

$ b(\omega)=\gamma$ $(\omega\in\beta_{r^{-1}}(1);\gamma\in L)$ .
Then (7) implies (ii).

Finally, the converse statement in our theorem is trivial, and this com-
pletes the proof.
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Let us now suppose that $G$ is a locally compact abelian group, and that
$K$ is a compact $H_{1}$ subset of $G$ . We fix two non-negative measures $\mu,$ $\nu\in M^{+}(G)$

such that

(I) $\nu(K)=0=\mu(G\backslash K)$ ,

and construct $\Theta(K;\mu, \nu)$ as in \S 5 of [8], which is a weakly closed subset of
$L^{\infty}(G;\nu)$ . Suppose, in addition, that

(II) $\Theta(K;\mu, \nu)=\{1\}$ .

Then there exists a unique continuous group homomorphism

$\Gamma:S^{*}(K;\mu)\rightarrow S^{*}(G ; \nu)$

such that

(III) $\Gamma(c\gamma|_{K})=c\gamma$ $(c\in T, \gamma\in\hat{G})$ .
(See [8; Proposition 4.3].)

LEMMA 2 (cf. [8; Proposition 5.2]). Under the hypothesis (II), we have

$\nu[G\backslash G_{p}(K)]=0$ .
PROOF. Let $B^{*}(K)$ be the closed subgroup of $F^{*}(K)$ as in Theorem 1.

If we define

$ p(f)=\int_{G}\Gamma(f)d\nu$ $(f\in B^{*}(K))$ ,

then it is trivial that $p$ is a continuous, positive-definite function on $B^{*}(K)$ .
It follows from Theorem 1 that there exists a unique measure $\lambda\in M^{+}(G)$

such that
$\lambda[G\backslash G_{p}(K)]=0$

and
$\int_{G}\Gamma(\gamma|_{K})d\nu=\int_{G}\gamma d\lambda$ $(\gamma\in\hat{G})$ .

Thus (II) gives the desired conclusion.
Let us now regard $\Gamma$ as a continuous group homomorphism from $B^{*}(K)$

to $S^{*}(G;\nu)$ in a natural way, and denote by $\mathcal{D}$ the directed family consisting
of all finite partitions of $K$ into pairwise disjoint, non-empty, Borel subsets.
For each $D=\{K_{j}\}_{1}^{N}\in \mathcal{D},$ $F_{D^{*}}=F_{D^{*}}(K)$ is a compact abelian group, and hence
Theorem 3 assures that there exists a Borel function $b_{D}$ : $G\rightarrow(F_{D^{*}})^{\wedge}$ such that

$\Gamma(f)=\langle b_{D}, f\rangle$ $(f\in F_{D^{*}})$ .
Choosing any points $\{x_{j}\in K_{j}\}_{1}^{N}$ , we identify Fag $(\{x_{j}\}_{1}^{N})$ with $(F_{D^{*}})^{\wedge}$ in a
trivial way, and set

$E_{D}=b_{D^{-1}}(\{x_{1}, x_{2}, x_{N}\})\subset G$ .
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LEMMA 3 (cf. [8; Lemma 5.1]). Let $K,$ $\mu$ , and $\iota$) satisfy (I) and (II). Then,

for any $\epsilon>0$ , there exists $D\in \mathcal{D}$ such that $\nu(E_{D})<\epsilon$ .
PROOF. For each $D\in \mathcal{D}$ , it is easy to find a non-negative discrete mea-

sure $\lambda_{D}\in M(K)$ such that

(1) $\int_{G}\Gamma(f)\xi_{D}d\nu=\int_{K}f(x)d\lambda_{D}(x)$ $(f\in F_{D^{*}})$ ,

where $\xi_{D}$ denotes the characteristic function of $E_{D}$ . In particular, we have

(2) $\Vert\lambda_{D}\Vert=\lambda_{D}(K)=\nu(E_{D})\leqq\nu(G)$ .

Let $\xi_{D_{j}}$ be any subnet of the net $\xi_{D}$ that converges to some $\varphi\in L^{\infty}(G;\nu)$ in
the weak-star topology of $L^{\infty}$ . Then, by (III), we have

(3) iim $\int_{K}\gamma d\lambda_{D_{j}}=\lim_{j}\int_{G}\gamma\xi_{D_{j}}d\nu=\int_{G}\gamma\varphi d\nu$ $(\gamma\in\hat{G})$

(see the proof of Theorem 1). This combined with (2) implies that the net
$\lambda_{D_{j}}$ converges to some measure $\lambda\in M(K)$ in the weak-star topology of $M(K)$

such that

$\int_{K}\gamma d\lambda=\int_{G}\gamma\varphi d\nu$ $(\gamma\in\hat{G})$ .
But then we have $\lambda(K)=0$ by (I). It follows from (1) that

$\lim_{j}\nu(E_{D_{j}})=\lim_{j}\lambda_{D_{j}}(K)=\lambda(K)=0$ ,

which completes the proof.
LEMMA 4 (cf. [1] and [8; Lemma 5.2]). Let $H$ be a compact abelian group, $X$

a finite independent (over $Z$) subset of $H$, and $Y$ any closed subset of $H$ such that
1

$ X\cap Y=\phi$ . Then, for any $\epsilon$ with $0<\epsilon<-2^{-}$’ there exists a function $P\in A(H)$

such that
$\Vert P\Vert_{A}<\epsilon^{-1}$ ; $0\leqq P(t)\leqq 1$ $(t\in H)$ ;

$P(x)=1$ $(x\in X)$ ; $P(y)\leqq\epsilon^{2}$ $(y\in Y)$ .
PROOF. Without loss of generality, we may assume that $X\cup(-X)\subset Y^{c}$

1and $ X\cap(-X)=\phi$ (cf. [2]). Let $X=\{x_{j}\}_{1}^{N}$ , and let $0<\epsilon<-2^{-}$ be given. For
each $l=1,2,$ $\cdots$ $N$, we denote

$(l)=$ $\{ \sum_{j=1}^{N}a_{j}x_{j} ; a_{j}=0, \pm 1,\sum_{j=1}^{N}|a_{j}|=l\}\subset H$ .
Letting $w=\pm 1$ , we define

(1) $\mu_{w}=\delta_{0}+\sum_{\iota=1}^{N}(\epsilon w)^{t}\sum_{\llcorner x-(t)}\delta_{x}\in M(H)$
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where, $\delta_{x}$ denotes the dirac measure at a point $x\in H$. It is then easy to see
that

(2) $\hat{\mu}_{w}(\gamma)=\prod_{j=1}^{N}\{1+2\epsilon w{\rm Re}\gamma(x_{j})\}>0$ $(\gamma\in\hat{H};w=\pm 1)$ .

Let us now choose any positive-definite function $f$ in $A(H)$ such that $0\leqq f(t)$

$\leqq f(O)=1(t\in H)$ and its support is sufficiently near to $O\in H$ ; define

$2\epsilon P=\sum_{w}w\mu_{w}*f\in A(H)$ .
We then have by (2)

$2\epsilon\Vert P\Vert_{A}=\Vert(\sum_{w}w\hat{\mu}_{w})\cdot f\Vert_{L^{1}(\hat{H})}<\sum_{w}\Vert\mu\wedge w\hat{f}\Vert_{L^{1}(\hat{H})}=\sum_{w}(\mu_{w}*f)(0)=2$ ,

the last equality following from the facts that $f(O)=1$ and $\mu_{w}(\{0\})=1(w=\pm 1)$ ,

and that the support of $f$ is sufficiently near to $O\in H$. We have also by (1)

$2\epsilon P(t)=2\sum_{\iota}’\epsilon^{l}\sum_{x\in(t)}f(t-x)$ $(t\in H)$ ,

where $\sum_{\iota}^{\prime}$ denotes the sum over the odd integers $l$ with $1\leqq l\leqq N$. Therefore

it is easy to check that $P$ has all the required properties. This completes
the proof.

LEMMA 5 (cf. [8; Proposition 5.1]). Let $\epsilon$ and $\eta$ be two given real numbers
such that $0<\epsilon<1/2$ and $0<\eta<1$ . Then, under the hypotheses (I) and (II), $we$

can find a trigonometric polynomial $Q$ on $G$ such that

(i) $\Vert Q\Vert_{B}<\epsilon^{-1}$ , and $0\leqq Q(t)\leqq 1$ $(t\in G)$ ;

(ii) $\mu[x\in K;|Q(x)-1|\geqq\eta]<\eta$ ;

(iii) $\nu[t\in G;Q(t)\geqq(1+\eta)\epsilon^{2}]<\eta$ .
PROOF. Use Lemma 4. (See the proof of Proposition 5.1 in [8].)

Using Lemma 2 and Lemma 5, we can prove the following Theorem 4,
which we state without proof. The proof is almost identical with those of
Theorem 1 and Theorem 2 in [8].

THEOREM 4 (cf. [8; Theorem 1 and Theorem 2]). Let $G$ be a locally com-
pact abelian group, $K$ a compact $H_{1}$ subset of $G$ , and $E$ a closed subset of $G$

such that
$ K\cap E=\phi$ (resp. $ G_{p}(K)\cap E=\phi$).

Then, for any real numbers $\epsilon,$ $\eta\in(0$ , $21$ ), we can find a function $f$ in $A(G)$

such that:

(i) $\Vert f\Vert_{A}<\epsilon^{-1}$ (resp. $\Vert f\Vert_{A}<1$);

(ii) $|f(x)-1|<\eta$ , $x\in K$ (resp. $|f(x)-1|<\epsilon$ , $x\in K$);



Union of two Helson sets 645

(iii) $|f(y)|<(1+\eta)\epsilon^{2}$ , $y\in E$ (resp. $|f(y)|<\epsilon,$ $y\in E$).

This theorem can be improved as follows.
THEOREM 5 (cf. [8; Theorem 4]). Let $G$ be a locally compact abelian

group, $K$ a compact $H_{\alpha}$ subset of $G(0<\alpha\leqq 1)$ , and $E$ a closed subset of $G$

such that
$ K\cap E=\phi$ (resp. $ G_{p}(K)\cap E=\phi$).

Then, for any real numbers $\epsilon,$ $\eta\in(0,$ $2^{-)}1$ we can find a function $f$ in $A(G)$

such that:

(i) $\Vert f\Vert_{A}<1/(\alpha^{2}\epsilon)$ (resp. $\Vert f\Vert_{A}<1/\alpha^{2}$);

(ii) $|f(x)-1|<\eta$ , $x\in K$ (resp. $|f(x)-1|<\epsilon,$ $x\in K$);

(iii) $|f(y)|<(1+\eta)\epsilon^{2}/\alpha^{2}$ , $y\in E$ (resp. $|f(y)|<\epsilon,$ $y\in E$).

PROOF. We give only the proof in the case $ K_{\cap}E=\phi$ . Let $\epsilon,$ $\eta\in(0,$ $2^{-)}1$

be given, and let $c*=C^{*}(K)$ be as in Theorem 2. We set

$T(h)=T$ $(h\in C^{*})$ , and $T^{c*}=\prod_{h\overline{\not\in}C^{*}}T(h)$ .
Then, it is trivial that the set

$\tilde{K}=\{(x, \langle h(x)\rangle_{\hslash\in C}.)\in G\times T’’ : x\in K\}$

is a Kronecker subset of $G\times T^{c*}$ homeomorphic to $K$ (cf. [6; Theorem 2]).

lt follows from Theorem 4 that there exists a function $\varphi\in A(G\times T^{C}‘‘)$ such
that

$\Vert\varphi\Vert_{A}<\epsilon^{-1}$ ; $|\varphi(\tilde{x})-1|<\eta^{8}$ $(\tilde{x}\in\tilde{K})$ ;

$|\varphi(y, z)|<(1+\eta^{3})\epsilon^{2}$ $(y\in E, z\in T^{c*})$ .
For each subset $L$ of $c*$ , let $m_{L}$ be the normalized Haar measure of the
compact subgroup

$\{O_{G}\}\times\prod_{\iota_{\subset L}}\{O_{\iota}\}\times\prod_{h\subset L^{c}}T(h)\subset G\times T^{c*}$

and set $\varphi_{L}=\varphi*m_{L}$ , which we will regard as a function in $A(G\times T^{L})$ . Setting
$\psi=\varphi_{L}$ for some sufficiently large finite subset $L=\{h_{j}\}_{1}^{N}$ of $c*$ , we see

(1) $\Vert\psi\Vert_{A}\leqq\Vert\varphi\Vert_{A}<\epsilon^{-1}$ ;

(2) $|\psi(x, h_{1}(x),$ $\cdots$ , $h_{N}(x))-1|<\eta^{2}$ $(x\in K)$ ;

(3) $|\psi(y, z)|<(1+\eta^{2})\epsilon^{2}$ $(y\in E, z\in T^{L}=T^{N})$ .
Note then that there exist $g_{n}\in L^{1}(\hat{G}),$ $n\in Z^{N}$ , such that

(4)
$\sum_{n\in Z^{N}}\Vert g_{n}\Vert_{1}=\Vert\psi\Vert_{A}<\epsilon^{-1}$
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and

\langle 5) $\psi(t, z)=\sum_{n\in z^{N}}\int_{\hat{G}}g_{n}(\gamma)\gamma(t)d\gamma\cdot\langle n, z\rangle$ $(t\in G, z\in T^{N})$ ,

where

$\langle n, z\rangle=\prod_{j=1}^{N}z_{j^{n_{j}}}$ $(n=(n_{j})_{1}^{N}\in Z^{N}, z=(z_{j})_{1}^{N}\in T^{N})$ .

For given $\delta>0$ , there exist $f_{n}\in A(G),$ $n\in Z^{N}$ , such that

(6) $\Vert f_{n}\Vert_{A}<(1+\delta)/\alpha$ , and $f_{n}(x)=\prod_{j=1}^{N}\{h_{j}(x)\}^{n_{j}}$ $(n\in Z^{N}, x\in K)$ ,

since $K$ is an $H_{\alpha}$ subset of $G$ . We take any finite subset $M_{0}$ of $Z^{N}$ so that

\langle 7)
$\sum_{n\in z^{N}\backslash M_{0}}\Vert g_{n}\Vert_{1}<\delta$

.

There is a finite subset $M$ of $Z^{N}$ such that

(8) $($Card $ M)^{-1}\sum_{m\in M}\xi_{M}(n-m)>1-\delta$ $(n\in M_{0})$ ,

where $\xi_{M}$ denotes the characteristic function of $M$ ; set

(9) $\psi_{n}(t)=(CardM)^{-1}\sum_{m\in^{-M}}\xi_{M}(n-m)f_{n-m}(t)f_{m}(t)$ $(n\in Z^{N}, t\in G)$ .
Then we have

(10) $\Vert\psi_{n}\Vert_{A}<(1+\delta)^{2}/\alpha^{2}$ $(n\in Z^{N})$

by (6), and

(11) $|f_{n}(x)-\psi_{n}(x)|=|f_{n}(x)|\{1-(CardM)^{-1}\sum_{m\in M}\xi_{M}(n-m)\}<\delta$

$(n\in M_{0}, x\in K)$

by (6) and (8). Furthermore, we see from (6) and (9) that there exist me” $\cdot$

sures $\mu_{t}\in M(T^{N}),$ $t\in G$ , such that

(12) $\Vert\mu_{t}\Vert<(1+\delta)^{2}/\alpha^{2}$ and $\psi_{n}(t)=\int_{T^{N}}\langle n, z\rangle d\mu_{t}(z)$

$(t\in G, n\in Z^{N})$ .
We set

(13) $f(t)=\sum_{n\in z^{N}}\int_{\hat{G}}g_{n}(\gamma)\gamma(t)d\gamma\cdot\psi_{n}(t)$ $(t\in G)$ ,

and prove that $f$ has all the required properties if $\delta$ is sufficiently small. In
fact, we have

$(i)^{\prime}$

$\Vert f\Vert_{A}\leqq\sum_{n\in Z^{N}}\Vert g_{n}\Vert_{1}\cdot\Vert\psi_{n}\Vert_{A}\leqq\Vert\psi\Vert_{A}(1+\delta)^{2}/\alpha^{2}$

by (4) and (10). But, if $x\in K$, we also have by (2), (5), (6), and (13)
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$|f(x)-1|<|f(x)-\psi(x, h_{1}(x),$ $\cdots$ $h_{N}(x))|+\eta^{2}$

$\leqq\sum_{n\in Z^{N}}\Vert g_{n}\Vert_{1}\cdot|\psi_{n}(x)-f_{n}(x)|+\eta^{2}$

$=\sum_{n\in M_{0}}+\sum_{n\in z_{\backslash }^{N\backslash }M_{0}}+\eta^{2}$

which, combined with (6), (7), (9), and (11), yields

(ii)i $|f(x)-1|<\delta(\Vert\psi\Vert_{A}+2)+\eta^{2}$ $(x\in K)$ .
It also follows from (5), (12), and (13) that

$f(y)=\sum_{n\in Z^{N}}(\int_{\hat{G}}g_{n}(\gamma)\gamma(y)d\gamma)(\int_{\tau^{N}}\langle n, z\rangle d\mu_{y}(z))$

$=\int_{\tau^{N}}\psi(y, z)d\mu_{y}(z)$ $(y\in E)$ .

Therefore, by (3) and (12), we have

$(iii)^{\prime}$ $|f(y)|\leqq(1+\eta^{2})\epsilon^{2}\cdot(1+\delta)^{2}/\alpha^{2}$

This establishes our theorem.
COROLLARY 5.1. (a) The union of two Helson sets in a locally compact

abelian group is a Helson set. (b) The union of two SH-sets in a locally compact
abelian group is an SH-set.

PROOF. Statement (a) is an easy consequence of Theorem 5, and State-
ment (b) follows from (a) and [6; Theorem 4].

REMARKS (Added March 26, 1971). (a) By examining our arguments in
detail, we have the following: The function $f$ in Theorem 4 can be sc
chosen as to be

(0) $0\leqq f(t)\leqq 1$ $(t\in G)$ .
Furthermore, Condition (ii) in Theorem 4 and 5 (in the -case $ K_{\cap}E=\phi$) can
be strengthened to be

(ii)i $f(x)=1$ $(x\in K)$ .

(b) By a different method, F. Lust [9] had our Theorem 5 in the case
that $G$ is compact, although his result is slightly weaker than ours. J. D.
Stegemen [10] had also our Theorem 4 under a certain additional assumption.

Tokyo Metropolitan University
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