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Introduction.

S. Kobayashi proved [4] that a connected compact homogeneous Rieman-
nian manifold of dimension $n$ is isometric to the sphere if it is isometrically
imbedded in the Euclidean space $E^{n+1}$ of dimension $n+1$ . T. Nagano and the
present author proved [5] that a connected homogeneous Riemannian mpni-
fold $M$ of dimension $n$ is isometric to the Riemannian product of a sphere
and a Euclidean space if $M$ is isometrically imbedded in the Euclidean space
$E^{n+1}$ and the rank of the second fundamental form (which is called the type
number in this paper) is not equal to 2 at some point.

One of the purposes of the present paper is to consider the case which
was not treated in [5], that is, the case of the type number being equal to 2.

In this paper we consider the isometric immersion of a connected homo-
geneous Riemannian manifold of dimension $n$ not only in a Euclidean space
$E^{n+1}$ , but also in a hyperbolic space $H^{n+1}$ and we determine all the types of $M$.

Let $S^{m}(K)$ denote an m-dimensional sphere of radius $1/K$ for a positive
constant $K$ and $H^{m}(K)$ denote an m-dimensional hyperbolic space of negative
curvature $K$ for a negative constant $K$.

The underlying manifold of $H^{m}(K)$ is that of a Euclidean space $E^{m}$ and
the Riemannian metric of $H^{m}(K)$ is given by

$ds^{2}=\sum_{\dot{t}}(dx_{i})^{2}+\frac{K}{1-K\sum_{i}(x_{i})^{2}}(\sum_{i}x_{i}dx_{i})^{2}$ .

The main theorems are the following:
THEOREM A. If a connected homogeneous Riemannian manifold $M$ of

dimension $n$ admits an isometric immersion $f$ in $a$ Enclidean space $E^{n+1},$ $M$ is
isometric to $S^{m}\times E^{n-m}(0\leqq m\leqq n)$ . If the type number of $f$ is greater than 1
at a point, $f$ is an imbedding.

THEOREM B. If a connected homogeneous Riemannian manifold $M$ of
dimension $n$ admits an isometric immersion $f$ in a hyperbolic space $H^{n+1}(K)$ of
curvature $K(<0)$ , the type number $t(p)$ of $f$ is either constantly equal to $n$ or
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$t(p)\leqq 1$ at each point $p$ of $M$ and we have the following:
I) If $t(p)\leqq 1,$ $M$ is isometric to $H^{n}(K)$ .

II) If $t(p)=n$ and the immersion is totally umbilical, $f$ is an $imbeddin_{\mathscr{Q}}$

and $M$ is isometric to $S^{n}(K_{1})$ with $K_{1}>0$ or $H^{n}(K_{1})$ with $0\geqq K_{1}>K$, where $H^{n}(0)$

$=E^{n}$ .
III) If $t(p)=n$ and the immersion is not totally umbilical, the immersed

hypersurface $f(M)$ is isometric to $S^{m}(K_{1})\times H^{n- m}(K_{2})(0<m<n)$ , where $K_{1}$ and
1 1 1

$K_{2}$ satisfy the relation $--+-K_{1}K_{2}^{-}=-K^{-}$ If $m\neq 1,$ $f$ is an imbedding.

In \S 1, we summarize the $f$ undamental formulas and theorems in the theory
of hypersurfaces in a space of constant curvature for later use. Theorem 1.3
suggests us that it is convenient to devide the proofs of the main theorems
into three cases according to the type number of the immersion; in the first
case the type number is greater than 2, in the second case it is equal to 2,
and in the last case it is smaller than 2.

The proofs of the main theorems are given in \S \S $2\sim 4$ parallely.
\S 2 is the first case. In this case the universal covering manifold $\tilde{M}$ of

$M$ is, roughly speaking, a Riemannian product of two manifolds of constant
curvature and $\tilde{M}$ has a natural imbedding $f_{0}$ into $H^{n+1}(K)(K\leqq 0)$ and by
Theorem 1.3 we see that $f_{0}$ differs with $ f\circ\varphi$ in an isometry of $ H^{n+1}(K)(\varphi$ is
a covering map). So we can conclude that $f$ is an imbedding and $\tilde{M}=M$ .

In \S 3 we consider the second case. At first we prove that in a hyper-
bolic space there exist no homogeneous hypersurface whose type number is
equal to 2 (Lemma 3.5). In a Euclidean space we see that $M$ has the involu-
tive distributions $D_{1}$ and $D_{2}$ and the integral manifolds of $D_{1}$ and $D_{2}$ are
orthogonal with each other. The integral manifolds of $D_{2}$ are contained in
parallel planes of dimension 3 and isometric to $S^{2}$ and those of $D_{1}$ are the
parallel planes of dimension $n-2$ .

\S 4 is the case of the type number being smaller than 2. In this case, $M$

is a space of constant curvature with the same curvature as the ambient
space, if the ambient space is $H^{n+1}(K)(K<0)$ .

\S 1. Preliminaries.

Throughout this paper, we denote by $M$ a connected Riemannian mani-
fold of dimension $n(n>2)$ and by $F(M)$ the bundle of the orthogonal frames
of M. $F(M)$ is a principal fibre bundle over $M$ with group $O(n)$ . The pro-
jection of $F(M)$ onto $M$ is denoted by $\pi$ . The right translation of $F(M)$ by
$a=(a_{ij})^{*)}\in O(n)$ is denoted by $R_{a}$ ; for a frame $u=(p;e_{1}, \cdots , e_{n})$ at $p\in M$,

$*)$ Throughout this paper, the indices $i,$ $i,$ $k,$ $1$ run over the range 1, $\cdot$ .. , $n$ and the
indices $A,$ $B$ run over the range 1, $\cdot$ .. , $n+1$ .
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$R_{a}u=ua$ is a frame $(p;\sum_{t}a_{i1}e_{i}, \cdots , \sum_{i}a_{in}e_{i})$ at $p\in M$.
The canonical forms $\omega_{1},$

$\cdots$ , $\omega_{n}$ of $F(M)$ are the linear differential forms
on $F(M)$ which are defined by the following equations:

(1.1) $d\pi(X)=\sum_{i}\omega_{t}(X)e_{i}$

where $X$ is a tangent vector to $F(M)$ at $u=(p;e_{i}, \cdots , e_{n})$ and $ d\pi$ is a differ-
ential map of $\pi$ .

The Riemannian connection forms (or simply connection forms) $\omega_{ij}$ on
$F(M)$ are the linear differential forms on $F(M)$ which are uniquely deter-
mined by the following conditions:

(1.2) $\omega_{ij}+\omega_{ji}=0$ and $d\omega_{i}+\sum_{J}\omega_{ij}\Lambda\omega_{j}=0$ .

The curvature forms $\Omega_{ij}$ of the connection are given by

(1.3) $\Omega_{ij}=d\omega_{ij}+\sum_{k}\omega_{ik}\wedge\omega_{kj}$

Let $I(M)$ denote the group of all isometries of $M$ and $G=I_{0}(M)$ the
identity component of $I(M)$ . $I(M)$ acts on $F(M)$ in a natural manner: for
$u=$ $(p, e_{i}, \cdots , e_{n})\in F(M)$ and $g\in I(M),$ $g(u)$ is, by definition, a frame $(g(p)$ ,
$dg(e_{i})$ , $\cdot$ .. , $dg(e_{n}))$ at a point $g(p)$ . Then $g\in I(M)$ commutes with the projec-
tion and the right translation $R_{a}(a\in O(n))$ :

(1.4) $\pi\circ g=go\pi$ and $g\circ R_{a}=R_{a}\circ g$ .
It is easily seen that the action of $I(M)$ leaves the differential forms $\omega_{i},$ $\omega_{ij}$ ,
$\Omega_{ij}$ invariant: for $g\in I(M)$ we have

(1.5) $g^{*}\omega_{i}=\omega_{i}$ , $g^{*}\omega_{ij}=\omega_{ij}$ , and $g^{*}\Omega_{ij}=\Omega_{ij}$ .
If $I(M)$ acts on $M$ transitively (then $G=I_{0}(M)$ acts also transitively on

$M),$ $M$ is said to be a homogeneous Riemannian manifold. If $M$ is assumed
to be homogeneous, $M$ is identified with the factor space $G/H$ of $G$ by the
isotropy group $H$ at a fixed point $0\in M$, and $G$ is considered as a principal
fibre bundle over $M$ with group $H$. If we fix a frame $u_{0}$ at $0$ , the orbit $G(u_{0})$

of $u_{0}$ under the action of $G$ on $F(M)$ is a subbundle of $F(M)$ which is iso-
morphic to the bundle $G$ over $M=G/H$. If we identify $G$ with $G(u_{0})$ by this
isomorphism, the restriction of the differential forms $\omega_{i},$ $\omega_{ij}$ and $\Omega_{ij}$ to $G$

are the left-invariant differential forms on $G$ .
Let $V$ denote, throughout this paper, one of $S^{n+1}(K),$ $E^{n+1}$ and $H^{n+1}(K)$ .

Let $F(V)$ (resp. $F_{0}(V)$) denote the bundle of the frames (resp. oriented frames)
of $V$ and the differential forms $\theta_{A},$ $\theta_{AB}$ and $\Theta_{AB}$ denote the canonical forms,
the connection forms and the curvature forms respectively, then in the case
of the manifold of constant curvature $K$ the curvature forms $\Theta_{AB}$ are
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written as
(1.6) $\Theta_{AB}=K\theta_{A}\wedge\theta_{B}$ .

Fixing a frame $v_{0}\in F(V)$ , the group $I(V)$ of all isometries of $V$ can be
identified with $F(V)$ and the identity component $I_{0}(V)$ is identified with $F_{0}(V)$

if $v_{0}\in F_{0}(V)$ .
Let $f:M\rightarrow V$ be an isometric immersion of $M$ into $V,$ $f$ induces a bundle

isomorphism $\tilde{f}$ of $F(M)$ into $F_{0}(V)$ . For a frame $u=(p;e_{1}, \cdot.., e_{n})\in F(M)$ ,
there exists a unique tangent vector $e_{n+1}$ to $F_{0}(V)$ at $f(p)$ such that $(f(p)$ ,
$df(e_{1})$ , $\cdot$ .. , $df(e_{n}),$ $e_{n+1}$) is a frame in $F_{0}(V)$ . $\tilde{f}(u)$ is, by definition, this frame.
$f$ satisfies the following:

(1.7) $\pi\circ f=\tilde{f}\circ\pi$ $f\circ R_{a}=R_{\sigma(a)}\circ f$ ,

where $\sigma$ is an isomorphism of $O(n)$ into $SO(n+1)$ defined by

(1.8) $\sigma(a)=\left(\begin{array}{ll}a & 0\\0 & deta\end{array}\right)$ for $a\in O(n)$ .

Also $f$ gives the following relations between the canonical forms on $F(M)$

and on $F_{0}(V)$ and also between the connection forms:

(1.9) $f*\theta_{i}=\omega_{i}$ , $f^{*}\theta_{n+1}=0$ , $f*\theta_{ij}=\omega_{ij}$ .
Thus $f*\theta_{A}$ and $f*\theta_{ij}$ do not depend on the immersion $f$, but the induced forms
$f*\theta_{n+1i}=-f*\theta_{in+1}$ relate closely to the immersion.

THEOREM 1.1. Let $f$ and $f^{\prime}$ be two isometric immersions of $M$ into V. If
$f*\theta_{n+1i}=\pm\tilde{f}^{\prime*}\theta_{n+1i}$ , there exists a unique isometry $g$ of $V$ such that go $f=f^{\prime}$ .

PROOF. Let $a_{0}$ denote an element of $O(n+1)$ such that

$a_{0}=\left(\begin{array}{lll}1 & 0 & \\0 & 1 & \epsilon\end{array}\right)$

where $\epsilon$ is equal to 1 or $-1$ according as $\tilde{f}^{*}\theta_{n+1i}=\tilde{f}^{\prime*}\theta_{n+1i}$ or $\tilde{f}^{*}\theta_{n+1i}=-\tilde{f}^{\gamma*}\theta_{n+1i}$ .
Identifying $F(V)$ with $I(V)$ there exists a map $\eta$ : $F(M)\rightarrow I(V)$ such that

$f^{\prime}(u)=\eta(u)f(u)a_{0}$ for $u\in F(M)$ .
For an arbitrary tangent vector $X$ to $F(M)$ at $u$ , we have

$d\tilde{f}^{\prime}(X)=dL_{\eta(u)}dR_{a_{0}}d\tilde{f}(X)+Y$ ,

where $Y=dR_{f(u)a_{0}}^{\sim}d\eta(X)$ and $L_{\eta Cu)}$ (resp. $R_{f}^{\sim_{(u)a_{0}}}$) is the left translation by $\eta(u)$

(resp. right translation by $\tilde{f}(u)a_{0}$) on $I(V)$ . Using (1.9) and the left-invariance
of $\theta_{A},$ $\theta_{AB}$ , we have

$\theta_{i}(Y)=\theta_{i}(d\tilde{f}^{\prime}(X))-\theta_{i}(dR_{a_{0}}d\tilde{f}(X))=\theta_{i}(X)-\theta_{i}(X)=0$
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$\theta_{n+1}(Y)=\theta_{n+1}(d\tilde{f}^{\prime}(X))-\theta_{n+1}(dR_{a_{0}}d\tilde{f}(X))$

$=\theta_{n+1}(df^{\prime}(X))-\theta_{n+1}(df(X))=0$

$\theta_{ij}(Y)=\theta_{ij}(d\tilde{f}^{\prime}(X))-\theta_{ij}(dR_{a_{0}}d\tilde{f}(X))=\theta_{ij}(X)-\theta_{ij}(X)=0$ .
And also by the assumption we have

$\theta_{n+1i}(Y)=\theta_{n+1i}(df^{\gamma}(X))-\theta_{n+1i}(dR_{a_{0}}d\tilde{f}(X))$

$=\theta_{n+1t}(df^{\prime}(X))-\theta_{n+1t}(d\tilde{f}(X))=0$ .
Hence we have $\theta_{A}(Y)=0$ and $\theta_{AB}(Y)=0$ which imply that $Y=0$ and thus
$d\eta(X)=0$ . So $\eta$ is a constant map on a connected component of $F(M)$ . If
$F(M)$ is not connected, there exists an element $a\in O(n)$ such that $u$ and $ua$

are not contained in the same connected component for any frame $u\in F(M)$ .
Since $\sigma(a)a_{0}=a_{0}\sigma(a)$ , we have

$\eta(ua)\tilde{f}(ua)a_{0}=\tilde{f}^{\prime}(ua)=\tilde{f}^{\prime}(u)\sigma(a)=\eta(u);(u)a_{0}\sigma(a)=\eta(u)\tilde{f}(ua)a_{0}$ .

Hence we see that $\eta(ua)=\eta(u)$ and $\eta$ is constant on the whole $F(M)$ . Denot-
ing $g=\eta(u)$ , we can easily see that go $f=f^{\prime}$ .

Conversely if $g\in I(V)$ satisfies go $f=f^{\prime},$ $g$ must satisfy $gf(u)a_{0}=\tilde{f}^{\prime}(u)$ for
any $u\in F(M)$ . Therefore $g$ is unique. Q. E. D.

If we put $\phi_{i}=\tilde{f}^{*}\theta_{n+1i}$ , by the exterior differentiation of the second equa-
tion of (1.9) we have

$\Sigma\phi_{i}\wedge\omega_{i}=0$

which implies that $\phi_{i}$ is written as
(1.10) $\phi_{i}=\sum_{j}H_{ij}\omega_{j}$ , $H_{ij}=H_{ji}$ .

Also from the structure equations of the connection forms $\theta_{AB}$ , we have

(1.11) $d\phi_{i}+\sum_{j}\omega_{ij}\wedge\phi_{j}=0$

(1.12) $\Omega_{ij}=K\omega_{i}\wedge\omega_{j}+\phi_{i}\wedge\phi_{j}$ .
For a point $p\in M$ and a frame $u\in F(M)$ at $p$ , the type number $t(p)$ of

an isometric immersion $f$ of $M$ into $V$ is, by definition, the rank of the matrix
$(H_{ij}(u))$ , or the number of the linearly independent forms in $\omega_{1},$

$\cdots$ , $\omega_{n}$ at $u$ ;
it is independent of the choice of the frame $u$ at $p$ .

LEMMA 1.2. Let $f$ and $f^{\prime}$ be two isometric immersions of $M$ into $V$ and
$t(p)$ and $t^{\prime}(p)$ be the type number of $f$ and $f^{\prime}$ respectively. Then $t(p)\neq t(p^{\prime})$ if
and only if $t(p)=1$ and $t^{\prime}(p)=0$ or $t(p)=0$ and $t^{\prime}(p)=1$ . Moreover if $t(p)=$

$t^{\prime}(p)\geqq 3$ , we have $\tilde{f}^{*}\theta_{n+1i}=\pm\tilde{f}^{\prime*}\theta_{n\cdot\vdash 1i}$ at the frame $u$ at $p$ .
This lemma has been proved by E. Cartan in the case $K=0$ , but the same
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proof is applied to the case $K<0$ . (See [1]).

From this lemma we have the following Theorem.
THEOREM 1.3. If $M$ is a connected homogeneous Riemannian manifold and

$f$ is an isometric immersion of $M$ into $V$ , the type number $t(p)$ of $f$ is either
constant on $M$ or $r(p)\leqq 1$ at each point $p$ of M. If there exists a point $p_{0}$ such
that $t(p_{0})\geqq 3,$ $\phi_{i}=f^{*}\theta_{n+1i}$ is left invariant under the action of $I_{0}(M)$ and $f$ is
a unique isometric immersion of $M$ into $V$ up to the isometry of $V$ .

PROOF. For an isometry $g\in I_{0}(M),$ $f_{g}=f\circ g$ is also an isometric immer-
sion of $M$ into $V$ and we have

(1.13) $\phi_{i}^{\prime}=f_{g}^{*}\theta_{n+1i}=g^{*}\tilde{f}^{*}\theta_{n+1i}=g^{*}\phi_{i}$ .
Hence the type number $r_{g}(p)$ of $f_{g}$ at $p$ is equal to $t(g(p))$ :

(1.14) $t_{g}(p)=t(g(p))$ .
Assume that there exists a point $p_{0}\in M$ such that $t(p_{0})\geqq 2$ , then from Lemma
1.2 we have

(1.15) $t_{g}(p_{0})=t(p_{0})$ .
Therefore from (1.14) and (1.15) we have

(1.16) $t(g(p_{0}))=t_{g}(p_{0})=t(p_{0})$ .
Since $M$ is assumed to be homogeneous, (1.16) means that $t(p)$ is constant.

If we assume that $t(p_{0})\geqq 3$ , then we have $t(p)\geqq 3$ at each point of $M$ and
by the first part of Lemma 1.2 we have $t_{g}(p)=t(p)\geqq 3$ . Then by the second
part of Lemma 1.2 we have $f_{g}^{*}\theta_{n+1i}=\pm F^{*}\theta_{n+1i}=\pm\phi_{i}$ . Hence from (1.13) we
obtain $g^{*}\phi_{i}=\pm\phi_{i}$ . Since $g$ is assumed to be contained in $I_{0}(M)$ , we have
$g^{*}\phi_{i}=\phi_{i}$ . If $f^{\prime}$ is another isometric immersion of $M$ into $V$ , by Lemma 1.2
we see that $f^{\prime*}\theta_{n+1i}=\pm P^{*}\theta_{n+1i}$ and thus by Theorem 1.1 there exists an iso-
metry $\varphi\in I(V)$ such that $\varphi\circ f=f^{\prime}$ . Q. E. D.

\S 2. The case $t(p)\geqq 3$ .
In the remainder of this paper we shall assume that the curvature $K$ of

$V$ is non positive and $M$ is a connected homogeneous Riemannian manifold
immersed isometrically into $V$ by a map $f$. The connected isometry group
$G=I_{0}(M)$ of $M$ is identified with the orbit $G(u_{0})$ of the fixed frame $u_{0}$ at a
point $0\in M$ which is suitably chosen and the restrictions of the differential
forms $\omega_{i},$ $\omega_{ij},$

$\Omega_{ij}$ and $\phi_{i}=f*\theta_{n+1i}$ to $G(u_{0})$ are written by the same notations.
In this section, moreover, we assume that the type number of $f$ is greater

than 2 at $0\in M$. Then by Proposition 1.3 the differential forms $\phi_{i}$ are in-
variant by the isometries in $G$ and consequently the differential forms $\omega_{i}$ ,
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$\omega_{ij},$
$\Omega_{ij}$ and $\phi_{i}$ are considered as the left-invariant forms on $G=G(u_{0})$ . By

the suitable choice of $u_{0}$ we can assume that the differential forms $\phi_{i}$ are
written on $G(u_{0})$ as
(2.1) $\phi_{i}=\lambda_{i}\omega_{i}$

where $2_{1}$ , $\cdot$ .. , $\lambda_{n}$ are the principal curvatures of the immersion $f$ and are con-
stant because $\phi_{i}$ and $\omega_{i}$ are left-invariant.

THEOREM 2.1. Assume that the immersion $f$ is totally umbilical, $i$ . $e$ . $\lambda_{1}=$

$...=\lambda_{n}=\lambda$ and put $K_{1}=K+\lambda^{2}$ . Then $f$ is an imbedding and $M$ is isometric to
$S^{n}(K_{1}),$ $E^{n}$ or $H^{n}(K_{1})$ according as $K_{1}>0,$ $K_{1}=0$ or $K_{1}<0$ .

PROOF. From the assumption and (1.12) we see that

$\Omega_{ij}=(K+\lambda^{2})\omega_{i}\wedge\omega_{j}$

$i$ . $e$ . $M$ is a manifold of constant curvature $K_{1}=K+\lambda^{2}$ . The universal cover-
ing manifold $\tilde{M}$ of $M$ is $S^{n}(K_{1})$ , $E^{n}$ or $H^{n}(K_{1})$ according as $K_{1}>0,$ $K_{1}=0$

or $K_{1}<0$ . In any case we have the isometric imbedding $f_{0}$ of $M$ into
$V=H^{n+1}(K)$ , here $H^{n+1}(0)$ stand for $E^{n+1}$ : if $K_{1}>0$ , $f_{0}(p)=(x_{1}, \cdots , x_{n+1})$

$\in H^{n+1}(K)$ for $p=(x_{1}, \cdots , x_{n+1})\in S^{n}(K_{1})$ where $(x_{1})^{2}+\cdots+(x_{n\sim\vdash 1})^{2}=1/K_{1}$ ; if

$K_{1}=0,$ $]_{0}^{\wedge}(p)=(x_{1}, \cdots , x_{n}, \frac{K}{2}\sum_{l}(x_{i})^{2})\in H^{n+1}(K)$ for $p=(x_{1}, \cdots , x_{n})\in E^{n}$ ; if $K_{1}$

$<0,$ $f_{0}(p)=(x_{1}, \cdots , x_{n}, \lambda/\frac{KK}{1})\in H^{n+1}(K)$ for $p=(x_{1}, \cdots , x_{n})\in H^{n}(K_{1})$ . Let $\varphi$

be a covering map of $M$ onto $M,$ $ f\circ\varphi$ is also an isometric immersion of $M$

into $V$ and, since $\varphi$ is locally isometry, the type number of $ f\circ\varphi$ is equal to
that of $f$. Therefore by Theorem 1.3, there exists an isometry $g\in I(V)$ such
that $ g\circ f_{0}=f\circ\varphi$ . As $g\circ f_{0}$ is imbedding, $f$ must be imbedding, $\varphi$ is one to
one and $M=\tilde{M}$ which complete the proof. Q. E. D.

In the remainder of this section we assume that the immersion is not
totally umbilical, $i$ . $e$ . $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ are not all equal. Then by the result of E.
Cartan ([2], [3]) we can assume that $\text{{\it \‘{A}}}_{1}=\ldots=\lambda_{m}=\lambda$ , and $\lambda_{m+1}=\ldots=\lambda_{n}=\mu$ ,

$(0<m<n)$ . In the remainder of this section we agree about the ranges of
the indices that

$1\leqq p,$ $q\leqq m$ and $m+1\leqq\alpha,$ $\beta,$ $\leqq n$ .

LEMMA 2.2. $M$ is locally isometric to the Riemannian product of the mani-
folds of constant curvature $K+\lambda^{2}$ and $K+\mu^{2}$ and $\lambda,$

$\mu$ satisfy

(2.2) $\lambda\mu=-K$ .

PROOF. We can write (2.1) as

(2.3) $\phi_{p}=\lambda\omega_{p}$ and $\phi_{\alpha}=\mu 0)_{\alpha}$ .

By the exterior differentiation of (2.3) and taking account of (1.2) and (1.1)

we obtain
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$\sum_{\alpha}\omega_{p\alpha}$ A $\omega_{\alpha}=0$ , $\sum_{p}\omega_{\alpha p}\wedge\omega_{p}=0$ .

Hence $\omega_{p\alpha}=-\omega_{ap}$ must vanish and then from (1.12) we have

(2.4) $\Omega_{pq}=(K+\lambda^{2})\omega_{p}\wedge\omega_{q}$ , $\Omega_{\alpha\beta}=(K+\mu^{2})\omega_{cr}$ A $\omega_{\beta}$ ,

and

(2.5) $\Omega_{p\alpha}=(K+\lambda\mu)\omega_{p}\wedge\omega_{\alpha}$ .

On the other hand from (1.3) we have

$\Omega_{p\alpha}=d\omega_{p\alpha}+\sum_{q}\omega_{pq}\wedge\omega_{q\alpha}+\sum_{\beta}\omega_{p\beta}$ A $\omega_{\beta\alpha}=0$ .

Therefore from (2.5) we obtain (2.2) and from (2.4) we see that $M$ is locally
isometric to the Riemannian product of the manifold of constant curvature
$K+\lambda^{2}$ and $K+\lambda^{2}$ . Q. E. D.

THEOREM 2.3. If $K=0,$ $M$ is isometric to $S^{m}(K_{1})\times E^{n- m}$, where $m$ is the
type number off and $f$ is an imbedding.

PROOF. From (2.2) we see that one of $\lambda,$

$\mu$ is equal to $0$ . We assume
that $\mu=0$ and $\lambda\neq 0$ , then by the definition of the type number, $m$ is equal
to the type number of $f$. If we put $K_{1}=\lambda^{2}>0$ , by Lemma 2.2 the universal
covering manifold $\tilde{M}$ is isometric to $S^{m}(K_{1})\times E^{n-m}$ which has a natural iso-
metric imbedding in $E^{n\cdot\succ 1}$ . Then by the similar consideration in the proof of
Theorem 2.1, we can conclude that $f$ is an imbedding and $M$ is isometric to
$S^{m}(K_{1})\times E^{n-m}$ . Q. E. D.

THEOREM 2.4. If $K<0$ , the type number of $f$ is equal to $n$ and the image
$f(M)$ is isometric to $S^{m}(K_{1})\times H^{n- m}(K_{2})$ where $K_{1}$ and $K_{2}$ satisfy

(2.6) $--+K_{1}1K_{2}^{1_{-}}=-K^{-}1$ .

If $m\neq 1,$ $f$ is an imbedding.
PROOF. By Lemma 2.2, without loss of generality, we can assume that

$\lambda>\sqrt{}=K>\mu>0$ . Thus the type number is equal to $n$ .
If we put $K_{1}=K+\lambda^{2}>0$ and $K_{2}=K+\mu^{2}<0$ , from (2.2) we see that

$K^{2}=\lambda^{2}\mu^{2}=(K-K_{1})(K-K_{2})=K^{2}-(K_{1}+K_{2})K+K_{1}K_{2}$

from which we obtain (2.6).

By lemma 2.2, the universal covering manifold $\tilde{M}$ is isometric to $S^{m}(K_{1})$

$\times H^{n- m}(K_{2})$ if $m>1$ or $E\times H^{n- 1}(K_{2})$ if $m=1$ .
If $m\neq 1,\tilde{M}=S^{m}(K_{1})\chi H^{n- m}(K_{2})$ has an isometric imbedding $f_{0}$ into

$V=H^{n+1}(K)$ : for $p=(y_{1}, \cdots , y_{m+1})\in S^{m}(K_{1})$ and $q=(z_{1}, \cdots , z_{n- m})\in H^{n- m}(K_{2})$ ,
$f_{0}(p, q)=(y_{1}, \cdot.. , y_{m+1}, z_{1}, , z_{n- m})\in H^{n+1}(K)$ . Then similarly in the proof of
Theorem 2.1 we see that $f$ is an imbedding and $M=\tilde{M}$ .
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If $m=1,\tilde{M}=E\times H^{n- m}(K_{2})$ has also an isometric immersion $f_{0}$ into $V$ : for

$p=(y)$ and $q=(z_{1}, z_{n- 1})\in H^{n- 1}(K_{2}),$ $f_{0}(p, q)=(\frac{1}{\sqrt{k_{1}}}\cos\sqrt K_{1}y,$ $-\sqrt{}^{1}K_{1}\sin\sqrt K_{1}y$ ,

$z_{1}$ , $\cdot$ .. , $z_{n-1})\in H^{n+1}(K)$ and the image $f_{0}(M)$ is isometric to $S^{1}(K_{1})\times H^{n-1}(K_{2})$ .

On the other hand by Theorem 1.3, there exists an isometry $g$ of $V$ such that
$ g\circ f_{0}=f\circ\varphi$ , where $\varphi$ is the covering map of $M$ onto $M$. Hence $f(M)$ is iso-
metric to $f_{0}(M)$ and therefore isometric to $S^{1}(K_{1})\times H^{n- 1}(K_{2})$ .

\S 3. The case $r(p)=2$ .
This section is devoted to the following theorem.
THEOREM 3.1. If a connected homogeneous Riemannian manifold $M$ admits

an isomefric immersion $f$ into $V$ and the type number of $f$ is equal to 2 at some
point, then $V=E^{n+1},$ $M$ is isometric to $S^{2}(K_{1})\times E^{n- 2}$ and $f$ is an imbedding.

We break the proof of the theorem up into the series of lemmas. In this
section we agree that the Greek indices $\alpha,$ $\beta,$

$\gamma$ run over the range 3, 4, $\cdot$ .., $n$ .
LEMMA 3.1.
1) $H_{ik}H_{jl}-H_{i}{}_{l}H_{jk}$ is constant on $G(u_{0})$ .
2) If we choose $u_{0}$ so that $\phi_{0}=0$ ($\alpha=3,$ $\cdots$ , n) at $u_{0}$ , then $\phi_{\alpha}$ vanish identi-

cally on $G(u_{0})$ and we have

(3.1) $\left\{\begin{array}{l}\phi_{1}=H_{11}\omega_{1}+H_{12}\omega_{2}\\\phi_{2}=H_{12}\omega_{1}+H_{22}\omega_{2}\end{array}\right.$

PROOF. From (1.12) we have

(3.2) $\Omega_{ij}=-21\sum_{k,l}\{K(\delta_{ik}\delta_{jl}-\delta_{il}\delta_{jk})+(H_{i}{}_{k}H_{jl}-H_{i}{}_{l}H_{jk})\}\omega_{k}\Lambda\omega_{l}$ .

Since $\Omega_{ij}$ and $\omega_{k}$ are the left-invariant forms on $G(u_{0})=G$ the coefficients of
the right hand side of (3.2) are constant and hence $H_{i}{}_{k}H_{jl}-H_{i}{}_{l}H_{jk}$ is constant.

If we put $\overline{\phi}_{i}=\sum_{j}H_{ij}(u_{0})\omega_{j}$ on $G(u_{0})$ , by the results just proved we have

(3.3) $\overline{\phi}_{i}\Lambda\overline{\phi}_{j}=\phi_{i}\wedge\phi_{j}$ $(i, j=1, n)$ .
If we assume that $\phi_{\alpha}=0$ at $u_{0}$ , then $H_{\alpha j}(u_{0})=0$ , accordingly $\overline{\phi}_{\alpha}=0$ on $G(u_{0})$ .
Also we obtain

$\left\{\begin{array}{l}\phi_{1}=H_{l1}(u_{0})\omega_{1}+H_{12}(u_{0})\omega_{2}\\\overline{\phi}_{2}=H_{12}(u_{0})\omega_{1}+H_{22}(u_{0})\omega_{2}.\end{array}\right.-$

Put $K_{1}=H_{11}H_{22}-(H_{12})^{2}$ . Since $K_{1}$ is constant and does not vanish, $\phi_{1}$ and
$\phi_{2}$ are linearly independent. From (3.3) we have
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Thus $\phi_{\alpha}=0$ on $G(u_{0})$ , so $H_{\alpha_{j}}=0$ on $G(u_{0})$ . Q. E. D.
In the remainder of this section we fix a frame $u_{0}$ at which $\phi_{\alpha}=0$ .
LEMMA 3.2.

(3.4) $\left\{\begin{array}{l}\omega_{a1}=a_{\alpha}\omega_{1}+b_{Q}o)_{2}\\\omega_{o2}=c_{\alpha}\omega_{1}-a_{\alpha}\omega_{2}\end{array}\right.$

where $a_{\alpha},$
$b_{\alpha},$

$c_{\alpha}$ are constant.
PROOF. By the exterior differentiation of $\phi_{\alpha}=0$ , we have

(3.5) $\omega_{\alpha 1}\Lambda\phi_{1}+\omega_{a2}\Lambda\phi_{2}=0$ .

From this we see that $\omega_{\alpha 1}$ and $\omega_{\cap 2}$ are the linear combinations of $\phi_{1}$ and $\phi_{2}$

and hence from (3.1) the linear combinations of $\omega_{1}$ and $\omega_{2}$ . $\omega_{\alpha 1},$ $\omega_{\alpha 2},$ $\omega_{1}$ and $\omega_{2}$

are left-invariant on $G=G(u_{0})$ , the coefficients are constant. We put

$\omega_{\alpha 1}=a_{\alpha}\omega_{1}+b_{\alpha}\omega_{2}$

(3.6)
$\omega_{\alpha 2}=c_{a}\omega_{1}+d_{\cap}\omega_{2}$ .

By the Bianchi’s identity we have

(3.7) $d\Omega_{12}=\sum_{\alpha}(\Omega_{1\alpha}\wedge\omega_{\alpha 2}-\omega_{1\alpha}\Lambda\Omega_{\alpha 2})$ .

Substituting $\Omega_{12}=(K+K_{1})\omega_{1}\Lambda\omega_{2},$ $\Omega_{1\alpha}=K\omega_{1}\wedge\omega_{\alpha},$ $\Omega_{\alpha 2}=K\omega_{\alpha}\Lambda\omega_{2}$ into (3.7) and
taking account of (3.6) we have,

(3.8) $\sum_{\alpha}K_{1}(a_{\alpha}+d_{\alpha})\omega_{1}\Lambda\omega_{\alpha}\Lambda\omega_{2}=0$ .

In (3.8) $K_{1}$ can not be zero, we obtain $a_{\alpha}+d_{\alpha}=0$ . Thus the Lemma 3.2 is
proved.

We denote by $\Gamma$ the following matrix:

$\Gamma=\left(\begin{array}{l}a_{3}b_{3}c_{3}\\\cdots\\ a_{n}b_{n}c_{n}\end{array}\right)$

LEMMA 3.3. The linear homogeneous equalions

(3.9) $a_{\alpha}x+b_{\alpha}y+c_{a}z=0$ ($\alpha=3,4,$ $\cdots$ , n)

has the solution $x=2H_{12},$ $y=-H_{11},$ $z=H_{22}$ and hence the rank of the matrix
$\Gamma$ can not exceed 2.

PROOF. Substituting (3.1) and (3.6) into (3.5) we have easily

(3.10) $2a{}_{\alpha}H_{12}-b{}_{\alpha}H_{11}+c{}_{\alpha}H_{22}=0$ .

Since $(2H_{12}, -H_{11}, H_{22})\neq(0,0,0)$ , the rank of $\Gamma$ is not greater than 2.
LEMMA 3.4. The rank of $\Gamma$ can not be equal to 2.
PROOF. We assume that the rank of $\Gamma$ is equal to 2. Then the system
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of the solution of (3.9) is a l-dimensional vector space and by Lemma 3.3
\langle $2H_{12},$ $-H_{11},$ $H_{22}$) is a solution of (3.9) we have a function $\rho$ on $G(u_{0})$ such that
$H_{tj}=\rho H_{ij}(u_{0})$ .

On the other hand since $K_{1}=H_{11}H_{22}-(H_{12})^{2}$ is constant, we see $\rho=\pm 1$ . By
the continuity of $H_{ij},$

$\rho$ must be 1. Thus $H_{ij}$ is constant.
By the exterior differentiation of (3.1) we have

\langle 3.11) $\{(H_{11}-H_{22})\omega_{12}+\sum_{\alpha}(b{}_{\alpha}H_{11}-a{}_{\alpha}H_{12})\omega_{\alpha}\}\Lambda\omega_{2}$

$=\{2H_{12}\omega_{12}-\sum_{\alpha}(a{}_{\alpha}H_{11}+c{}_{\alpha}H_{12})\omega_{\alpha}\}\Lambda\omega_{1}$ .

(3.12) $\{(H_{11}-H_{22})\omega_{12}+\sum_{\alpha}(a_{a}H_{12}+c{}_{\alpha}H_{22})\omega_{\alpha}\}\Lambda\omega_{1}$

$=\{-2H_{12}\omega_{12}-\sum_{\alpha}(b{}_{\alpha}H_{12}-a{}_{\alpha}H_{22})\omega_{\alpha}\}\Lambda\omega_{2}$ .

Making an exterior product of (3.11) and $\omega_{2}$ , we obtain

(3.13) $\{2H_{12}\omega_{12}-\sum_{\alpha}(a{}_{\alpha}H_{11}+c{}_{\alpha}H_{12})\omega_{\alpha}\}\Lambda\omega_{1}\Lambda\omega_{2}=0$ .

Also from (3.12) we obtain

(3.14) $\{-2H_{12}\omega_{12}-\sum_{\alpha}(b{}_{\alpha}H_{12}-a{}_{\alpha}H_{22})\omega_{\alpha}\}\wedge\omega_{1}\Lambda\omega_{2}=0$ .

Adding (3.13) and (3.14) we have

$a_{\alpha}(H_{11}-H_{22})+b{}_{\alpha}H_{12}+c{}_{\alpha}H_{12}=0$ .
Therefore $(H_{11}-H_{22}, H_{12}, H_{12})$ is a solution of (3.9) and there exists a real

number $\epsilon$ such that

$H_{11}-H_{22}=2\epsilon H_{12}$ , $H_{12}=-\epsilon H_{11}$ , $H_{12}=\epsilon H_{22}$ .
or

$\left\{\begin{array}{l}H_{11}-H_{22}-2\epsilon H_{12}=0\\\epsilon H_{11} +H_{12}=0\\\epsilon H_{22} -H_{12}=0.\end{array}\right.$

Then since $(H_{11}, H_{22}, H_{12})\neq(0,0,0)$ we have $\epsilon(1+\epsilon^{2})=0$ which imply that $\epsilon=0$

and $H_{11}=H_{22},$ $H_{12}=0$ . If we put $A=H_{11}=H_{22}\neq 0$ , from (3.11) and (3.12) we
have

A $\Sigma b_{\alpha}\omega_{\alpha}\wedge\omega_{2}=-A\Sigma a_{\alpha}\omega_{\alpha}\wedge\omega_{1}$ ,

A $\Sigma c_{\alpha}\omega_{\alpha}\wedge\omega_{1}=A\Sigma a_{\alpha}\omega_{\alpha}\Lambda\omega_{2}$ .
From this we obtain $a_{\alpha}=b_{\alpha}=c_{\alpha}=0$ which contradicts to the assumption of
the rank of $\Gamma$ . Therefore the rank of $\Gamma$ is not equal to 2.

LEMMA 3.5. The matrix $\Gamma$ is a zero matrix and the curvature of $V$ is zero.
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PROOF. If we assume that $\Gamma$ is not zero, then by above lemmas, we see
that the rank of $\Gamma$ is just 1. Then the matrices $\left(\begin{array}{l}b_{\alpha}a_{\alpha}\\c_{\alpha}-a_{\alpha}\end{array}\right)$ can be changed

to the form $\left(\begin{array}{ll}0 & b_{\alpha}^{\prime}\\c_{\alpha}^{\prime} & 0\end{array}\right)$ by the orthogonal matrix of degree 2, and by the assump-

tion of the rank of $\Gamma$ , these matrices can be changed all together by one
orthogonal matrix. This means that by the suitable change of $u_{0}$ , we can
assume that $a_{\alpha}=0$ and

$\omega_{\alpha 1}=b_{\alpha}\omega_{2}$ , $\omega_{\alpha 2}=c_{\alpha}\omega_{1}$

without changing the properties of $\phi_{\alpha}=0$ at $u_{0}$ . By the exterior differentia-
tion of these equation, we have

(3.15)
$\{(b_{\alpha}+c_{\alpha})\omega_{12}-b_{\alpha}\sum_{\beta}c_{\beta}\omega_{\beta}-K\omega_{\alpha}\}\Lambda a)1=-\sum_{\beta}b_{\beta}\omega_{\alpha\beta}\Lambda\omega_{2}$

(3.16)
$\{(b_{\alpha}+c_{\alpha})\omega_{12}+c_{\alpha}\sum_{\beta}b_{\beta}\omega_{\beta}+K\omega_{\alpha}\}\Lambda\omega_{2}=\sum_{\beta}c_{\beta}\omega_{\alpha\beta}\Lambda\omega_{1}$

.

If $n\geqq 4$ , then (3.15) shows us that
$\sum_{\beta}b_{\beta}\omega_{\alpha\beta}$

is a linear combination of $\omega_{1}$ and
$\omega_{2}$ and we put

$\sum_{\beta}b_{\beta}\omega_{\alpha\beta}=\lambda_{\alpha}\omega_{1}+\mu_{a}\omega_{2}$

where $\lambda_{\alpha},$

$\mu_{\alpha}$ are constant. Then we have

$\sum_{\beta}b_{\beta}\Omega_{\alpha\beta}=d(\sum_{\beta}b_{\beta}\omega_{\sigma\beta})+\sum_{\beta}b_{\beta}\omega_{\alpha 1}\wedge\omega_{1\beta}+\sum_{\beta}b_{\beta}\omega_{\alpha 2}\Lambda\omega_{2\beta}$

$+\sum_{\gamma}\omega_{\alpha}\gamma\Lambda(\sum_{\beta}b_{\beta}\omega_{\gamma_{\beta}})$

$\equiv\lambda_{\alpha}d\omega_{1}+\mu_{\alpha}d\omega_{2}$ $(mod \omega_{1}, \omega_{2})$

$\equiv 0$ $(mod \omega_{1}, \omega_{2})$

because of $\omega_{\alpha 1}\equiv\omega_{\alpha 2}\equiv\sum_{\beta}b_{\beta}\omega_{\gamma\beta}\equiv d\omega_{1}\equiv d\omega_{2}\equiv 0(mod \omega_{1}, \omega_{2})$
. On the other hand

$\sum_{\beta}b_{\beta}\Omega_{a\beta}=\sum_{\beta}Kb_{\beta}\omega_{\alpha}\Lambda\omega_{\beta}$
.

Accordingly we obtain $Kb_{\beta}=0$ $(\beta=3, \cdots , n)$ . Similarly we obtain $Kc_{\beta}=0$ .
Multiplying $K$ to (3.15) we have

$K^{2}\omega_{\alpha}\Lambda\omega_{1}=0$ .

Thus we obtain $K=0$ . Then making exterior product of (3.15) and $\omega_{2}$ , we
have

(3.17) $\{(b_{\alpha}+c_{\alpha})\omega_{12}-b_{\alpha}\sum_{\beta}c_{\beta}\omega_{\beta}\}\wedge\omega_{1}\wedge\omega_{2}=0$
.

Similarly we have from (3.16)

(3.18) $\{(b_{\alpha}+c_{\alpha})\omega_{12}+c_{\alpha}\sum_{\beta}b_{\beta}\omega_{\beta}\}\wedge\omega_{1}\wedge\omega_{2}=0$ .
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Subtracting (3.17) from (3.18) we have

$\sum_{\beta}(b_{\alpha}c_{\beta\alpha_{l^{J}}}+cb\circ)\omega_{\beta}\Lambda\omega_{1}\wedge\omega_{2}=0$
.

Therefore we obtain

(3.19) $b_{\alpha}c_{\beta}+c_{\alpha}b_{\beta}=0$ .
On the other hand since the rank of $\Gamma$ is 1, we have

(3.20) $b_{\alpha}c_{\beta}-c_{\alpha}b_{\beta}=0$ .
From (3.19) and (3.20) we obtain

(3.21) $b_{\alpha}c_{\beta}=0$ $(\alpha, \beta=3,4, \cdots , n)$ .
Because of the rank of $\Gamma$ , one of $b_{\alpha}$ or $c_{\alpha}$ is not zero. If, for instance, one
of $b_{\alpha}$ is not zero, then from (3.21) $c_{\alpha}=0$ ($\alpha=3$ , $\cdot$ . , n) and from (3.15) and
(3.16) we have

(3.22) $b_{\alpha}\omega_{12}\Lambda\omega_{1}=-\Sigma b_{\beta}\omega_{\alpha\beta}\wedge\omega_{2}$

(3.23) $b_{\alpha}\omega_{12}\Lambda\omega_{2}=0$ or $\omega_{12}\wedge\omega_{2}=0$ .
Multiplying $b_{\alpha}$ to (3.22) and making a sum, we have

$(\Sigma b_{\alpha^{2}})\omega_{12}\Lambda\omega_{1}=0$ .
Since $\sum b_{\alpha}^{2}\neq 0$ , we obtain

(3.24) $\omega_{12}\Lambda\omega_{1}=0$ .
Then (3.23) and (3.24) show that

$\omega_{12}=0$ .
From this and $\omega_{\alpha 2}=0$ we have

$0=d\omega_{12}=\Omega_{12}+\sum_{\alpha}\omega_{1\alpha}\wedge\omega_{\alpha 2}=K_{1}\omega_{1}^{I}\wedge\omega_{2}$ .

Then we have $K_{1}=0$ and this is a contradiction for the hypothesis of the
type number.

If $n=3,$ $(3.15)$ and (3.16) are reduced to

$\{(b_{3}+c_{3})\omega_{12}-(b_{3}c_{3}+K)\omega_{3}\}\wedge\omega_{1}=0$

$\{(b_{3}+c_{3})\omega_{12}+(b_{3}c_{3}+K)\omega_{3}\}\wedge\omega_{2}=0$ .
From these equations we can easily obtain

$b_{8}c_{3}+K=0$ and $(b_{3}+c_{3})\omega_{12}=0$ .
Since $K\leqq 0$ and the rank of the matrix $\Gamma$ is 1, we have $b_{3}c_{3}=-K\geqq 0$ and
$b_{3}+c_{3}\neq 0$ , and therefore $\omega_{12}$ must be vanished. Then as in the case of $n\geqq 4$

we have
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$0=d\omega_{12}=\Omega_{12}+\omega_{18}\wedge\omega_{32}=(K_{1}+K+b_{3}c_{3})\omega_{1}\wedge\omega_{2}=K_{1}\omega_{1}\wedge\omega_{2}$ .
Thus we have also $K_{1}=0$ which is a contradiction.

Consequently the matrix $\Gamma$ must be $0$ and $\omega_{\alpha 1}=\omega_{\alpha 2}=0$ .
Then from (1.3) and (1.12) we have

$K\omega_{\alpha}\wedge\omega_{1}=\Omega_{\alpha 1}=d\omega_{\alpha 1}+\omega_{\alpha 2}\wedge\omega_{21}+\sum_{\beta}\omega_{\alpha\beta}\wedge\omega_{\beta 1}=0$ .

Therefore $K=0$ , which completes the proof of the lemma. Q. E. D.
REMARK. When $n\geqq 4$, Lemma 3.5 is also true for the case of $V$ of posi-

tive constant curvature.
By Lemma 3.5, we see that by the suitable choice of $u_{0}$ , the differential

forms $\phi_{\alpha},$
$\omega_{\alpha 1},$ $\omega_{\alpha 2}$ vanish identically on $G(u_{0})$ . If we denote the structure

group of $G(u_{0})$ by $Hu_{0}$ which is isomorphic to the isotropy group $H$ at $0=\pi(u_{0})$ ,

then for any $a=(a_{ij})\in Hu_{0}$ we have

$0=R_{a}^{*}\phi_{\alpha}=\det a\sum_{j}a_{j\alpha}\phi_{j}=\det a(a_{1\alpha}\phi_{1}+a_{2\alpha}\phi_{2})$ .

Therefore $a$ is the matrix of the form

(3.26) $a=\left(\begin{array}{ll}a^{\prime} & 0\\0 & a^{\prime}\end{array}\right)$ where $a^{\prime}\in O(2)$ , $a^{\prime\prime}\in O(n-2)$ .

For a point $p\in M$ the subspaces $D_{1}(p)$ and $D_{2}(p)$ of the tangent space of $M$

at $p$ are defined by

$D_{1}(p)=\{d\pi(X)|X\in T_{u}(G(u_{0})), \omega_{1}(X)=\omega_{2}(X)=0\}$

$D_{2}(p)=\{d\pi(X)|X\in T_{u}(G(u_{0})), \omega_{\alpha}(X)=0, \alpha=3, \cdots , n\}$

where $T_{u}(G(u_{0}))$ is a tangent space of $G(u_{0})$ at $u$ and $u$ is a frame in $G(u_{0})$ at
p. $D_{1}(p)$ and $D_{2}(p)$ are independent of the choice of $u$ , because the elements
of the structure group $Hu_{0}$ have the form of (3.26). $D_{1}$ and $D_{2}$ are the dis-
tributions on $M$ of dimension $n-2$ and 2 respectively and mutually orthogonal.
They are completely integrable because of $\omega_{\alpha 1}=\omega_{\alpha 2}=0$ . If we denote by
$M_{1}(p)$ and $M_{2}(p)$ the maximal integral manifolds through $p$ of $D_{1}$ and $D_{2}$ ,
respectively, $M_{1}(p)$ and $M_{2}(p)$ are the complete totally geodesic submanifolds.

If we identify $G$ with $G(u_{0})$ so that the identity element of $G$ corresponds
to $u_{0}$ , then Lie algebra $\mathfrak{g}$ of $G$ is identified with $T_{uo}(G(u_{0}))$ . The subspace $\mathfrak{g}_{1}$

and $\mathfrak{g}_{2}$ of $\mathfrak{g}$ defined by

$\mathfrak{g}_{1}=\{X\in \mathfrak{g}=T_{u_{0}}(G(n_{0}))|\omega_{1}(X)=\omega_{2}(X)=\omega_{12}(X)=0\}$

$\mathfrak{g}_{2}=\{X\in \mathfrak{g}|\omega_{\alpha}(X)=0, \omega_{\alpha\beta}(X)=0\}$

are the ideals of $\mathfrak{g}$ and $\mathfrak{g}=\mathfrak{g}_{1}+\mathfrak{g}_{2}$ (direct). Denote by $G_{1}$ and $G_{2}$ the connected
subgroup with Lie algebra $\mathfrak{g}_{1}$ and $\mathfrak{g}_{2}$ , we can easily see that
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$M_{1}(0)=G/H_{1}$ $M_{2}(0)=G_{2}/H_{2}$ $(0=\pi(u_{0}))$

where $H_{1}=H\cap G_{1}$ and $H_{2}=H_{\cap}G_{2}$ , and $M_{1}(p)$ and $M_{2}(p)$ are the orbits of $p$

by the group $gG_{1}g^{-1}$ and $gG_{2}g^{-1}$ where $g(0)=p,$ $g\in G$ , or $M_{1}(p)=g(M_{1}(0))$

and $M_{2}(p)=g(M_{2}(0))$ . Also the correspondence $(g_{1}H_{1}, g_{2}H_{2})\rightarrow g_{1}g_{2}H$ of $G_{1}/H_{1}$

$G_{2}/H_{2}$ to $G/H$ is an isometry.
For $u\in G(u_{0})$ we denote $;(u)=(f(p), e_{1}, \cdots , e_{n}, e_{n+1})$ , the differential of

$e_{1},$ $\cdots$ , $e_{n+1}$ are

(3.27) $\left\{\begin{array}{l}de_{1}=\omega_{21}e_{2}+\phi_{1}e_{n+1}\\de_{2}=\omega_{12}e_{1}+\phi_{2}e_{n+1}\\de_{n\cdot\dagger 1}=-\phi_{1}e_{1}-\phi_{2}e_{2}\end{array}\right.$

and

(3.28)
$de_{\alpha}=\sum_{\beta}\omega_{\beta\cap}e_{\beta}$

.

From (3.38) we see that the tangent spaces of $f(M_{1}(p))$ are parallel in $E^{n+1}$

and thus $f(M_{1}(p))$ is an $(n-2)$ -dimensional plane in $E^{n+1}$ which is parallel to
the fixed $(n-2)$ -dimensional plane $E^{n-2}$ in $E^{n+1}$ . Also from (3.27) we see that
$f(M_{2}(p))$ is contained in a 3-dimensional plane which is parallel to the fixed
plane $E^{3}$ orthogonal to $E^{n- 2}$ . Then $f(M_{2}(p))$ is a complete connected surface
of constant curvature $K_{1}$ in 3-dimensional Euclidean space. It is well known
that a complete connected surface of constant curvature in $E^{3}$ is a sphere,
so $f(M_{2}(p))$ is a sphere of curvature $K_{1}$ . Therefore $M_{1}(p)$ is isometric to
$S^{2}(K_{1})$ and $f(M)$ is isometric to $S^{2}(K_{1})\times E^{n- 2}$ . Then $M$ is also isometric to
$S^{2}(K_{1})\times E^{n- 2}$ and $f$ is an imbeddling. This completes the proof of Theorem 3.1.

\S 4. The case $t(p)\leqq 1$ .
In case $t(p)\leqq 1$ , since all $\phi_{1},$ $\cdots$ , $\phi_{n}$ are linearly dependent with each

other, we have
$\phi_{i}\wedge\phi_{j}=0$ .

Thus the curvature form $\Omega_{ij}$ is

$\Omega_{ij}=K\omega_{i}\Lambda\omega_{j}$ .
So $M$ is a manifold of constant curvature $K$.

If $K<0$ , the homogeneous Riemannian manifold of constant curvature
$K<0$ is the hyperbolic space $H^{n}(K)$ by the theorem of Wolf ([6] p. 88).

If $K=0$ , also by the theorem of Wolf, $M$ is isometric to $T^{m}\times E^{n-m}$ where
$T^{m}$ is an m-dimensional flat torus. Then by the same consideration as the
proof of Lemma 3.2 in [5] we see that $m=1$ or $0$ . Thus $M$ is isometric to
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$S^{1}\times E^{n-1}$ or $E^{n}$ .
We have the theorem:
THEOREM 4.1. If a connected homogeneous Riemannian manifold $M$ admits

an isometric immersion $f$ into $V$ , and the type number of $f$ is $0$ or 1 at a point,
then if $V=H^{n+1}(K)(K<0),$ $M$ is isometric to $H^{n}(K)$ and if $V=E^{n},$ $M$ is iso-
metric to $E^{n}$ or $S^{1}\times E^{n-1}$ .

Theorems 2.1, 2.3, 3.1 and 4.1 complete the proof of the Theorems A and
$B$ in the introduction.

Tokyo University of Education
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