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Let $M$ be a non-singular connected complex hypersurface in the complex
projective space $P^{n+1}(C)$ with Fubini-Study metric of constant holomorphic
sectional curvature 1. In [2] it was shown that the rank of the second funda-
mental form $A$ of $M$ at a point $x$ of $M$ is determined by the curvature tensor
of $M$ at $x$ . Thus the rank of $A$ is intrinsic at each point and is simply called
the rank of $M$.

In the present paper we shall obtain the following results:
THEOREM 1. If $M$ is compact and if the rank of $M$ $is\leqq n-1$ at every

point, then $M$ is imbedded as a projective hyperplane in $P^{n+1}(C)$ .
THEOREM 2. Let $n\geqq 3$ . If $M$ is compact and if the sectional curvature of

1
$M$ with respect to the induced Kahlerian metric is $\geqq-4^{-}$ for every tangent
2-plane, then $M$ is imbedded as a projective hyperplane.

1. Preliminaries. We recall the terminology and a few results from [1]

and [2]. Let $M$ be a complex hypersurface in $P^{n+1}(C)$ . Let $J$ denote the
complex structures of $P^{n+1}(C)$ and $M$, and let $g$ denote the Fubini-Study metric
of holomorphic sectional curvature 1 in $P^{n+1}(C)$ as well as the K\"ahlerian

metric induced on $M$. For each point $x_{0}$ of $M$, choose a field of unit normals
$\xi$ defined on a neighborhood $U$ of $x_{0}$ .

Denoting by $\tilde{\nabla}$ and $\nabla$ the K\"ahlerian connections of $P^{n+1}(C)$ and $M$, we
have the basic formulas (cf. [1])

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)\xi+k(X, Y)J\xi$

$\overline{\nabla}_{X}\xi=-AX+s(X)J\xi$ ,

where $X$ and $Y$ are vector fields tangent to $M,$ $h$ and $k$ are bilinear symmetric
forms, $s$ is a l-form, and $A$ is a tensor field of type $(1, 1)$ , called the second
fundamental form. Moreover, we have $h(X, Y)=g(AX, Y),$ $k(X, Y)=$

$g(JAX, Y)$ , and $AJ=-JA$ . The Gauss equation expresses the curvature ten-
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sor $R$ of $M$ as follows:
$R(X, Y)=\tilde{R}(X, Y)+D(X, Y)$ ,

where $\tilde{R}$ is the curvature tensor of $P^{n+1}(C)$ given by

$\tilde{R}(X, Y)=\frac{1}{4}\{X\wedge Y+JX\Lambda JY+2g(X, JY)J\}$

and $D$ is a tensor of type $(1, 3)$ defined by

$D(X, Y)=AX$ A $AY+JAX\wedge JAY$ .
In these formulas, $X\wedge Y$ , where $X,$ $Y\in T_{x}(M)$ , denotes the skew-symmetric
endomorphism of the tangent space $T_{x}(M)$ defined by

$(X\wedge Y)(Z)=g(Y, Z)X-g(X, Z)Y$ , $Z\in T_{x}(M)$ .
In [2] it was shown that the kernel of $A$ at $x\in M$ is equal to { $X\in T_{x}(M)$ ;

\langle $R-\tilde{R}$)$(X, Y)=0$ for all $Y\in T_{x}(M)$ }. Thus the rank of $A$ at $x$ is intrinsic;
we call it the rank of $M$ at the point $x$ .

Suppose that, at every point of an open subset $W$, the rank of $M$ is equal
to a constant, say, $2r$, where $r$ is a positive integer. Then we get a distri-
bution $T^{0}$ of dimension $2n-2r$ which assigns to each $x\in W$ the kernel of $A$ .
In the arguments leading to Proposition 1 in [2], it is shown that $T^{0}$ is in-
volutive and invariant by the complex structure $J$ so that any of its maximal
integral manifolds is a complex submanifold which is, in fact, totally geodesic
in $P^{n+1}(C)$ . This means that there exist a projective subspace $P^{n- r}$ in $P^{n+1}(C)$

and an open subset $U$ of $P^{n+1}(C)$ such that $U\cap P^{n- r}\subset M$. We shall make use
of this fact in the following section.

2. PROOF OF THEOREM 1. If the rank of $M$ is zero everywhere, then $M$

is totally geodesic and hence is a projective hyperplane. Assume that the
rank of $M$ has a maximum, say, $2r>0$ , at some point $x_{0}$ of $M$. Then the
rank of $A$ is identically equal to $2r$ in a neighborhood $W$ of $x_{0}$ . As we stated
in section 1, there exist a projective subspace $P^{n- r}$ in $P^{n+1}(C)$ and an open
subset $U$ in $P^{n+1}(C)$ such that $U\cap P^{n- r}\subset M$. We shall now show that the
entire subspace $P^{n- r}$ is contained in $M^{1)}$ . Let $(z_{0}, z_{1}, \cdots , z_{n+1})$ be a projective
coordinate system in $P^{n+1}(C)$ such that the subspace $P^{n- r}$ is given by $z_{0}=z_{1}$

$=\ldots=z_{\tau}=0$ . Since $M$ is algebraic by a well-known theorem of Chow, it is
the zero set of a certain homogeneous polynomial $f(z_{0}, z_{1}, \cdots , z_{n+1})$ . Denoting
the coordinates of the point $x_{0}$ by $(a_{0}, a_{1}, \cdots , a_{n+1})$ , we may assume that

$U=\{(z_{0}, z_{1}, z_{n+1});|z_{k}-a_{k}|<d\}$ , $d>0$ .

1) We thank H. Hironaka for conversations which have Ied to the following
reasoning.



268 K. NOMIZU

The condition $U\cap P^{n- r}\subset M$ implies that $f(O, 0, \cdots , 0, z_{\tau+1}, \cdots , z_{n+1})=0$ for all
$(z_{r+1}$ , $\cdot$ .. , $z_{n+1})$ such that $|z_{k}-a_{k}|<d,$ $r+1\leqq k\leqq n+1$ . It follows that $f(O,$ $0$ , $\cdot$ .. ,
$0,$

$z_{\tau+1}$ , $\cdot$ .. , $z_{n+1}$) $=0$ for all $z_{r+1}$ , $\cdot$
., , $z_{n+1}$ . Thus $P^{n-r}$ is contained in $M$.

Now by the proposition below we may conclude that $M$ is a projective
hyperplane; but then the rank of $M$ is identically $0$ . This contradiction
coming from the assumption that the rank of $M$ is not $0$ at some point, we
have proved Theorem 1.

PROPOSITION. Let $M$ be a compact complex hypersurface in $P^{n+1}(C)$ . If
$M$ contains a certain projective subspace $P^{n-\tau}$ , where $2r\leqq n-1$ , then $M$ is a
projective hyperplane.

The following proof is an extension of the argument for Theorem 6 in
[2], which will now be contained in our Theorem 1. We write the homo-
geneous polynomial $f$ defining $M$ in the form

$f(z_{0}, z_{1}, z_{n+1})=F(z_{\tau+1}, z_{n+1})+\sum_{k=0}^{r}z_{k}f_{k}(z_{r+1}, z_{n+1})$

$+\sum_{k_{0}+\cdots+k_{r}\geqq 2}z_{0}^{k_{0}}z_{1}^{k_{1}}$
...

$z_{r}^{k_{\gamma}}f_{k_{0}k_{1}\cdots k_{\gamma}}(z_{\tau+1}, z_{n+1})$

where $F,$ $f_{k}$ and $f_{k_{0}k_{1}\cdots k_{r}}$ are homogeneous polynomials in the variables $z_{r+1}$ ,
... , $z_{n+1}$ . Since $P^{n- r}\subset M$, we have $f(O, \cdots , 0, z_{r+1}, \cdots , z_{n+1})=0$ for all $z_{r+1},$ $\cdots$ ,
$z_{n+1}$ . Thus $F$ is identically $0$ . Consequently, we get

$\partial f/\partial z_{j}=f_{j}+\sum_{k_{0}+\cdots+k_{r}\geqq 2}k_{j}z_{0}^{k_{0}}\cdots z_{J^{j-1}}^{k}\cdots z_{r}^{k_{\gamma}}f_{k_{0}\cdots k_{\gamma}}$ , $0\leqq j\leqq r$ ,

and

$\partial f/\partial z_{m}=\sum_{j=0}^{f}z_{j}\partial f_{j}/\partial z_{m}+\sum_{k_{0}+\cdots+k_{\gamma}\geqq 2}z_{0}^{k_{0}}\cdots z_{r}^{k_{\gamma}}\partial f_{k_{0}\cdots k_{\gamma}}/\partial z_{m}$ , $r+1\leqq m\leqq n+1$ .

At $(0, \cdots , 0, z_{\tau+1}, \cdots , z_{n+1})\in P^{n- r}\subset M$, we have

$\partial f/\partial z_{j}=f_{j},$ $0\leqq j\leqq r$, and $\partial f/\partial z_{m}=0,$ $r+1\leqq m\leqq n+1$ .
We consider $r+1$ homogeneous polynomials $f_{j},$ $0\leqq j\leqq r$ . If $r+1\leqq n-r$ (that
is, $2r\leqq n-1$ as we are assuming), it follows from the dimension theorem for
intersections of varieties (cf. the main theorem of \S 5, [3]) that, unless $f_{j}’ s$

are constants, there is a non-trivial common solution $(b_{r+1}, \cdots , b_{n+1})$ of the
system of equations $f_{j}=0,0\leqq i\leqq r$ . Then the point $(0, \cdots , 0, b_{\tau\neq 1}, \cdot.. , b_{n+1})$ of
$P^{n+1}(C)$ lies in $M$ and, at that point, all partial derivatives $\partial f/\partial z^{k},$ $0\leqq k\leqq n+1$ ,
are $0$. This contradicts the premise that $f$ defines our non-singular hyper-
surface $M$. We conclude that $f_{j}’ s$ are constants and $f$ is of degree 1, that is,
$M$ is a projective hyperplane.

3. PROOF OF THEOREM 2. At any point $x$ of $M$, there is an orthonormal
basis in $T_{x}(M)$ of the form $\{e_{1}, \cdot.. , e_{n}, Je_{1}, \cdot.. Je_{n}\}$ such that
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$Ae_{i}=\lambda_{i}e_{i}$ and $A(Je_{i})=-\lambda_{i}(Je_{i})$ , $1\leqq i\leqq n$ ,

where we may assume $\lambda_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{n}\geqq 0$ (see Lemma 1 of [1]). By Corol-
lary 1 of [1], the sectional curvature for the plane spanned by $e_{j}$ and $Je_{k},$ $j\neq k$ ,

is equal to $\frac{1}{4}\lambda_{j}\lambda_{k}$ . Since all sectional curvatures are $\geqq\frac{1}{4}$ , we have $-\lambda_{j}\lambda_{k}$

$\geqq 0$ . Thus, if $\lambda_{1}>0$ , then $\lambda_{2}=\ldots=\lambda_{n}=0$ and the rank of $M$ is at most 2 at
$x$ . If $\lambda_{1}=0$ , then, of course, $A$ is $0$ at $x$ . Thus our assumption on sectional
curvature implies that the rank of $M$ is at most 2 everywhere. Since $n\geqq 3$

by assumption, Theorem 1 can be applied to conclude that $M$ is a projective
hyperplane.

4. REMARK. For a compact connected K\"ahlerian manifold $M$ of complex
dimension $n$ , consider the following conditions:

a) $M$ admits a holomorphic, isometric imbedding into $P^{n+1}(C)$ ;

b) all sectional curvatures of $M$ are $\geqq\frac{1}{4}$ ;

c) the scalar curvature of $M$ is constant.
Our Theorem 2 says that, for $n\geqq 3$ , conditions a) and b) imply that $M$ is
holomorphically isometric to $P^{n}(C)$ . A result due to Berger and Goldberg-
Bishop [4] implies that b) and c) give rise to the same conclusion. Finally,
Kobayashi [5] proved, by using the main theorem in [1], that a) and c) imply
that $M$ is either $P^{n}(C)$ or a complex quadric, provided that $n\geqq 2$ .
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