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Introduction.

In a Riemannian space M™, a Killing vector v" is a vector field satisfying
the Killing’s equation :
Vivj+7jvi:0 ’

where [, denotes the operator of the Riemannian covariant derivation. A
Killing vector generates (locally) a one parameter group of isometries. On
the other hand a one parameter group of affine transformations induces an
affine Killing vector v" characterized by the equation:

VjVivh'—{'—leihvl: 0.

K. Yano® have introduced a Killing tensor of order r as a skew symmetric
tensor field u,,.,;, satisfying

ViWirir+V i1Uigina, =0

In a previous paper?, one of the authors discussed on Killing tensor of order
2. We shall generalize the results to the case of order » = 2. In §1 a system
of linear differential equations to be satisfied by a Killing tensor is obtained.
This equation enable us to define an affine Killing tensor as a generalization
of an affine Killing vector. It will be shown that an affine Killing tensor is
a Killing tensor in a compact M™ We shall devote §2 to prove that M™ is
a space of constant curvature if it admits sufficiently many Killing tensors.
§ 3 deals with the converse problem. Thus we have a new characterization
of a space of constant curvature. In §4 we shall give examples of Killing
tensor in the Euclidean space and the Euclidean sphere.

§1. Killing tensor. Affine Killing tensor.

Let M™ be an n dimensional Riemannian space whose metric tensor is
given by g,» in terms of local coordinates {x*}. We can regard the com-

1) K. Yano, ,
2) 8. Tachibana, [2].
3) a, b) "',i,j, '--:1, e, N
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ponents u;,.;, of a skew symmetric tensor as the coefficients of an exterior
differential form:

wm Lt A A
The coefficients (du);,..;, of the exterior derivative:
- 1 10 ir
du= _(W (du) iy, dx® N -+ N dx
are given by
(AW, :’E{) (=DM Ui iy »

where 1, means that i, is omitted.
A skew symmetric tensor u;,.,, is called a Killing tensor of order r, if it
satisfies the Killing-Yano’s equation :

Viouil-"ir_}— Vi1uioi2~-ir =0,
Let us consider a Killing tensor u,,.,,, then we have

1.1 (AWigoiy =T+ DV Uiy -
As ddu=0 it follows that

(ddu)gpiyiy =0

— Va,(du)bilmir—Vb(du)air--ir_l_z (‘1)k+17ik(du)abi1~-;:\ku-ir ’

which turns to
1.2) 17,117,,ui1..,ir—17,>t7aui1...ir+k;ﬁ1 (— 1)1 T gty =0

by virtue of [(L.I).
On the other hand we have by Ricci’s identity

”
VVsuisiy—V oV glhiyi, = *“hzl Ravin Uireoiy »

R - 2 k a
VikVaubumik---ir = (=D oV stts,..i,+(—1) Rikab Uiyndoriy

¢ ~
+h(§k)Rikaih ubil“'c~"i/c-~~ir ,

where the lower indices ¢ and d appear at the A-th and k-th position respec-
tively. Substituting these equations into ((1.2) we can get

-}- ; (-— 1)k+1h(§k)Rikaincubil---b"?/;"ir =0.

Thus we know that a Killing tensor u,,.,, satisfies the following equation:
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(1.3) TV oV osyi,+ % R 00 Wigmiy

h<

kRinikdcuil'"c"‘ik—lbik-l‘l'"iT =0 y
or equivalently

I ~ —
TVaViluiz--~ir+1+h2k (_1) +1Rihikacui1--~c~~-ik-~-ir+1 - 0 ’
<

where the lower index ¢ appears at the A-th position.

Now we shall define an affine Killing tensor of order r as a skew sym-
metric tensor u,.; satisfying [1.3) Any Killing tensor is an affine Killing
tensor. The converse is also true for a compact Riemannian space. That is
we have

THEOREM 1. In a campact Riemannian space, an affine Killing tensor is a
Killing tensor.

ProOF. Transvecting (1.3) with g%, we get

(1.4) YVaVauilmir_l_zRihcuiln-c-nir
ey Q.
+h§cR‘h1’k Ujpogoasdonip 0
Next by transvection (1.3) with g%, it follows that J, J’u;,..,=0. Then we
have
1.5 (Vauaizmir)(ybubiz---ir) = Vu(uaiznjrybubigmiy) .

Without loss of generality we can assume that M™ is orientable and then
applying the Green’s theorem to (1.5) we get

(1.6) V”ubiz...i, =0.

Equations (1.4) and (1.6) are sufficient conditions for a skew symmetric tensor
u;,.5, to be a Killing tensor®.  Q.E.D.

§2. A sufficient condition fer A" to be of constant curvature.

In this section we shall show that if a Riemannian space admits sufficiently
many Killing tensor fields then it is a space of constant curvature.
For a Killing tensor u,,.,, it holds that

2.1 vV oV stigs,+ ; RippaUipiy
- Rihikacuiruc-"b-"ir =0.
h<k

Interchanging the indices ¢ and & and subtracting the equation from ((2.1),

4) K. Yano and S. Bochner, [4], p. 76.
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we have

(22) (7_ 1) ; Rabihcuil--oc~--ir

—[—h,Zk (Rihikacuir-'c-"t--'ir_—R‘L’hikl)ﬁui1--»6---a---ir) =0.
Now we put

Jledr J1 Jn J
Babilmir "= (7—1)§Rabih65i1 s 50 5 "

ir
J1 in Ik J J1 Jn Jk Jr
+h§k(Rihika65i1 o 66 o 5b o 51’7« T—Rihikbcail 5(‘ '”517 517 ) ’

S0 as to write as
(23) Babi1...irj1"'jru]-1...j,. =0.

THEOREM 2. For any point p of a Riemannian space M™ and any skew
symmetric constants c;y..,, if there exists (locally) a Killing tensor u;,.;, of order
r @=r<n) satisfying u;y..;,(P) = Cipmi,» then M™ is a space of constant curva-
ture.

PrROOF. From (2.3) and the assumption of theorem, we have

(2.4:) Z Sign O'Babil.,.irg(l)m”(n — 0

=S
on M™, where

B ) IV A AN
@_{permutatlon oglo= 0_(11) a(r)>} .

Putting

0 Jr ., ailjr

U ir
Jeesdy : (¢} ) — .
ot r__gZ@Slgn 0-5“0 ). 51‘10 7 —

i iy H

575r“ e 5 Jr

ir

we have from (2.4)
(r—1) 2 Rapi h“5§ 1".'.'.jch.'.'.' i;
h
+ (Ripia®Os iz i — R0l s i) =0
Contracting with respect to i, and j,, ---, 7, and j,, we can get
@5 (n—l)Rubiljl——Ri1b5uh+Ri1a50h =0,

after some complicated computations where we have used n>r=2 and the
identity

5j1...jkjk+1‘..j,. o (n"k) L 5j1....7'k

gty dr T (TL~—7’) | Yireig

Thus we have

5) o(s) means s(j,).
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Ram‘;j1 = W(ER:TY (gbi16ajl —‘gai15bh)

from [(2.5) and hence M™ is of constant curvature.

§3. The converse problem.

We shall show the converse of is true. Namely we have
THEOREM 3. If M™ is a space of constant curvature, then there exists
(locally) Killing tensor u, of order v satisfying

1oty

uil...ir(p) = Cipnip) (Viluig--~i7+1)<p) = dii"-ir+1 ’

where p is any given point and ¢;y.;, and dg,.,,, are any given skew symmetric
constants.

Proor. It suffices to verify that the following system (3.1)~(@3.4) of
partial differential equations with unknown functions u;,.s,, %;..4,,, 18 COM-
pletely integrable.

3.1 Ui oot gty T Wigei oriporiy = O 5

(3.2 Ui oo pori i+ Wi gooiporipqr = O s

3.3 Viiligipyr = Uigipyr s

(3.9 Vtdiyips,=Q/ r)h%(—l)’“Rihi pa Wigoomdyomirsn *

As M™ is a space of constant curvature, we can replace (3.4) by the following
equation :

R r+1
(34), Vauil'"ir—l-l = n—(n?l)_ E <—l)kgik,aui1-~'§k--'ir+1 B

k=1
The equations obtained from (3.1) by differentiation:
aauil...ih...ik,..ir+aaui1,..ik...ih...i7, — O

are satisfied identically by (3.1), (3.3) and (3.2). The equations obtained from
(3.2) by differentiation:

aauil...ih...iku.i,,+1+aauil...ik...ih...ir_,_l =0

are satisfied identically by (3.2), (34)’ and (3.1).
Next the integrability condition of (3.3):

VaVbunmir_—VbVaui1~-ir: "%Rabincuil---c---iy

follows from (3.3), (3.4)" and (3.1) identically. Similarly the integrability con-
dition of (3.4):
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follows from [3.4}, [3.3) and identically.

Thus the system (3.1)~(3.3) and [3.4} is completely integrable and then
there exists (locally) Killing tensor of order » with the stated initial condi-
tions. Q.E.D.

§4. Examples of Killing tensors.

(i) Let E™* be a Euclidean space and {3*} (A=1, ---, n-+1) an orthogonal
coordinate system. A Killing tensor in E™" is a skew symmetric tensor
Uy,..2, Such that

(CRY) 03020 F 02 U pagty = 0 (0, =0/0y% .
For such a tensor we have by virtue of
0,0, 4302,= 0.
Integrating the last equation we get as the general solution of

(42) Uy w2y :y“am...zﬁ—bh...h ’

where a,;,..2, and b,,.;. are skew symmetric constant tensors.

(ii) Let M™*' be an n-+1 dimensional Riemannian space and M™ be its
hypersurface represented locally by y*=y*(x*) in terms of local coordinates
{»*} in M™* and {x"} in M" Putting B,*=0y*/0x% the induced metric g,
is given by g, = B,*By*Gy,, Where G;, means the Riemannian metric of M™*,
The second fundamental tensor H,,” is defined by

Hot =V By = 0B, /0x—{ & B+ { ;D}Baf‘Bc” :

Let u%% be a skew symmetric tensor field in M*" and assume that it is
tangent to M™ at any point of M™, that is, there exists a skew symmetric
tensor field v**% on M™ such that

4.3) yrrdr — Balil Barlrval“'ar
holds good over M™. Defining B% by B% =g%G,;,B,", (4.3) reduces to
Uppody = Balh e Bar,zrval...ar

in terms of covariant components of the tensors.
Differentiating the last equation covariantly along M" and transvecting
this with B,/ we can get
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(34) Belechvuh---lr = %: Bazlg HcahZhBah+1}.h+1 Barlrvcazmar

ag a
B, -+ B3,V Veagay -

Now we assume that our M™ is totally umbilic. Then there exists a vec-
tor field C* on M™ locally such as H,,*= C*g,, and hence (4.4) reduces to

1 — ag Cht1 a
B, 1BCVVyu;\1...)\T = %JB 22 """ ClnB + Ana1 " B Tlrveaz"-&nar

as a
+B"%,, -+ B3,V Veasay -

This equation shows that v,,.,, is a Killing tensor on M” provided that u;,.,,
is Killing.

Next let M™*=E"* and apply the above argument to the sphere
Sty =1.

The condition in order that a skew symmetric tensor u,,., to be tangent
to S™ everywhere is y*u,,,.,,=0. As a Killing tensor in E™? is the form
[(4.2), we know that

Upyoay = y“aa,h...,z,.

is a Killing tensor defined globally on S”", where a,;,.,, iS a skew symmetric

constant tensor in K™,
Ochanomizu University
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