On the integrability of Killing-Yano's equation

By Shun-ichi TACHIBANA and Toyoko KASHIWADA

(Received March 21, 1968)

Introduction.

In a Riemannian space M^n , a Killing vector v^h is a vector field satisfying the Killing's equation:

$$\nabla_i v_j + \nabla_j v_i = 0$$
,

where \mathcal{V}_i denotes the operator of the Riemannian covariant derivation. A Killing vector generates (locally) a one parameter group of isometries. On the other hand a one parameter group of affine transformations induces an affine Killing vector v^h characterized by the equation:

$$\nabla_i \nabla_i v^h + R_{lii}^h v^l = 0$$
.

K. Yano¹⁾ have introduced a Killing tensor of order r as a skew symmetric tensor field $u_{i_1\cdots i_r}$ satisfying

$$\nabla_{i_0}u_{i_1\cdots i_r} + \nabla_{i_1}u_{i_0i_2\cdots i_r} = 0$$
.

In a previous paper²⁾, one of the authors discussed on Killing tensor of order 2. We shall generalize the results to the case of order $r \ge 2$. In § 1 a system of linear differential equations to be satisfied by a Killing tensor is obtained. This equation enable us to define an affine Killing tensor as a generalization of an affine Killing vector. It will be shown that an affine Killing tensor is a Killing tensor in a compact M^n . We shall devote § 2 to prove that M^n is a space of constant curvature if it admits sufficiently many Killing tensors. § 3 deals with the converse problem. Thus we have a new characterization of a space of constant curvature. In § 4 we shall give examples of Killing tensor in the Euclidean space and the Euclidean sphere.

§ 1. Killing tensor. Affine Killing tensor.

Let M^n be an n dimensional Riemannian space whose metric tensor is given by $g_{ab}^{3)}$ in terms of local coordinates $\{x^h\}$. We can regard the com-

¹⁾ K. Yano, [3].

²⁾ S. Tachibana, $\lceil 2 \rceil$.

³⁾ $a, b, \dots, i, j, \dots = 1, \dots, n$.

ponents $u_{i_1\cdots i_r}$ of a skew symmetric tensor as the coefficients of an exterior differential form:

$$u = \frac{1}{r!} u_{i_1 \cdots i_r} dx^{i_1} \wedge \cdots \wedge dx^{i_r}.$$

The coefficients $(du)_{i_0\cdots i_r}$ of the exterior derivative:

$$du = \frac{1}{(r+1)!} (du)_{i_0 \cdots i_r} dx^{i_0} \wedge \cdots \wedge dx^{i_r}$$

are given by

$$(du)_{i_0\cdots i_r} = \sum_{h=0}^r (-1)^h V_{i_h} u_{i_0\cdots \hat{i}_h\cdots i_r}$$

where \hat{i}_h means that i_h is omitted.

A skew symmetric tensor $u_{i_1\cdots i_r}$ is called a Killing tensor of order r, if it satisfies the Killing-Yano's equation:

$$\nabla_{i_0} u_{i_1 \cdots i_r} + \nabla_{i_1} u_{i_0 i_2 \cdots i_r} = 0$$
.

Let us consider a Killing tensor $u_{i_1\cdots i_r}$, then we have

$$(1.1) (du)_{i_0\cdots i_r} = (r+1) \nabla_{i_0} u_{i_1\cdots i_r}.$$

As ddu = 0 it follows that

$$\begin{split} (ddu)_{abi_1\cdots i_r} &= 0 \\ &= \mathcal{V}_a(du)_{bi_1\cdots i_r} - \mathcal{V}_b(du)_{ai_1\cdots i_r} + \sum (-1)^{k+1} \mathcal{V}_{i_k}(du)_{abi_1\cdots \hat{i_k}\cdots i_r} \,, \end{split}$$

which turns to

by virtue of (1.1).

On the other hand we have by Ricci's identity

$$\begin{split} & \mathcal{V}_{a} \mathcal{V}_{b} u_{i_{1}\cdots i_{r}} - \mathcal{V}_{b} \mathcal{V}_{a} u_{i_{1}\cdots i_{r}} = -\sum_{h=1}^{r} R_{abih}{}^{c} u_{i_{1}\cdots c\cdots i_{r}} \,, \\ & \mathcal{V}_{i_{k}} \mathcal{V}_{a} u_{bi_{1}\cdots \hat{i}_{k}\cdots i_{r}} = (-1)^{k} \mathcal{V}_{a} \mathcal{V}_{b} u_{i_{1}\cdots i_{r}} + (-1)^{k} R_{i_{k}ab}{}^{d} u_{i_{1}\cdots d\cdots i_{r}} \\ & \qquad \qquad + \sum_{h(\neq k)} R_{i_{k}ai_{h}}{}^{c} u_{bi_{1}\cdots c\cdots \hat{i}_{k}\cdots i_{r}} \,, \end{split}$$

where the lower indices c and d appear at the h-th and k-th position respectively. Substituting these equations into (1.2) we can get

$$\begin{split} -r \nabla_{a} \nabla_{b} u_{i_{1} \cdots i_{r}} - \sum_{r} R_{abih}{}^{c} u_{i_{1} \cdots c \cdots i_{r}} - \sum_{r} R_{i_{h} ab}{}^{c} u_{i_{1} \cdots c \cdots i_{r}} \\ + \sum_{k} (-1)^{k+1} \sum_{h \neq \pm k} R_{i_{k} ai_{h}}{}^{c} u_{bi_{1} \cdots c \cdots \hat{i}_{k} \cdots i_{r}} &= 0 \; . \end{split}$$

Thus we know that a Killing tensor $u_{i_1\cdots i_r}$ satisfies the following equation:

(1.3)
$$r \nabla_a \nabla_b u_{i_1 \cdots i_r} + \sum_h R_{i_h ba}{}^c u_{i_1 \cdots c \cdots i_r}$$
$$- \sum_{h \le k} R_{i_h i_k a}{}^c u_{i_1 \cdots c \cdots i_{k-1} b i_{k+1} \cdots i_r} = 0 ,$$

or equivalently

$$r \nabla_a \nabla_{i_1} u_{i_2\cdots i_{r+1}} + \sum_{h \leq k} (-1)^{k+1} R_{i_h i_k a}{}^c u_{i_1\cdots c\cdots \hat{i}_k\cdots i_{r+1}} = 0$$
 ,

where the lower index c appears at the h-th position.

Now we shall define an affine Killing tensor of order r as a skew symmetric tensor $u_{i_1\cdots i_r}$ satisfying (1.3). Any Killing tensor is an affine Killing tensor. The converse is also true for a compact Riemannian space. That is we have

THEOREM 1. In a campact Riemannian space, an affine Killing tensor is a Killing tensor.

PROOF. Transvecting (1.3) with g^{ab} , we get

(1.4)
$$r \nabla^a \nabla_a u_{i_1 \cdots i_r} + \sum_{k \in \mathbb{Z}} R_{i_k}{}^c u_{i_1 \cdots c \cdots i_r}$$

$$+ \sum_{k \in \mathbb{Z}} R_{i_k i_k}{}^{cb} u_{i_1 \cdots c \cdots b \cdots i_r} = 0 .$$

Next by transvection (1.3) with g^{bi_1} , it follows that $\nabla_a \nabla^b u_{bi_2 \cdots i_r} = 0$. Then we have

$$(7.5) (\nabla^a u_a^{i_2...i_r})(\nabla^b u_{bi_2...i_r}) = \nabla^a (u_a^{i_2...i_r} \nabla^b u_{bi_2...i_r}).$$

Without loss of generality we can assume that M^n is orientable and then applying the Green's theorem to (1.5) we get

Equations (1.4) and (1.6) are sufficient conditions for a skew symmetric tensor $u_{i_1\cdots i_r}$ to be a Killing tensor⁴⁾. Q. E. D.

§ 2. A sufficient condition for M^n to be of constant curvature.

In this section we shall show that if a Riemannian space admits sufficiently many Killing tensor fields then it is a space of constant curvature.

For a Killing tensor $u_{i_1\cdots i_r}$ it holds that

(2.1)
$$r \nabla_{a} \nabla_{b} u_{i_{1} \cdots i_{r}} + \sum_{h} R_{i_{h} b a}{}^{c} u_{i_{1} \cdots c \cdots i_{r}}$$

$$- \sum_{h \leq k} R_{i_{h} i_{k} a}{}^{c} u_{i_{1} \cdots c \cdots b \cdots i_{r}} = 0 .$$

Interchanging the indices a and b and subtracting the equation from (2.1),

⁴⁾ K. Yano and S. Bochner, [4], p. 76.

we have

$$(2.2) (r-1) \sum_{h} R_{abih}{}^{c} u_{i_{1}\cdots c\cdots i_{r}}$$

$$+ \sum_{h \leq k} (R_{i_{h}i_{k}a}{}^{c} u_{i_{1}\cdots c\cdots b\cdots i_{r}} - R_{i_{h}i_{k}b}{}^{c} u_{i_{1}\cdots c\cdots a\cdots i_{r}}) = 0.$$

Now we put

$$\begin{split} B_{abi_{1}\cdots i_{r}}{}^{j_{1}\dots j_{r}} &= (r-1)\sum_{h}R_{abi_{h}}{}^{c}\delta_{i_{1}}{}^{j_{1}}\cdots\delta_{c}{}^{j_{h}}\cdots\delta_{i_{r}}{}^{j_{r}} \\ &+\sum_{h\leq k}(R_{i_{h}i_{k}a}{}^{c}\delta_{i_{1}}{}^{j_{1}}\cdots\delta_{c}{}^{j_{h}}\cdots\delta_{b}{}^{j_{k}}\cdots\delta_{i_{r}}{}^{j_{r}} - R_{i_{h}i_{k}b}{}^{c}\delta_{i_{1}}{}^{j_{1}}\cdots\delta_{c}{}^{j_{h}}\cdots\delta_{b}{}^{j_{k}}\cdots\delta_{i_{r}}{}^{j_{r}}) \,, \end{split}$$

so as to write (2.2) as

(2.3)
$$B_{abi_1\cdots i_r}{}^{j_1\dots j_r}u_{j_1\cdots j_r}=0.$$

THEOREM 2. For any point p of a Riemannian space M^n and any skew symmetric constants $c_{i_1\cdots i_r}$, if there exists (locally) a Killing tensor $u_{i_1\cdots i_r}$ of order r ($2 \le r < n$) satisfying $u_{i_1\cdots i_r}(p) = c_{i_1\cdots i_r}$, then M^n is a space of constant curvature.

PROOF. From (2.3) and the assumption of theorem, we have

(2.4)
$$\sum_{\sigma=\emptyset} \operatorname{sign} \sigma B_{abi_1\cdots i_r}{}^{\sigma(1)\cdots\sigma(r)} = 0$$

on M^n , where

$$\mathfrak{S} = \left\{ \text{permutation } \sigma \mid \sigma = \begin{pmatrix} j_1 & \cdots & j_r \\ \sigma(1) & \cdots & \sigma(r) \end{pmatrix} \right\}^{5}.$$

Putting

$$\delta_{i_1\cdots i_r}^{j_1\ldots j_r} = \sum_{\sigma \in \mathfrak{S}} \operatorname{sign} \, \sigma \delta_{i_1}{}^{\sigma(1)} \cdots \delta_{i_r}{}^{\sigma(r)} = \left| egin{array}{c} \delta_{i_r}{}^{j_1} \cdots \delta_{i_1}{}^{j_r} \ \vdots \ \delta_{i_r}{}^{j_1} \cdots \delta_{i_r}{}^{j_r} \end{array}
ight|,$$

we have from (2.4)

$$(r-1) \sum_{h} R_{abih}{}^{c} \delta_{i_{1} \cdots c \cdots i_{r}}^{j_{1} \dots j_{h} \dots j_{r}}$$

$$+ \sum_{h \leq k} (R_{i_{h}i_{k}a}{}^{c} \delta_{i_{1} \cdots c \cdots b \cdots i_{r}}^{j_{1} \cdots m j_{r}} - R_{i_{h}i_{k}b}{}^{c} \delta_{i_{1} \cdots c \cdots a \cdots i_{r}}^{j_{1} \cdots m j_{r}}) = 0.$$

Contracting with respect to i_2 and j_2 , ..., i_r and j_r , we can get

$$(2.5) \hspace{3.1em} (n-1)R_{abi_1}{}^{j_1} - R_{i_1b}\delta_a{}^{j_1} + R_{i_1a}\delta_b{}^{j_1} = 0 \; ,$$

after some complicated computations where we have used $n>r \geq 2$ and the identity

$$\delta_{i_1\cdots i_k j_{k+1}\cdots j_r}^{j_1\dots j_k j_{k+1}\dots j_r} = \frac{(n-k)!}{(n-r)!} \delta_{i_1\cdots i_k}^{j_1\dots j_k}.$$

Thus we have

⁵⁾ $\sigma(s)$ means $\sigma(j_s)$.

$$R_{abi_1}^{j_1} = \frac{R}{n(n-1)} (g_{bi_1} \delta_a^{j_1} - g_{ai_1} \delta_b^{j_1})$$

from (2.5) and hence M^n is of constant curvature.

§ 3. The converse problem.

We shall show the converse of Theorem 2 is true. Namely we have Theorem 3. If M^n is a space of constant curvature, then there exists (locally) Killing tensor $u_{i_1\cdots i_r}$ of order r satisfying

$$u_{i_1\cdots i_r}(p) = c_{i_1\cdots i_r}$$
, $(V_{i_1}u_{i_2\cdots i_{r+1}})(p) = d_{i_1\cdots i_{r+1}}$,

where p is any given point and $c_{i_1\cdots i_r}$ and $d_{i_1\cdots i_{r+1}}$ are any given skew symmetric constants.

PROOF. It suffices to verify that the following system $(3.1) \sim (3.4)$ of partial differential equations with unknown functions $u_{i_1\cdots i_r}$, $u_{i_1\cdots i_{r+1}}$ is completely integrable.

$$u_{i_1\cdots i_h\cdots i_r} + u_{i_1\cdots i_k\cdots i_r} = 0,$$

$$u_{i_1\cdots i_h\cdots i_k\cdots i_{r+1}} + u_{i_1\cdots i_k\cdots i_{r+1}} = 0,$$

$$(3.3) V_{i_1} u_{i_2 \cdots i_{r+1}} = u_{i_1 \cdots i_{r+1}},$$

As M^n is a space of constant curvature, we can replace (3.4) by the following equation:

The equations obtained from (3.1) by differentiation:

$$\partial_a u_{i_1 \cdots i_p \cdots i_r} + \partial_a u_{i_1 \cdots i_p \cdots i_r} = 0$$

are satisfied identically by (3.1), (3.3) and (3.2). The equations obtained from (3.2) by differentiation:

$$\partial_a u_{i_1 \cdots i_r \cdots i_r \cdots i_r + 1} + \partial_a u_{i_1 \cdots i_r \cdots i_r \cdots i_r + 1} = 0$$

are satisfied identically by (3.2), (3.4)' and (3.1).

Next the integrability condition of (3.3):

$$\nabla_a \nabla_b u_{i_1\cdots i_r} - \nabla_b \nabla_a u_{i_1\cdots i_r} = -\sum_{\mathbf{h}} R_{abih}{}^c u_{i_1\cdots c\cdots i_r}$$

follows from (3.3), (3.4)' and (3.1) identically. Similarly the integrability condition of (3.4)':

$$\nabla_a \nabla_b u_{i_1\cdots i_{r+1}} - \nabla_b \nabla_a u_{i_1\cdots i_{r+1}} = -\sum_b R_{abib}{}^c u_{i_1\cdots c\cdots i_{r+1}}$$

follows from (3.4)', (3.3) and (3.2) identically.

Thus the system $(3.1) \sim (3.3)$ and (3.4)' is completely integrable and then there exists (locally) Killing tensor of order r with the stated initial conditions. Q. E. D.

§ 4. Examples of Killing tensors.

(i) Let E^{n+1} be a Euclidean space and $\{y^{\lambda}\}$ $(\lambda=1,\cdots,n+1)$ an orthogonal coordinate system. A Killing tensor in E^{n+1} is a skew symmetric tensor $u_{\lambda_1\cdots\lambda_r}$ such that

$$\partial_{\mu}u_{\lambda_{1}\cdots\lambda_{r}}+\partial_{\lambda_{1}}u_{\mu\lambda_{2}\cdots\lambda_{r}}=0, \quad (\partial_{\lambda}=\partial/\partial y^{\lambda}).$$

For such a tensor we have by virtue of (1.3)

$$\partial_{\nu}\partial_{\mu}u_{\lambda_{1}...\lambda_{r}}=0$$
.

Integrating the last equation we get as the general solution of (4.1)

$$(4.2) u_{\lambda_1..\lambda_r} = y^{\alpha} a_{\alpha\lambda_1...\lambda_r} + b_{\lambda_1...\lambda_r},$$

where $a_{\alpha\lambda_1\cdots\lambda_r}$ and $b_{\lambda_1\cdots\lambda_r}$ are skew symmetric constant tensors.

(ii) Let M^{n+1} be an n+1 dimensional Riemannian space and M^n be its hypersurface represented locally by $y^{\lambda} = y^{\lambda}(x^h)$ in terms of local coordinates $\{y^{\lambda}\}$ in M^{n+1} and $\{x^h\}$ in M^n . Putting $B_a{}^{\lambda} = \partial y^{\lambda}/\partial x^a$, the induced metric g_{ab} is given by $g_{ab} = B_a{}^{\lambda}B_b{}^{\mu}G_{\lambda\mu}$, where $G_{\lambda\mu}$ means the Riemannian metric of M^{n+1} . The second fundamental tensor $H_{ab}{}^{\lambda}$ is defined by

$$H_{ab}{}^{\lambda} \equiv \nabla_a B_b{}^{\lambda} \equiv \partial B_b{}^{\lambda}/\partial x^a - \left\{ {c \atop ab} \right\} B_c{}^{\lambda} + \left\{ {\lambda \atop \mu\nu} \right\} B_a{}^{\mu} B_c{}^{\nu} \; .$$

Let $u^{\lambda_1 \cdots \lambda_r}$ be a skew symmetric tensor field in M^{n+1} and assume that it is tangent to M^n at any point of M^n , that is, there exists a skew symmetric tensor field $v^{a_1 \cdots a_r}$ on M^n such that

$$(4.3) u^{\lambda_1 \cdots \lambda_r} = B_{a_1}^{\lambda_1} \cdots B_{a_r}^{\lambda_r} v^{a_1 \cdots a_r}$$

holds good over M^n . Defining B^a_{λ} by $B^a_{\lambda} = g^{ab}G_{\lambda\mu}B_b^{\mu}$, (4.3) reduces to

$$u_{\lambda_1\cdots\lambda_r} = B^{a_1}_{\lambda_1}\cdots B^{a_r}_{\lambda_r}v_{a_1\cdots a_r}$$

in terms of covariant components of the tensors.

Differentiating the last equation covariantly along M^n and transvecting this with $B_e^{\lambda_1}$ we can get

$$(3.4) B_e^{\lambda_1} B_c^{\nu} \nabla_{\nu} u_{\lambda_1 \cdots \lambda_r} = \sum_h B^{a_2}{}_{\lambda_2} \cdots H_c^{a_h}{}_{\lambda_h} B^{a_{h+1}}{}_{\lambda_{h+1}} \cdots B^{a_r}{}_{\lambda_r} v_{ea_2 \cdots a_r}$$

$$+ B^{a_2}{}_{\lambda_2} \cdots B^{a_r}{}_{\lambda_r} \nabla_c v_{ea_2 \cdots a_r}.$$

Now we assume that our M^n is totally umbilic. Then there exists a vector field C^{λ} on M^n locally such as $H_{ab}^{\lambda} = C^{\lambda} g_{ab}$ and hence (4.4) reduces to

$$B_e^{\lambda_1} B_c^{\nu} \nabla_{\nu} u_{\lambda_1 \cdots \lambda_r} = \sum_h B^{a_2}_{\lambda_2} \cdots C_{\lambda_h} B^{a_{h+1}}_{\lambda_{h+1}} \cdots B^{a_r}_{\lambda_r} v_{ea_2 \cdots c \cdots a_r}$$
$$+ B^{a_2}_{\lambda_2} \cdots B^{a_r}_{\lambda_r} \nabla_c v_{ea_2 \cdots a_r}.$$

This equation shows that $v_{a_1\cdots a_r}$ is a Killing tensor on M^n provided that $u_{\lambda_1\cdots \lambda_r}$ is Killing.

Next let $M^{n+1} = E^{n+1}$ and apply the above argument to the sphere $S^n: \sum (y^{\lambda})^2 = 1$.

The condition in order that a skew symmetric tensor $u_{\lambda_1\cdots\lambda_r}$ to be tangent to S^n everywhere is $y^\alpha u_{\alpha\lambda_1\cdots\lambda_r}=0$. As a Killing tensor in E^{n+1} is the form (4.2), we know that

$$u_{\lambda_1 \dots \lambda_r} = y^{\alpha} a_{\alpha \lambda_1 \dots \lambda_r}$$

is a Killing tensor defined globally on S^n , where $a_{\alpha\lambda_1\cdots\lambda_r}$ is a skew symmetric constant tensor in E^{n+1} .

Ochanomizu University

Bibliography

- [1] L. P. Eisenhart, Continuous group of transformations, Princeton, 1933.
- [2] S. Tachibana, On Killing tensors in a Riemannian space, to appear.
- [3] K. Yano, Some remarks on tensor fields and curvature, Ann. of Math., 55 (1952), 328-347.
- [4] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies. No. 32, 1953.