Some perturbation theorems for nonnegative contraction semigroups*

By Karl Gustafson and Ken-iti Sato

(Received Oct. 29, 1968)

§ 1. Introduction.

Let $G^{+}(M, \alpha)$ be the set of infinitesimal generators of strongly continuous semigroups $T_{t}, t \geqq 0$, of nonnegative linear operators on a Banach lattice \mathfrak{B} such that $\left\|T_{t}\right\| \leqq M e^{\alpha t}$. We consider additive and multiplicative perturbation of operators $A \in G^{+}(1, \alpha)$, and prove Theorem 2.1 for additive perturbation $A+B$ and Theorems 3.1-3.3 for multiplicative perturbation $B_{2} A B_{1}$. A key role is played by the condition of α-dispersiveness defined below, and the main requirement for the perturbed operator to belong to $G^{+}\left(1, \alpha^{\prime}\right)$ is that it is α^{\prime} dispersive.

Define $\tau(f, g)=\lim _{\varepsilon \rightarrow 0+} \varepsilon^{-1}(\|f+\varepsilon g\|-\|f\|)$ for any f and g in \mathfrak{B}, and $\sigma(f, g)$ $=\inf \tau(f,(g+h) \vee(-b f))$ for $f \geqq 0$ and any g, where the infimum is taken over all h and b satisfying $f \wedge|h|=0$ and b a nonnegative real number. Let α be a real number: we call an operator A-dispersive in the strict sense or α-dispersive (s) if $\sigma\left(f^{+}, A f\right) \leqq \alpha\left\|f^{+}\right\|$for all $f \in \mathscr{D}(A)$, α-dispersive in the wide sense or α-dispersive (w) if $\sigma\left(f^{+},-A f\right) \geqq-\alpha\left\|f^{+}\right\|$for all $f \in \mathbb{D}(A)$. 0-dispersive (s) and (w) are the same as dispersive (s) and (w) defined in [6], where the functional $\dot{\sigma}$ was introduced and shown to possess the following properties. Let $f \geqq 0$:

$$
\begin{gather*}
-\left\|g^{-}\right\| \leqq \sigma(f, g) \leqq\left\|g^{+}\right\| ; \tag{1.1}\\
\sigma(f, a g)=a \sigma(f, g), \quad a \geqq 0 ; \tag{1.2}\\
\sigma(f, a f+g)=a\|f\|+\sigma(f, g), \quad \text { any } a ;
\end{gather*}
$$

$$
\begin{equation*}
\sigma(f, g+h) \leqq \sigma(f, g)+\sigma(f, h) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
g \leqq h \Rightarrow \sigma(f, g) \leqq \sigma(f, h) \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
f \wedge|h|=0 \Rightarrow \sigma(f, g)=\sigma(f, g+h) . \tag{1.6}
\end{equation*}
$$

[^0]As a consequence, we have $-\sigma(f,-g) \leqq \sigma(f, g)$, so that α-dispersive (s) implies α-dispersive (w).

Operators in $G^{+}(1, \alpha)$ are characterized as follows.
Theorem 1.1. Let A be a densely defined linear operator with $\mathfrak{R}(\lambda I-A)$ $=\mathfrak{B}$ for some $\lambda>\alpha$. Then the following three properties are equivalent: $A \in G^{+}(1, \alpha) ; A$ is α-dispersive (s); and A is α-dispersive (w).

In fact, the above theorem was proved in [6, Theorems 1 and 2] if $\alpha=0$, and the general case reduces to the case $\alpha=0$ by the following easily proved lemmas.

Lemma 1.1. $A \in G^{+}(M, \alpha)$ if and only if $A+\beta I \in G^{+}(M, \alpha+\beta)$.
Lemma 1.2. A is α-dispersive (s) if and only if $A+\beta I$ is $(\alpha+\beta)$-dispersive (s). The same is true with (s) replaced by (w).

Remark 1.1. Phillips [5] and Hasegawa [4] gave characterizations of $G^{+}(1,0)$ prior to [6]. But Hasegawa's dispersiveness is not convenient for perturbation questions because the functional τ^{\prime} introduced by him does not possess the subadditivity property (1.4). Phillips used a special type of semi-inner-product dispersiveness, and all of our theorems remain true (this is easily checked) if we define α-dispersiveness in terms of his semi-inner-product instead of σ. But our definition has an advantage in applications since one can concretely express α-dispersiveness (s) and (w) in many Banach lattices (see the discussion and examples in [6]).

Remark 1.2. The proofs in this paper could be essentially shortened if the following were true: a 0 -dispersive (w) operator B is dissipative in at least one semi-inner-product. Phillips [5, p. 298] mentions a similar question, and these questions can be answered in the affirmative for many Banach lattices, or if B is bounded, or more generally if $B \in G(M, \alpha)$, etc. Nonetheless the general relationship among the different definitions of dispersiveness is not known.

Most of our results are analogous to the perturbation theorems for infinitesimal generators $G(1,0)$ of strongly continuous contraction semigroups studied in $[1,2,3,7]$ and others, wherein the condition of dissipativeness plays a key role. However, due to the situation just mentioned, it was necessary to obtain our results independent of the discussion of $G(1,0)$.

§ 2. Additive perturbation.

Theorem 2.1. Let $A \in G^{+}(1, \alpha)$ and let B be a linear operator with $\mathfrak{D}(B)$ $\supset \mathfrak{D}(A)$ such that for some $a<1$ and $b<+\infty$

$$
\begin{equation*}
\|B f\| \leqq a\|A f\|+b\|f\|, \quad \text { for all } f \in \mathfrak{D}(A) \tag{2.1}
\end{equation*}
$$

If $A+B$ is $(\alpha+\beta)$-dispersive (w), then $A+B \in G^{+}(1, \alpha+\beta)$.

Gustafson [1, Theorem 2] proved a similar theorem for $G(1,0)$, extending the previous limit from $a<\frac{1}{2}$ to $a<1$. On the other hand, for $\alpha=\beta=0$, Sato [6, Lemma 5.2] proved the above theorem under the assumption $a<\frac{1}{2}$. There 0 -dispersiveness (w) of B was assumed, but the proof needs no change if $A+B$ is 0 -dispersive (w). For the present case, we need a lemma.

Lemma 2.1. If A is α-dispersive (s) and $A+B$ is $(\alpha+\beta)$-dispersive (w), then $A+c B$ is $(\alpha+c \beta)$-dispersive (w) for $0 \leqq c \leqq 1$.

Proof. By (1.2) and (1.4) we have

$$
\begin{aligned}
\sigma\left(f^{+},-(A+c B) f\right) & \geqq \sigma\left(f^{+},-c(A+B) f\right)-\sigma\left(f^{+},(1-c) A f\right) \\
& =c \sigma\left(f^{+},-(A+B) f\right)-(1-c) \sigma\left(f^{+}, A f\right) \\
& \geqq-c(\alpha+\beta)\left\|f^{+}\right\|-(1-c) \alpha\left\|f^{+}\right\| \\
& =-(\alpha+c \beta)\left\|f^{+}\right\| .
\end{aligned}
$$

Proof of Theorem 2.1. Since (2.1) implies

$$
\|(B-\beta I) f\| \leqq a\|(A-\alpha I) f\|+(a|\alpha|+|\beta|+b)\|f\|,
$$

the theorem reduces to the case $\alpha=\beta=0$ by Lemmas 1.1 and 1.2. Hence, assume that $\alpha=\beta=0$. It remains only to handle the case $\frac{1}{2} \leqq a<1$. We can find $c_{j}>0,(j=1,2, \cdots, n), a^{\prime}<\frac{1}{2}$ and $b^{\prime}<+\infty$ such that $\sum_{j=1}^{n} c_{j}=1$ and

$$
\left\|c_{k} B f\right\| \leqq a^{\prime}\left\|\left(A+\sum_{j=1}^{k-1} c_{j} B\right) f\right\|+b^{\prime}\|f\|, \quad k=1,2, \cdots, n,
$$

exactly in the same way as in [1]. Thus we have $A+\sum_{j=1}^{k} c_{j} B \in G^{+}(1,0)$ for $k=1,2, \cdots, n$, noting that Lemma 2.1 guarantees their 0 -dispersiveness (w), and the theorem is proved.

Remark 2.1. In Theorem 2.1 we can replace the assumption of $(\alpha+\beta)$ dispersiveness (w) of $A+B$ by β-dispersiveness (w) of B. The new assumption is stronger since we have

Lemma 2.2. If A is α-dispersive (s) and B is β-dispersive (w), then $A+B$ is $(\alpha+\beta)$-dispersive (w).

Proof. From (1.4) we have

$$
\sigma\left(f^{+},-(A+B) f\right) \geqq \sigma\left(f^{+},-B f\right)-\sigma\left(f^{+}, A f\right) \geqq-(\alpha+\beta)\left\|f^{+}\right\|
$$

Remark 2.2. Theorem 2.1 cannot be extended to $a \leqq 1$. For example, let \mathfrak{B} be the Banach lattice of continuous functions on the real line which vanish at infinity with norm $\|f\|=\max |f(x)|$. Let φ be the continuous function defined by $\varphi(x)=1$ for $x \leqq 0, \varphi(x)=1+\sqrt{x}$ for $0<x \leqq 1$ and $\varphi(x)=2$ for $x>1$
and let $A=\varphi(x) D, B=-D$, where $D=\frac{d}{d x}$, the domain of D being the set of functions f such that $f \in \mathfrak{B}$ and $f^{\prime} \in \mathfrak{B}$. Then $A, B \in G^{+}(1,0)$, hence $A+B$ is 0 -dispersive (w), and (2.1) is satisfied for $a=1$ and $b=0$. But, $A+B \notin G^{+}(1,0)$. In fact, no extension of $A+B$ belongs to $G^{+}(1,0)$, as shown by Trotter [7, Example 2].

§ 3. Multiplicative perturbation.

The following result incorporates into one statement dispersive analogues of the left and right bounded multiplicative perturbation of $G(1,0)$ results of [2] and [3]; we also state (Theorem 3.3 below) an unbounded version. A more detailed investigation of the individual cases for unbounded multipliers may be found in [3] (in a dissipative context, for $G(1,0)$); that paper should also be seen for examples of specific applications of multiplicative perturbation. For the reasons mentioned in Remark 1.2, our proofs are somewhat different from those employed in [2,3].

Theorem 3.1. Let $A \in G^{+}(1, \alpha)$ and let B be a bounded linear operator such that $\mathfrak{D}(B)=\mathfrak{B}$ and $-B$ is $(-\beta)$-dispersive (w) for some $\beta>0$. Let C denote $B A, A B, B^{-1} A B$, or $B A B^{-1}$. Then $C \in G^{+}(1, \gamma)$, provided that C is $\gamma-$ dispersive (w).

Note that, by the following lemma, B has an everywhere defined inverse B^{-1} under the conditions in Theorem 3.1.

Lemma 3.1. Let B be a bounded linear operator with $\mathfrak{D}(B)=\mathfrak{B}$ and suppose that $-B$ is $(-\beta)$-dispersive (w) for some $\beta>0$. Then $\Re(B)=\mathfrak{B}, B^{-1}$ exists and is bounded, and $-B$ is $(-\beta)$-dispersive (s).

Proof. Everything follows from the fact that $-B \in G^{+}(1,-\beta)$.
Also by this lemma, Theorem 3.1 consists of special cases of the next more general result.

Theorem 3.2. Let $A \in G^{+}(1, \alpha)$. Let B_{1} and B_{2} be bounded linear operators such that $\mathfrak{D}\left(B_{j}\right)=\mathfrak{P}\left(B_{j}\right)=\mathfrak{B}, j=1,2, B_{1}$ has a bounded inverse, and $-B_{2} B_{1}$ is $(-\gamma)$-dispersive (w) for some $\gamma>0$. If $B_{2} A B_{1}$ is α^{\prime}-dispersive (w), it belongs to $G^{+}\left(1, \alpha^{\prime}\right)$.

Proof. Let $A^{\prime}=B_{2} A B_{1}$ and suppose that A^{\prime} is α^{\prime}-dispersive (w). Choose a positive number λ so large that $\lambda>\alpha$ and $\alpha^{\prime}-\lambda \alpha<0$, and let $E=A^{\prime}-\lambda B_{2} B_{1}$. Since $-B_{2} B_{1}$ is $(-\gamma)$-dispersive (s) by Lemma 3.1, $-\lambda B_{2} B_{1}$ is $(-\lambda \gamma)$-dispersive (s), and hence E is ($\alpha^{\prime}-\lambda \gamma$)-dispersive (w) by Lemma 2.2. $\mathscr{D}(E)$ is dense because $\mathfrak{D}(E)=\mathfrak{D}\left(A^{\prime}\right)=\mathfrak{D}\left(A B_{1}\right)$ and $\mathfrak{D}\left(A B_{1}\right)$ is dense by the bounded invertibility of B_{1} and denseness of $\mathfrak{D}(A)$. Furthermore, since $E=B_{2}(A-\lambda I) B_{1}, A \in G^{+}(1, \alpha)$ and $\lambda>\alpha$, we have $\Re(E)=\mathfrak{B}$. Therefore $E \in G^{+}\left(1, \alpha^{\prime}-\lambda \gamma\right)$ by Theorem 1.1, noting that $\alpha^{\prime}-\lambda \gamma<0$. A^{\prime} being a bounded perturbation of E, we obtain
$A^{\prime} \in G^{+}\left(1, \alpha^{\prime}\right)$ by Theorem 2.1.
Theorem 3.3. Let $A \in G^{+}(1, \alpha)$, let $\mathfrak{D}\left(B_{2}\right)=\mathfrak{R}\left(B_{2}\right)=\mathfrak{B}$, let $\mathfrak{D}\left(B_{1}\right)$ be dense
 Suppose that $-B_{2} B_{1}$ is $(-\gamma)$-dispersive (w) for some $\gamma>0$, and bounded. Then if $B_{2} A B_{1}$ is α^{\prime}-dispersive (w), it belongs to $G^{+}\left(1, \alpha^{\prime}\right)$.

Proof. It is easy to check (e.g., it follows directly from [6, Theorem 4] and Lemma 1.2) that $-B_{2} B_{1}$ is ($-\gamma$)-dispersive (s). Choosing λ as in the proof of Theorem 3.2, let $A^{\prime}=B_{2} A B_{1}, E=A^{\prime}-\lambda B_{2} B_{1}$, and $E^{\prime}=B_{2}(A-\lambda I) B_{1}$. Then $\mathfrak{R}\left(E^{\prime}\right)=\mathfrak{B}$, because $\mathfrak{R}\left(B_{2}\right)=\mathfrak{B}, A \in G^{+}(1, \alpha)$, and $\mathfrak{R}\left(B_{1}\right) \supset \mathfrak{D}(A)$. Since $\mathfrak{D}\left(B_{2}\right)=\mathfrak{B}$, it follows that $\mathfrak{D}\left(E^{\prime}\right)=\mathfrak{D}(E)=\mathfrak{D}\left(A^{\prime}\right)=\mathfrak{D}\left(A B_{1}\right)$; in particular $E^{\prime}=E$. We can conclude that $A^{\prime} \in G^{+}\left(1, \alpha^{\prime}\right)$ as before if $\mathfrak{D}\left(A B_{1}\right)$ is dense. The latter is assured in case (i) as in Theorem 3.2 by B_{1}^{-1} bounded and $\mathfrak{D}\left(B_{1}\right)$ dense; in case (ii), $\mathfrak{D}\left(A B_{1}\right)=\mathfrak{D}\left((A-\lambda I) B_{1}\right)$ is dense by the well-known Fredholm theory, since $A-\lambda I$ is Fredholm and B_{1} is closed with finite (zero) deficiency index.

Remark 3.1. Suppose $\beta=0$ in the assumption of Theorem 3.1. Then $B A$ can fail to be in $G^{+}(1, \gamma)$ even if it is γ-dispersive (w). For example, let \mathfrak{B}, $\varphi(x)$, and D be the same as in Remark 2.2, let $A=D$, and let B be multiplicative by the function $\varphi(x)-1$. Then $A \in G^{+}(1,0),-B$ is bounded 0 -dispersive (s), and $B A$ is 0 -dispersive (s), but any extension of $B A$ does not belong to $G^{+}(1,0)$ as mentioned before. To check dispersiveness, note that the 0 -dispersiveness (s) of an operator C in this space is equivalent to the following maximum principle, as is shown in [6, Example 6.2]: if $f \in \mathscr{D}(C)$ attains its positive maximum at x_{0}, then $C f\left(x_{0}\right) \leqq 0$.

> University of Colorado and Tokyo University of Education

References

[1] Karl Gustafson, A perturbation lemma, Bull. Amer. Math. Soc., 72 (1966), 334-338.
[2] Karl Gustafson, Positive (noncommuting) operator products and semigroups, Math. Zeit., 105 (1968), 160-172.
[3] Karl Gustafson and G. Lumer, Multiplicative perturbation of semigroup generators, to appear.
[4] Minoru Hasegawa, On contraction semigroups and (di)-operators, J. Math. Soc. Japan, 18 (1966), 290-302.
[5] R.S. Phillips, Semigroups of positive contraction operators, Czechoslovak Math. J., 12 (87) (1962), 294-313.
[6] Ken-iti Sato, On the generators of non-negative contraction semigroups in Banach lattices, J. Math. Soc. Japan, 20 (1968), 423-436.
[7] H. Trotter, On the product of semigroups of operators, Proc. Amer. Math. Soc., 10 (1959), 545-551.

[^0]: * Partially supported by the National Science Foundation while the first named author was at the University of Minnesota and the second named author was visiting there.

