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\S 1. Introduction.

Let $G^{+}(M, \alpha)$ be the set of infinitesimal generators of strongly continuous
semigroups $T_{t},$ $t\geqq 0$ , of nonnegative linear operators on a Banach lattice $\mathfrak{B}$

such that $\Vert T_{t}\Vert\leqq Me^{\alpha\iota}$ . We consider additive and multiplicative perturbation
of operators $A\in G^{+}(1, \alpha)$ , and prove Theorem 2.1 for additive perturbation
$A+B$ and Theorems 3.1-3.3 for multiplicative perturbation $B_{2}AB_{1}$ . A key role
is played by the condition of $\alpha$ -dispersiveness defined below, and the main
requirement for the perturbed operator to belong to $G^{+}(1, \alpha^{\prime})$ is that it is $\alpha^{\prime}-$

dispersive.
Define $\tau(f, g)=\lim_{\epsilon\rightarrow 0+}\epsilon^{-1}(\Vert f+\epsilon g\Vert-\Vert f\Vert)$ for any $f$ and $g$ in $\mathfrak{B}$ , and $\sigma(f, g)$

$=\inf\tau(f, (g+h)\vee(-bf))$ for $f\geqq 0$ and any $g$, where the infimum is taken
over all $h$ and $b$ satisfying $f\wedge|h|=0$ and $b$ a nonnegative real number. Let
$\alpha$ be a real number: we call an operator $A$ a-dispersive in the strict sense or
$\alpha$ -dispersive $(s)$ if $\sigma(f^{+}, Af)\leqq\alpha\Vert f^{+}\Vert$ for all $f\in \mathfrak{D}(A),$ $\alpha$ -dispersive in the wide
sense or $\alpha$ -dispersive $(w)$ if $\sigma(f^{+}, -Af)\geqq-\alpha\Vert f^{+}\Vert$ for all $f\in \mathfrak{D}(A)$ . O-disper-
sive (s) and (w) are the same as dispersive (s) and (w) defined in [6], where
the functional $\acute{\sigma}$ was introduced and shown to possess the following properties.
Let $f\geqq 0$ :

(1.1) $-\Vert g^{-}\Vert\leqq\sigma(f, g)\leqq\Vert g^{+}\Vert$ ;

(1.2) $\sigma(f, ag)=a\sigma(f, g)$ , $a\geqq 0$ ;

(1.3) $\sigma(f, af+g)=a\Vert f\Vert+\sigma(f, g)$ , any $a$ ;

(1.4) $\sigma(f, g+h)\leqq\sigma(f, g)+\sigma(f, h)$ ;

(1.5) $g\leqq h\Rightarrow\sigma(f, g)\leqq\sigma(f, h)$ ;

(1.6) $f\wedge|h|=0\Rightarrow\sigma(f, g)=\sigma(f, g+h)$ .
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As a consequence, we have $-\sigma(f, -g)\leqq\sigma(f, g)$ , so that $\alpha$ -dispersive (s) implies
a-dispersive (w).

Operators in $G^{+}(1, \alpha)$ are characterized as follows.
THEOREM 1.1. Let $A$ be a densely defined linear operator with $\mathfrak{R}(\lambda I-A)$

$=\mathfrak{B}$ for some $\lambda>\alpha$ . Then the following three properties are equivalent:
$A\in G^{+}(1, a);$ $A$ is $\alpha$ -dispersive $(s)$ ; and $A$ is $\alpha$ -dispersive $(w)$ .

In fact, the above theorem was proved in [6, Theorems 1 and 2] if $\alpha=0$ ,
and the general case reduces to the case $\alpha=0$ by the following easily proved
lemmas.

LEMMA 1.1. $A\in G^{+}(M, \alpha)$ if and only if $A+\beta I\in G^{+}(M, \alpha+\beta)$ .
LEMMA 1.2. $A$ is a-dispersive $(s)$ if and only if $A+\beta I$ is $(\alpha+\beta)$ -dispersive

$(s)$ . The same is true with $(s)$ replaced by $(w)$ .
REMARK 1.1. Phillips [5] and Hasegawa [4] gave characterizations of

$G^{+}(1,0)$ prior to [6]. But Hasegawa’s dispersiveness is not convenient for
perturbation questions because the functional $\tau^{\prime}$ introduced by him does not
possess the subadditivity property (1.4). Phillips used a special type of semi-
inner-product dispersiveness, and all of our theorems remain true (this is
easily checked) if we define $\alpha$ -dispersiveness in terms of his semi-inner-product
instead of $\sigma$ . But our definition has an advantage in applications since one
can concretely express $\alpha$ -dispersiveness (s) and (w) in many Banach lattices
(see the discussion and examples in [6]).

REMARK 1.2. The proofs in this paper could be essentially shortened if
the following were true: a O-dispersive (w) operator $B$ is dissipative in at
least one semi-inner-product. Phillips [5, p. 298] mentions a similar question,
and these questions can be answered in the affirmative for many Banach
lattices, or if $B$ is bounded, or more generally if $B\in G(M, \alpha)$ , etc. Nonethe-
less the general relationship among the different definitions of dispersiveness
is not known.

Most of our results are analogous to the perturbation theorems for infin-
itesimal generators $G(1,0)$ of strongly continuous contraction semigroups
studied in [1, 2, 3, 7] and others, wherein the condition of dissipativeness plays
a key role. However, due to the situation just mentioned, it was necessary
to obtain our results independent of the discussion of $G(1,0)$ .

\S 2. Additive perturbation.

THEOREM 2.1. Let $A\in G^{+}(1, \alpha)$ and let $B$ be a linear operator with $\mathfrak{D}(B)$

$\supset \mathfrak{D}(A)$ such that for some $a<1$ and $ b<+\infty$

(2.1) $\Vert Bf\Vert\leqq a\Vert Af\Vert+b\Vert f\Vert$ , for all $f\in \mathfrak{D}(A)$ .
If $A+B$ is $(a+\beta)$ -dispersive $(w)$ , then $A+B\in G^{+}(1, \alpha+\beta)$ .
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Gustafson [1, Theorem 2] proved a similar theorem for $G(1,0)$ , extending

the previous limit from $a<\frac{1}{2}$ to $a<1$ . On the other hand, for $\alpha=\beta=0$ ,

Sato [6, Lemma 5.2] proved the above theorem under the assumption $a<\frac{1}{2}$ .
There O-dispersiveness (w) of $B$ was assumed, but the proof needs no change
if $A+B$ is O-dispersive (w). For the present case, we need a lemma.

LEMMA 2.1. If $A$ is $\alpha$ -dispersive $(s)$ and $A+B$ is $(\alpha+\beta)$ -dispersive $(w)$ , then
$A+cB$ is $(\alpha+c\beta)$ -disp ersive $(w)$ for $0\leqq c\leqq 1$ .

PROOF. By (1.2) and (1.4) we have

$\sigma(f^{+}, -(A+cB)f)\geqq\sigma(f^{+}, -c(A+B)f)-\sigma(f^{+}, (1-c)Af)$

$=c\sigma(f^{+}, -(A+B)f)-(1-c)\sigma(f^{+}, Af)$

$\geqq-c(a+\beta)\Vert f^{+}\Vert-(1-c)\alpha\Vert f^{+}\Vert$

$=-(\alpha+c\beta)\Vert f^{+}\Vert$ .
PROOF OF THEOREM 2.1. Since (2.1) implies

$\Vert(B-\beta I)f\Vert\leqq a\Vert(A-\alpha I)f\Vert+(a|\alpha|+|\beta|+b)\Vert f\Vert$ ,

the theorem reduces to the case $\alpha=\beta=0$ by Lemmas 1.1 and 1.2. Hence,
1assume that $\alpha=\beta=0$ . It remains only to handle the case $-2^{-}\leqq a<1$ . We

can find $c_{j}>0$ , $(j=1,2. \cdots , n),$ $a^{\prime}<\frac{1}{2}$ and $ b^{\prime}<+\infty$ such that $\sum_{j=1}^{n}c_{j}=1$ and

$\Vert c_{k}Bf\}|\leqq a^{\prime}\Vert(A+\sum_{J=1}^{k-1}c_{j}B)f\Vert+b^{\prime}\Vert f\Vert$ , $k=1,2,$ $\cdots$ , $n$ ,

exactly in the same way as in [1]. Thus we have $A+\sum_{j=1}^{k}c_{j}B\in G^{+}(1,0)$ for

$k=1,2,$ $\cdots$ , $n$ , noting that Lemma 2.1 guarantees their O-dispersiveness (w),

and the theorem is proved.
REMARK 2.1. In Theorem 2.1 we can replace the assumption of $(\alpha+\beta)-$

dispersiveness (w) of $A+B$ by $\beta$ -dispersiveness (w) of $B$ . The new assumption
is stronger since we have

LEMMA 2.2. If $A$ is $\alpha$ -disp ersive $(s)$ and $B$ is $\beta$ -disp ersive $(w)$ , then $A+B$

is $(\alpha+\beta)$ -disp ersive $(w)$ .
PROOF. From (1.4) we have

$\sigma(f^{+}, -(A+B)f)\geqq\sigma(f^{+}, -Bf)-\sigma$ ( $f^{+},$ A $f$) $\geqq-(\alpha+\beta)\Vert f^{+}\Vert$ .
REMARK 2.2. Theorem 2.1 cannot be extended to $a\leqq 1$ . For example, let

$\mathfrak{B}$ be the Banach lattice of continuous functions on the real line which vanish
at infinity with norm $\Vert f\Vert=\max|f(x)|$ . Let $\varphi$ be the continuous function de-
fined by $\varphi(x)=1$ for $x\leqq 0,$ $\varphi(x)=1+\sqrt{\chi}$ for $0<x\leqq 1$ and $\varphi(x)=2$ for $\chi>1$
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and let $A=\varphi(x)D,$ $B=-D$ , where $D=\frac{d}{dx}$ , the domain of $D$ being the set

of functions $f$ such that $f\in \mathfrak{B}$ and $f^{\prime}\in \mathfrak{B}$ . Then $A,$ $B\in G^{+}(1,0)$ , hence $A+B$ is
O-dispersive (w), and (2.1) is satisfied for $a=1$ and $b=0$ . But, $A+B\not\in G^{+}(1,0)$ .
In fact, no extension of $A+B$ belongs to $G^{\vdash}(1,0)$ , as shown by Trotter [7,
Example 2].

\S 3. Multiplicative perturbation.

The following result incorporates into one statement dispersive analogues
of the left and right bounded multiplicative perturbation of $G(1,0)$ results of
[2] and [3]; we also state (Theorem 3.3 below) an unbounded version. A
more detailed investigation of the individual cases for unbounded multipliers
may be found in [3] (in a dissipative context, for $G(1,0)$); that paper should
also be seen for examples of specific applications of multiplicative perturba-
tion. For the reasons mentioned in Remark 1.2, our proofs are somewhat
different from those employed in $[2, 3]$ .

THEOREM 3.1. Let $A\in G^{+}(1, \alpha)$ and let $B$ be a bounded linear operator
such that $\mathfrak{D}(B)=\mathfrak{B}$ and $-B$ is $(-\beta)$ -dispersive $(w)$ for some $\beta>0$ . Let $C$

denote $BA,$ AB, $B^{-1}AB$ , or $BAB^{-1}$ . Then $C\in G^{+}(1, \gamma)$ , provided that $C$ is $\gamma-$

dispersive $(w)$ .
Note that, by the following lemma, $B$ has an everywhere defined inverse

$B^{-1}$ under the conditions in Theorem 3.1.
LEMMA 3.1. Let $B$ be a bounded linear operator with $\mathfrak{D}(B)=\mathfrak{B}$ and suppose

that $-B$ is $(-\beta)$ -dispersive $(w)$ for some $\beta>0$ . Then $\mathfrak{R}(B)=\mathfrak{B},$ $B^{-1}$ exists and
is bounded, and $-B$ is $(-\beta)$ -dispersive $(s)$ .

PROOF. Everything follows from the fact that $-B\in G^{+}(1, -\beta)$ .
Also by this lemma, Theorem 3.1 consists of special cases of the next

more general result.
THEOREM 3.2. Let $A\in G^{+}(1, a)$ . Let $B_{1}$ and $B_{2}$ be bounded linear operators

such that $\mathfrak{D}(B_{j})=\mathfrak{R}(B_{j})=\mathfrak{B},$ $j=1,2,$ $B_{1}$ has a bounded inverse, and $-B_{2}B_{1}$ is
$(-\gamma)$ -dispersive $(w)$ for some $\gamma>0$ . If $B_{2}AB_{1}$ is $\alpha^{\prime}$ -dispersive $(w)$ , it belongs to
$G^{+}(1, \alpha^{\prime})$ .

PROOF. Let $A^{\prime}=B_{2}AB_{1}$ and suppose that $A^{\prime}$ is $\alpha^{\prime}$ -dispersive (w). Choose
a positive number $\lambda$ so large that $\lambda>\alpha$ and $\alpha^{\prime}-\lambda a<0$ , and let $E=A^{\prime}-\lambda B_{2}B_{1}$ .
Since $-B_{2}B_{1}$ is $(-\gamma)$ -dispersive (s) by Lemma 3.1, $-\lambda B_{2}B_{1}$ is $(-\lambda\gamma)$ -dispersive
(s), and hence $E$ is $(\alpha^{\prime}-\lambda\gamma)$ -dispersive (w) by Lemma 2.2. $\mathfrak{D}(E)$ is dense be-
cause $\mathfrak{D}(E)=\mathfrak{D}(A^{\prime})=\mathfrak{D}(AB_{1})$ and $\mathfrak{D}(AB_{1})$ is dense by the bounded invertibility
of $B_{1}$ and denseness of $\mathfrak{D}(A)$ . Furthermore, since $E=B_{2}(A-\text{{\it \‘{A}}} I)B_{1},$ $A\in G^{+}(1, \alpha)$

and $\lambda>\alpha$ , we have $\mathfrak{R}(E)=\mathfrak{B}$ . Therefore $E\in G^{+}(1, \alpha^{\prime}-\lambda\gamma)$ by Theorem 1.1,
noting that $\alpha^{\prime}-\lambda\gamma<0$ . $A^{\prime}$ being a bounded perturbation of $E$ , we obtain
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$A^{\prime}\in G^{+}(1, a^{\prime})$ by Theorem 2.1.
THEOREM 3.3. Let $A\in G^{+}(1, \alpha)$ , let $\mathfrak{D}(B_{2})=\mathfrak{R}(B_{2})=\mathfrak{B}$ , let $\mathfrak{D}(B_{1})$ be dense

and either: (i) $B_{1}^{-1}$ bounded and $\mathfrak{R}(B_{1})\supset \mathfrak{D}(A)$ ; or (ii) $B_{1}$ closed and $\mathfrak{R}(B_{1})=\mathfrak{B}$ .
Suppose that $-B_{2}B_{1}$ is $(-\gamma)$ -dispersive $(w)$ for some $\gamma>0$ , and bounded. Then
if $B_{2}AB_{1}$ is $\alpha^{\prime}$ -dispersive $(w)$ , it belongs to $G^{+}(1, \alpha^{\prime})$ .

PROOF. It is easy to check ($e$ . $g.$ , it follows directly from [6, Theorem 4]
and Lemma 1.2) that $-B_{2}B_{1}$ is $(-\gamma)$ -dispersive (s). Choosing $\lambda$ as in the proof
of Theorem 3.2, let $A^{\prime}=B_{2}AB_{1},$ $E=A^{\prime}-\lambda B_{2}B_{1}$ , and $E^{\prime}=B_{2}(A-\lambda I)B_{1}$ . Then
$\mathfrak{R}(E^{\prime})=\mathfrak{B}$ , because $\mathfrak{R}(B_{2})=\mathfrak{B},$ $A\in G^{+}(1, a)$ , and $\mathfrak{R}(B_{1})\supset \mathfrak{D}(A)$ . Since $\mathfrak{D}(B_{2})=\mathfrak{B}$ ,

it follows that $\mathfrak{D}(E^{\prime})=\mathfrak{D}(E)=\mathfrak{D}(A^{\prime})=\mathfrak{D}(AB_{1})$ ; in particular $E^{\prime}=E$ . We can
conclude that $A^{\prime}\in G^{+}(1, a^{\prime})$ as before if $\mathfrak{D}(AB_{1})$ is dense. The latter is assured
in case (i) as in Theorem 3.2 by $B_{1}^{-1}$ bounded and $\mathfrak{D}(B_{1})$ dense; in case (ii),
$\mathfrak{D}(AB_{1})=\mathfrak{D}((A-\lambda I)B_{1})$ is dense by the well-known Fredholm theory, since
$A-\lambda I$ is Fredholm and $B_{1}$ is closed with finite (zero) deficiency index.

REMARK 3.1. Suppose $\beta=0$ in the assumption of Theorem 3.1. Then $BA$

can fail to be in $G^{+}(1, \gamma)$ even if it is $\gamma$ -dispersive (w). For example, let $\mathfrak{B}$ ,
$\varphi(x)$ , and $D$ be the same as in Remark 2.2, let $A=D$ , and let $B$ be multiplica-
tive by the function $\varphi(x)-1$ . Then $A\in G^{+}(1,0),$ $-B$ is bounded O-dispersive
(s), and $BA$ is O-dispersive (s), but any extension of $BA$ does not belong to
$G^{+}(1,0)$ as mentioned before. To check dispersiveness, note that the O-disper-
siveness (s) of an operator $C$ in this space is equivalent to the following
maximum principle, as is shown in [6, Example 6.2]: if $f\in \mathfrak{D}(C)$ attains its
positive maximum at $x_{0}$ , then $Cf(x_{0})\leqq 0$ .
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