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\S 0. Introduction. That the class $W$ of all (non-empty) well-orderings cannot
be characterized using (finite) first-order sentences is a well known result.
Almost as well known is that $W$ can be characterized by an infinitely long
sentence involving conjunctions of countably many formulas and quantifications
over countable sequences of individual variables (cf. [8]). In [4] and [5] it
is shown that in order to characterize $W$ in an infinitary first-order language
quantifications over infinitely many individual variables are essential. The
aim of this paper is to determine how much can we express, concerning well-
orderings, in infinitary languages whose only non-logical constant is a binary
relation symbol and which allow the conjunction/disjunction of infinitely many
formulas but whose quantifiers bind single individual variables. The results
in this note are obtained by an elimination of quantifiers, that is we determine
a certain class of sentences, which for lack of a better name we shall call
” sentences in normal form ” or simply ” normal sentences ”, such that any
other sentence is equivalent (as far as well-orderings are concerned) to a dis-
junction of normal sentences. The method of carrying out the elimination of
quantifiers is essentially an extension of the combination of the methods used
by Ehrenfeucht [2] and Mostowski/Tarski [6] for the finite language.

\S 1. The language $L_{\alpha\omega}$ . $Var_{\alpha}$ is the set of individual variables of $L_{\alpha\omega}$ and
$Var_{a}=\{v_{1} : \mu<\alpha\}$ . The atomic formulas of $L_{\alpha\omega}$ are the expressions of the
form: $x\pm y$ and $x<y$ where $x$ and $y$ are individual variables. The set of
formulas of $L_{\alpha\omega}$ is the least set $S$ which includes all the atomic formulas and
such that:
(a) if $\theta\in S$ , then the negation of $\theta,$ $ 7\theta$ , is also a member of $S$,

(b) if $X=\{\theta_{i} : i\in I\}\subseteqq S$ and $|X|<\alpha$ , then both the conjunction of $X,$ $\wedge X$

(also written $\bigwedge_{i\in I}\theta_{i}$) and the disjunction of $X,$ $X$ (or $_{i\in 1}\theta_{i}$) are also
members of $S$ ,

(c) if $\theta\in S$ and $x\in Var_{\alpha}$, then both the universal quantification of $\theta,$ $\forall x\theta$ and
the existential quantification of $\theta,$ $\exists x\theta$ , are members of $S$ .
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The finitary propositional connectives: $\wedge,$ $\vee,$ $\rightarrow and\leftrightarrow are$ defined in the
usual way in terms of $\wedge,$ $\vee$ and 7.

Proceeding as in the finitary languages we then could (and we shall assume
that we have done so) define the following standard notions:

$FV(\theta)$ the set of variables occurring free in $\theta$ ,

$VS(\theta)$ the set of variables occurring in $\theta$ ,

SF $(\theta)$ the set of subformulas of $\theta$ .
By a sentence of $L_{\alpha\omega}$ we understand a formula $\theta$ of $L_{\alpha\omega}$ such that $\theta$ has

no free variables ( $i$ . $e$ . that $FV(\theta)=0$). An important characteristic of the
languages $L_{\alpha\omega}$ is that $|FV(\psi)\sim FV(\theta)|<\omega$ whenever $\psi\in SF(\theta)$ and $\theta\in L_{\alpha\omega}$ ;
in particular a subformula of a sentence of $L_{\alpha\omega}$ has finitely many variables
occurring free. The rank of the formula $\theta,$ $rk(\theta)$ , is that ordinal such that if
$\theta$ is atomic, then $rk(\theta)=0$ while $rk(7\psi)=rk(\forall x\psi)=rk(\exists x\psi)=rk(\psi)+1,$ $rk(\wedge X)$

$=rk(X)=\bigcup_{\theta\in X}(rk(\theta)+1)$ . By the quantifier degree of a formula $\theta,$ $qd(\theta)$ , we
understand that ordinal such that (i) if $\theta$ is atomic, then $qd(\theta)=0$ (ii) $qd(7\psi)$

$=qd(\psi)$ (iii) $qd(\wedge X)=qd(X)=\bigcup_{\theta\in X}qd(\theta)$ and (iv) $qd(\forall x\psi)=qd(\exists x\psi)=qd(\psi)+1$ .
If we make the assumption (and from now on we shall do so) :
ASSUMPTION 1: $\alpha$ is a regular cardinal

then for all $\theta\in L_{\alpha\omega}$ we have that $rk(\theta)<\alpha,$ $ qd(\theta)<\alpha$ and $|SF(\theta)|<\alpha$ .
In this paper the relational systems that we shall consider will be of the

type $\mathfrak{A}=\langle A, R\rangle$ where $A\neq 0$ and $R\subseteqq A^{2}$ . We assume that it is known what
it means for a sequence $s\in A^{\alpha}$ ( $i$ . $e$ . Dom $(s)=\alpha=\{\mu:\mu<\alpha\}$ and Rng $(s)\subseteqq A$)

to satisfy the formula $\theta$ of $L_{\alpha\omega}$ in the relational system $\mathfrak{A}=\langle A, R\rangle$ ; we shall
express the condition by $(\mathfrak{A}, s)\models\theta$ “. “

$\mathfrak{A}\models\theta$
’ means that for all $s\in A^{\alpha}$,

$(\mathfrak{A}, s)\models\theta$ If $s\in A^{\Delta}$ where $\{\mu : v_{4}\in FV(\theta)\}\subseteqq\Delta\subseteqq\alpha$ , then we shall define
$(\mathfrak{A}, s)\models\theta$ to mean that for some (or equivalently: for all) $s^{*}\in A^{\alpha}$ such that
$s\subseteqq s^{*},$ $(\mathfrak{A}, s^{*})\models\theta$ . If $K$ is a class of relational systems and $\theta$ a sentence, then
“ $K$ is a model of $\theta$ “, in symbols : $K\models\theta$ , just in case that for all $\mathfrak{A}\in 1r$ ,
$\mathfrak{A}\models\theta$ . Conversely if $\Gamma$ is a set (or class of sentences from different $L_{\alpha\omega}$), then
Mod $(\Gamma)=$ { $\mathfrak{A}$ : for all $\theta\in\Gamma,$ $\mathfrak{A}\models\theta$ }.

\S 2. The language-class $Q_{\alpha}$ . Let RC be the class of all infinite regular car-
dinals. Then let $L$ be $\bigcup_{a\in RC}L_{\alpha\omega}$ . $L$ will be called a language-class (we prefer
to restrict the name ”language” to a set). Since every well-ordered relational
system can be characterized (up to isomorphism) by a sentence of $L$ , the class
$\Sigma$ of sentences of $L$ which “ state “ that every non-empty definable subset of
a linear ordering has a first element has the property that its models are
precisely the well-ordered systems. As we shall see the success of $\Sigma$ in
characterizing $W$ depends strongly on the fact that the quantifier degrees of
the sentences in $\Sigma$ are unbounded. Thus the
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DEFINITION. $Q_{\alpha}=$ { $\theta:\theta\in L_{\alpha\omega}$ and $ qd(\theta)<\alpha$ }.
One of the principal results of the paper is to show that $Q_{\alpha}$ , as far as

well-orderings are concerned, does not allow us to express any more than $L_{\alpha\omega}$ ,

that is every sentence of $Q_{\alpha}$ is equivalent to a sentence of $L_{\alpha\omega}$ (cf. Theorem
5.16, p. 487). However, even though $Q_{\alpha}$ is no stronger than $L_{\alpha\omega}$ (for well-
orderings; in general $Q_{\alpha}$ is much stronger than $L_{\alpha\omega}$) there are certain ad-
vantages to working with $Q_{\alpha}$ , the most important being that for $Q_{\alpha}$ the
distributivity law holds; $i$ . $e$ . if $\theta$ is a formula of $Q_{\alpha}$ which is a disjunction
of conjunctions (conjunction of disjunctions), then $\theta$ is logically equivalent to
a formula $\theta^{*}$ of $Q_{\alpha}$ which is a conjunction of disjunctions (disjunction of
conjunctions).

\S 3. Certain classes of relational systems. $W$ has already been defined as the
class of all non-empty well-orderings, $i$ . $e$ . $\mathfrak{A}=\langle A, R\rangle\in W$ just in case that
$A\neq 0$ and $R$ well-orders $A$ . We shall let $T_{\alpha}$ be the $L_{\alpha\omega}$-theory of well-orderings,
that is

(3.1) $T_{\alpha}=$ { $\theta$ : $\theta$ is a sentence of $L_{\alpha\omega}$ and $W\models\theta$ }.

The following classes of relational systems and sentences are natural
classes to consider:

(3.2) $T_{\alpha}^{Q}=$ { $\theta:\theta$ is a sentence of $Q_{\alpha}$ and $W\models\theta$ } ,

(3.3) $W_{\alpha}=Mod(T_{\alpha})$ ,

(3.4) $W_{\alpha}^{Q}=Mod(T_{\alpha}^{Q})$ .
It is clear that $W\subseteqq W_{\alpha}^{Q}\subseteqq W_{\alpha}$ . It will be shown in Theorem 5.19, p. 24

that $W_{\alpha}^{Q}=W_{\alpha}\neq W$ . Just as in the case of the finitary first-order language we
shall also consider the class of linear orderings in which every non-empty
definable subset has a first element. For that purpose let $D_{\alpha}$ be the set of all
sentences of $L_{a\omega}$ of the form

$\forall v_{0}\forall v_{1}(v_{0}<v_{1}\vee v_{0}\pm v_{1}\vee v_{1}<v_{0})$

$\wedge\forall x_{0}\ldots\forall x_{k-1}(\exists x_{k}\theta\rightarrow\exists x_{k}(\theta\wedge\forall z(\theta[x_{k}/z]\rightarrow z\pm x_{k}\vee x_{k}<z)))$

where $\theta$ is a formula of $L_{\alpha\omega}$ with finitely many free variables such that
$FV(\theta)\subseteqq\{x_{i} : i\leqq k\},$ $z\oplus FV(\theta)$ and $\theta[x_{k}/z]$ is the formula $\exists x_{k}(x_{k}\pm z\Lambda\theta)$ . Then
we let

(3.5) $M_{\alpha}=Mod(D_{\alpha})$ ,

(3.6) $M_{\alpha}^{Q}=Mod(D_{\alpha}^{Q})$ ,

where $D_{\alpha}^{Q}$ is like $D_{\alpha}$ except that the formulas should be from $Q_{\alpha}$ instead of
$L_{\alpha\omega}$ . From the obvious properties of well-orderings we immediately obtain the
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following inclusions:
$W\subseteqq W_{\alpha}^{Q}\subseteqq M_{\alpha}^{Q}\subseteqq M_{\alpha}$ , $W\subseteqq W_{\alpha}\subseteqq M_{\alpha}$ .

We shall eventually show that $W_{\alpha}=M_{\alpha}=M_{\alpha}^{Q}=W_{\alpha}^{Q}$ (cf. Theorem 5.19, p. 488).

\S 4. The sentences in normal form. In order to define the normal sentences
we need to give certain formulas of $L_{\alpha\omega}$ related to the notion of a limit (or

derived) point in a linear ordering. In the definitions that follow it is assumed
that $\mu,$

$\xi$ and $\lambda$ are ordinals and that $\lambda$ is a non-zero limit ordinal (if in
addition $\mu,$

$\xi$ and $\lambda$ are ordinals strictly smaller that $\alpha$ then it is easy to verify
that the formulas defined are indeed formulas of $L_{\omega}$).

4.1 DEFINITION. $Lim_{\rho}$ (read: $v_{0}$ is a $\mu$ -limit poin f) is the formula such that
(i) $Lim_{0}=v_{0}\pm v_{0}$ ,

(ii) $Lim_{\xi+1}=Lim_{\xi}$ A $\exists v_{1}(v_{1}<v_{0}\wedge Lim_{\xi}[v_{0}/v_{1}])$

$\wedge\forall v_{1}(v_{1}<v_{0}\wedge Lim_{\xi}[v_{0}/\iota 1_{1}]\rightarrow\exists v_{2}(v_{1}<v_{2}\Lambda v_{2}<v_{0}\Lambda Lim_{\xi}[v_{0}/v_{2}]))$ ,

(iii) $Lim_{\lambda}=\bigwedge_{\xi<\lambda}Lim_{\xi}$ .
4.2 DEFINITION. $Las_{\mu}$ (read: $v_{0}$ is the last $\mu$ -limit point) is the formula

$Lim_{\mu}\Lambda 7\exists v_{1}(v_{0}<v_{1}\Lambda Lim_{\rho}[v_{0}/v_{1}])$ .
4.3 DEFINITION. $End_{\mu}^{-1}$ (read: there are no $\mu$ -limit points) is the sentence

$7\exists v_{0}$ Lim/1

4.4 DEFINITION. $End^{0_{u}}$ (read: the $\mu$ -limit points are unbounded) is the
sentence:

$\exists v_{0}Lim_{1}\wedge\forall v_{0}$ ( $Lim,,\rightarrow\exists v_{1}$ ($ v_{0}<v_{1}\Lambda$ Lim,, $[v_{0}/v_{1}]$)).

4.5 DEFINITION. End $ n+1\mu$ (where $n$ is a natural number and is read: the
$\mu$ -end number is $n+1$) is the sentence;

$\exists^{n+1}v_{0}Lim_{\mu}\vee\exists v_{0}$ ($Las_{\rho+1}$ A $\exists^{n}v_{1}$ ($v_{0}<v_{1}$ A Lim,, $[v_{0}/v_{1}]$)) ,

where $\exists^{k}x\theta$ is the formula that ‘ expresses “ the condition that there are exactly
$k$ things $x$ such that $\theta$ .

4.6 DEFINITION. If $\theta$ is a formula of $L_{o\omega}$ and $\psi$ is a formula of $L_{o\omega}$ such
that $v_{0}\in FV(\psi)$ , then $(\theta)^{\psi}$ is the formula (of $L_{\alpha\omega}$) obtained by relativizing the
quantifiers in $\theta$ to $\psi(i$ . $e$ . replacing $\forall x\cdots$ by $\forall x(\psi[v_{0}/x]\rightarrow\cdots$ and correspondingly
for $\exists x$).

4.7 DEFINITION. $Den_{0}^{\infty}$ is any sentence of $L_{\omega.\omega}$ such that for any system
$\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{A}\models Den_{0}^{\infty}$ just in case that either $\mathfrak{A}\cong\langle\omega, \in\omega\rangle$ or that for some
$a\in A,$ $\langle\omega, \in\omega\rangle$ is isomorphic to the subsystem of $\mathfrak{A}$ determined by the set { $b$ :
$\langle b, a\rangle\in R\}$ (in other words that $\langle\omega, \in\omega\rangle$ is either isomorphic to $\mathfrak{A}$ or isomor-
phic to an initial segment of $\mathfrak{A}$).

4.8 DEFINITION. $Den_{/t}^{\infty}=(Den_{0}^{\infty})Lim_{\mu}$ .
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4.9 DEFINITION. Den $ n+1\mu$ (read: the $\mu$ -derived number is $n+1,$ $ n<\omega$) is the
sentence:

$\exists^{n+1}v_{0}Lim_{j}$ .
For typographical reasons we shall let $Den_{l}^{0}$ be same sentence as $End_{\alpha\prime}^{-1}$ .

Given a linearly ordered system $\mathfrak{A}=\langle A, R\rangle$ we let (i) $Lm_{\mu}(\mathfrak{U})=\{b$ :
$(\mathfrak{A}, \langle b\rangle)\models$ Lim,,}, (ii) $Ls_{\mu}\infty$) be the unique element $b\in A$ such that $(\mathfrak{A}, \langle b\rangle)$

$\models$ Las,, if such a unique element exists, otherwise Ls,$J(\mathfrak{A})$ is left undefined, (iii)
$Ed_{\mu}(\mathfrak{A})$ be the unique $ s\in\{-1\}U\omega$ such that $\mathfrak{A}\models End_{\mu}^{s}$ if such a unique $s$

exists, otherwise it is left undefined and (iv) correspondingly for $Dn_{/}(\mathfrak{A})$ .
Finally if $\rho$ is an ordinal, then we let $\rho$ be the relational system $\langle\rho, \in\rho\rangle$ .

We shall make use of the following properties of ordinals and since they
can be established without much difficulty we shall omit the proofs.

4.10 PROPOSITIONS. If $\rho,$
$\sigma$ and $\mu$ are ordinals then:

(.1) $Dn_{\mu}(\rho)=0$ if and only if $\rho\leqq\omega^{f^{y}}$ ,

(.2) $Dn_{\mu}(\rho)=0$ and for all $\xi<\mu,$ $Ed_{\xi}(\rho)=0$ if and only if $\rho=\omega^{\prime/}$,

(.3) $Dn_{t}(\rho)=n+1$ if and only if for some $\xi,$ $0<\xi<\omega^{fJ},$ $\rho=\omega^{\mu}\cdot(n+1)+\xi$ ,

(.4) $Dn,,(\rho)=\infty$ if and only if $\omega^{f/+1}\leqq\rho$ ,

(.5) $Ed_{f}(\rho)=0$ if and only if for all $\xi\leqq\mu,$ $Ed_{\xi}(\rho)=0$ ,

(.6) if $Ed_{f},(\rho)=0$ then $Dn_{\mu}(\rho)=\infty$ ,

(.7) if $\rho=\omega^{\mu}\cdot\eta_{0}+\delta,$ $\sigma=\omega^{\mu}\cdot\eta_{1}+\delta$ where $\eta_{0},$ $\eta_{1}>0$ and $\delta<\omega^{\mu}$ then for all
$\xi<\mu,$ $Dn_{\xi}(\rho)=Dn_{\xi}(\sigma)$ and $Ed_{\xi}(\rho)=Ed_{\xi}(\sigma)$ ,

(.8) if $\rho,$
$\sigma<\omega^{\prime t}$ and for all $\xi<\mu,$ $Ed_{\xi}(\rho)=Ed_{\xi}(\sigma)$ , then $\rho=\sigma$ ,

(.9) if $Dn_{\mu}(\rho)=Dn_{\mu}(\sigma)\neq\infty$ and for all $\xi\leqq\mu,$ $Ed_{\xi}(\rho)=Ed_{\xi}(\sigma)$ , then $\rho=\sigma$ .
It is clear from the above propositions that not all possible combinations

of end-numbers and derived numbers are taken by well-ordered systems. This
leads to the following

4.12 DEFINITION. If $f$ and $g$ are functions such that $f\in(\omega U\{\infty\})^{\mu},$ $ g\in$

$(\omega U\{-1\})’\prime\prime$ , then $(f, g)$ is a ’
$\mu$ -consistent pair ” just in case that for some non-

zero ordinal $\rho$ , the sentence $Cp((f, g))$ , where

$Cp((f, g))=\Lambda_{\xi<//}$($Den_{\xi}^{f(\xi)}$ A $End_{\xi}^{g(\xi)}$ )

is satisfied in $\rho$ .
4.13 DEFINITION. The set $NS_{J}$ of sentences in normal form is the set of

sentences of $L_{\alpha\omega}(\mu<\alpha)$ such that

$NS_{u}=$ { $Cp(x)$ : for some $\xi<\mu,$ $x$ is a $\xi$ -consistent pair}.

In order to determine the cardinality $NS_{/J}|$ of $NS_{u}$ we need the following:
4.14 PROPOSITION. To every ordinal $\rho$ there corresponds at least one ordinal

$\xi<\omega^{\mu+1}$ such that for all $\eta<\mu$ ,

$Dn_{\eta}(\rho)=Dn_{\eta}(\xi)$ and $Ed_{\eta}(\rho)=Ed_{\eta}(\xi)$ .
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PROOF. Follows from propositions 4.10.
Since the case when $\alpha=\omega,$ $L_{\alpha\omega}$ is (isomorphic) to the usual finitary first

order language we shall from now on make the following
ASSUMPTION 2. $\alpha$ is a regular cardinal $>\omega$ .
From the assumption 2, proposition 4.14 and the fact that $\omega^{\mu}<\alpha$ whenever

$\mu<\alpha$ we immediately obtain.
4.15 PROPOSITION.
(.1) If $\mu<\alpha$ , then $|NS_{\mu}|<\alpha$ ,
(.2) if $\mu<\alpha$ and $X\subseteqq NS_{\mu}$ , then $\vee X\in L_{\alpha\omega}$ .
In the case of the finitary language $L_{\omega\omega}$ every finite ordinal is definable

and not surprisingly the corresponding result is true in $L_{a\omega}$ . That is to every
ordinal $\mu<\alpha$ there corresponds a sentence $Ord_{J}$ of $L_{\alpha\omega}$ such that for every
relational system $\backslash $)$t,$ $\mathfrak{A}\models Ord_{J}$ if and only if $\mathfrak{A}\cong\mu$ (cf. [7]). Using the
sentences $Ord_{\mu}$ we can then show that if $\mathfrak{A}=\langle A, R\rangle\in M_{\alpha}$ then if $|\mathfrak{A}|(=|A|)$

$<\alpha,$ $\mathfrak{A}$ is a well-ordering while if $|\mathfrak{A}|\geqq\alpha$ , then $\alpha$ is either isomorphic to $\mathfrak{A}$

or else it is isomorphic to an initial segment of $\mathfrak{A}$ . Moreover this is true not
only for $\mathfrak{A}$ but for every interval $\mathfrak{B}$ of $\mathfrak{A}$ (cf. definition 4.17 below).

4.16 DEFINITION. If $\mathfrak{A}=\langle A, R\rangle,$ $a\in A$ and $a^{\gamma}\in A$ , then
(i) $[*, \infty)^{\mathfrak{A}}=A$ ,

(ii) $[*, a)^{\mathfrak{U}}=\{b:\langle b, a\rangle\in R\}$ ,

(iii) $[a, a^{\prime})^{\mathfrak{A}}=$ { $b:b=a$ or $(\langle a,$ $b\rangle\in R$ and $\langle b,$ $a^{\prime}\rangle\in R)$ },
(iv) $[a, \infty)^{\mathfrak{A}}=$ { $b:b=a$ or $\langle a,$ $b\rangle\in R$ },
(v) $[x, y)^{\mathfrak{A}}=the$ subsystem of $\mathfrak{A}$ determined by the set $[x, y)^{\mathfrak{A}}$ (provided it

is not empty and that $\{x, y\}\subseteqq AU\{*, \infty\}$ ).

4.17 DEFINITION. The set on intervals of $\mathfrak{A}$ , Int (QI), is the set
$\{[x, y)^{\mathfrak{A}} : \{x, y\}\subseteqq AU\{*, \infty\}\}$ .

4.18 THEOREM. If $\mathfrak{U}\in M_{\cap}$ , then
(i) Int $\mathcal{O}0\subseteqq M_{rJ}$ ,

(ii) if $|\mathfrak{A}|<\alpha$ , then $\mathfrak{A}$ is a well-ordering,
(iii) if $|\mathfrak{A}|>\alpha$ , then either $\mathfrak{A}\cong\alpha$ or else $\mathfrak{A}$ contains an initial segment

isomorphic to $\alpha$ .
PROOF. (i) Let $\mathfrak{A}\in M_{a}$ and $\mathfrak{B}\in Int(\mathfrak{A})$ . To show that $\mathfrak{B}\in M_{\alpha}$ we must

show (roughly speaking) that every non-empty definable subset of $\mathfrak{B}$ has a first
element; but because of the relation of $\mathfrak{B}$ to QI a definable subset of 8 is a
definable subset of $\mathfrak{A}$ and hence (i) follows. (ii) and (iii) have essentially been
proved by the remarks prior to 4.16.

4.19 THEOREM. If $\mathfrak{A}\in W_{\alpha}$ , then to every $\mu<\alpha$ , there corresponds at least
one ordinal $\rho$ such that for every $\xi<\mu,$ $\rho$ and $\mathfrak{A}$ satisfy exactly the same sen-
tences of the form $End_{\xi}^{k}$ and $Den_{\xi}^{s}$ .

PROOF. According to 4.14 and 3.1 $\varphi=_{\theta NS_{\mu}}=\theta$ is a sentence of $T_{\alpha}$ . Hence
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$\mathfrak{A}\models\varphi J$ whenever $\mathfrak{A}\in W_{a}$ . Thus for some $\theta\in NS_{\mu},$ $\mathfrak{A}\models\theta$ . Therefore from 4.12
and 4.13 it follows that there exists an ordinal $\rho$ with the required properties.

The properties mentioned in 4.18 and 4.19 are the main tools used in the
elimination of quantifiers. Thus the following definition:

4.20 DEFINITION. $K_{\alpha}$ is the class of linearly ordered systems $\mathfrak{A}$ having a
first element such that for every $\mathfrak{B}\in$ Int $(\mathfrak{U})$ :

(a) if $|\mathfrak{B}|<\alpha$ , then $\mathfrak{B}$ is a well-ordering,
(b) if $|\mathfrak{B}|\geqq\alpha$ , then either $\alpha\cong \mathfrak{B}$ or $\alpha$ is isomorphic to an initial segment

of $\mathfrak{B}$ (we shall denote this condition by $\alpha\leqq \mathfrak{B}$),

(c) to every $\mu<\alpha$ there corresponds an ordinal $\rho$ such that for every $\xi<\mu$ ,

sg and $\rho$ satisfy the same sentences of the form $End_{\xi}^{k}$ and $Den_{\xi}^{s}$ .
Most of our work will now be done with the class $K_{\alpha}$ and eventually we

shall show that
$K_{\alpha}=W_{\alpha}^{Q}=W_{\alpha}=M_{\alpha}=M_{\alpha}^{Q}\neq W$ .

\S 5. The elimination of quantifiers.
5.1 DEFINITION (Ehrenfeucht/Fraisse, cf. [3]). If $\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{B}=\langle B, S\rangle$ ,

$x\in A^{n},$ $y\in B^{m}$ and $n,$ $ m<\omega$ , then
(.1) $(\mathfrak{A}, x)\equiv_{0}(\mathfrak{B}, y)$ if and only if $n=m$ and $\{(x_{i}, y_{i}\rangle : i<n\}$ is an isomor-

phism from $\mathfrak{A}$ restricted to $\{x_{i} : i<n\}$ into $\mathfrak{B}$ ,

(.2) $(\mathfrak{A}, x)\equiv\xi+1(\mathfrak{B}, y)$ if and only if for all $a\in A$ there exists a $b\in B$ such
that $(\mathfrak{A}, x^{\wedge}\langle a\rangle)\equiv_{\xi}(\mathfrak{B}, y^{\wedge}\langle b\rangle)$ and for all $b\in B$ there exists an $a\in A$

such that $(\mathfrak{A}, x^{\wedge}\langle a\rangle)\equiv\xi(\mathfrak{B}, y^{\wedge}\langle b\rangle)$ (where if $s$ and $t$ are sequences
then $s^{\wedge}t$ is the concatenation of $s$ and $t$),

(.3) if $ 0<\lambda=U\lambda$ , then $(\mathfrak{A}, x)\equiv\lambda(\mathfrak{B}, y)$ if and only if for all $\xi<\lambda(\mathfrak{A}, x)$

$\equiv\xi(\mathfrak{B}, y)$ ,

(.4) $\mathfrak{A}\equiv_{1},\mathfrak{B}$ if and only if $(\mathfrak{A}, 0)\equiv\mu(\mathfrak{B}, 0)$ .
The following theorem can be proved by the methods in [2] and thus its

proof is omitted.
5.2 THEOREM. If $\mu<\alpha,$ $\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{B}=\langle B, S\rangle,$ $x\in A^{n}$ and $y\in B^{n}$ , then

the following two conditions are equivalent:
(1) $(\mathfrak{A}, x)\equiv_{\mu}(\mathfrak{B}, y)$ ,

(2) to every formula $\theta\in Q_{\alpha}$ such that $FV(\theta)\subseteqq\{v_{i} : i<n\}$ and $ qd(\theta)\leqq\mu$ ,

$(\mathfrak{A}, x)\vdash\theta$ if and only if $(\mathfrak{B}, y)\models\theta$ .
An immediate corollary of the above is that if $\mathfrak{A}\equiv_{\alpha}\mathfrak{B}$ , then $\mathfrak{A}$ and $\mathfrak{B}$ are

$Q_{\alpha}$ (and hence a fortiori $L_{\alpha\omega}$)-elementarily equivalent. It is not difficult to
give examples of relational systems which are $L_{\alpha\omega}$ elementarily equivalent but
not $Q_{\alpha}$-elementarily equivalent. However we shall prove that if $\mathfrak{A}$ and $\mathfrak{B}$ are
restricted to be members of $K_{\alpha}$ then $Q_{\alpha}$-elementary equivalence coincides with
$L_{\alpha\omega}$-elementary equivalence.

The following properties of the members of $K_{\alpha}$ are required.
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5.4 PROPOSITION. If $\mathfrak{A}\in K_{\alpha}$, then Int $\oplus\subseteqq K_{\alpha}$ and
(.1) if $Dn_{\mu}(\mathfrak{A})=0$ and $\mu<\alpha$ , then for some $\rho\leqq\omega^{\prime J},$ $\mathfrak{A}\cong\rho$ ,

(.2) if $Dn,,(\mathfrak{A})=n+1$ and $\mu<\alpha$ , then for some $\rho<\omega^{\mu},$ $\mathfrak{A}\cong\omega^{\mu}\cdot(n+1)+\rho$ ,

(.3) if $Dn_{\mu}(90=\infty$ where $\mu<\alpha$ , then $\omega^{\prime 1+1}\leqq \mathfrak{A}$ .
PROOF. Recall that if $\mathfrak{A}\in K_{a}$ , then for every interval $\mathfrak{B}$ of $\mathfrak{A}$ , either $\alpha\leqq \mathfrak{B}$

or else $\mathfrak{B}$ is a well-ordering. Apply then 4.10.
Combining the above with 4.10.9 we then obtain
5.5 PROPOSITION. If $\mathfrak{A},$ $\mathfrak{B}\in K_{\alpha},$ $\mu<\alpha,$ $Dn_{\mu}(\mathfrak{A})=Dn,,(\mathfrak{B})\neq\infty$ and $Ed_{\xi}\mathfrak{B}$

$=Ed_{\xi}(\mathfrak{B})$ whenever $\xi\leqq\mu$ , then $\mathfrak{A}\cong \mathfrak{B}$ .
5.6 PROPOSITION. If $\mathfrak{A}=\langle A, R\rangle\in K_{C\dagger},$ $\mathfrak{B}=\langle B, S\rangle\in IntQ\mathfrak{h}$ and $\mu<\alpha$ , then
(.1) if $b\in Lm,,(\mathfrak{U}),$ $b\in B$ and for some $a\in B,$ $\langle a, b\rangle\in R$ , then $b\in Lm_{\mu}(\mathfrak{B})$ ,

(.2) if $Ed_{\mu}(\mathfrak{B})=0$ , then for all $b\in B$ and all $\xi\leqq\mu,$ $Ed([b, \infty)^{\mathfrak{B}})=0$,
(.3) if $Lm_{1+1}(\mathfrak{B})=0$ and $Ed_{/t}(B)=n+1$ , then $Dn_{\mu}(\mathfrak{B})=n+1$ ,

(.4) if $Ls_{J+1}(\mathfrak{B})=b\in B,$ $c\in B$ and $\langle c, b\rangle\in R$ , then for all $\xi\leqq\mu,$ $Ed_{\xi}(\mathfrak{B})$

$=Ed([c, \infty)^{\mathfrak{B}})$ ,

(.5) if $\{b, c\}\subseteqq Lm_{\ell}(\mathfrak{A}),$ $\langle b, c\rangle\in R$ and there does not exist an $a\in Lm_{\mu}(\mathfrak{B})$

such that $\langle b, a\rangle\in R$ and $\langle a, c\rangle\in R$ , then $[b, c)^{\mathfrak{B}}\cong\omega^{ft}$.
PROOF. (.1) follows from the condition that all members of $K_{\alpha}$ are linearly

ordered. (.2) assume $Ed_{/1}(\mathfrak{B})=0$ . From the definition of $End_{\mu}^{0}$ (cf. 4.4) and (.1)
it follows that $Ed_{1}([b, \infty)^{\mathfrak{B}})=0$ . From condition (c) of 4.20 it follows that from
$Ed_{1}([b, \infty)^{\mathfrak{B}})=0$ we obtain that for all $\xi\leqq\mu,$ $Ed_{\xi}([b, \infty)^{\mathfrak{B}})=0$ ; thus (.2). Part
(.3) is immediate from the definitions (cf. 4.5, 4.1 and 4.9). To prove (.4) we
first note that the condition $b=Ls_{\mu+1}(\mathfrak{B})\in B$ tells us that $b$ is a $\mu+1$ -limit point
and the last such (in $\mathfrak{B}$). The case $Ed_{\mu}(E8)=0$ is taken care by (.2). On the
other hand we cannot have that $Ed_{\mu}(\mathfrak{B})=-1$ since $b$ is a $\mu$ -limit point. Using
(.1) we see that $Ed_{\mu}([c, \infty)^{\mathfrak{B}})\neq-1$ . The proof of (.4) is completed by con-
sidering the definition of $End_{\mu}^{n+1}$ . For the proof of (.5) it suffices to remark
that from conditions (a), (b) of the definition of $K_{\alpha}$ (cf. 4.20) $[b, c)^{\mathfrak{B}}$ must be
a well-ordering and then it is immediate from the properties of ordinals that
$[b, c)^{\mathfrak{B}}\cong c\ell)^{t^{J}}$ .

The following proposition requires a little more work.
5.7 PROPOSITION. If $\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{B}=\langle B, S\rangle$ are members of $K_{\alpha}\mu<\alpha$ ,

$a=Ls_{\mu+1}(\mathfrak{A})\in A,$ $b=Ls,,+1(\mathfrak{B})\in B$ , and for all $\xi\leqq\mu+1,$ $Ed_{\xi}\mathfrak{W}=Ed_{\xi}(\mathfrak{B})$ , then
$[a, \infty)^{\mathfrak{A}}\cong[b, \infty)^{\mathfrak{B}}$ .

PROOF. Assume the antecedent. Since $a=Ls_{\mu+1}(\mathfrak{A})$ and $b=Ls_{\mu+1}(\mathfrak{B})$ it
follows that $Dn_{\mu+1}([a, \infty)^{\mathfrak{A}})=Dn_{\mu+1}([b, \infty)^{\mathfrak{B}})=0$ . Thus for some ordinals $\rho_{1}$ and
$\rho_{2}$ smaller than or equal to $\omega^{\mu+2}$ we have that $[a, \infty)^{\mathfrak{A}}\cong\rho_{1}$ and $[b, \infty)^{\mathfrak{B}}\cong\rho_{2}$

Let $\omega^{\eta_{0}}\cdot n_{0}+\cdots+\omega^{\eta_{k}}\cdot n_{k}$ and $\omega^{\delta_{0}}\cdot m_{0}+\cdots+\omega^{\delta_{S}}\cdot m_{s}$ be the Cantor normal forms
of $\rho_{1}$ and $\rho_{2}$ respectively (cf. [1]). From the assumption that for all $\xi\leqq\mu+1$ ,
$Ed_{\xi}(\mathfrak{A})=Ed_{\xi}(\mathfrak{B})$ we obtain that $k=s$ and that for all $i\leqq k,$ $\eta_{i}=\delta_{i}$ and $m_{i}=n_{i}$ ;
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in other words that $\rho_{1}=\rho_{2}$ .
5.8 DEFINITION. If $\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{B}=\langle B, S\rangle$ , then
(.1) $\mathfrak{A}=_{\mu}\mathfrak{B}$, just in case that for all $\xi\leqq\mu$ , ut and $\mathfrak{B}$ satisfy exactly the

same sentences of the forms $End_{\xi^{s}}$ and $Den_{\xi}^{k}$ ,
(.2) if $x\in A^{n}$ and $y\in B^{n}$ and for all $i<n-1(\langle x_{i}, x_{i+1}\rangle\in R$ and $\langle y_{i}, y_{i+1}\rangle$

$\in S)$ then $(\mathfrak{A}, x)=_{\mu}(\mathfrak{B}, y)$ just in case that
(a) $[*, x_{0})^{\mathfrak{U}}=_{\alpha}[*, y_{0})^{\mathfrak{B}}$ ,
(b) $[x_{n-1}, \infty)^{\mathfrak{A}}=_{\mu}[y_{n-1}, \infty)^{\mathfrak{B}}$ ,

(c) for all $i<n-1,$ $[x_{i}, x_{i+1})^{\mathfrak{A}}=_{\mu}[y_{i}, y_{i+1})^{\mathfrak{B}}$ .
All the results obtained so far were preparatory lemmas to the following

theorem:
5.9 THEOREM. If $\mathfrak{A}=\langle A, R\rangle,$ $\mathfrak{B}=\langle B, S\rangle$ are members of $K_{\alpha},$ $\mu<\alpha$ and

$\mathfrak{A}=_{\mu+1}\mathfrak{B}$ , then for all $a\in A$ , there exists a $b\in B$ such that $[*, a)^{\mathfrak{A}}=_{\mu}[*, b)^{\mathfrak{B}}$ and
$[a, \infty)^{\mathfrak{A}}=_{\mu}[b, \infty)^{\mathfrak{B}}$ .

PROOF. Assume the antecedent. The proof is divided into 9 cases.
CASE 1. For some $\xi\leqq\mu+1,$ $Dn_{\xi}(\mathfrak{A})\neq\infty$ .

Result is then obtained by applying 5.5, page 484.
Because of case 1 it suffices to prove the theorem under the further con-

dition:
CONDITION 1.

$Dn_{\mu+1}(\mathfrak{A})=\infty$ .
In view of 5.4 it follows then that:

(a) $\omega^{\mu+2}\leqq \mathfrak{A}$ and $\omega^{\mu+2}\leqq \mathfrak{B}$ .
CASE 2. $Ed_{\mu+1}(\mathfrak{B})=-1$ .

Under condition 1 this case does not arise.
CASE 3. $Ed_{\mu+1}(\mathfrak{A})=0$.

Let $\rho<\omega^{\mu+2}$ be an ordinal such that $[*, a)^{\mathfrak{A}}=_{\mu}\rho$ (cf. 4.20(c) and 4.14).

Choose then for $b$ the element of $B$ such that $[*, b)^{\mathfrak{B}}\cong\rho$ (such an element
exists because of $(a))$ . The proof is then completed by applying 5.6.
CASE 4. $Ed_{\mu+1}\mathfrak{B}=n+1$ and $Lm_{\mu+2}(\mathfrak{A})=0$ .

This case cannot arise under condition 1.
CASE 5. $Ed_{\mu+1}(\mathfrak{A})=n+1$ and $Lm_{u+2}(\mathfrak{B})=0$ .

This case cannot arise under condition 1.
Because of cases 1-5 it suffices to prove the theorem under the further:
CONDITION 2.

$Ed_{\mu+1}(\mathfrak{A})=n+1$ ,

$Ls_{\mu+2}(\mathfrak{A})=a_{0}\in A$ and $Ls,,+2(\mathfrak{B})=b_{0}\in B$ .

CASE 6. $\langle a_{0}, a\rangle\in R$ or $a_{0}=a$ .
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Consider $[a_{0}, \infty)^{\mathfrak{A}}$ and $[b_{0}, \infty)^{\mathfrak{B}}$ . Applying 5.7 we obtain that $[a_{0}, \infty)^{\mathfrak{A}}$

$\cong[b_{0}, \infty)^{\mathfrak{B}}$ . Choose then for $b$ the element corresponding, under the isomor-
phism, to $a$ .

Because of case 6 we make the further condition:
CONDITION 3.

$\langle a, a_{0}\rangle\in R$ .
It follows then from the conditions and 5.6.4 that:

(b) if $\xi\leqq\mu+1$ , then $Ed_{\xi}(\mathfrak{A})=Ed_{\xi}([a, \infty)^{\mathfrak{A}})=Ed_{\xi}(\mathfrak{B})$ .
CASE 7. For some $\xi\leqq\mu+1,$ $Dn_{\xi}([*, a)^{\mathfrak{A}})\neq\infty$ .

Let $\rho$ be the least $\xi$ such that $Dn_{\xi}([*, a)^{\mathfrak{A}})\neq\infty$ and let $m=Dn_{\xi}([*, a)^{\mathfrak{A}})$ .
From 5.4 we obtain that for some $\delta,$ $\delta<\omega^{\rho}$ and $[*, a)^{\mathfrak{A}}\cong\omega^{\rho}\cdot m+\delta$ . Because of
(a) we must have that $\omega^{\prime\prime+2}\leqq[a, \infty)^{\mathfrak{A}}$ . Hence for all $\xi\leqq\mu,$ $Dn_{\xi}([a, \infty)^{\mathfrak{A}})=\infty$ .
Thus if for $b$ we choose the element of $B$ such that $[*, b)^{\mathfrak{B}}\cong\omega^{\rho}\cdot m+\delta<\omega^{\mu+2}$ ,

then we also have that $Dn_{\xi}([b, \infty)^{\mathfrak{B}})=\infty$ whenever $\xi\leqq\mu$ . The proof of this
case is completed by applying (b).

For the remaining cases we add the further condition:
CONDITION 4.

$Dn_{J+1}([*, a)^{\mathfrak{A}})=\infty$ .
From the conditions we then obtain:

(c) $\omega^{\mu+2}\leqq[*, a)^{\mathfrak{A}}$ and for all $\xi\leqq\mu,$ $Dn_{\xi}([\star, a)^{\mathfrak{A}})=\infty$ .

CASE 8. $Dn_{\mu}([a, \infty)^{\mathfrak{A}})=n$ .
Because of condition 3, this case cannot arise.

CASE 9. $Dn_{\mu}([a, \infty)^{\mathfrak{A}})=\infty$ .
Let $\rho<\omega^{\mu+2}$ be such that $\rho=_{\mu}[*, a)^{\mathfrak{A}}$ . For $b$ we may choose the element

of $B$ such that $[*, b$) $\cong\rho$ . Then because of (a) $b$ must precede $b_{0}$ . Thus using
5.6.4 we obtain that for all $\xi\leqq\mu,$ $Ed_{\xi}([b, \infty)^{\mathfrak{B}})=Ed_{\xi}(\mathfrak{B})=Ed_{\xi}(\mathfrak{A})=Ed([a, \infty)^{\mathfrak{A}})$ .
Furthermore we also have that $Dn_{\xi}[b, \infty)^{\mathfrak{B}}=\infty$ whenever $\xi\leqq\mu$ . Thus the
proof is complete.

From definition 5.8 we immediately obtain the following:
5.10 PROPOSITION. If $\mathfrak{A}$ and $\mathfrak{B}$ are members of $K_{\alpha}$ and $\lambda$ is a non-zero limit

ordinal and if A=\‘AB then for all $\mu<\lambda,$ $\mathfrak{A}=\mathfrak{B}/J$

Finally we arrive at our first result:
5.11 THEOREM. If $\mu<\alpha,$ $\mathfrak{A}=\langle A, R\rangle\in K_{a},$ $\mathfrak{B}=\langle B, S\rangle\in K_{\alpha},$ $x\in A^{n},$ $y\in B^{n}$

and (Ut, $x$) $=_{\mu}(\mathfrak{B}, y)$ , then $(\mathfrak{A}, x)\equiv_{\mu}(\mathfrak{B}, y)$ .
PROOF. The brunt of the proof has already been eliminated by proving

5.10 and 5.9. All that remains to be done is a simple induction on $\mu$ , and
thus it is omitted (cf. [2]).

5.12 $CoROLLARY$ . If $\mathfrak{A}$ and $\mathfrak{B}$ are members of $K_{\alpha}$ then the following three
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conditions are equivalent:
(1) $\mathfrak{A}$ and $\mathfrak{B}$ are $Q_{\alpha}$-elementarily equivalent,
(2) $\mathfrak{A}$ and $\mathfrak{B}$ are $L_{\alpha\omega}$ -elementarily equivalent,
(3) for all $\mu<\alpha,$ $Dn_{\mu}(\mathfrak{A})=Dn_{\mu}(\mathfrak{B})$ and $Ed_{\mu}(\mathfrak{A})=Ed_{U,}(\mathfrak{B})$ .
PROOF. That (1) $\geq(2)$ is immediate because every sentence of $L_{\alpha\omega}$ is also

a sentence of $Q_{\alpha}$. That (2) $\Rightarrow(3)$ follows because $Den_{\mu}^{s}$ and $End_{\mu}^{k}$ are sentences
of $L_{\alpha\omega}$ . That (3) $\Rightarrow(1)$ follows from 5.11 and 5.2.

From the above we then obtain:
5.13 $CoROLLARY$ . If $\beta\geqq\alpha$ and $\tau$ is an ordered system of order-type $\beta+\beta\cdot\omega^{*}$

then $\beta$ and $\tau$ are $Q_{\alpha}$-elementarily equivalent.
PROOF. It is clear that for all $\mu<\alpha,$ $Dn_{/}(\beta)=\infty=Dn_{\mu}(\tau)$ and $Ed,,(\beta)$

$=Ed_{\mu}(\tau)$ . Furthermore $\tau$ satisfies conditions (a) and (b) of 4.20 thus $\tau\in K_{\alpha}$ .
Hence, by 5.12 $\beta$ and $\tau$ are elementarily equivalent.

An immediate consequence of 5.13 is
5.14 $CoROLLARY$ . $W\neq W_{\alpha}^{Q}$ .
By being more careful with our bounds it is possible to modify our proofs

to obtain the following improvement of 5.13 (obtained first by Karp [4]).
5.15 THEOREM (Karp). If $\gamma$ is an ordinal such that for all $\mu<\gamma,$ $\omega^{\mu}<\gamma$ ,

then for every ordinal $\beta\geqq\gamma,$ $\beta$ and any linearly ordered system of order type
$\beta+\beta\cdot\omega^{*}$ satisfy the same sentences $\theta$ of $L$ such that $ qd(\theta)<\gamma$ .

5.16 THEOREM. To every sentence $\theta$ of $Q_{\alpha}$ there corresponds a set $X\subseteqq NS_{a}$

such that $X$ is a sentence of $L_{\alpha\omega}$ and

$K_{\alpha}\models(\theta\leftrightarrow X)$

PROOF. Assume that $\theta$ is a sentence of $Q_{\alpha}$ and that $\mu=qd(\theta)(<\alpha)$ .
Then let

(i) $H=$ { $\mathfrak{A}:\mathfrak{A}\in K_{\alpha}$ and $\mathfrak{A}\models\theta$ },
(ii) $X=$ { $\psi:\psi\in NS_{\mu+1}$ and for some $\mathfrak{B}\in H,$ $\mathfrak{B}\models\psi$ }.

The proof of the theorem is then completed in three steps.
STEP 1. $\mathfrak{A}\in K_{\alpha}=\gg(\mathfrak{A}\models\theta\Rightarrow \mathfrak{A}\models X)$

Assume that $\mathfrak{A}\in IC_{\alpha}$ and that $\mathfrak{A}\models\theta$ . Then $\mathfrak{A}\in II$ , and therefore (by 4.20
$(c))\mathfrak{A}\models X$.
STEP 2. $\mathfrak{A}\in K_{\alpha}=\gg(\mathfrak{A}\models X=\gg \mathfrak{A}\llcorner-\theta)$ .

Assume that $\mathfrak{A}\in K_{\alpha}$ and that $\mathfrak{A}\models\vee X$. Then for some $\psi\in X\subseteqq NS_{\mu+1}$

$\mathfrak{A}\models\psi$ . From 4.13 and 5.8 it then follows that for some $\mathfrak{B}\in H\subseteqq K_{\alpha},$ $\mathfrak{A}=_{\mu}\mathfrak{B}$.
Since $\mathfrak{B}\in H$ we have that $\mathfrak{B}\models\theta$ . Because $qd(\theta)=\mu,$ $5.11$ and 5.1 we obtain
that $\mathfrak{A}\models\theta$ .
STEP 3. $|X|<\alpha$ and $X\in L_{\alpha\omega}$ .

This follows from 4.15.
5.17 THEOREM. $W\neq W_{\alpha}^{Q}=W_{\alpha}=K_{\alpha}$ .
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PROOF. 5.1 told us that $W\neq W_{\alpha}^{Q}$ . From the definitions and 4.18 and 4.19
we have that $W_{\alpha}^{Q}\subseteqq W_{\alpha}\subseteqq K_{\alpha}$ . Thus in order to prove 5.17 it suffices to show
that $\mathfrak{A}\in W_{\alpha}^{Q}$ whenever $\mathfrak{A}\in K_{a}$ . Thus assume that

(a) $\mathfrak{A}\in K_{\alpha}$

(b) $\theta$ is a sentence of $Q_{\alpha}$

(c) $W\models\theta$ ( $i$ . $e$ . $\theta$ is a sentence true in all well-orderings)
(d) $\mu=qd(\theta)$ .

We must show that $\mathfrak{A}\models\theta$ . Since $\mathfrak{A}\in K_{\alpha}$ and $\mu<\alpha$ it follows from 4.20(c)
and 5.8 that there must exist an ordinal $\rho$ such that

(i) $\mathfrak{A}=_{\mu}\rho$ .
Since $ qd(\theta)=\mu$ , it follows from (i), 5.11 and 5.2 that $\mathfrak{A}=\theta$ if and only if $\rho\models\theta$ .
But by (c) $\rho\models\theta$ . Hence $\mathfrak{A}\models\theta$ .

5.18 THEOREM. $K_{\alpha}=M_{\alpha}$ .
PROOF. Since $K_{\alpha}=W_{\alpha}\subseteqq M_{\alpha}$ in order to prove 5.18 it is sufficient to prove

$M_{\alpha}\subseteqq K_{\alpha}$ . In view of 4.18 it then suffices to prove that for all $\mathfrak{A}\in M_{\alpha}$ and for
all $\mu<\alpha,$ $\mathfrak{A}\modelsNS_{\mu}$ . Thus the problem of showing that $K_{\alpha}=M_{\alpha}$ reduces to
showing that certain sentences of $L_{\alpha\omega}$ which are true in all well-orderings are
semantical consequences of the sentences $D_{\alpha}$ (which state that the ordering
relation must be a linear ordering in which every definable non-empty subset
has a first element). The latter is a routine (but long and uninteresting) veri-
fication and thus it shall be omitted.

5.19 THEOREM. $W\neq W_{\alpha}=W_{\alpha}^{Q}=M_{\alpha}=M_{\alpha}^{Q}=K_{\alpha}$ .
PROOF. $M_{\alpha}\supseteqq M_{\alpha}^{Q}\supseteqq W_{\alpha}^{Q}=K_{\alpha}$ . But $M_{\alpha}=K_{Q}$ , therefore $M_{\alpha}=M_{\alpha}^{Q}$ .
A simple consequence of our results is an extension of the results of

Fraisse and Ehrenfeucht to the language $L_{\alpha\omega}$ .
5.20 THEOREM. If $\rho$ and $\delta$ are ordinals (greater than $0$), then
(.1) if $\rho<\alpha$ , then $\rho$ and $\delta$ are $L_{\alpha\omega}(Q_{\alpha})$ -elementarily equivalent if and only

if $\rho=\delta$ ,

(.2) if $\rho\geqq\alpha$ , then $\rho$ and $\delta$ are $L_{\alpha\omega}(Q_{\alpha})$ -elementarily equivalent if and only

if there exist ordinals $\eta_{0},$ $\eta_{1}$ and $\xi$ such that $\eta_{0},$ $\eta_{1}>0,$ $\xi<\alpha,$
$\rho$

$=\alpha\cdot\eta_{0}+\xi$ and $\rho=\alpha\cdot\eta_{1}+\xi$ .
To conclude we give a classification of the elementary (in $L_{\alpha\omega}$) types of

the $L_{\alpha\omega}$ theory of well-orderings.

5.21 DEFINITION. $ET_{\mu}=\{\mathfrak{A}:\mathfrak{A}\in W$ and such that $\mathfrak{A}$ and $\mu$ are $L_{\alpha\omega}$ -elemen-
tarily equivalent).

5.22 THEOREM. (.1) $\{ET_{\mu} : \mu<\alpha\cdot 2\}$ is a partition of $W_{\alpha}$ .
(.2) if $\mu<\alpha$ , then $ET_{\mu}=Iso(\mu)$ .
(.3) if $\mu>\alpha$ , then $ET_{\mu}$ contains non-well-ordered systems of arbitrary large

cardinalities.
University of Maryland
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