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\S 1. Introduction.

In this paper, we shall consider the divisibility of the class number of an
algebraic number field $K$, namely, the problem to determine which number may
be a factor of the ideal class number of $K$. The fact that the class number
of $K$ is divisible by an integer $c$ shows that there exists a subgroup of order
$c$ in the absolute ideal class group $C_{K}$ of $K$, and also means that there exists
an unramified abelian extension field of degree $c$ over $K$. Therefore, the pro-
blem to investigate which number may be a factor of the ideal class number
of $K$ is reduced to corresponding problems related to the orders of subgroups
of $C_{K}$, or the degrees of unramified abelian extension fields of $K$.

Among such subgroups and extension fields, what we know well are the
ambiguous class group and the genus field. Namely, let $F$ be an algebraic
number field, and let $K$ be a cyclic extension of finite degree $n$ over $F$ . Then,
it is well-known that the ambiguous class number $a=a(K/F)$ with respect to
$K/F$ is of the following $form^{2)}$ :

(1) $a=h_{F}\cdot\frac{\tilde{\Pi}e(.\cdot \mathfrak{p})}{n\cdot[\epsilon\eta]}$ ,

where $\tilde{\Pi}e(\mathfrak{p})$ is the product of the ramification exponents of all the finite and
infinite prime divisors in $F$ with respect to $K/F,$ $h_{F}$ is the class number of $F$ ,
and $[\epsilon:\eta]$ is the index of the subgroup $(\eta)$ of units, which are norms of
numbers in $K$, in the group $(\epsilon)$ of units in $F$ .

In this case where $K/F$ is cyclic, we have on the other hand

(2) $g^{*}=a=h_{F}\cdot\frac{e}{\epsilon}\frac{\mathfrak{p})}{\eta}\overline{n\cdot}[:]^{-}\tilde{\Pi}($

since the relative genus number $g^{*}=g^{*}(K/F)$ with respect to $K/F$ is equal to

1) Supported in part by Research Institute for Mathematical Sciences, Kyoto Uni-
versity.

2) Cf. H. Yokoi [11], Lemma 4.
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the ambiguous class number $a$ with respect to $K/F^{3)}$ .
It is easily observed in this formula that the first factor $h_{F}$ of the right

side is the ideal class number of $F$, and the second factor $\frac{\tilde{\Pi}e(..\mathfrak{p})}{n\cdot[\epsilon\eta]}$ of the

right side is composed of prime factors of $n$ only. Therefore, from our point
of view, the first question is whether the ideal class number of $K$ is divisible
by the ideal class number of $F$, and the second question is whether the ideal
class number of $K$ is divisible by a prime factor of degree $n$ .

As regards the first question, we already proved the $following^{4)}$ :
THEOREM 1. Let $K/F$ be a finite extension over an algebraic number field

$F$ of finite degree such that $K$ and the absolute class field $\tilde{F}$ of $F$ are disjoint
over $F,$ $i$ . $e.,\tilde{F}_{\cap}K=F$ . Then we have

(i) the class number of $K$ is always divisible by the class number of $F$,

(ii) if $K/F$ is abelian, then the relative genus number with respect to $K/F$

is divisible by the class number of $F$,

(iii) if $K/F$ is cyclic, then the ambiguous class number with respect to $K/F$

is divisible by the class number of $F$,
(iv) if $K/F$ is cyclic and has one and only one ramified prime divisor in

$K/F$, then the ambiguous class number with respect to $K/F$ is equal to the class
number of $F$ .

As regards the second question, we know the following:
THEOREM. (K. Iwasawa)5) Let $F$ be an algebraic number field, and let

$K/F$ be a cyclic extension of a prime power degree $l^{\nu}$ such that there exists a
completely ramified prime divisor in $K/F$ and any other prime divisor is never
ramified in $K/F$. Moreover, assume that the class number of $K$ is divisible by
1. Then, the class number of $F$ is also divisible by $l$ .

The main aim of this paper is to prove the following more general theorem:
THEOREM 2. Let $F$ be an algebraic number field, and let $K$ be a Galois

extension of degree $n$ over F. Denote by $h_{K}$ resp. $h_{F}$ the number of absolute
ideal classes in $K$ resp. $F$, and by $a=a(K/F)$ the number of ambiguous ideal
classes with respect to $K/F$. Then we have

(i) if $a=h_{F}$ and $h_{A}$ is prime to the degree $n$ , then $h_{F}$ is also prime to $n$ ,
(ii) if both $h_{F}$ and $h_{K}$ are prime to the degree $n$ , then $a=h_{F}$ ,
(iii) if the degree $n$ is a prime power $1^{\nu},$ $h_{F}$ is prime to the degree $n$ , and

moreover $a=h_{F}$ , then $h_{K}$ is also prime to $n,$ $h_{K}$ is divisible by $h_{F}$ , and moreover
$\frac{h_{K}}{h_{F}}\equiv 1$ $(mod [)$ .

After the proof of this main theorem, we shall give some corollaries as

3) Cf. H. Yokoi [11], Prop. 1.
4) Cf. H. Yokoi [11], Theorem 1.
5) Cf. K. Iwasawa [2].
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application of this main theorem, and we shall add a theorem on the divisibility
of the class number by a ramified prime divisor in an absolutely normal ex-
tension field.

As an example of an algebraic number field $K$ such that the class number
of $K$ is composed of only prime factors of the class number of subfields in $K$

and of the degree, we can give absolutely abelian fields of $(2, 2)$ -type 6).

Another more interesting example is an absolutely abelian fields of
$(1, l, \cdots , l)-$ -type for any prime $l$ .

\S 2. Proof of main theorem.

In order to prove our main theorem, we require three lemmas.
LEMMA 1. Let $K/F$ be a Galois extension of a prime power degree $l^{v}$ .

Denote by $h_{K}$ the ideal class number of $K$, and by $a=a(K/F)$ the ambiguous
class number with respect to $K/F$ . Then, we have $h_{K}\equiv a(mod l)$ .

PROOF. Let $G=G(K/F)$ be the Galois group of $K/F$ . Then, for any ideaE
class $C$ of $K,$ $G_{c}=\{\tau\in G:C^{\tau}=C\}$ is a subgroup of $G$ . Since $G$ is of prime
power order $1^{\nu}$ , we may put $r_{c}=[G:G_{c}]=l^{\nu_{C}}$ . Then, the index $r_{c}$ expresses
the number of all distinct G-conjugate ideal classes of $C$ , and we can easily
verify

$11_{C}=0=r_{c}=1=G=G_{C}=C\in A$ ,

where $A$ is the group of ambiguous ideal classes with respect to $K/F$. In other
words, this shows that

$C\not\in A=\nu_{C}\neq 0\underline{\rightarrow}r_{c}=l^{\nu_{C}}\neq 1=r_{c}\equiv 0$ $(mod 1)$ .
Therefore, we get finally

$h_{K}=a+\Sigma_{c\in A}^{\prime}r_{C}\equiv a$ $(mod l)$ ,

where the summation $\Sigma$ ’ is extended over all representatives of distinct G-
conjugate classes which do not contain any ambiguous ideal class of $K/F$ .

LEMMA 2. Let $K/F$ be a Galois extension of degree $n$ . Denote by $a=a(K/F)$

the ambiguous class number with respect to $K/F$, and by $a_{0}=a_{0}(K/F)$ the
number of ideal classes represented by ambiguous ideals with respect to $K/F$ .

Then, $\frac{a}{a_{0}}$ is composed of prime factors of $n$ only.

PROOF. Let $C$ be an ambiguous ideal class with respect to $K/F$, and let
$\mathfrak{A}$ be an ideal in the class $C$ . Then, the norm $N_{K/F}\mathfrak{A}$ of $\mathfrak{A}$ with respect to $K/F$

is contained in the ideal class $C^{n}$ of $K$. On the other hand, the norm $N_{K/F}\mathfrak{A}$

of $\mathfrak{A}$ is clearly an ambiguous ideal with respect to $K/F$ . Therefore, the ideak
class $C^{n}$ is an ambiguous ideal class represented by an ambiguous ideal with

6) Cf. T. Kubota [3] and S. Kuroda [4].
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respect to $K/F$ . This shows that $\frac{a}{a_{0}}$ is composed of prime factors of $n$ only.

LEMMA 3. Let $K/F$ be a Galois extension of degree $n$ . Denote by $h_{F}$ the
ideal class number of $F$, and by $a=a(K/F)$ the ambiguous class number with

respect to $K/F$ . Suppose that $\frac{a}{h_{F}}$ is prime to $n$ . Then, we have $-h^{\underline{a_{F}}}=1$ ; $a$ is
equal to $h_{F}$ .

PROOF. If we put $a_{0}^{\prime}=\frac{a}{a_{0}}$ , then it follows immediately from lemma 2

that $a_{0}^{\prime}$ is composed of prime factors of $n$ only. Since $a=a_{0}^{\prime}\cdot a_{0}$ and

$a_{0}=\frac{\Pi e(\mathfrak{p}}{[H^{1}(G}\overline{E_{K})}])$ . $h_{F^{7)}}$ , we have the following equality:

\langle 3) $\frac{a}{h_{F}}=a_{\acute{0}}\cdot\frac{\Pi e(\mathfrak{p}}{[H^{1}(G}E_{K}\overline{)}$]) .

Here, it is easily seen that the right side of this equality (3) is composed of
prime factors of $n$ only, and by the assumption the left side of the equality
\langle 3) does not contain any prime factor of $n$ . Therefore, both sides of the
equality (3) are equal to 1; this shows $a=h_{F}$ , which proves our lemma 3.

PROOF OF THEOREM 2. (i) This is obvious from the assumption $a=h_{F}$

and from the fact that the ambiguous class number $a$ with respect to $K/F$ is
a divisor of the class number $h_{K}$ of $K$.

(ii) First, we see from the assumption $(h_{K}, n)=1$ that the divisor $a$ of $h_{K}$

is prime to $n$ . Therefore, it follows at once from the assumption $(h_{F}, n)=1$

that $\frac{a}{h_{F}}$ does not contain any prime factor of $n$ . Thus, we obtain finally

$a=h_{F}$ from lemma 3.
(iii) There exists an integer $b$ such that $h_{K}=a\cdot b$ , because the class

number $h_{K}$ of $K$ is divisible by the ambiguous class number $a$ with respect to
$K/F$ . Since $a\equiv h_{K}(mod l)$ by lemma 1, we obtain $a\equiv a\cdot b(mod 1)$ . Hence
$a(b-1)\equiv 0(mod 1)$ . On the other hand, it follows immediately from assumptions
$a=h_{F}$ and $(h_{F}, l^{\nu})=1$ that $a$ is prime to $l$ . Therefore, we have $b\equiv 1(mod 1)$ .
Thus, we see finally that $h_{K}=a\cdot b$ is prime to 1 and $\frac{h_{K}}{h_{F}}=\frac{h_{K}}{a}\equiv 1(mod l)$ .

\S 3. Applications.

By using these theorems and lemmas, many known results on divisibility
of the ideal class number can be shortly proved, and can also be easily gen-
eralized.

For instance, the above mentioned theorem of K. Iwasawa is generalized
by using theorems 1 and 2 as follows:

COROLLARY 1. Let $K/F$ be a Galois extension of a prime power degree $l^{\nu}$ ,

7) Cf. H. Yokoi [11], Lemma 1.



The divisibility of the class number 415

and assume that the ambiguous class number $a$ with respect to $K/F$ is equal to
the class number $h_{F}$ of F. Then, we have $(h_{K}, l)=1$ if and only if $(h_{F}, l)=1$ .

Moreover, a result of M. Moriya8), namely, “ Let $K/F$ be a cyclic extension
of a prime degree $l$ , and assume that the ambiguous class number $a$ with respect
to $K/F$ is prime to $l$ . Then, $h_{K}$ is also prime to $l$ . is generalized by using
lemma 1 as follows:

COROLLARY 2. Let $K/F$ be a Galois extension of a prime power degree $1^{\nu}$ ,

and assume that the ambiguous class number $a$ with respect to $K/F$ is prime
to 1. Then, the ideal class number $h_{K}$ of $K$ is also prime to $l$ .

If, moreover, we assume that $a$ is equal to 1, then $h_{K}$ is congruent to 1 $mod l$ .
Furthermore, in the special case of absolutely Galois extension, we can

prove following two corollaries by using theorem 2 and lemma 1.
COROLLARY 3. Let $K/Q$ be an absolutely Galois extension of a prime power

degree $l^{\nu}$ . Then, the class number $h_{K}$ of $K$ is congruent to $0$ or 1 $mod l$ , and
the following three conditions are all equivalent to each other:

(i) $h_{K}$ is prime to 1,
(ii) the ambiguous class number $a$ with respect to $K/Q$ is equal to 1,
(iii) $h_{K}$ is congruent to 1 $mod 1$ .
PROOF. It follows first from theorc $m2$ that $a=1$ is equivalent to $(h_{K}, 1)$

$=1$ , because the class number $h_{Q}$ of the rational number field $Q$ is equal to 1.
Next, if $a=1$ , then by lemma 1 we have $h_{K}\equiv a=1$ (rrcd 1). Convers $\epsilon 1y$ , if
$h_{K}\equiv 1(mod 1)$ , then $(h_{K}, l)=1$ is obvious. Hence, we cbtain finally $a=1$ frcm
the above assertion.

COROLLARY $4^{9)}$ . Let $K/Q$ be an absolutely cyclic extensicn of an odd prime
power degree $1^{\nu}$ . Then, the following four conditions are all equivalent to each
other:

(i) the class number $h_{K}$ of $K$ is prime to 1,
(ii) the ambiguous class number $a$ with respect to $K/Q$ is equal to 1,
(iii) the class number $h_{R}$ is congruent to 1 $mod 1$ ,

(iv) the extension $K/Q$ has a prime power conductor.
PROOF. For the proof of this corollary, it is sufficient to show that $a=1$

is equivalent to the assertion of (iv), because the first three conditions of this
corollary are all equivalent to each other by corollary 3.

From the assumption that the grcurd field $F$ is the rational number ficld
$Q$ and $K/Q$ is an $\epsilon xt\epsilon$ nsicn of cdd degree, we have $h_{\Gamma}=h_{Q}=1$ and $[\epsilon : \eta]=1$

in the formula (1) of the ambiguous class number with rcspect to a cyclic

8) Cf. M. Moriya [8].
9) In the special case where $K/Q$ is an absolutely cyclic extension of an odd prime

degree, this corollary is already obtained in M. Moriya [8], [9], H. W. Leopoldt [7], and
S.-N. Kuroda [6].
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extension. Hence, it follows first from (1) that $a=1$ is equivalent to $\Pi e(\mathfrak{p})=l_{-}^{\nu}$

Next, we have $\Pi e(\mathfrak{p})=l^{\nu}$ if and only if there exists one and only one
ramified prime divisor and it is completely ramified in $K/Q$ .

For, if there were no prime divisor which has the rational number field
$Q$ as the inertia field in $K/Q$ , then there would exist an intermediate field of
$K/Q$ which is an unramified abelian extension over $Q$ with the degree at least
$l$ , because the extension $K/Q$ is cyclic of prime power degree $l^{v}$ . However.
this is a contradiction. So, there exists at least one prime divisor which has
the rational number field $Q$ as the inertia field in $K/Q$ . Since such a prime
divisor is completely ramified in $K/Q$ , it follows easily from the condition
$\Pi e(\mathfrak{p})=l^{\nu}$ that there exists one and only one ramified prime divisor and it is
completely ramified in $K/Q$ . Conversely, if there exists one and only one
ramified prime divisor and if it is completely ramified in $K/Q$ , then we have
obviously $\Pi e(\mathfrak{p})=l^{\nu}$ .

Finally, it is easy to verify that the conductor of $K/Q$ is a prime power
if and only if there exists one and only one ramified prime divisor and it is
completely ramified in $K/Q$ .

Thus, we prove our corollary.
REMARK. In case of quadratic field, the following fact is well-known:
” The ideal class number (in narrow sens $e$) of a quadratic field is odd if

and only if the discriminant of the quadratic field is a prime power.”

\S 4. Divisibility of the class number by ramified prime divisor.

Furthermore, on the divisibility of the ideal class number, there is a ques-
tion whether the ideal class number is divisible by a ramified prime divisor.
Here, we shall consider this question in the special case where an absolutely
abelian field has only one ramified prime divisor.

THEOREM 3. (i) Let $K$ be a quadratic field of a prime power conductor
$p^{\nu}$ . Then, the ideal class number of $K$ is always prime to $p$ .

(ii) Let $K$ be an absolutely abelian field of a regular prime power conductor
$p^{\nu}$ . Then, the ideal class number of $K$ is prime to $p^{10)}$ .

(iii) Let $K$ be an absolutely abelian field of an irregular prime power con-
ductor $p^{\nu}$ , and assume that $K$ contains a primitive p-th root of unity. Then,
the ideal class number of $K$ is divisible by $p$ .

PROOF. (i) This is easily seen from the following well-known result 11):

“ If $K$ is a quadratic field $Q(\sqrt{p})$ such that $p$ is a prime number satisfying

10) This part (ii) is already known by Iwasawa [2]. Here, we add a simple proof
of it only for the sake of completeness.

11) Cf. $e$ . $g$ . M. Gut [1], M. Newman [10] etc.
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$p\equiv 1(mod 4)$ , then the ideal class number of $K$ is less than $p$ .
In order to prove the remaining part of theorem 3, we denote by $\zeta_{p^{m}}$ a

primitive $p^{m}$-th root of unity for each $m\geqq 0$ and for a rational prime $p$ , and
denote by $Q(\zeta_{p^{m}})$ the cyclotomic field obtained by adjoining $\zeta_{p^{m}}$ to the rational
number field $Q$ .

(ii) Let $p$ be an odd regular prime. Then, the ideal class number of
cyclotomic field $Q(\zeta_{p})$ is prime to $p$ . In the cyclic extension $Q(\zeta_{p^{\nu}})/Q(\zeta_{p})$ of
prime power degree $p^{\nu-1},$ $p$ is completely ramified and any other prime divisor
is not ramified. Therefore, the ambiguous class number is equal to the ideal
class number of $Q(\zeta_{p})$ by theorem 1. Hence, it follows from theorem 2 that
the ideal class number of $Q(\zeta_{p^{\nu}})$ is also prime to $p$ .

On the other hand, since $K$ is a field of conductor $p^{\nu},$ $K$ is contained in
the cyclotomic field $Q(\zeta_{p^{\nu}})$ , and the prime $p$ is completely ramified in $Q(\zeta_{p^{\nu}})/K$.
Hence, it is easily seen from theorem 1 that the ideal class number of $K$ is a
factor of the ideal class number of $Q(\zeta_{p^{\mu}})$ .

Thus, we find that the ideal class number of $K$ is prime to $p$ .
In case of $p=2$ , the ideal class number of $Q(\zeta_{2^{\nu}})(\nu\geqq 2)$ is odd, because

both $Q(\zeta_{2})=Q$ and $Q(\zeta_{z^{2}})=Q(\sqrt{-1})$ have the ideal class number 1. Therefore,
by a similar argument used in the above proof, we can also show that the
ideal class number of $K$ is odd.

(iii) Since $K$ is an absolutely abelian field of prime power conductor $p^{\nu}$

and contains a primitive p-th root of unity, $K$ is contained in the cyclotomic
field $Q(\zeta_{p^{\nu}})$ and contains the cyclotomic field $Q(\zeta_{p})$ , namely, $Q(\zeta_{p^{\nu}})\supset K\supset Q(\zeta_{p})-$

Moreover, $p$ is completely ramified in $Q(\zeta_{p^{\nu}})/Q(\zeta_{p})$ , hence also in $K/Q(\zeta_{p})$ .
Thus, it follows easily from theorem 1 that the ideal class number of $K$ is
divisible by the ideal class number of $Q(\zeta_{p})$ .

On the other hand, because of irregularity of $p$ , the ideal class number of
$Q(\zeta_{p})$ is divisible by $p$ . Hence, the ideal class number of $K$ is also divisible
by $p$ .

REMARK. Let $K$ be a quadratic field which has a ramified prime divisor
as a factor of the ideal class number. Then, it follows immediately from
theorem 3 that the quadratic field $K$ must have at least two ramified prime
divisors. There is only one such quadratic field with the absolute value of the
discriminant less than 100, namely, the imaginary quadratic field $K=Q(\sqrt{-329})$ .
The ideal class number of this quadratic field is 6 and the ideal class group
is a cyclic group of order 6 12).

Mathematical Institute
Nagoya University

12) Cf. S.-N. Kuroda [5].
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