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Let K be an algebraic number field. Let mz(x) be the number of the prime
ideals p with N(p) < x, then we have the following asymptotic formula;

0 o) = [ +0(x exp (—c(log 1))

(Landau [2], Satz 191). As a special case, if K is the rational number field,
we have the formula;

) w(x) = Exl _ 5‘: lodgl‘t +0(x exp (—c(log 0)V2))

which was first proved, in 1899, by de la Vallée Poussin. Since then, the re-
mainder term of (2) has been improved by many authors; to obtain these
improvements, the method of trigonometrical sums is very important. (Cf.
Prachar [3], Titchmarsh [4])

The purpose of this paper is to improve the remainder term of (1). Our
main result is stated as follows;

MAIN THEOREM. Let K be an algebraic number field. Let wg(x) be the
number of the prime ideals whose norms are less than x. Then we have

@ = ogr +O(xe® (~¢ (aglog g )

We shall begin by proving the following theorem concerning trigono-
metrical sums, which will be regarded as a generalization of the theorem of
Vinogradov and will be fundamental for the proof of Main Theorem;

THEOREM 1. Let a be an ideal of K. Let L(a) be the set of the principal
ideals divisible by a. Let t be a large number, and A and B two real numbers
such that

exp ((log 1)) < A< B<2A < 2t87/5

where n is the degree of K. We define a trigonometrical sum S ; A, B) as
follows ;
Sit; A, By= ¥ exp (2ritlog N(b)).

be=L{a)
A=ZNv<B
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Then we have
[S(t ; A, B) ] < ClAlvcz/aZ ,

where a=mnlogt/log A, and ¢, and c, are positive constants depending only on
K and a.
In the first half of §1, the estimation of S(; A, B) will be reduced to that
of the sum of the following type;
Y k
T= 3 exp (27ris§ B.x*y®%)

®,y=1

(Lemmas 1-3). In Lemma 6, the estimation of T" will be given in the analogous
way to the theorem of [5], by making use of Lemma 4 concerning the pro-
perty of B, and Vinogradov’s mean value theorem, which will be quoted from
Hua [1] as Lemma 5. After these lemmas, the proof of Theorem I will be
easily obtained.

In §2, we shall estimate, by making use of Theorem I, the Dedekind zeta
function {(s) (Lemmas 7-9). Then the estimation of {4(s)/{x(s) will be ob-
tained (Lemmas 10 and 11). From these lemmas and Lemma 12 on the sum
9(x), our Main Theorem will be easily proved.

We now explain the notations which will be used in the following. Let
K@ (g=1, ---, r,) be the real conjugates of K, and K®, K@+ =K® (p=r,
41, .-+, r;+7,) the complex conjugates of X, so that n—=r,+2r,. The con-
jugates of the number p of K in K are denoted by p® (i=1, .-, n). We
write N(p)=p® - p®. If |ED|<aor 2 a) (=1, .-+, n), we write |£|<a (or
= a). A small Roman letter ¢ means positive constant which depends only on
K. 1t does not always mean the same constant at each time it appears. If
X and Y are two numbers such that |X|<cY, then we write X=0(Y) or
XLY.

§1. Proof of Theorem 1.

LemmA 1. Let ¢y, -+, &, (r =7r+7r,—1) be the fundamental units of K. Let
(i) be the inverse of the square matrix (log|ef|),=i <, 0f degree r. Let I be
the set of the integers p of a such that

AZINw|<B, 0=t(w<l (k=1 .-,7),
where

4= 5 an(log] p®|— & logING|) (=1, 7).
Then
St; A By= - 3 exp it log| N()|) .
w sEM
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where w 1s the number of the roots of unity in K.
Proor. Let (1) be the principal ideal generated by an integer g such that

AZ|IN(wI< B. Put qy=[t()] (=1, ---,7). Then, we see that y,=pu fI g5k
k=1

is contained in M and that the number pg.¢, the product of g, and any unit ¢
of K, is contained in M if and only if ¢ is the root of unity. Hence, the
number of the generators of (1) which are contained in I is equal to w.
Since their norms have the same absolute value |N(g)|, we have

exp (2wit log N())) = —%7 33 exp (rit log| N ),
W=t
whence the lemma follows.
Now let J be the subset of {1, -.-,7,}. In the n-dimensional space £, we

define the set X;;
>0 for g J
X, = (xl,x2,~—-,xn);i7§:)lx,-y§q> <0 forgae/, 1=<qg=r,¢,
| +0 for ri+1<qg<n
where 7, ---, 7, i the basis of a. Let f; be the mapping from X, into the

n-dimensional space E,, which is defined as follows;

fJ(xl’ Tt xn):(yo’ Virom s Vi ﬁl) T 07‘2) ’
where

Vo= X log| 3 x|,
q=1 =1
7 n 1
Y= X aglog]| X xi}’z@l’“—*n Yo) (k=1,--,7),
q=1 3=1

0,=arg i Xy PreY p=1 -, 1,).
i=1

It is easily szen that f, is one to one mapping. Let V be the subset of £, as

follows ;
log A<y, <log B,

V=1 QoY ¥pbu-0n); 0=3<l (k=17
0=60,<2r (p=1,--,71y)
Then the integer p= ﬁ‘,miyi of a belongs to M if and only if (m,, .-+, m,)
e f73 (V) for some J. };Z;ce, putting
F() =-exp (2rit log| Nv)|)

for any number v(+ 0)e K, we have
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®) St; A, By=— % X FXmy),

T ny,emperyion 1

g

where J runs through all subsets of {1, 2, ---, #,} and (m,, ---, m,) runs through
all n-tuples of rational integers such that f;(m,, ---, m,) s V.
LEMMA 2. We define for rational integers ky, -, k, the cube Q in E,;

Q=0Q(ky, -, k) ={(xy, =+, x,); kM= x,<(kg+1DM (g=1, -+, n)}
where
@) M=[A%m"] .

Then, the inner sum of (3) is written as follows;

) > F( {é M) = » F(Fil My ) +O(AIVm)

meymperyion 1 Qs i (Ml mSQ

In the right-hand side, Q runs through all cubes contained in f7Y(V).
Proor. Let 0 be the maximum of the diameters of the f,(Q) having points
with ¥V in common. We have, then,

(©) 0L MA-Ym,

In fact, let (x9, ---, x%) be a point of Q /7' (V) and f,(x{, -+, x%) = (5, ¥},
-+, 3%, ---). By the definitions of y, and y, we have

log| 3 1770 | = 94+ $obloglef = log A+0W) (g=1, -, 7+1).

Hence, if (x5, ---, x,) is a point in the same @, then

log| 3} x,7@ | = log| 3 (204 x,— 2y | = log| 3 x07@ +O(M)|
=1 g3==1 7=1

= log| 5 xly@ [ +OMA™™  (g=1,-.n)

and
arg 3 x, P =arg i Wy +HOMAYY  (p=r,4+1, -, 747,
i=1 i=1

which proves the assertion (6). Since we may take A large, § is small.
Now we shall define the sets V, and V, as follows;

logA—d < v, < log B4-0
Vi=10o Yo s Vs ‘91:“‘:0r2); —0=y, =140 k=1, . ,1N¢,
0§0p§27r p=1, -, 7y
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log A+o0=<y,<log B—é
Vom0 Y - Y Oy, 0, 00) 5 053, =1=0 (k=1 7)
0=0,<2r—0 (p=1, -, 1,)
[f log B—0 <log A+d, then we put V,=¢ (empty set). It is easily seen that
VD U QD U QD5 V).

nrytanxe Qcryto
Hence
n

| > DY > F(X myy)]

mimperFion  @orylon MurmwEQ il
0!

< the volume of f7Y(V,— V).

Since

} a(xl’ e, xn)
a(in Yoo s Vs 01: Tty 07-2)

where ¢, is a constant, the volume of f;}(V,—V,) is

dx, - dx, = c, f evody,dy, - dy,d@, - db,,

o f;l V1-V3) Vi—Va

— ¢,(Beb— Ae-2)(1--25)" ()
—c,(Be— Ae?)(1—28)(2r—28)72 < G A.

Hence, by (6) and (7), we obtain the proof.
Now we shall consider the inner sum in the right-hand side of (5);

(my, - mp)EQ  i=

> F( il miys)
where Q =Q(k,, -, k) C f71(V). This sum is rewritten as follows;

sw=_ S _Fa+ Zmao,
where
Z:Mé haoe M.
The following inequality is obvious;
® cAM < || Z cAVr.
Now we put

L=(log A)¥?,

d=(LAV*"MR,], ---, [LA"Y"ME,T),
©) my =LA Y*Mk;]/d G=1,---,n).
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d is not zero; if d=0, then LA-Y"2 would be O(1), which contradicts to (3).
We may assume that m,; 0. We put

d,=|my], dy=(di_y, |my;)) =2, n

and take the rational integers [; such that

(10) Iimy;=—d; (modd,_,), |1£d;, =2,-,n).
Moreover we put
Limy;/d;- d=s;<i=m,
ehY; my=1 (di+limy)/diy C=i=j=mn),
0 2=i<j=m,

a'i:ﬂz:mikrk =12 --,m).
k=1

The m,, are rational integers and

det (my) = myy 115 = +d, = +1.
i i-1

i=2 d
Hence, a;, -+, a, is the basis of a and, by (9), and [1I), we see that

a2 ad Bmul < Blmyl <L G=1, -, m).
If we write

n
Ti:kzlcika'k (k=1,--,m),
. . n n
where the c;; are rational integers, then > m;y;= 2 a,a;, where
=1 k=1

Ay = %Cikmi (=1, -, m).
i=1
Since the matrix (¢;;) is the inverse of (m;,) and m,, < L, it is easily seen that
¢z &L L* 1. Hence
(13) ap < ML ! (=1, -, n).

If a,, ---, a, are fixed, then q, ranges over a set of some consecutive integers.
Therefore, we can write

SW=3 3 ”2F<z+k"§l o)

an aij=a

where a and b are rational integers depending on a,, -, a,.
LEMMA 3. Put

a p=nas - a) = ok Haa),
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B,= Bmy= """ U B Gotm =1 b Im S eMLY,
Y k
= > exp (2mi 3] Byx*y%),
x,y=1 s=1
where
(15) Y =[A¥], k=[6a]+1.
Then we have
(16) SQKM™(Y 2 Imaicn ) [T | + A VYL YV 2 (ML),
Proor. We have
b
a7 S =3 T F(ay) X Fiptap< 2 - 2| Z}F@+a1)1,
ay anp, a1=a ay ap a
b Y b—xy
(18) > Fp+a)y=Y? yzl D JF(r;—I-m—l—xy)
ai=a z,¥y=1 m=a—2Y
=¥ % { 5 Fop+mt)+0()}
x,y=1
b
<y % F(l—l——A >l+Y2
m=a|x,y=1

By (14), |a;(p+m)|={2A4+-0OML™ | = cAY", so that

7]_1?”2, _C[a ]A 1/nY2<CLA 1/6n.

Hence, we have the following expansions;

tloglN<1+7_“%_7};z >|~‘ E B x5yS+ 0@ (c LA Venybe1y |
a9) 3 P12 = Tat O teLAonyesn

=T, +O(Y2A-Vm™),
Since

52 Sl=Mr, S DMLy,

Ay anp ay

the lemma follows from (17), (18) and (19).
LEMMA 4. If s is even, then

(20) %’(CA’I/H)S <|B,|< __2_ (cLA-mys

Proor. By (14) and (9),
o (p+m) = 24+-O(ML™ = 2A+O0(ML* A=)y,
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o= Tli—(LA“l’"z-{—O(l)) — —}TLA“’"Z(I—I-O(L“*)) .

Hence
sarg (p®+m)=sarg (1+0(L" )< a/LL (log A)~*
(p: Tl_}—l: Tt 7’1'-*—7’2) ’
since a < c(log A)'2, and we may assume that

cos (s arg (77<p>+m)) g~:/~1§_a (Pp=r+1, -, r+r,).

Therefore, for even s,

L B pom 1Bl <L By
Since
ptml Tz cla| AN, gt e | A < cL AT
and
max (|a®, -, lai) =1,

the lemma is proved.
Now we quote from Vinogradov’s mean value theorem ;
LEMMA 5. Let P and q be positive rational integers and g, g+, o arbi-

trary rational integers. Ifq>6a2+—g—(a+l), then the number of the 2q-tuples

(my, -+, my,) of rational integers such that

Mi+mi+ oo Mg —Mgpy— - —Miy=g; (s=1--,0d,
g<m;=g+P (=1, -, 2
does not exceed

2q-~;—’— (a+1) +% (a+1) (1—-;7)6“

(2]-) N(P; a, Q) = (5q)30a4(10g P)12aP
(cf. [1], p. 37).

LEMMA 6.
Tm<< Y 2~c/a2 ‘
ProOOF. We put

k
b=[6k+—5-(k+D+1],  1=2b.
Applying Hoélder’s inequality twice, we have

T 27y B exp {2 3 Ba( Zr— S )}

Z=1 Y1,y =
and
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-

ITmllz,—<_—_ Yl(l—l)( E 1)[—1

Y1, Y =1

Y

X Z)

Y1 yi=1

3 exp {271 3 By Ty 3 eI

Y
< Y 2L~ Z

Y1, =1

X, 3 _exp {20 3 B(Zxim 3 XD ri— 3 W}
Sxy=1 =p+1 u=1 v=b+1

Hence

[T V20 5 Ni(zy -5 20)
e

X

exp {21 5 Ba( B - 3 )},

Y1 ?Jl =1
where z,, ---, z, run through all rational integers such that
lz,| < bY* (s=1,--, k)

and N,(z,, -+, z;) is the number of the [-tuples (x,, ---, x;) of rational integers
such that

it s dx—xjy— e —ah=2, (s=1-. R,

lsx,<Y (G=1,-,0).
By we have

| Tl < Y2ON(Y 5 B, )

X 2

2152

Yl 1exp{ZmEBz(Zy — E,y”)}l'

Y1 Y,

By Schwarz’s inequality,
|Tm|21'2§ Y4L<l-1>N(Y; k, b)z Z 1
21,"',2

Y

X % exp {Zm > Bz 2 Yu— 2 yv)}

212 Y1 ?/27~1

< VD N(Y ; b, b)zlkYz (k+1)
k
X 2 Ny(dy, -, dp)| X exp (ri 3 Bzl
dl""rdk 21,2y s=1

where d,, .-+, d,, run through all rational integers such that
ld,| < 1Y® (s=1, -,k

and N,(d,, ---, d;) is the number of the 2/-tuples (y,, ---, y,,) of rational integers
such that
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Vi VY= e = ds =10 k),
l=yy=Y  (=1--,2).
Hence, by

[Tmlmzé Y4L(t*1)+‘;‘~(k+1) llcN(Y; k, b)zN(Y; k, l)

x| exp(zmilesdszs)[.

d1,dy 21,2

Since
(22) | >0 exp (2riBd,z;)| < min (IY'*, |sin (7 B.dy)| 1),
s
we have
. le!ﬂzé Y4l(l-—1)+—;c-(k+l) l]cN(Y; k, b)zN(Y; k, l) W ,
where
(23) W= 11 2 min (Y, |sin (xBdy)| ).

s=1 dg

‘We denote by J the set of even rational integers s such that 2a < s <4a.

(20), we have for s
| Byds| < 1Y #| Bs| < ck?Y 2t(c LA™Y < LR A~/om
which implies that |B,d,|<1/2 for large A. Hence
|sin (xBydy)| * < Q| Byds )7 (s€])
and it follows from (20) and that
WS IT QEY™ IT (Y| B 5 m)

1S5k 1=s=k

:<: <212)76Yk(76+1) H (Y —8+ZL—1(CA1/71)8Y*23 IOg Y)
scd

< (B RO [T (Y 324 Y 440 log V).

seJ

Since the number of the elements of J is = a—1/2, it follows that
(24) W < Ck2Ylc(k+1)—2oé(2a—-1)/5(log Y)lc .
By [2T) [(22) and [24) we have

2

| T | 22 < cH (25D (log Y yory 3 ¥+ 0 (im ) g atzamn)

Now we see that

1\ 1
30kl log (25b1) < ck®log b, 13k <1< 14k, (1—7) < 00" -

3 NI 3 2
77k<k+1)<1_7) —+-aCa—1) = 45 6a+DBa+D——+-aa—1)

=— % (@z5/0).
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Therefore we have
Tm <K (IOg Y)c/kB YZ‘“Q/ZHZ & YZ—C/(KZ ,

and the proof of the iemma is completed.
Now from (16) and we obtain

(25) SRy« MM (A9 1 Ay LY 2(MLP Y= < M Ao/,

Hence, by (3), (5), and the fact that the number of the Q such that
QcCf7; (V) is O(AM™), we have

S@t; A, By« At-¢/a® 4 A11in g Ar-ere®,

Thus the proof of Theorem I is completed.

§2. Proof of Main Theorem.

In this paragraph, we denote by ¢, ---, ¢; positive constants depending
only on K. ,

LEMMA 7. Let A and B be real numbers such that
(26) exp {(log|¢])**(loglog|])'*} = A< B=Z2A = 2[t|™",

where |t|=c. We define the sum;

L(s; A, By= > N(®),
A%S._%\%’@B

where s=o-it is complex, ¢ >0. I[f |t|=c¢, and
loglog|t] \*?
oz1-a( 50 )
with suitably chosen constants ¢, and c,, then we have
Lis; A, B)1l.

Proor. Let H(x) be the number of the ideals bin L(a) such that N(b) < x.
Then
L(s; A, B = > m~°{H(m)— H(m—1)}e-ilosm

A=m<B

By the partial summation,

|L(s; A, B)| < A°max | 3 {H(m)—H(m—1)}eitlogm|

4=C<B A=m<C

— Amax | ¥ exp (it log N&)| = A~ max |s(-HL; 4, c)[ .
A=0<B Abgz{ﬂfgo A=SC<B] T

In view of (26), it follows from Theorem I that

L(s; A, By Ao ([t|z ¢y,
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where a==nlog|t|/log A. Since a < c(log|t|/loglog|t|)¥?, we have

L(s; A, Bygexp {(1——0—c2( 10}5:’)1;%[[“ )2/3) log A}

which gives the proof.
LEMMA 8. We define the function ¢(s;a) of a complex variable s=oc4il’
as follows ;

$s;0= T NO*  ©@>D).

Then ¢(s;a) is analytic for o >1—1/n except for a pole at s=1. If |t|=¢,
and
loglog|t]| \?**
oz1-a( Vgl )
then we have

¢(s; my<(oglt])e.

Proor. Let € be the ideal class containing a~!. Then H(x) is equal to:
the number of ideals m in ¢ such that N(m)< x/N(x). Therefore

H(x)= +0(x171),

N (a)

where 1 is a constant depending only on K ([27], Satz 210). Let a and b(> a)
be rational integers. We have

N = X me (Hom)— Hon—1)}

be L(a)
as=NbL<Dd
fb ‘H® 4 He=b  HO-1)
- S+1 aS (b 1)8
If 6>1, we can let b—oco. Therefore, putting r(x) = H(x)—Ax/N(x), we have:
@7 F&=¢s:0— 3 N(b) ;
7\"b/a,
A @ A ) g rla—1)
— s—1 N@) i N(a® +Sj x5+t at ’

Since r(x)&x*¥7, the integral in the right-hand side of (27) converges uni-
formly for ¢ =0, >1—1/n. Hence F(s) is analytic for ¢ >1-—1/n except for a
pole at s=1 and we obtain the first assertion of the lemma. Assume that
0=1—1/7n and put a=[X7], where X—=1¢|"%, Then

(28) F(S)<< I t l —1X1—0+X—4+ \ t ‘ X——o‘+1—1/n+X~o’+1-1/n & 1.

Moreover put X,=exp {(log|?|)**(loglog|t])¥?} and let m be the rational integer-
such that 2™ 11X < X <2"X,, then, by Lemma 7,
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(29 X NW®)T=L(s; X 2X)+L(s; 2X,, 22 X))+ -
+L(s; 2" X, X)<loglt].
On the other hand, if ¢ =0,=1—c,(loglog|¢|/log]|{])??, then

s Xp0 o loglt] N :
(30 %%(X) N@-< 0, <( loglog|f| ) ©XP (¢ loglog|t )< (log]¢])".
I 0

Collecting the results and [(30), we have
O(s; =3 NO*+0D)<log|t])° .
Ny<X

LEMMA 9. Let Cx(s) be the Dedekind zeta function of K. If |t|=c, and

loglog|t] \2/3
ozl Cz<4 log|t] '
then we have

Cx(s)<(oglt])es,
where we may assume that ¢, > 1.

Proor. Let ay, -+, a, be the representatives of ideal classes. Then it is
easily seen that

Cals) = g NG@)d(s ; a)

for ¢ >1—1/n. Hence the lemma follows immediately from Lemma 8.
LEMMA 10. Let Zx(s) € et® as t—oco in the region

-0 =0=2 (t=0),
where ¢(t) and 1/0(t) are positive non-decreasing functions of t for t=0, such
that () <1, ¢@)— oo and ¢@)/0F) = o(et® ) (0 is Landaw’s symbol). Then {x(s)
has no zeros in the region

=1 0(2t+1)

gD
Moreover,
Ck PQLE3)
& < hes)
for 0=1—¢,0Qt+3)/$@t+3), [t =c.
PrROOF. The proof is easily obtained from Theorem 3.11, [4] by replacing
&(s) by Lx(s).

In Lemma 10, we can take, by Lemma 9,

5@) — Cz(»,l%%l‘gi%‘[%;)f 2/3’ 925(2‘) =C, loglog (t+3) .

Hence, putting ¢(f) = (log|?])**(loglog|t|)"/*, we have the following
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LeMMA 11, {x(s) has no zeros in the region

e=1— S, |tl=zc,.

40
If 6 =1—c,/¢@®), |t|=3c,, then we have

= ©<o0.

Now we put
g
e t=cy,
sy (t=o
(=
Cs t>
so  (t=ze,
where we take ¢y small. We define the function K(s) as follows;
Gk (g 5 log NO)
Ko)=— 50— 3 pam ©@>1/2).

mz2
Then K(s) is regular for ¢ >1—I(f) except at s=1, and from [Cemma 11 and
the fact {x(1+it) 0 for all ¢ (cf. [2], Satz 188), it follows that

PO,

A-lh=0=2, |t=cp,

@B
Ko <¢@®) (A=-l=0=2 |t|zc).

LemMma 12. Put
I(x) = Zlog N®) .

Then
() = x4+0(xe @),

where Q(x)= (log x)%* (loglog x)~1/%.
ProOF. We define

_ _r
P(x) _szga}og N(p) log N(p) y
then

. l 24100 x 8 N S
POy =—gf, KO G ds =g [ K5 ds,

where C is the curve defined by o=1—{{) (—oo<t<o0) (cf. [2], Satz 189).
By (31) we have

C 1-¢ o =t
jK(s) ds < [ dtt | K gt

Q) x1-U&
e {0
+ 1 Q@ t3/2



The prime ideal theorem 247
—1ow@
& xe7 @@ L x exp {—1(e?®) log x}+-xe ¢

& xe—cq(x) .
Hence
P(x) = x+0(xe@®) .
From this the lemma follows in the same way as in the proof of [2], Satz 190.
Now, it is easily seen that

A €9) 1 0)
7x(%) lo§’x‘+j.2 tlog?t dt.
By Lemma 12
Y(x) ot
logx logx +0(xe ),
= 9t @ t4O(tea®)
5 tlogt dt= L t log?t
_j logt logx +O(xeme) .
Hence
mx()= [ +0Ge ).

Thus we complete the proof of Main Theorem.

Gakushuin University, Tokyo
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