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Let p be a prime number and G a finite p-group. We denote by d(G) the
number of minimal generators of G and by 7(G) the number of fundamental
relations with respect to these generators. I.R. Safarevic and E.S. Golod
proved in [2] the inequality

@ r(G) = (d(G)—-1)*/4.
The purpose of this paper is to prove a better inequality

Vo dGAG)—-1)

) r(G) = Vil 5

by an elementary method which is different from that used in [2] If we
apply the inequality (2) to the problem of existence of infinite class field
towers after we can improve the results of [2]
In §1 we shall give several known lemmas as a preparatibn for §2. We
shall find in § 2 sufficient conditions for a function f to satisfy #(G)= f(d(G))
and prove the inequality (2) in §3. In §4 we shall apply (2) to the existence
of infinite class field towers.
The author is greatful to Professor Y. Kawada for his many valuable
advices.
NOTATIONS :
Ay={a s Ala"=a for any v = N}, where N is a group of operators act-
ing on A

t4.p=the injection from a subset AC B into B

Na-gy (Or 7 if there is no possibility of confusion)=the canonical homo-
morphism from a group G into its factor group G/N

T4xp-4 = the projection from a direct product A X B to A.
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§1. Preliminaries.

Let A be an abelian group and let a group & be an operator domain of
A. If a group G and an exact sequence

3) l— A2 —1

are given such that for any ¢ €® there is an s € g~(o) satisfying

C)) fla)=s5"f(a)s for any ac A,

then the triple {G, f, g} is called a group extension of A by & We denote by
Ext {®, A} the set of all group extensions of A by &. If, for {G,f, g} and
{G', f', g’} € Ext {@, A}, there is an isomorphism ¢ :G = G’ satisfying

® pof=f, g=g'°0,

we write {G, f, g} ~{G’, f/, g’}. This relation ~ is an equivalence relation.
Define Ext (@, A)=Ext {®, A}/~ and denote the equivalence class of {G, f, g}
by (G, f, g). Identifying the factor system of {G, f, g} with the 2-cocycle f*
of G with coefficients in A, we set

(6) Ext (8, A)= H*(®, A) (2-cohomology group of & with
coefficients in A).

Especially we have (G, f, g9=1 if and only if there is an injective isomorphism
h:S—G such that go h=identity.

Let A and B be abelian G-groups and let p: A— B be a G-homomorphism.
If f* is the factor system of {G, f, g}(e (G, f, g) € Ext (@, A)), the 2-cocycle pf*
determines uniquely an element of H*(®, B). We denote this element by
2*(G, f, g). Then p*:Ext(G, A)—Ext(®, B) is a homomorphism. Let & be a
normal subgroup of & Then Ay is a @/M-group canonically. We define the
inflation homomorphism: Infgm.g: HX(G/N, Ax)— H¥(S, A) as usual. If p: A
— B is surjective, then we can represent p* on Ext(®, A), using the identi-
fication (6), by

Q) v*(G, f, &)= (G/f(ker p), fo pe™, 2)

for (G, f, g) € Ext(®, A). Similarly we can represent Inf g6 on Ext (§/%, Ag)
in the case Ay=A. Denote, in general

(8 G,Q,G" (or GQRG’ if there is no possibility of confusion)
={(s, )€ GXG"|g(s)=g'(s")}
for {G, f, g} € Ext {@, A} and {G/, f/, g’} € Ext {®, B}. Then

O) Inf@/m—»@s(a J?: H= (G§®p@, {Fy-Ges © ]E: TEes-6)
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for (G, f, ) € Ext (8/%, Ag), where mggs-s = Taxs-s |cas -

Let :t be a normal subgroup of & We shall investigate ker (Infg-¢:
H2(G/R, Ax)— H¥S, A) in the case Ay=A. Choose (G, f, &) < ker (Infgg-g:
H>(G/Ny, A)— H2(S, A). From (8) and (9) we know that

(Cfg'@n@’ {7 ~ces © ]?, TGas-6 ) = Inf@s/&n—'@((_;: ]?’ D=1,
therefore there is an injective isomorphism /7 : @eég@n@ such that wggg-goh
=identity. Define a homomorphism g :9%t— A and an isomorphism ¢ :&/ker p
=G by
p=F"lomges-50hln, @=Tges-goh,
where ker p is equal to ker (7ggg-go h:®&—G). Since
® © No-m/kerp :f o, N@/ker p- &/ =Jo @,
we have, for {©, tnog, Ns-e/a} € Ext {G/N, N}, an equality
1S, e Ne-sm) =G, f, 8).
Conversely, let p:9t— A be a G-homomorphism. Put
##(6; (p—>@® 7)@5—*@/9’2) = (C, f: g) e EXt (65/%! A) .
The formulae (5) and (7) show that there is a ®-isomorphism ¢: @/ker p=G
satisfying
pout=f, Neg-gm=28°Q.
"The formulae (8) and (9) prove that
Inf@/mﬁ@(é, f_: z‘;’) - (é§®r/®: {(Fa-ees © J?’ WE@@a@) .

Define £:®—GzR,8 by h(e)=(p(0), 0) for 0 €@. Since nggg-s o h= identity,
we have Infgm-g(G, f, 8 =1. Thus we obtain the following proposition.

PROPOSITION 1. Let & be a finite group and R a normal subgroup of .
Let A be a finite abelian @-group which is elementwise invariant under the
action of each element of M. Regard A as a &/N-group canonically and
S, 2o Ne-sm) € EXL(&/N, N). Then

ker (Infgm-s : Ext (G/MN, A)—Ext(®, A)
= U/J#(@, (> @ 7705—»@/%) ’
u

where p runs over all the &-homomorphisms N— A.

Let G be a pro-p-group, namely, the projective limit of a set of finite p-
groups and let N be a closed normal subgroup = {1} of G. We denote by
d(G) the number of minimal generators of G in the sense of pro-finite groups.
Let X be a subset of N such that 3 and their conjugates in G generate a
«dense subgroup of N. Then 2 is called a normal generator system of the
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normal subgroup N of G. Define

dG(N) = infz' #(2) .
We shall define
06(N)=[G, NIN?

to be the normal subgroup of G generated by the commutator of G and N
and the p-th powers of the elements of N. Now we obtain from Burnside’s.
basis theorem about finite p-groups the following lemma concerning pro-p-
groups.

LEMMA 1. X is a normal generator system of the normal subgroup N of
G, if and only if Y mod 04(N) is a normal generator system of the normal sub--
group N/Og(N) of G/og(N).

Let GFf be a free group with free generators ¢, ---, ¢,. The pro-p-group

% =lim G /N*

is called a free pro-p-group, where N* runs over those normal subgroups of
G¥ of which the indices are p-powers. It is generated also by o, -+, 0,. The
following proposition can be obtained by a straightforward translation from
the analogous theorem on free groups [4, p. 33].

PROPOSITION 2. Any open and cloesd subgroup $ of a free pro-p-group
& is a free pro-p-group. Let X be a minimal generator system of & and R a
normal subgroup of & generated by a subset T of Y. Then &/N is a free
pro-p-group with the minimal generator system X—T mod N%.

Let & be a pro-p-group with a minimal generator system &,, ---. 4,. There
is a homomorphism ¢ : @ —@ such that ¢(s,)=d,; i=1, ---, n. Define

dg; (ker o) =71(®) (=0 if ker ¢ ={1})

and call it the number of relations of @ Regard the discrete abelian group:
(ker ¢/0 g, (ker )N as a GF(p)-vector space, which is the dual of the compact.
group ker ¢/d4; (ker ¢). Then, from Lemma 1, we get

ProposITION 3.

r(®) = dim (ker ¢/ (ker )Y (n=d(@)).

This proposition implies that the number () is independent of the choice:
of the minimal generator system &,, ---, G,.

PROPOSITION 4. Let n=d(®). Take y < (ker ¢/dg;(ker )N The mapping:

[((Sji':/kerx, LY if x#0
xX— ,

0 if x=0
defines an isomorphism
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(ker ¢/8 gy(ker Y)Y = Ext (8, GF(p)).

ProOOF. 1t is easy to see that this mapping is an injective isomorphism.
We shall show the surjectivity. Take any (G, /, g (€ Ext (8, GF®)))+0.
Choose an s; = g~(d;) for each 5,. {s;} is again a minimal generator system
of G and there is a unique homomorphism gZ; :@F—G such that ng(oi):si.
Define f7'¢ |rery = 7 & (ker ¢/das(ker @)Y\ Then (& /ker 1, 17 $)= (G, f, g).

qg.e.d.

REMARK. Let G be a pro-p-group and let N be its normal subgroup.
Then we have an exact sequence [7]

0—— H'(G/N, GF(}) —— H'(G, GF(p)) ——> H'(N, GF(p))a

2 HXG/N, GF(b)) — H¥G, GF(p)).

All propositions of this § can be obtained from this sequence if we notice that
H¥SE, GF()=0.

§2. Main theorem.

We shall use the following Lemma which is an easy consequence of linear

algebra.
LEMMA 2. Let V be a vector space over GF(p) and o, a linear transfor-
mation on V such that o? =identity. Then V has a basis of the form

{A=o)|0=j<v;, 1€ 4}

where v, are rational integers satisfying 0<v; < p—1 and (1—a)"* v, =0.
QOur purpose is to prove the following
THEOREM. Let f(x) be a real valued function defined on the non-negative
rational integers satisfying two conditions:

L fO)=0 and =1,
I max { - f(p(x—Dr+d—), fd—D}+d—xZ f(d);
where d is any natural number and x=1, .-, d. Let ® be a finite p-group with
d(®) generators. Let r(®) be the number of relations of & Then we have
(&) = A(d(®)) .

(Here we put d(€)=r(€&) =0 for the identity group €= {1}.)

ProOOF. When d(@)=0 or 1, (®)=0 or 1, respectively, and our theorem
is trivial. Suppose 2<d(®)< co. Let & be a free pro-p-group such that d(®)
=d(®) and N a normal subgroup of & of finite index. Regarding (9t/ds ()"
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as GF(p)-vector space, we shall prove
(10) dim (N/0s TN = f(d(G/M)+d(E)—d(&/N) .

Prop. 3 shows then our theorem if we apply M=Kker(¢:®—&) under the
notation there. '

When %N=@, follows from the three facts that dim (0t/dg())™
=dim (§/0s (G = d(§), d(G/MN) = d(€)=0, and tkat f(d(G/N)=f0)<0. So, we
prove by the induction about [$:9]. We may assume [@:N]=p and
that holds good for a free pro-p-group with an arbitrary finite number of
generators and for its arbitrary normal subgroup of index less than [&:9].

(D Let § be a maximal proper normal subgroup of @ containing . Then
[$:9]=p. Select at first a minimal generator system X = {o;|i=1, 2, ---} of
& so that

o, &D
(11) g, <% but not in N for 1 <1 =d(G/N)
g,eM for d(@/M) <j=d(®).

Notice that 1 < d(&/%) < d(®) and that the minimal one among all the geunerator
systems of § satisfying [(I1) becomes a minimal generator system of G. There-
fore #(2)=d(®) (cf. Lemma 1). $ is a free pro-p-group by Prop. 2. By a
straightforward calculation or by an application of a general method finding a
minimal generator system of a subgroup of a free group [4] to our case of
free pro-p-group, we find that

12) {of, 07" |1 <i<d(®), 0Z < p}
u

forms a minimal generator system of . Now, take a GF(p)-vector space V
on which the cyclic group &/9={c,) acts as an operator group. Let the
action of 0,9 on V be as follows: there are vy, -+, vy, in V such that o,v=v,
and vy, Uy, 01V, -+, 0P, Uy, -+, Uy, OVacxy o+ » 07 Wee, form a basis of V.
Since there is a unique @-isomorphism $/0,(9) = V which maps ¢? to v, and
g; to v;; 1=2, ---, d(®), we shall identify £/0,(D)=V.

(II) Define two subspace U, W of V by U={oP)>\J0s(D)/0s(H) and
W =<a?>\ UM\ 35(D)/05(H) which are @/D-subspaces of V. Since the action of
g, on V satisfies that ¢? is the identity operator, we can apply to
the quotient space V/W. Hence we can suppose in addition that

{vy, (61—, -+, (0,—1)"20,, -+, Vawm » (11— DVawm) »
sy (01— 1)"W vy }

is a basis of V/W=8/{e?) IR 5,(H) and

(o,—1)2 My = -+ = (0,—1)"4@D Hy, o /m =0 mod W.

as
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Then, since V/U is @/H-split,

(14 [ {(o,—D)"w;, (0,—1)"10;]1 <1 2 d(B/T), v < pt: < b,
dG/T) <j<d(@®), 0= p;<p} is a basis of W/U.
Moreover, we can suppose that

a5 {vi:p—l if 1<i=zc

v, <p—1 if c<iZdG/N)

where 1< ¢ < d(&/MN).
(ITH Define two groups

16) { SJtlz‘cheﬂ'nom?al subgroup of § generated. by {o?, ol-1"1,
o7 e<i=d(®/M), 1= <p, dB/M<G=d(®), 0=p;<p},
an { M, = the normal subg'roup of & generated by
{o1, 0;1dB/T) <j = d(B)} .

By the calculation

(oYt = (ol ) (o)1) = 0y (or) o (o)

{ 07007 l=1mod M, if p<p—1
o070fPo;=1mod R, if p=p—1

c <1< d(©&/M), we know that %, is a normal subgroup of &. So, from (16),
(17), and Prop. 2, follows that

H/M, is a free pro-p-group on which ¢, acts in the canonical
way and d(9/%)=pc—1)+d&/M)—c;

19) ®&/M, is a free pro-p-group and d(G/%K,) = d(G/N)—1.

18)

(AV) Since N/MNNDIsO)" is a subspace of (N/MNANDIOO) and in
fact the former is composed of all the ¢,-invariant elements of the latter, we:
know by

(20) dim (/R N\ RDIe TN = p* dim Tt/ Tt N\ Rp)ds T .
Set a canonically defined isomorphism
0 : R/R N\ (R8s () = TR, /N[, R, /N
From (N0 () =N N\ (N0 (M) and the existence of this @, follows
(21) dim R/ A\ R)Fs TN = dim (NN, /N[ 00 /m, MR /T .

By we know that a representative system in § of a generator sys-

tem of /NN, is a representative system of a generator system of H/NN,05 (D).
Hence from follows that
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—1 -1
{0‘2’ ggl, ...’o'glp , “"O-L" o'gl’ cee O'glp ,o'c+1’ "'ra'd(Q/‘R)}
is a minimal generator system of $/MN,, consequently, we have

(22) (/TN = plc—1D)+d(G/N)—c.

Since (/N :NN,/NIA<[H NI <[G:N], we can use the assumption of induc-
tion for the free pro-p-group /M, and its normal subgroup NR,;/N,. Then we
have

(23) dim (RR, /Ry /0/m, RN /RO = f(A(D/TR))+d(D/RD)— d(D/TR,)
=f(p(c—1)+d(S/M)—c)

by and (18). From [(20), [21), and we obtain

24 dim R/ N\ RD0s TN = p~f(p(c—D)+dE/N)—c¢) .

(V) Since [G/N,: NR,/N,] < [G:N] from o, & N but 0, €N,, we can again
use the assumption of induction for the free pro-p-group /N, and its normal
subgroup %N,/N,. Using the isomorphism T/M\( Ty (T0) NN, /Ny/ 0/, (NtT,/N,)
and [19), we have

(25) dim (R/(% N\ R,)d6 () = dim (RRy/Re/ Gy, MR/ R
= f(dS/T)—1).
(VI) Notice that /NN (P (D)= W/U. From
Py IR 05 (D)/{0P>05(M)0 (D) has a minimal generator

(26) system represented by {g{1-¥""" ;)¢ <1< d(G/N),
dB&/M) <j=d©)} .

Since N/ (R N <aPHde (D)Is (R) = (o)Rds (D)/<0T>ds (M)de (D) We have

@7 dim (/R N <at)ds (9)ds T = d(@)—c.

(VII) Regard all the vector spaces of the left hand sides of and
as subspaces of (N/dg(M))" canonically. We shall prove that

(28) T/ (RN T)ds T N R/ (RN <oPdds (9))0s (T =0

(29) R/ N R)06 TN T/ RN (07505 (D)6 TN =0.

Take a y(+0) in (R/R NI (R))".  Since there is a canonical surjective homo-
morphism 7 : R, /R0 T)—-N/(RNNDI(N), we can find RN, /M0, T such
that ¥|a=7y. Since y#0, we have y+0. Therefore, from Prop. 4 follows
(30) (D/ker 7, T4 Nosxerz-omny) # 0 in EXt (D/NR,, GF(P)) -

Now, from (9) we have
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€1y Inf o/mny-0/a(D/Ker %, 77" No/mer 3-0imn,)
= (@/ker 277@?@/%: {am, /ker 3 §/ker i@%/&ni_l! 7])
= (§/ker y, 17 No/xery-o/m) -
Here we can see that
Info/mn - om: Ext (H/%N,, GF (D)) — Ext (D/R, GF(p)
is injective.
Because, take any $-homomorphism (= 0): fﬁ%l—»GF(p) such that ker 2 DO%.
If we put
$,=the (not normal!) subgroup of § generated by the set (16)
@, = the normal subgroup of § generated by {7 |2=<i<d(G/R), 0= p; < p
for 1<i=c¢, p;=0 for c <12 d(B/M)},
there is a canonical isomorphism £/€, = §, C%, by [12)and Prop. 2. Hence
can be extended to p:9—GF(p). Since p|an, = f,

(32)

ker g =ker p "\ TN, .
This implies that 9/ker g =9/ker X H/NN,, namely,
(D/Ker f, ™%, 7o/ wer o rmm) = 0.
Thus we know [(32) by Prop. 1. From and follows
33 (D/ker x, x4 Doskerymom) # 0 in Ext (H/R, GF(P)).

On the other hand, take y/(#0) in R/MRN\<P>05(H)Is(R))". Since there
is a canonical surjective homomorphism <o?)N64(DH)/ (P> 05(D)—N/N N
{aP)0s(D))dg(N)) and the left hand side is contained in the elementary abelian

group £/{aP>0,(9), x’' can be extended to H— GF(p). So,
39 (D/ker x/, X' Poskery » o) =0 in EXt(D/R, GF(p))
similarly as the former case of . Thus from and (34) we have

X+ -

This proves

The proof of can be given similarly as that of Namely, take
2(#0) in M/ MAAR)Ie(R))Y. We have only to prove
(35) (9/ker 1, 17" No/mery-om) # 0.
Put

9, = the subgroup of $ generated by the set {¢?, 611", 09 |2 <1 < d(G/N),

l=spu<p, dB/M<;=d®), 0=v <p}

¢, = the normal subgroup of $ generated by {o,, -+, dawm }-

If we take M, N9, D, and @, instead of N, ,, and @, respectively and use
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the canonical isomorphism $/€, = 9,, can be proved similarly.
(VII) From [(24), [27) and [(28), we can conclude

(36) dim (R/96 O = p~f(p(c—D)+d(B/T)—)+d(B)—c¢

and from [25), [27) and [29), we have

37 dim (/0 PN = fdS/M)—D)+d(@)—c.

and imply if we use the proporties of f, g.e. d.

§3. Example of f.

Take x=1 in II in the [Theoreml Then as a necessary condition for f in
the we have

1Y f(d—1)+d—1=f(d)  for any natural number d.

1
The largest possible function satisfying I and II’ is f(x):i(%—‘—)- and the

d(d-1)
2

number —~/_ is in fact equal to the number of the relations of free albian

pro-p-group with d-generators. Therefore it will be meaningfull to find the
largest possible function f(x) defined on [0, o) in the form

(38) Fx) = k—"(iz‘ll . 0<k<l1.

The condition II becomes here

39 max (p-k (p(x—1)+d—x)(pz(xr-lprd__x:ll’
pENED ) pamaz MO 12aa,

After elementary calculations, we know

minléwgd[max (p‘lk @(x—l)_l'd—x)(%(x”l)‘]‘.ﬁﬁx;ll ,

p@DE=DY

_p@=D@=2) |, 142p—2d+V1+4p(d—1)(d—2)
- 2 2p—D ’

Hence is equivalent to

3—2d+ /T FAp(d—T1Y(d—2)
(S

Since
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y 32+ VIFAp(d—I)d—2) _ | 3—2d+/4p(d—3/2°

2(p—1(d—1) 200—-1D(d—1D

L @d=9Wh=D _ Vh=1 b
&200—1)(d—-1) p—1 vVp+1

we can take
he VD
vV p+1
in [38). Thus we have
CorROLLARY. For any finite p-group G, it holds that

VP dGEG) -1
(40) 0= 2

§4. An application to the existence of infinite class field towers.

Let & be an algebraic number field or an algebraic function field of one
variable over a finite constant field. Put
o =the number of generators of the Galois group of the unramified maxi-
mal (abalian) p-extension (not containing the constant field extension
in the case of a function field)
5 [0 if chark=2p or chark=p and kX1
" 11 if chark#p and kX1
{r1+rg—l in the usual sense if %k is an algebraic number field
10 if % is an algebraic function field.
Then from our and one of [57] or (in case of an algebraic number
field) and from our and [T] (in case of an algebraic function
field*) we have the following consequence. Namely,
“If
b ele=D)

(41) p+5+7f§—\/5+1 5

then the maximal unramified p-extension over k (independent of the constant
field extension in the case of function field) is of infinite degree ”.

For example, under the condition § =r=0 and p=5, holds for p=4.
Hence in this case the maximal unramified p-extension has infinite degree.

* [6] or asserts that the number of relations of the Galois group of the maximal
unramified p-extension over a finite algebraic number field is atmost p+4J+7. Since
uses only the Reichardt’s [57, which is included in the results of where
only the class field theory is used, the similar assertion holds in the case of our alge-
braic function field.
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This is an improvement of a similar result in where the same conclusion
holds if p=6.
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