Représentations unitaires du groupe des déplacements dans un plan p-adique

Hommage à Monsieur S. Iyanaga pour son soixantième anniversaire

Par Masahiko SAITO

(Reçu le 13 déc., 1966)

Introduction.

L'origine de ce travail se trouve dans le désir d'étendre au cas p-adique des résultats de Vilenkin [7] sur les fonctions de Bessel et les représentations unitaires du groupe des déplacements dans le plan euclidien. Vilenkin a construit les représentations unitaires irréductibles du groupe, a montré que les "coefficients matriciels" de ces représentations par rapport à une base naturelle sont exprimés par les fonctions de Bessel d'indices entiers et a déduit, de ce point de vue, des propriétés principales des fonctions de Bessel.

On considérera dans ce mémoire un corps \mathfrak{p} -adique K ($p \neq 2$) et une extension quadratique ramifiée L de K. Le groupe des éléments de L à norme 1 opère sur L par multiplication et admet un sous-groupe N_0 d'indice 2. Le produit semi-direct G_0 du groupe additif L par N_0 s'appellerait le groupe des déplacements dans le plan \mathfrak{p} -adique ramifié.

On construira dans le § 2 les représentations unitaires irréductibles U^{ρ} ($\rho \in L$, $\rho \neq 0$) de G_0 et introduira la "fonction de Bessel p-adique d'indice χ ":

$$J_{\chi}(z) = \int_{N_0} E(zn) \overline{\chi(n)} dn$$

où $z \in L$, χ est un caractère de N_0 et E est un caractère unitaire de L. Les représentations U^{ρ} sont toutes de classe 1 par rapport à N_0 et la fonction sphérique zonale associée à U^{ρ} se trouvera être $J_1(\rho z)$. On déterminera ensuite l'espace et la mesure de Plancherel au sens de Godement [1] et obtiendra une formule analogue à la formule de Fourier-Bessel (Théorème 1).

Le § 3 sera consacré au calcul des fonctions de Bessel. La fonction de Bessel d'indice 1 sera exprimée à l'aide d'une somme de Gauss du corps des restes de K (Théorème 2). Le Théorème 3 présentera un résultat à mi-chemin du calcul des fonctions de Bessel d'indices non-triviaux.

Les résultats essentiels de ce travail ont déjà été annoncés dans [5].

Après l'annonce des résultats, Monsieur Paul J. Sally Jr. [6] a obtenu d'un point de vue différent des résultats très analogues aux nôtres et m'en a bien

412 M. SAITO

communiqué. Ma méthode originale n'ayant été valable que dans le cas où la caractéristique de K est 0, j'ai, suggéré par la méthode de Sally, à nouveau formulé la théorie dans une forme indifférente à la caractéristique de K. Je tiens ici à exprimer ma gratitude à Monsieur Sally pour sa bonté et ses suggestions très utiles.

§ 1. Préliminaires.

1°. Soit K un corps localement compact, totalement discontinu et nondiscret. Désignons par dx une mesure de Haar du groupe additif K. Pour tout élément non-nul a de K, on définit la valeur absolue |a| par la formule d(ax)=|a|dx. On pose |0|=0. Soient $\mathfrak o$ l'anneau des entiers de $K:\{x\in K;$ $|x|\leq 1\}$, $\mathfrak p$ l'idéal premier de $\mathfrak o:\{x\in K;\ |x|<1\}$ et $\mathfrak u$ le groupe des unités de $K:\{x\in K;\ |x|=1\}$. Soit t un générateur de $\mathfrak p$. Alors $|t|=q^{-1}$ où q est le nombre d'éléments du corps des restes $\mathfrak o/\mathfrak p$. On suppose dans tout ce travail que la caractéristique $\mathfrak p$ de $\mathfrak o/\mathfrak p$ est impaire.

On normalise la mesure de Haar dx de telle sorte que la masse totale de $\mathfrak o$ soit égale à 1.

 2° . Soit τ une racine carrée de t. Alors $L=K(\tau)$ est une des deux extensions quadratiques ramifiées de K. Il existe encore une extension quadratique non-ramifiée qu'on ne traite pas ici.

Désignons par dz une mesure de Haar du groupe additif L. Pour tout élément non-nul α de L, on définit la valeur absolue $|\alpha|$ par la formule $d(\alpha z) = |\alpha|^2 dz$, $|\alpha| > 0$. On pose |0| = 0. Soient $\mathfrak D$ l'anneau des entiers de $L: \{z \in L; |z| \le 1\}$ et $\mathfrak P = \tau \mathfrak D$. On normalise la mesure de Haar dz de telle sorte que la masse totale de $\mathfrak D$ soit égale à 1.

3°. Pour un élément $z=x+\tau y$ $(x,y\in K)$ dans L, l'élément $\bar{z}=x-\tau y$ s'appelle le conjugué de z. L'élément $z\bar{z}$ est dans K et s'appelle la norme de z. Soit N le group compact multiplicatif des éléments z de L tels que $z\bar{z}=1$. Posons $N_0=N\cap (1+\mathfrak{P})$. Alors N_0 est un sous-groupe d'indice 2 dans N. Désignons par dn la mesure de Haar de N_0 telle que la masse totale soit égale à 1.

Posons $\Gamma = K^* \cup \tau K^*$ où K^* est le groupe multiplicatif des éléments nonnuls de K. Soit r un élément générique de Γ . Définissons la mesure dr sur Γ comme suit: si $r \in K$, dr est la mesure de Haar normalisée de K et si $r = \tau y$ $(y \in K)$, on pose $dr = q^{-1/2}dy$ où dy est la mesure de Haar normalisée de K. Alors $|r|^{-1}dr$ est une mesure de Haar du groupe multiplicatif Γ .

PROPOSITION 1. Le groupe multiplicatif L^* des éléments non-nuls de L se décompose en produit direct de Γ et $N_0: L^* = \Gamma N_0$, $\Gamma \cap N_0 = 1$. On a en plus la décomposition de mesure dz = |r| dr dn où z = rn est un élément générique de L^* .

DÉMONSTRATION. L'égalité $\Gamma \cap N_0 = \{1\}$ est évidente. Soit z un élément de L^* . Si $z\bar{z}$ est carré dans K, il existe un élément x de K^* tel que $x^{-1}z$

appartienne à N_0 . Si $z\bar{z}$ est non-careé dans K^* , il existe un élément y dans K^* tel que $z\bar{z} = -ty^2$ et que $\tau^{-1}y^{-1}z$ appartienne à N_0 , d'où $L^* = \Gamma N_0$.

La mesure $|r|^{-1}dr\ dn$ est une mesure de Haar de L^* et la masse totale du groupe des unités $\mathfrak{D}-\mathfrak{P}$ est égale à $1-q^{-1}$. On a donc $|z|^{-2}\ dz=|r|\ dr\ dn$, d'où $dz=|r|\ dr\ dn$.

4°. Soit e un caractère unitaire du groupe additif K qui est trivial sur \mathfrak{p} et non-trivial sur \mathfrak{p}^{-1} . On sait bien que les caractères $x \to e(ax)$ $(a \in K)$ épuisent tous les caractères unitaires de K.

Définissons le caractère unitaire E du groupe additif L par la formule

$$E(z) = e(\tau^{-1}z + \overline{\tau^{-1}z}) = e(2y)$$

où $z = x + \tau y$ $(x, y \in K)$. Alors E est trivial sur $\mathfrak D$ et non-trivial sur $\mathfrak P^{-1}$. Les caractères $z \to E(\alpha z)$ $(\alpha \in L)$ épuisent tous les caractères unitaires de L. La forme bilinéaire sur $L:(z,w) \to E(zw)$ fournit une auto-dualité de L.

REMARQUE. Le caractère e peut, par exemple, se choisir comme suit. Le corps K est une extension de degré fini du corps F, où F est le corps des nombres p-adiques \mathbf{Q}_p si la caractéristique de K est 0, et est le corps de séries formelles $F_p((X))$ à coefficients dans le corps premier F_p à p éléments si la caractéristique de K est p. Soit p la différente de p par rapport à p et posons p designons par p p la trace de p relative à p et p la caractéristique de p est p est p la trace de p relative p est p es

$$e(x) = \exp 2\pi i \{ Tr \ t^{-d} x \}$$

où $\{a\}$ est la partie fractionnaire de $a \in \mathbb{Q}_p$. Si la caractéristique de K est p, on peut poser

$$e(x) = \exp \frac{2\pi i}{b} \left\{ Tr \ t^{-d} x \right\}$$

où $\{a\}$ est le résidu (coefficient de X^{-1}) de $a \in F_p((X))$.

§ 2. Représentations unitaires et la formule de Plancherel du groupe des déplacements dans le plan p-adique ramifié.

Le groupe N opère sur L par multiplication. Soit G le produit semi-direct du groupe additif L par N. Le sous-groupe $G_0 = N_0 \cdot L$ est d'indice 2 dans G et s'appellerait le groupe des déplacements dans le plan \mathfrak{p} -adique ramifié. Le groupe G_0 s'identifie au groupe des matrices de la forme

$$g = \begin{pmatrix} 1 & z \\ 0 & n \end{pmatrix}; n \in N_0, z \in L.$$

Pour un élément non-nul ρ de L, E_{ρ} désigne le caractère de $L: z \to E(\rho z)$. La représentation unitaire (\mathcal{A}, U^{ρ}) de G_0 induite du caractère E_{ρ} de L est 414 M. Saito

définie dans l'espace hilbertien $\mathcal{H}=L^2(N_0)$ des fonctions sur N_0 de carré intégrable par rapport à la mesure de Haar dn et est de la forme suivante:

$$(U_{g_0}^{\rho}f)(n) = E(\rho z_0 n_0^{-1} n^{-1}) f(n n_0)$$

où
$$f \in \mathcal{H}$$
, $n \in N_0$ et $g_0 = \begin{pmatrix} 1 & z_0 \\ 0 & n_0 \end{pmatrix} \in G_0$, $n \in N_0$.

La théorie générale de Mackey ([2], [3]) nous assure que ces représentations U^{ρ} sont toutes irréductibles, que deux représentations U^{ρ} et U^{σ} sont unitairement équivalentes si et seulement si $\rho^{-1}\sigma$ appartient à N_0 et que ces représentations U^{ρ} , avec les représentations de dimension 1, épuisent toutes les représentations unitaires irréductibles de G_0 . Pour faciliter la lecture, nous traiterons ci-dessous par une méthode directe le problème d'irréductibilité et d'équivalence dont nous aurons besoin dans la suite.

Remarquons d'abord que les fonctions $f = c\chi(c \in \mathbb{C})$, χ étant un caractère de N_0 , sont les seuls vecteurs dans \mathcal{A} tels qu'on ait

$$U_n^{\rho} f = \gamma(n) f$$

pour tout $n \in N_0$.

Définition. Posons pour un caractère χ du groupe N_0

$$J_{\chi}(z) = \int_{N_0} E(zn) \overline{\chi(n)} dn \qquad (z \in L).$$

La fonction J_{χ} sur L s'appellerait la fonction de Bessel \mathfrak{p} -adique d'indice χ . Ces fonctions peuvent s'interpréter comme coefficients de la série de Fourier de la fonction génératrice E(zn) ($z \in L$, $n \in N_0$):

$$E(zn) = \sum_{\chi} J_{\chi}(z) \chi(n)$$

où χ parcourt les caractères de N_0 .

Proposition 2. La représentation (\mathcal{A}, U^{ρ}) est irréductible.

DÉMONSTRATION. Soit \mathcal{H}_1 la clôture dans \mathcal{H} du sous-espace invariant engendré par 1. Alors \mathcal{H}_1 est irréductible. Soit en effet A un opérateur borné de \mathcal{H}_1 qui commute avec tous les opérateurs U_g^o $(g \in G)$. On a d'abord $U_n^o A1 = AU_n^o 1 = A1$ pour tout $n \in N_0$. On a donc A1 = c1 $(c \in \mathbb{C})$. Pour un élément g dans G, on a

$$AU_{g}^{\rho} \mathbf{1} = U_{g}^{\rho} A \mathbf{1} = cU_{g}^{\rho} \mathbf{1}$$
.

Comme les vecteurs U_g^0 1 engendrent linéairement un sous-espace partout dense dans \mathcal{H}_1 , A est un opérateur scalaire, d'où résulte que \mathcal{H}_1 est irréductible.

Soit ensuite P le projecteur de \mathcal{A} sur \mathcal{A}_1 . Pour un caractère χ de N_0 , il y a deux possibilités: $P\chi = \chi$ ou $P\chi = 0$. Il suffit alors de montrer que $P\chi = \chi$ pour tout χ .

Supposons qu'il y ait un caractère χ tel que $P\chi = 0$. Soient \hat{N}_0 le groupe

dual de N_0 et $\hat{\mathcal{H}}=L^2(\hat{N}_0)$. Considérons la représentation $(\hat{\mathcal{H}},\,\hat{U}^{\,\rho})$ donnée par la formule

$$\dot{U}_{g}^{\rho}\hat{f}(\omega) = U_{g}^{\rho}f(\omega) = \int_{N_{0}} U_{g}^{\rho}f(n)\overline{\omega(n)}dn$$

où f est la transformée de Fourier de $f \in \mathcal{H}$ et ω un caractère de N_0 . Elle est alors unitairement équivalente à (\mathcal{H}, U^{ρ}) . Pour un élément n_0 dans N_0 , on a

$$\hat{U}_{n_0}^{\rho}\hat{f}(\omega) = \int_{N_0} f(nn_0)\overline{\omega(n)}dn = \omega(n_0)\hat{f}(\omega).$$

Par conséquent, l'opérateur $\hat{P}: \hat{P}\hat{f}(\omega) = \hat{P}\hat{f}(\omega)$ commute avec l'operateur de multiplication par tout caractère $n_0: \omega \to \omega(n_0)$ de \hat{N}_0 . Il existe donc une fonction bornée $a(\omega)$ sur \hat{N}_0 telle qu'on ait $\hat{P}\hat{f}(\omega) = a(\omega)f(\omega)$ pour toute \hat{f} dans $\hat{\mathcal{H}}^{*}$.

On a en particulier

$$a(1) = a(1)\hat{1}(1) = \hat{P}\hat{1}(1) = \hat{P}\hat{1}(1) = \hat{1}(1) = 1$$
.

Pour un élément g dans G_0 de la forme $\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$, on a les égalités

$$\begin{split} \hat{U}_{g}^{\rho}\hat{\chi}(\mathbf{1}) &= \int_{N_{0}} E(\rho z n^{-1}) \chi(n) \overline{\mathbf{1}(n)} dn = J_{\chi}(\rho z) ,\\ \hat{P}\hat{U}_{g}^{\rho}\hat{\chi}(\mathbf{1}) &= a(\mathbf{1}) \hat{U}_{g}^{\rho}\hat{\chi}(\mathbf{1}) = J_{\chi}(\rho z) ,\\ \hat{U}_{g}^{\rho}\hat{P}\hat{\chi}(\mathbf{1}) &= 0 . \end{split}$$

La fonction J_x serait donc identiquement 0, ce qui contredit le Théorème 3 dans le § 3. La Proposition 2 est donc démontrée.

COROLLAIRE. Toute représentation U^{ρ} ($\rho \in L^*$) est de classe 1 par rapport à N_0 et la fonction sphérique zonale Φ^{ρ} de G_0 associée à U^{ρ} est de la forme suivante:

$$\Phi^{\rho}(z) = J_1(\rho z) \qquad (z \in L).$$

Proposition 3. Pour que deux représentations U^{ρ} et U^{σ} soient unitairement équivalentes, il faut et il suffit que $\rho^{-1}\sigma$ appartienne à N_0 .

DÉMONSTRATION. Supposons d'abord $\sigma=\rho m, m\in N_0$. Alors l'operateur A de $\mathcal A$ donné par la formule

$$Af(n) = f(nm^{-1}) \qquad (f \in \mathcal{H})$$

est un opérateur unitaire de \mathcal{H} satisfaisant à l'égalité $AU_g^{\rho} = U_g^{\sigma}A$ pour tout g dans G_0 .

^{*)} Ceci est bien connu, mais il me semble que sa démonstration complète ne se trouve dans aucune littérature. On en a donc mis, à toutes fins utiles, une démonstration à la fin de ce memoire (Lemme 6).

416 M. SAITO

Supposons réciproquement que U^{ρ} et U^{σ} soient unitairement équivalentes. On a alors $J_1(\rho z) = J_1(\sigma z)$ pour tout z dans L. L'analyse simple du Théorème 2 dans le § 3 entraı̂ne que $\rho^{-1}\sigma$ appartient à N_0 et démontre la Proposition 3.

On donnera ci-dessous la formule de Plancherel pour G_0 au sens de Godement [1] et en néduira une formule analogue à la formule de Fourier-Bessel.

DEFINITION. Une fonction f sur L est dite radiale si l'on a f(zn) = f(z) pour tout n dans N_0 .

Une fonction radiale peut s'identifier à une fonction sur $\Gamma \cup \{0\}$, ou aussi à une fonction sur G_0 bi-invariante par N_0 .

Pour une bonne fonction f sur L, sa $transformée\ de\ Fourier\ f$ est, par définition, une fonction sur L définie par la formule

$$\hat{f}(w) = \int_{L} f(z) \overline{E(zw)} dz$$
.

Grâce au choix du caractère E(z), on a la formule d'inversion

$$f(z) = \int_{L} \tilde{f}(w) E(zw) dw.$$

Soit f une fonction continue radiale à support compact. On a alors, vu la Proposition 1,

$$\begin{split} \widetilde{f}(w) &= \int_{L} f(z) \overline{E(zw)} dz = \int_{\Gamma} f(r) \Big[\int_{N_0} \overline{E(rnw)} dn \Big] |r| dr \\ &= \int_{\Gamma} f(r) \overline{J_1(rw)} |r| dr \,. \end{split}$$

La fonction J_1 étant radiale et tendant vers 0 à l'infini, il en est de même de la fonction \tilde{f} :

$$\tilde{f}(s) = \int_{\Gamma} f(r) \overline{J_1(rs)} |r| dr \qquad (s \in \Gamma).$$

D'où

$$f(0) = \int_{L} \hat{f}(w) dw = \int_{L} \hat{f}(s) |s| ds$$
.

Théorème 1. L'espace Γ est considéré comme espace de Plancherel et la mesure |r|dr sur Γ est la mesure de Plancherel au sens de Godement [1] pour G_0 et N_0 . En plus, pour une fonction continue à support compact sur Γ , la formule suivante a lieu:

$$f(r_0) = \int_{\Gamma} \int_{\Gamma} f(r) \overline{J_1(rs)} J_1(r_0s) |r| |s| dr ds.$$

La première moitié a déjà été démontrée. Considérons les fonctions radiales comme fonctions sur G_0 bi-invariantes par N_0 et posons

$$\varphi(g) = \int_{N_0} f(gng_0) dn$$
.

La fonction φ est continue, à support compact et bi-invariante par N_0 . Vu la positivité et l'équation fonctionnelle pour les fonctions $\Phi^s(g) = J_1(rs)$:

$$\Phi^s(g^{-1}) = \overline{\Phi^s(g)}, \quad \int_{N_0} \Phi^s(g_1 n g_2) dn = \Phi^s(g_1) \Phi^s(g_2),$$

on a

$$\begin{split} \tilde{\varphi}(s) &= \int_{\Gamma} \varphi(r) \overline{f_1(rs)} \, |r| \, dr = \int_{G_0} \varphi(g) \overline{\Phi^s(g)} dg = \int_{G_0} \int_{N_0} f(gng_0) \overline{\Phi^s(g)} dn dg \\ &= \int_{G_0} \int_{N_0} f(gng_0n^{-1}) \overline{\Phi^s(g)} dn dg = \int_{G_0} \int_{N_0} f(g') \overline{\Phi^s(g'ng_0^{-1}n^{-1})} dn dg' \\ &= \int_{G_0} f(g) \overline{\Phi^s(g)} \Phi^s(g_0) dg = \int_{\Gamma} f(r) \overline{f_1(r_0s)} f_1(r_0s) |r| \, dr \,; \end{split}$$

ďoù

$$f(r_0) = f(g_0) = \varphi(e) = \varphi(0) = \int_{\Gamma} \hat{\varphi}(s) |s| ds = \int_{\Gamma} \int_{\Gamma} f(r) \overline{J_1(rs)} J_1(r_0s) |r| |s| dr ds$$

ce qui démontre le Théorème. La technique utilisée ici est d'un caractère tout à fait général. On ne s'est servi que de l'unimodularité de G_0 et de la commutativité de l'algèbre par convolution des fonctions continues, à support compact et bi-invariantes par N_0 .

§ 3. Calcul des fonctions de Bessel.

DÉFINITION. Soit k un nombre naturel. Désignons par N_k l'ensemble des éléments dans N_0 de la forme $1+t^{2k+1}a+\tau t^k b$ $(a,b\in\mathfrak{d})$.

Lemme 1. L'ensemble N_k (k>0) est identique à chacun des ensembles suivants:

- a) $N_0 \cap (1+\mathfrak{P}^{2k})$
- b) $N_0 \cap (1+\mathfrak{P}^{2k+1})$
- c) $\{n \in N_0; n = 1 + a' + \tau t^k b \ (a', b \in 0)\}$
- d) $\{n \in N_0; n = 1 + t^{2k+1}a + \tau b' (a, b' \in 0)\}.$

En particulier, N_k est un sous-groupe ouvert de N_0 .

DEMONSTRATION. On a évidemment

$$N_k \subset N_0 \cap (1+\mathfrak{P}^{2k+1}) \subset N_0 \cap (1+\mathfrak{P}^{2k})$$
.

Prenons un élément $n=1+t^ka'+\tau t^kb'$ $(a',b'\in \mathfrak{o})$ dans $N_{\mathfrak{o}}\cap (1+\mathfrak{P}^{2k})$. Puisque $n\overline{n}=1$, on a l'égalité $2a'+t^ka'^2-t^{k+1}b'^2=0$, d'où $a'\in \mathfrak{p}^k$, et par conséquent $a'\in \mathfrak{p}^{2k+1}$. On a donc $N_k\supset N_0\cap (1+\mathfrak{P}^{2k})$.

418 M. SAITO

Soit ensuite $n=1+a'+\tau t^k b$ $(a'\in \mathfrak{p},\ b\in \mathfrak{d})$ dans N_0 . On a alors $2a'+a'^2-t^{2k+1}b^2=0$. Puisque $a'\in \mathfrak{p}$, on a $a'\in \mathfrak{p}^2$. En procédant successivement, on atteint à avoir $a'\in \mathfrak{p}^{2k+1}$. Soit finalement $n=1+t^{2k+1}a+\tau b'\in N_0$ $(a,b'\in \mathfrak{d})$. On a alors $2t^{2k}a+t^{4k+1}a^2-b'^2=0$, ce qui implique que $b'\in \mathfrak{p}^k$, et démontre le Lemme.

Lemme 2. Soit k un entier non-negatif de écrivons un élément n de N_k sous la forme $1+t^{2k+1}a+\tau t^kb$ ($a,b\in\mathfrak{o}$). Alors l'application $n\to b$ est une bijection de N_k sur \mathfrak{o} et applique N_{k+1} sur \mathfrak{p} . En particulier, N_{k+1} est d'indice q dans N_k . On a en plus $2a\equiv b^2\pmod{\mathfrak{p}}$.

DÉMONSTRATION. Rappelons qu'un élément x dans $1+\mathfrak{p}^l$ (l étant un nombre naturel) admet une seule racine carrée dans $1+\mathfrak{p}^l$, que l'on désignera par $x^{1/2}$. L'égalité $n\bar{n}=1$ équivaut à l'égalité $2a+t^{2k+1}a^2-b^2=0$, d'où $2a\equiv b^2$ (mod \mathfrak{p}). Cette égalité, comme équation quadratique on a, admet, pour tout b donné dans \mathfrak{o} , une seule solution dans \mathfrak{o} :

$$a = t^{-2k-1} \lceil -1 + (1 + t^{2k+1}b)^{1/2} \rceil$$
.

Donc l'application $n \to b$ est bijective, et applique N_{k+1} sur $\mathfrak p$ en vertu du Lemme 1, c). Le Lemme 2 est donc démontré.

Calculons d'abord la fonction de Bessel d'indice 1:

$$J_1(z) = \int_{N_0} E(zn) dn .$$

Cette fonction étant radiale, il suffit de calculer $J_1(z)$ pour $z \in \Gamma \cup \{0\}$.

THÉORÈME 2. Pour $z \in K$, on a

$$J_1(z) = \begin{cases} 1 & \text{si } z \in \mathfrak{o}, \\ 0 & \text{si } z \in \mathfrak{o}. \end{cases}$$

Pour $z = \tau y$ $(y \in K)$ dans τK , on a

$$J_{1}(z) = \begin{cases} 1 & \text{si } y \in \mathfrak{o}, \\ q^{-l}E(z) & \text{si } |y| = q^{2l+1}, \ l \ge 0, \\ q^{-l}E(z)G(q, u) & \text{si } |y| = q^{2l}, \ l > 0; \end{cases}$$

où, dans la dernière ligne, $y = t^{-2l}u$ $(u \in \mathfrak{u})$ et G(q, u) est une somme de Gauss du corps des restes $\mathfrak{o}/\mathfrak{p}$:

$$G(q, u) = \sum_{b \in \mathfrak{o} \bmod \mathfrak{p}} e(t^{-1}ub^2).$$

DÉMONSTRATION. Soit d'abord z un élément de \mathbb{O} . Alors E(zn)=1 pour tout $n \in N_0$, d'où $J_1(z)=1$.

Supposons ensuite que $z\in K$, $z\in\mathfrak{o}$ et posons $z=t^{-k}u$ $(k>0,\ u\in\mathfrak{u})$. On a alors

$$J_1(z) = \int_{N_0} E(t^{-k}un) dn = q^{-k} \sum_{n \in N_0 \bmod N_k} E(t^{-k}un).$$

Cas
$$k = 1$$
. $J_1(z) = q^{-1} \sum_{n \in N_0 \text{ mod } N_1} E(t^{-1}un)$
= $q^{-1} \sum_{b \in 0 \text{ mod } b} e(t^{-1}2ub) = 0$,

où on a écrit $n=1+ta+\tau b$ $(a, b \in \mathfrak{o})$.

Cas
$$k > 1$$
. $J_1(z) = q^{-k} \sum_{n \in N_0 \mod N_{k-1}} \sum_{m \in N_{k-1} \mod N_k} E(t^{-k}unm)$.

Ecrivons $m = 1 + t^{2k-1}c + \tau t^{k-1}d$ (c, $d \in \mathfrak{d}$). On a alors

$$\sum_{m \in N_{k-1} \bmod N_k} E(t^{-k}unm) = E(t^{-k}un) \sum_{d \in \mathbf{0} \bmod \mathbf{0}} e(t^{-1}2ud) = 0,$$

d'où $J_1(z) = 0$.

Soit ensuite $z = \tau y$ ($y \in K$, $y \in \mathfrak{o}$) et posons $y = t^{-k}u$ (k > 0, $u \in \mathfrak{u}$). On a comme ci-dessus

$$J_1(z) = q^{-k} \sum_{n \in N_0 \bmod N_k} E(zn)$$
.

Cas
$$k = 1$$
. $J_1(z) = q^{-1} \sum_{n \in N_0 \text{ mod } N_1} E(t^{-1}un) = E(z)$.

Cas k > 1. L'égalité

$$\sum_{m \in N_{k-1} \bmod N_k} E(znm) = qE(zn)$$

entraîne la formule

$$J_1(z) = q^{1-k} \sum_{n \in N_0 \mod N_{k-1}} E(zn)$$
.

Mettons un Lemme.

LEMME 3. Soient $0 \le i < j$, i+j=k-1. On a alors les formules suivantes:

$$\sum_{n \in N_i \bmod N_j} E(zn) = \left\{ \begin{array}{ll} E(z)G(q, u) & si \ i+1 = j \ , \\ \\ qE(z) & si \ i+2 = j \ , \\ \\ q \sum\limits_{n \in N_{i+1} \bmod N_{j-1}} E(zn) & si \ i+2 < j \ . \end{array} \right.$$

DÉMONSTRATION. Ecrivons $n = 1 + t^{2i+1}a + \tau t^i b$ $(a, b \in \mathfrak{o})$.

a)
$$i+1=j$$
. $\sum_{n\in N_i \bmod N_j} E(zn) = E(z) \sum_{n\in N_i \bmod N_j} e(t^{-1}2ua)$
= $E(z) \sum_{h\in \mathfrak{d} \bmod \mathfrak{d}} e(t^{-1}ub^2) = E(z)G(q, u)$.

Supposons que $i+2 \le j$. Soit m un élément générique de $N_{j-1} \mod N_j$ et écrivons $m=1+t^{2j-1}c+\tau t^{j-1}d$ $(c,d\in\mathfrak{o})$. On a alors

$$\sum_{m \in N_{j-1} \bmod N_j} E(znm) = E(zn) \sum_{d \in 0 \bmod p} E(t^{j-k}und)$$

$$= E(zn) \sum_{d \in \mathfrak{o} \bmod \mathfrak{p}} e(t^{-1}2ubd) = \begin{cases} qE(zn) & \text{si } n \in N_{i+1} \\ 0 & \text{si } n \subseteq N_{i+1} \end{cases}.$$

b)
$$i+2=j$$
. $\sum_{n\in N_i \mod N_j} E(zn) = \sum_{n\in N_i \mod N_{j-1} \mod N_j} \sum_{m\in N_{j-1} \mod N_j} E(\tau t^{-k}unm) = qE(z)$.

c)
$$i+2 < j$$
. $\sum_{n \in N_i \mod N_j} E(zn) = \sum_{n \in N_i \mod N_{j-1}} \sum_{m \in N_{j-1} \mod N_j} E(znm)$
= $q \sum_{n \in N_{i+1} \mod N_{j-1}} E(zn)$.

Le Lemme 3 est donc démontré.

Suite de la démonstration du Théorème 2.

Cas k=2l+1 (l>0). On obtient par l'application successive du Lemme 3

$$J_1(z) = q^{1-k} \sum_{n \in N_0 \bmod N_{k-1}} E(zn) = q^{-l-1} \sum_{n \in N_{l-1} \bmod N_{l+1}} E(zn) = q^{-l}E(z).$$

Cas k=2l (l>0). On obtient encore par l'application successive du Lemme 3

$$J_{\mathbf{1}}(z) = q^{\mathbf{1}-k} \sum_{n \in N_0 \bmod N_{k-1}} E(zn) = q^{-l} \sum_{n \in N_{l-1} \bmod N_l} E(zn) = q^{-l} E(z) G(q, u).$$

Le Théorème 2 est donc établi.

Le reste du § 3 est consabré au calcul des fonctions de Bessel d'indices non-triviaux, dont le résultat n'est d'ailleurs pas complet.

Lemme 4. Soit n un élément générique de N_{k-1} (k>0) et écrivons $n=1+t^{2k-1}a+\tau t^{k-1}b$ $(a,b\in 0)$. Alors l'application $n\to b$ de N_{k-1} sur 0 induit un isomorphisme de N_{k-1}/N_k sur $0/\mathfrak{p}$. En particulier, un caractère χ de N_{k-1} qui est trivial sur N_k induit un caractère de 0 qui est trivial sur \mathfrak{p} .

DÉMONSTRATION. On connaît déjà que l'application $n \to b$ applique N_k sur \mathfrak{p} (Lemme 2). Soient n_1 , n_2 des éléments de N_{k-1} et écrivons $n_i = 1 + t^{2k-1}a_i + \tau t^{k-1}b_i$ ($a_i, b_i \in \mathfrak{o}, i = 1, 2$). Montrons d'abord que $n_1 \equiv n_2 \pmod{N_k}$ si et seulement si $b_1 \equiv b_2 \pmod{\mathfrak{p}}$. Soit $n_1 = n_2 n_3 \pmod{N_{k-1}}$ et écrivons $n_3 = 1 + t^{2k-1}a_3 + \tau t^{k-1}b_3 \pmod{\mathfrak{p}}$ ($a_3, b_3 \in \mathfrak{o}$). On a facilement $b_1 \equiv b_2 + b_3 \pmod{\mathfrak{p}}$ et notre assertion se déduit du Lemme 1.

Soient ensuite n_1 , n_2 des éléments de N_{k-1} et soit n_0 l'élément de N_{k-1} de la forme $1+t^{2k-1}a_0+\tau t^{k-1}(b_1+b_2)$. L'assertion ci-dessus implique que $n_1n_2\equiv n_0$ (mod N_k), d'où le Lemme.

Calculons la fonction de Bessel d'indice χ (χ : non-trivial):

$$J_{\chi}(z) = \int_{N_{\alpha}} E(zn) \overline{\chi(n)} dn$$
.

La famille de sous-groupes $\{N_k\}$ forme un système fondamental de voisi-

ages de l'élément neutre de N_0 . Il existe donc un nombre naturel h (dit "conducteur" du caractère χ) tel que χ soit trivial sur N_h et nontrivial sur N_{h-1} .

Rappelons que les caractères e_v de $\mathfrak o: x \to e(t^{-1}vx)$ $(v \in \mathfrak o)$ épuisent tous les caractères de $\mathfrak o$ qui est trivial sur $\mathfrak p$. Le Lemme 4 implique qu'il existe un élément non-nul v de $\mathfrak o$ déterminé modulo $\mathfrak p$ tel qu'on ait

$$\gamma(n) = e(t^{-1}vb)$$

pour tout $n=1+t^{2h-1}a+\tau t^{h-1}b$ $(a,b\in\mathfrak{d})$ dans N_{h-1} . Réservons dans ce qui suit la lettre v toujours pour cet usage.

THÉORÈME 3. Pour un élément z dans K, on a

$$J_{\chi}(z) = \begin{cases} 0 & \text{si } |z| \neq q^{h} \\ 1 & \text{si } z = t^{-1}u \text{ } (u \in \mathfrak{u}), \ 2u \equiv v \pmod{\mathfrak{p}} \\ q^{1-h} & \sum_{n \in N_{0} \bmod N_{h-1}} E(zn)\overline{\chi(n)} & \text{si } z = t^{-h}u \text{ } (h > 1, \ u \in \mathfrak{u}) \ 2u \equiv v \pmod{\mathfrak{p}} \\ 0 & \text{si } z = t^{-h}u \text{ } (u \in \mathfrak{u}), \ 2u \neq v \pmod{\mathfrak{p}}. \end{cases}$$

Pour un élément $z = \tau t^{-k}u$ ($u \in \mathfrak{u}$) dans τK , la fonction $J_{\mathbf{z}}(z)$ est donnée par la table suivante:

$k \leqq h$	0
h < k < 2h-1	$q^{1-h} \sum_{n \in N_{k-h} \bmod N_{h-1}} E(zn_0n) \overline{\chi(n_0n)}$
k=2h-1	$q^{1-h}E(zn_0)\overline{\chi(n_0)}$
k=2h	$q^{-h}E(z)e(-t^{-1}4^{-1}u^{-1}v^2)G(q, u)$
2h < k, k = 2l + 1	$q^{-l}E(z)$
2h < k, k = 2l	$q^{-l}E(z)G(q, u).$

Ici, n_0 est l'élément de N_0 de la forme $1+ta+\tau 2^{-1}u^{-1}v$ $(a \in \mathfrak{o})$. Démonstration. Supposons d'abord $z \in K$. Si $z \in \mathfrak{o}$, on a

$$J_{\chi}(z) = \int_{N_0} \overline{\chi(n)} dn = 0.$$

Soit $z \in \mathfrak{o}$ et posons $z = t^{-k}u$ $(u \in \mathfrak{u}, k > 0)$. Si k < h, on a $\int_{N_k} E(znm) \overline{\chi(nm)} dm = E(zn) \overline{\chi(n)} \int_{N_k} \overline{\chi(m)} dm = 0, \text{ d'où } J_{\chi}(z) = 0. \text{ Si } k \ge h, \text{ on a}$ $\int_{N_k} E(znm) \overline{\chi(nm)} dm = q^{-k} E(zn) \overline{\chi(n)}, \text{ et par suite}$

$$J_{\chi}(z) = q^{-k} \sum_{n \in N_0 \mod N_k} E(zn) \overline{\chi(n)}$$
.

Si k > h, on a, en écrivant $m = 1 + t^{2k-1}c + \tau t^{k-1}d$ $(c, d \in \mathfrak{o})$,

$$\sum_{m \in N_{k+1} \bmod N_k} E(znm) \overline{\chi(nm)} = E(zn) \overline{\chi(n)} \sum_{b \in \mathfrak{o} \bmod \mathfrak{p}} e(t^{-1}2ud) = 0,$$

d'où $J_x(z) = 0$.

Si k = h, on a

$$\sum_{m \in N_{h-1} \bmod N_h} E(znm) \overline{\chi(nm)} = E(zn) \overline{\chi(n)} \sum_{\substack{d \in \mathbb{Z} \\ 0 \bmod \mathfrak{p}}} e(t^{-1}2ud) e(-t^{-1}vd)$$

$$= \begin{cases} qE(zn) \overline{\chi(n)} & \text{si } 2u \equiv v \pmod{\mathfrak{p}}, \\ 0 & \text{si } 2u \not\equiv v \pmod{\mathfrak{p}}, \end{cases}$$

d'où résulte la première moitié du Théorème.

Supposons ensuite $z = \tau y$ $(y \in K)$. Si $y \in \mathfrak{o}$, on a

$$J_{\chi}(z) = \int_{N_0} \overline{\chi(n)} dn = 0.$$

Soit $y \in \mathfrak{o}$ et posons $y = t^{-k}u$ $(u \in \mathfrak{u}, k > 0)$. On a, pour tout n dans N_0 ,

$$\int_{N_k} E(znm) \overline{\chi(nm)} dm = E(zn) \overline{\chi(n)} \int_{N_k} \overline{\chi(m)} dm = \begin{cases} 0 & \text{si } k < h \\ q^{-k} E(zn) \overline{\chi(n)} & \text{si } k \ge h \end{cases}.$$

On a donc $J_{x}(z) = 0$ si k < h. Si $k \ge h$, on a pour tout n dans N_{0}

$$\sum_{m \in N_{k-1} \bmod N_k} E(znm) \overline{\chi(nm)} = E(zn) \overline{\chi(n)} \sum_{m \in N_{k-1} \bmod N_k} \overline{\chi(m)}$$

$$= \begin{cases} 0 & \text{si } k = h \\ qE(zn) \overline{\chi(n)} & \text{si } k > h, \end{cases}$$

d'où $J_{x}(z) = 0$ si $k \le h$. Supposons désormais que k > h. On a alors

$$J_{\chi}(z) = q^{1-k} \sum_{n \in N_0 \text{ mod } N_{k-1}} E(zn) \overline{\chi(n)}.$$

Mettons un lemme qui généralise le Lemme 3.

LEMME 5. Soient $0 \le i < j$, i+j = k-1, $j \ge h$ et

$$A_{i,j}(z) = \sum_{n \in N_i \mod N_j} E(zn) \overline{\chi(n)}.$$

Alors $A_{i,j}(z)$ est donné par la table suivante:

	j > h	j = h
i+1=j	E(z)G(q, u)	$E(z)e(-t^{-1}4^{-1}u^{-1}v^2)G(q, u)$
i+2=j	qE(z)	$qE(zn_0)\overline{\chi(n_0)}$
i+2 < j	$qA_{i+1,j-1}(z)$	$qA_{i+1,j-1}(zn_0)$

Démonstration. Ecrivons $n = 1 + t^{2i+1}a + \tau t^i b$ (a, $b \in \mathfrak{o}$).

a)
$$i+1=j$$
. $A_{i,j}(z)=E(z)\sum_{b\in\mathfrak{0} \bmod \mathfrak{p}}e(t^{-1}ub^2)\overline{\chi(n)}$.
Cas $j>h$. $A_{i,j}(z)=E(z)G(q,u)$.
Cas $j=h$. $A_{i,j}(z)=E(z)\sum_{b\in\mathfrak{0} \bmod \mathfrak{p}}e(t^{-1}ub^2)e(-t^{-1}vb)$

$$=E(z)e(-t^{-1}4^{-1}u^{-1}v^2)G(q,u).$$

Supposons ensuite que $i+2 \le j$. Soit m un élément générique de N_{j-1} modulo N_j et écrivons $m=1+t^{2j-1}c+\tau t^{j-1}d$ $(c,\ d\in\mathfrak{d})$. On a alors

$$\sum_{m \in N_{j-1} \bmod N_{j}} E(znm) \overline{\chi(nm)} = E(zn) \overline{\chi(n)} \sum_{d \in \mathfrak{o} \bmod J} E(t^{j-k}und) \overline{\chi(m)}$$

$$= E(zn) \overline{\chi(n)} \sum_{d \in \mathfrak{o} \bmod \mathfrak{p}} e(t^{-1}2ubd) \overline{\chi(m)}$$

$$= \begin{cases} E(zn) \overline{\chi(n)} \sum_{d \in \mathfrak{o} \bmod \mathfrak{p}} e(t^{-1}2ubd) & \text{si } j > h, \\ E(zn) \overline{\chi(n)} \sum_{d \in \mathfrak{o} \bmod \mathfrak{p}} e[t^{-1}(2ub-v)d] & \text{si } j = h \end{cases}$$

$$= \begin{cases} \operatorname{Cas} j > h & \text{q} E(zn) \overline{\chi(n)} & \text{si } b \equiv 0 \pmod \mathfrak{p} \\ 0 & \text{si } b \not\equiv 0 \pmod \mathfrak{p} \end{cases}$$

$$= \begin{cases} \operatorname{Cas} j > h & \text{q} E(zn) \overline{\chi(n)} & \text{si } 2ub \equiv v \pmod \mathfrak{p} \\ 0 & \text{si } 2ub \not\equiv v \pmod \mathfrak{p} \end{cases}$$

$$\operatorname{Cas} j = h & \text{g} E(zn) \overline{\chi(n)} & \text{si } 2ub \equiv v \pmod \mathfrak{p} \end{cases}$$

d'où le Lemme.

L'application successive du Lemme 5 à la formule

$$J_{\chi}(z) = q^{1-k} \sum_{n \in N_0 \mod N_{k-1}} E(zn) \overline{\chi(n)}$$

entraîne le Théorème 3.

Appendice.

Soit G un groupe commutatif, localement compact et dénombrable à l'infini. Désignons par $L^2(G)$ l'espane hilbertien des fonctions sur G de carré intégrable par rapport à une mesure de Haar dx. Pour une fonction mesurable bornée φ sur G, M_{φ} désignera l'opérateur borné dans $L^2(G)$ défini par la formule $M_{\varphi}f(x) = \varphi(x)f(x)$ $(f \in L^2(G))$.

LEMME 6. Soit A un opérateur borné dans $L^2(G)$ qui commute avec M_{χ} pour tout caractère unitaire χ de G. Il existe alors une fonction mesurable bornée a(x) telle qu'on ait $A=M_a$.

DÉMONSTRATION. 1°. Soient $L^1(G)$ l'espace des fonctions intégrables sur G et $L^{\infty}(G)$ l'espace des fonctions mesurables bornées sur G. Alors $L^{\infty}(G)$ est

424 M. Saito

l'espace dual de $L^1(G)$.

Si f est une fonction dans $L^1(G)$ telle que $\int_G f(x)\chi(x) = 0$ pour tout caractère unitaire χ de G, alors le théorème d'unicité de la transformation de Fourier implique que f=0. Rappelons que tout sous-espace faiblement fermé dans l'espace dual d'un espace localement convexe L est l'annulateur d'un sous-espace fermé dans L (voir par exemple Naimark [4], p. 65). Par conséquent, les caractères de G engendrent linéairement un sous-espace S partout dense dans $L^{\infty}(G)$. Ceci equivaut à dire que pour toute fonction φ dans $L^{\infty}(G)$, il existe une suite de fonctions $\{\chi_n\}$ dans S telle qu'on ait

$$\int_{G} \varphi(x) f(x) dx = \lim_{n \to \infty} \int_{G} \chi_{n}(x) f(x) dx$$

pour toute fonction f dans $L^1(G)$.

Pour deux fonctions f, g dans $L^2(G)$, les fonctions $f(x) \cdot \overline{A^*g(x)}$ et $Af(x) \cdot \overline{g(x)}$ appartiennent à $L^1(G)$, où A^* est l'operateur adjoint de A. On a par consequent

$$(AM_{\varphi}f, g) = (M_{\varphi}f, A^*g) = \int_{G} \varphi(x)f(x)\overline{A^*g(x)}dx$$

$$= \lim_{G} \int_{G} \chi_{n}(x)f(x)\overline{A^*g(x)}dx = \lim_{G} (M_{\chi_{n}}f, A^*g)$$

$$= \lim_{G} (AM_{\chi_{n}}f, g) = \lim_{G} (M_{\chi_{n}}Af, g)$$

$$= \lim_{G} \int_{G} \chi_{n}(x)Af(x) \cdot \overline{g(x)}dx$$

$$= \int_{G} \varphi(x)Af(x) \cdot \overline{g(x)}dx = (M_{\varphi}Af, g).$$

On a donc démontré que l'opérateur A commute avec M_{φ} pour toute fonction φ dans $L^{\infty}(G)$.

2°. Soit $\{G_n\}_{n=1,2,\cdots}$ une suite de sous-espaces compacts de G telle que $G_n \subset G_{n+1}$ et $G = \bigcup_{n=1}^{\infty} G_n$. Soit e_n la fonction caractéristique de G_n et posons $a(x) = Ae_n(x)$ pour x dans G_n . La fonction a sur G est bien-définie, parce que l'on a $e_n = e_n e_m$ pour $n \leq m$ et que l'on a par conséquent $Ae_n(x) = A(e_n e_m)(x) = e_n(x)Ae_m(x) = Ae_m(x)$ pour x dans G_n .

Il existe une fonction continue, partout positive, bornée et de carré intégrable f_0 sur G. On a alors $a(x) = Af_0(x)/f_0(x)$. En effet, pour x dans G_n , on a

$$f_0(x)a(x) = f_0(x)Ae_n(x) = A(f_0e_n)(x) = e_n(x)Af_0(x) = Af_0(x)$$
.

Pour une fonction continue φ à support compact, la fonction $\varphi(x)/f_0(x)$ est bornée, d'où

$$A\varphi(x) = A\left(\frac{\varphi}{f_0}f_0\right)(x) = \frac{\varphi(x)}{f_0(x)}Af_0(x) = \frac{\varphi(x)}{f_0(x)}a(x)f_0(x) = a(x)\varphi(x).$$

L'espace des fonctions continues à support compact etant partout dense dans $L^2(G)$, il en résulte que $A=M_a$.

Il suffit donc de montrer que la fonction a est bornee. Soit N la norme de l'opératour A:

$$N = \sup_{\varphi \neq 0} \frac{\|A\varphi\|}{\|\varphi\|}.$$

Soient G_0 l'ensemble des éléments x dans G tels que $|a(x)| \ge N+1$ et φ_n la fonction caractéristique de $G_0 \cap G_n$. Les fonctions φ_n sont bornées, à support compact et de carré intégrable. On a alors

$$(N+1)^{2}\mu(G_{0} \cap G_{n}) = (N+1)^{2} \int_{G_{0}} |\varphi_{n}(x)|^{2} dx \leq \int_{G_{0}} |a(x)\varphi_{n}(x)|^{2} dx$$

$$\leq \int_{G} |A\varphi_{n}(x)|^{2} dx \leq N^{2} \int_{G} |\varphi_{n}(x)|^{2} dx = N^{2}\mu(G_{0} \cap G_{n})$$

où $\mu(G_0 \cap G_n)$ est la masse totale de l'ensemble $G_0 \cap G_n$. D'où résulte que $\mu(G_0 \cap G_n) = 0$ pour tout n, ce qui implique que $\mu(G_0) = 0$. La fonction a(x) est donc bornée et le Lemme 6 est démontré.

Université de Tokyo

Bibliographie

- [1] R. Godement, Introduction aux travaux de Selberg, Séminaire Bourbaki, 9 (1956/57), n° 144.
- [2] G. W. Mackey, Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. U.S. A., 35 (1949), 537-545.
- [3] G.W. Mackey, Induced representations of locally compact groups I, Ann. of Math., 55 (1952), 101-139.
- [4] М. А. Наймарк, Нормированные кольца, Москва, 1956, глава 1, § 3, 11.
- [5] M. Saito, Représentations unitaires du groupe des déplacements du plan p-adique, Proc. Japan Acad., 39 (1963), 407-409.
- [6] P. J. Sally Jr., Invariant subspaces and Fourier-Bessel transforms on the p-adiq plane, à parître dans Math. Ann.
- [7] Н.Я. Виленкин, Бесселевы функции и представления группы евклидовых движений, Успехи Математических Наук, 11 (3) (69) (1956), 69–112.