Potential operator of a recurrent strong Feller process in the strict sense and boundary value problem

By Hisao WATANABE

(Received May 6, 1963) (Revised Nov. 7, 1963)

§ 0. Introduction.

The purpose of this paper is to define the potential operator for a recurrent strong Feller process in the strict sense on a compact metric space and apply it to the boundary value problem for elliptic differential operators of the second order.

G. A. Hunt [4] has mainly dealt with the potentials of transient Markov processes. Similar problems¹⁾ have been considered for recurrent Markov chains with discrete time parameter, by J. G. Kemeny-J. L. Snell [5] and for some classes of diffusion processes, by N. Ikeda [6] and S. Ito [9]. The fundamental idea of the latter works consists in excluding the infinite part of the Green operator $G_{0+}f(x)$ which may be divergent for recurrent Markov processes even for functions with compact carrier.

If a Markov process is a strong Feller process in the strict sense on a compact metric space, $\lim_{t\to\infty} T_t f(x) = \int f(x) m(dx) = mf$ converges (§ 1. Theorem 1.1).

Then, in §2 we define the potential operator by

$$Kf(x) = \int_0^\infty (T_t f(x) - mf) dt.$$

If mf = 0, Kf(x) satisfies the Poisson equation.

In § 3, we consider the potential $R^{\alpha}f(x) = E_x \Big(\int_0^{\infty} e^{-\alpha t} f(x_t) d\varphi_t(w) \Big)$ corresponding to an additive functional $\varphi_t(w)$ and we investigate the finite part of this potential for $\alpha \to 0$.

We discuss in §4 an application of the above results to the boundary value problem

$$Au = f$$
, on D ,

¹⁾ The author is informed recently that along the similar line, M. I. Freidlin [1] had some results. But, our paper deals with more general cases.

and

$$\frac{\partial}{\partial n}u = g$$
, on ∂D ,

where D is a compact domain in an N-dimensional manifold, ∂D is the boundary of D, A is a sufficiently smooth elliptic differential operator of the second order. The purely analytical approach for this problem is given in S. Ito [9].

We remark that the definition of the kernel of our potential is not a generalization of the kernel of the logarithmic potential, but is a generalization of the Neumann kernel. In fact, the kernel of the logarithmic potential is obtained by

$$\int_0^\infty (p(t, x, y) - p(t, x_0, y_0)) dt = \frac{1}{\pi} \log \left| \frac{x_0 - y_0}{x - y} \right|^{2},$$

where
$$x \neq y$$
, $x_0 \neq y_0$, $p(t, x, y) = \frac{1}{(2\pi)} e^{-\frac{|x-y|^2}{2t}}$ and $x, y, x_0, y_0 \in R^2$.

The author wishes to express his hearty thanks to Professor N. Ikeda, Professor M. Motoo, Professor T. Ueno and Mr. K. Sato for their kind suggestions and discussions.

§1. Strong Feller processes in the strict sense.

Let $M = \{x_t, W, P_x, x \in S\}$ be a Markov process³⁾, where S is a simply connected⁴⁾ compact metric space and W is the space of continuous path functions on S.

We assume following conditions

(A.1.1) P(t, x, U) > 0, for any $x \in S$, t > 0 and any non-null open set $U \in \mathcal{B}(S)^{5}$, and P(t, x, S) = 1.

(A.1.2) M is a strong Feller process in the strict sense, that is, each operator T_t (t>0), defined by $T_tf(x)=E_x(f(x_t))=\int_S P(t,x,dy)f(y)$ maps any bounded set in $C(S)^{6}$ into a compact set in C(S).

Condition (A.1.2) is equivalent to

(A.1.2') $P(t, x, \cdot)$, for each positive t, is a continuous function in x, taking values in measures on S, with respect to the norm of the total variation, and if (A.1.2') is satisfied, then M is a strong Feller process. These were proved by Girsanov [2, Lemma 4.1].

²⁾ $|\cdot|$ implies the distance in two-dimensional Euclidean space \mathbb{R}^2 .

³⁾ For the definition of the Markov processes, vid. K. Ito [7].

⁴⁾ We suppose it only for clarification of discussions.

⁵⁾ $\mathcal{B}(\bullet) =$ the topological Borel field of \bullet .

⁶⁾ $C(\bullet) = \{f; f \text{ is a continuous function on } \bullet \}$. The topology in $C(\bullet)$ is the one induced by the uniform norm.

If (A.1.1) holds and if M is a strong Feller process, then M is recurrent⁷⁾, that is, $P_x(\sigma_U < +\infty) = 1^{8)}$ for any $x \in S$, where U is any non-null open subset of S. For each fixed t > 0, the family of measures $\{P(t, x, \bullet), x \in S\}$ on S are mutually absolutely continuous⁹⁾.

Theorem 1.1. Assume (A.1.1) and (A.1.2). Then, there exists a unique probability measure $m(\cdot)$ on S such that

$$|T_t f(x) - mf| \le Ke^{-ct} ||f||_{\infty} ||f||_{\infty}, \quad (x \in S)$$

for any $f \in B(S)^{11}$ and any $t \ge 0$, where we put $mf = \int_S f(y)m(dy)$ and where K and C are constants independent of f(x), C and C.

PROOF¹²⁾. We fix a positive number $t_0 > 0$. We put

$$Q(P) = -\frac{1}{2} \sup_{x,y \in S} \|P(t_0, x, \bullet) - P(t_0, y, \bullet)\|$$

$$= -\frac{1}{2} \sup_{x,y \in S} \sup_{t \in B_1(S)} \int_{S} (P(t_0, x, dz) - P(t_0, y, dz)) f(z)$$

where $B_1(S) = \{f; f \in B(S), ||f||_{\infty} \le 1\}.$

We prove that Q(P) < 1. If we assume the contrary, there are two sequences $x_n \in S$ and $y_n \in S$ with $\lim_{n \to \infty} \|P(t_0, x_n, \cdot) - P(t_0, y_n, \cdot)\| = 2$. Since S is compact, there are subsequences $x_{n'}$ and $y_{n'}$ with limits x_0 and y_0 in S respectively. By the continuity of $P(t_0, x_n, \cdot)$ in x with respect to the norm, we have

$$||P(t_0, x_0, \bullet) - P(t_0, y_0, \bullet)|| = \lim_{n' \to \infty} ||P(t_0, x_{n'}, \bullet) - P(t_0, y_{n'}, \bullet)|| = 2.$$

By the Hahn decomposition of $P(t_0, x_0, \cdot) - P(t_0, y_0, \cdot)$, we have two mutually disjoint subsets S^+ and S^- for which we have

$$P(t_0, x_0, S^+) = P(t_0, y_0, S^-) = 1$$
, $P(t_0, x_0, S^-) = P(t_0, y_0, S^+) = 0$.

This fact contradicts the mutual absolutely continuity of $P(t_0, x_0, \bullet)$ and $P(t_0, y_0, \bullet)$. Therefore, we have Q(P) < 1.

Hence, by the theorem in T. Ueno [16, 454-455], there exists a probability measure $m(\cdot)$ and positive constants c' and K' independent of x such that

$$||P(nt_0, x, \bullet) - m(\bullet)|| \le K'e^{-c'n}$$
 for any $x \in S$.

On the other hand, by means of the relation $T_{nt_0}T_sf(x)=T_sT_{nt_0}f(x)$ for

⁷⁾ E.g. vid. Nagasawa [11].

⁸⁾ We denote by σ_U the first hitting time for U.

⁹⁾ Vid. Hasminsky [3, p. 197].

¹⁰⁾ $||f||_{\infty} = \sup_{x \in S} |f(x)|$.

¹¹⁾ $B(\cdot) = \{f; f \text{ is a bounded } \mathcal{B}(\cdot)\text{-measurable function on } \cdot\}.$

¹²⁾ The half part of the proof of Theorem 1.1 is completely analogous to the Proposition 2.2 in T. eno [15], but we describe it for reader's convenience.

arbitrary s > 0, we can see that $mT_s f = \int_S \int_S m(dy) P(s, y, dx) f(x) = \int_S m(dx) f(x)$, that is, $m(\cdot)$ is an invariant measure of T_t .

For any t>0, we put $n=\max_{kt_0\leq t}k$ and $t-nt_0=s$. Then, we have

$$|T_{t}f(x)-mf| = |T_{nt_{0}}T_{s}f(x)-mT_{s}f| \leq ||T_{s}f||_{\infty} \cdot ||P(nt_{0}, x, \bullet)-m(\bullet)||$$

$$\leq ||f||_{\infty}K'e^{-c'n} = ||f||_{\infty}K'e^{-\left(\frac{c'}{t_{0}}\right)nt_{0}}$$

$$= ||f||_{\infty}K'e^{c'}e^{-\frac{c'}{t_{0}}(n+1)t_{0}}$$

$$\leq ||f||_{\infty}Ke^{-ct},$$

where $K = K'e^{c'}$ and $c = \frac{c'}{t_0}$. From (1.1), we can see that $m(\cdot)$ is independent of t_0 .

\S 2. The potential of the recurrent strong Feller processes in the strict sense.

Under the assumptions (A.1.1) and (A.1.2), we can define by Theorem 1.1.

(2.1)
$$Kf(x) = \int_0^\infty (T_t f(x) - mf) dt, \quad \text{for } f \in B(S).$$

We call K the potential operator of M.

Since $\int m(dx)P(t,x,E)=m(E)$ for any $E\in\mathcal{B}(S)$, m(E)=0 implies P(t,x,E)=0 for all x except for a set of $m(\cdot)$ -measure zero. But, since P(t,x,E) is continuous in x, P(t,x,E)=0 for all $x\in S$. Therefore, $P(t,x,\cdot)$ is absolutely continuous with respect to $m(\cdot)$. Denoting by p(t,x,y) the density of $P(t,x,\cdot)$ in the sense of Radon-Nykodium with respect to $m(\cdot)$, we have

(2.2)
$$p(t+s, x, y) = \int_{S} p(t, x, z) m(dz) p(s, z, y),$$

(2.3)
$$\int_{S} m(dx) p(t, x, y) = 1,$$

for each $x \in S$, t > 0, s > 0, and for almost all y with respect to $m(\cdot)$. Furthermore, we have

$$\int_{0}^{\infty} dt \int_{S} |p(t, x, y) - 1| |f(y)| \, m(dy) \leq \int_{0}^{\infty} ||P(t, x, \cdot) - m(\cdot)|| \, dt \cdot ||f||_{\infty} < +\infty.$$

By Fubini's Theorem, we have

$$\int_0^\infty |p(t, x, y) - 1| dt < +\infty,$$

for all y except for a subset N of $m(\cdot)$ -measure zero. Therefore, if we put, for each $x \in S$, $K(x, y) = \int_0^\infty (p(t, x, y) - 1) dt$ for $y \in S - N$ and $K(x, y) = +\infty$ for $y \in N$, then we can write

$$Kf(x) = \int_{S} K(x, y) f(y) m(dy)$$
.

By Theorem 1.1 and the property (A.1.2), we can easily prove that $Kf(x) \in C(S)$ for any $f \in B(S)$.

Thus, we have

Theorem 2.1. Assume that (A.1.1) and (A.1.2) hold. Then, $Kf(x) = \int_0^\infty (T_t f(x) - mf) dt$ converges absolutely and $Kf(x) \in C(S)$ for any $f \in B(S)$. Also, $G_\alpha f(x) - mf/\alpha = \int_0^\infty e^{-\alpha t} (T_t f(x) - mf) dt$ is convergent to Kf(x) as α tends to zero.

Theorem 2.2. Under the same assumptions as Theorem 2.1, we have $Kf \in D(\mathcal{G}_I)$. Furthermore, if mf = 0,

(2.4)
$$\mathcal{G}_{I}Kf(x) = -f(x), \quad x \in S,$$

holds for any $f \in B(S)$, where \mathcal{Q}_I is the generator in the sense of K. Ito [7]. The same statement holds if we replace \mathcal{Q}_I by the Hille-Yosida generator A and B(S) by C(S).

PROOF OF THEOREM 2.2. By the resolvent equation, we have

$$(2.5) (G_{\beta}f(x)-mf/\beta)-(G_{\alpha}f(x)-mf/\alpha)=(\alpha-\beta)G_{\beta}\{G_{\alpha}f(x)-mf/\alpha\}.$$

Let α tend to zero in (2.5). Then, we have $G_{\beta}f(x)-mf/\beta-Kf(x)=-\beta G_{\beta}Kf(x)$. Thus, we have

$$(2.6) Kf(x) = G_{\beta}(f(x) + \beta Kf(x) - mf),$$

since $G_{\alpha}1 = 1/\alpha$.

Hence, by the definition of $D(\mathcal{G}_I)$, we have $Kf(x) \in D(\mathcal{G}_I)$. If mf = 0, also by (2.6), we have (2.4). Accordingly, we have the first part of the theorem.

For the proof of the second part, we have only to remark

$$T_tKf(x)-Kf(x)=-\int_0^t T_sf(x)ds+mf\cdot t$$
,

which follows from (2.1) by Dynkin's formula.

If we replace mf/α in (2.5) by $mG_{\alpha}f$ (= mf/α), we have

$$(2.7) \qquad (G_{\beta}f(x)-mf/\beta)-(G_{\alpha}f(x)-mf/\alpha)=(\alpha-\beta)G_{\beta}\{G_{\alpha}f(x)-mG_{\alpha}f\}.$$

Letting β tend to zero in (2.7), we have

$$Kf(x)-G_{\alpha}f(x)+mf/\alpha=\alpha KG_{\alpha}f(x)$$
,

which implies $G_{\alpha}f(x) = mf/\alpha + K(f-\alpha G_{\alpha}f)(x)$. Since Kf is not a non-zero constant for any $f \in B(S)$, we have $G_{\alpha}f(x) \in \text{Range}(K) = \{g ; Kf = g, f \in B(S)\}$ if

and only if mf = 0. Hence, we have

THEOREM 2.3. Range(K) coincides with the set

$$\{g; G_{\alpha}f = g, mf = 0, f \in B(S)\}$$
.

§ 3. The potential corresponding to an additive functional.

In this section, we assume (A.1.1) and (A.1.2). For the purpose of more delicate discussions, upon p(t, x, y), given in § 1 and a regular positive Borel measure $\mu(\cdot)$ concentrated on a non-null closed subset B of S, we impose the following conditions:

C) p(t, x, y) is $\mathcal{B}([0, \infty]) \otimes \mathcal{B}(S) \otimes \mathcal{B}(S)$ -measurable with respect to (t, x, y), where $t \in [0, \infty)$, x and $y \in S$. Let $g_{\alpha}(x, y) = \int_{0}^{\infty} e^{-\alpha t} p(t, x, y) dt$ (not possibly finite). Then, $R^{\alpha}f(x) = \int_{B} g_{\alpha}(x, y) f(y) \mu(dy)$, for any $f \in B(S)$ and $\int_{0}^{t} ds \int_{B} p(s, x, y) f(y) \mu(dy)$, for any $f \in B(S)$ and any t > 0, are absolutely convergent. (2.2) and (2.3) are satisfied for almost all y with respect to the measure $\mu(\bullet)$.

We remark that the last assumption in C) is satisfied if

(A.3.1)
$$\begin{cases} p(t, x, \bullet) \in C(S), \\ \int_{S} m(dy) p(t, y, \bullet) \in C(S). \end{cases}$$

Let us consider the finite part of $R^{\alpha}f(x)$ for $\alpha \to 0$. If we fix arbitrary s > 0, we have

$$\begin{split} R^{\alpha}f(x) &= \int_0^s e^{-\alpha t} dt \int_B f(y) p(t, x, y) \mu(dy) + \int_s^{\infty} e^{-\alpha t} dt \int_B f(y) p(t, x, y) \mu(dy) \\ &= \int_0^s e^{-\alpha t} dt \int_B f(y) p(t, x, y) \mu(dy) + e^{-\alpha s} \int_0^{\infty} e^{-\alpha t} dt \int_B f(y) p(t+s, x, y) \mu(dy) \\ &= \int_0^s e^{-\alpha t} dt \int_B f(y) p(t, x, y) \mu(dy) + e^{-\alpha s} \int_0^{\infty} e^{-\alpha t} dt \int_S p(t, x, y) g(y) m(dy) \,, \end{split}$$

where $g(y) = \int_{\mathbb{R}} p(s, y, z) f(z) \mu(dz)$.

Furthermore, we have

$$R^{\alpha}f(x) - \frac{1}{\alpha} \int_{S} g(y)m(dy) = \int_{0}^{s} e^{-\alpha t} dt \int_{B} f(y) p(t, x, y) \mu(dy)$$
$$+ e^{-\alpha s} \int_{0}^{\infty} e^{-\alpha t} \left(\int_{S} p(t, x, y) g(y) m(dy) - \int_{S} g(y) m(dy) \right) dt$$
$$+ \frac{1}{\alpha} \int_{S} g(y) m(dy) (e^{-\alpha s} - 1).$$

If we assume for any $f \in B(S)$ and for any s > 0,

(A.3.2)
$$\sup_{x \in S} \int p(s, x, z) |f(z)| \, \mu(dz) < +\infty$$

which is satisfied if

(A.3.2')
$$\int_{B} p(s, \cdot, y) f(y) \mu(dy) \in C(S), \quad \text{for any } f \in B(S),$$

then, we have by Theorem 2.1,

$$\lim_{\alpha \to 0} \left(R^{\alpha} f(x) - \frac{1}{\alpha} \int g(y) m(dy) \right) = \int_0^s dt \int_B p(t, x, y) f(y) \mu(dy) + \int K(x, y) g(y) m(dy) - s \cdot \int g(y) m(dy).$$

Moreover, if we assume

(A.3.3)
$$\int_0^s dt \int_{\mathcal{R}} f(y) p(t, x, y) \mu(dy) \in C(S), \quad \text{for any } f \in B(S)$$

then,
$$\lim_{\alpha \to 0} \left(R^{\alpha} f(x) - \frac{1}{\alpha} \int g(y) m(dy) \right) = \tilde{K}^{\mu} f(x)$$
 exists and $\tilde{K}^{\mu} f(x) \in C(S)$.

Since $\int m(dy)p(t, y, x) = 1$ for μ -almost all x, we have $\int_S m(dy)g(y) = \int_B \int_S m(dy)p(t, y, x)f(x)\mu(dx) = \int_B f(x)\mu(dx)$. Therefore, we see that $\lim_{\alpha \to 0} \left(R^{\alpha}f(x) - \frac{1}{\alpha}\int g(y)m(dy)\right) = \lim_{\alpha \to 0} \left(R^{\alpha}f(x) - \frac{1}{\alpha}\int f(x)\mu(dx)\right)$ is independent of s.

Summing up the above discussions, we have

THEOREM 3.1. Under the conditions (A.1.1), (A.1.2), (C), (A.3.2) and (A.3.3), $R^{\alpha}f(x) - \frac{1}{\alpha} \int_{B} f(y)\mu(dy) = \int_{0}^{\infty} e^{-\alpha t} dt \int_{B} (p(t, x, y) - 1)f(y)\mu(dy) \text{ converges to } \widetilde{K}^{\mu}f(x) dt \in C(S) \text{ as } \alpha \text{ tends to zero for any } f \in B(S).$

THEOREM 3.2. Assume that (A.1.1) and (A.1.2) hold. For p(t, x, y) and a regular, positive, Borel measure $\mu(\cdot)$, we assume that $R^{\alpha}f(x) \in C(S)$ for any $f \in B(S)$ and that (A.3.1), (A.3.2') and (A.3.3) hold. Then the result of Theorem 3.1 follows.

We suppose that there exists a α -th order continuous additive¹³⁾ functional $\varphi_t^{\alpha,f}(w)$ such that $E_x(\varphi_\infty^{\alpha,f}(w)) = R^\alpha f(x)$. If we put $\varphi_t(w) = \int_0^t e^{\alpha s} d\varphi_s^{\alpha,1}(w)$ we have $E_x(\varphi_t(w)) = \int_0^t ds \int_B p(s,x,b) \mu(db)$, by the definition of $\varphi_t^{\alpha,1}(w)$. We assume that for σ_B (the first hitting time for B)

(A.3.4)
$$P_x(\varphi_{\sigma_B}(w) = 0) = 1$$

and for any t > 0

¹³⁾ For the definition of the α -th order continuous additive functional, vid. [13].

(A.3.5)
$$P_x(\varphi_{\sigma_B+\iota}(w)>0)=1, \quad \text{for any} \quad x\in S.$$

Then, by use of the argument in Theorem 4.1 of Nagasawa-Sato [12], we can prove that

$$R^{\alpha}f(x) = E_x \Big(\int_0^{\infty} e^{-\alpha t} f(x_t) d\varphi_t(w) \Big)$$
.

Now, putting $\tau_t(w) = \inf\{s; \varphi_s(w) > t\}$ if $\varphi_\infty(w) > t$ and $= +\infty$ if $\varphi_\infty(w) \le t$, we have

(3.1)
$$R^{\alpha}f(x) = E_x \left(\int_0^{\infty} e^{-\alpha \tau_{\iota}(w)} f(x_{\tau_{\iota}(w)}(w)) dt \right).$$

We put

$$(3.2) E_x(e^{-\alpha \tau_t(w)} f(x_{\tau_t(w)}(w))) = \widetilde{T}_t^{(\alpha)} f(x),$$

and

$$E_x(f(x_{\tau_t(w)}(w))) = \widetilde{T}_t f(x)$$
.

Then, we can see that $\widetilde{T}_t^{(\alpha)}$ and \widetilde{T}_t are semi-groups on B(S), by the definition of $\tau_t(w)$. Furthermore, we have $\lim_{\alpha \to 0} \widetilde{T}_t^{(\alpha)} f(x) = \widetilde{T}_t f(x)$ for any $f \in C(S)$ and $\lim_{t \to 0} \widetilde{T}_t f(x) = f(x)$ for $f \in C(S)$ and $x \in B$.

THEOREM 3.3. Assume the same conditions as Theorem 3.2. Moreover, assume that (A.3.4) and (A.3.5) hold. Let A be the weak infinitesimal generator of the semi-group \tilde{T}_t on B. Then, if $\int_{\mathbb{R}} f(z)\mu(dz) = 0$, it holds that

(3.3)
$$A\widetilde{K}^{\mu}f(x) = -f(x), \quad \text{for } x \in B \text{ and } f \in C(S),$$

(3.4)
$$h_B \widetilde{K}^{\mu} f(x) = \widetilde{K}^{\mu} f(x), \quad \text{for } x \in S \text{ and } f \in B(S),$$

where $h_B f(x) = E_x(f(x_{\sigma_B}))$.

PROOF. Since $R^{\alpha}f(x) \in C(S)$, $R^{\alpha}f(x)$ $(f \geq 0)$ is the regular excessive function in the sense of Shur [14] and Meyer [10]. Therefore, there exists a continuous additive functional $\varphi_t(w)$ such that $E_x(\varphi_t(w)) = \int_0^t ds \int_B p(s,x,b) \mu(db)$. By (3.1) and (3.2), we have $R^{\alpha}f(x) = \int_0^{\infty} \widetilde{T}_t^{(\alpha)}f(x)dt$. We put $\widetilde{K}_{\alpha}^{\mu}f(x) = R^{\alpha}f(x) - \frac{1}{\alpha} \int f(z)\mu(dz)$. Then, we have

$$\begin{split} \widetilde{K}_{\alpha}^{\mu}f(x) &= \int_{0}^{\infty} \left(\widetilde{T}_{s}^{(\alpha)}f(x) - e^{-\alpha_{s}} \cdot \int f(z)\mu(dz) \right) ds \\ &= \int_{0}^{t} \widetilde{T}_{s}^{(\alpha)}f(x) ds - \int_{0}^{t} e^{-\alpha_{s}} \left(\int f(z)\mu(dz) \right) ds \\ &+ \int_{t}^{\infty} \left(\widetilde{T}_{s}^{(\alpha)}f(x) - e^{-\alpha_{s}} \cdot \int f(z)\mu(dz) \right) ds \\ &= \int_{0}^{t} \left(\widetilde{T}_{s}^{(\alpha)}f(x) - e^{-\alpha_{s}} \cdot \int f(z)\mu(dz) \right) ds \end{split}$$

$$+ \tilde{T}_{t}^{(\alpha)} \Big(\int_{0}^{\infty} \Big(\tilde{T}_{s}^{(\alpha)} f(x) - e^{-\alpha s} \cdot \int f(z) \mu(dz) \Big) ds \Big)$$

$$+ (\tilde{T}_{t}^{(\alpha)} 1 - e^{-\alpha t}) \cdot \int_{0}^{\infty} e^{-\alpha s} ds \cdot \int_{\mathbb{R}} f(z) \mu(dz) .$$

Since $\lim_{\alpha \to 0} \widetilde{K}_{\alpha}^{\mu} f(x) = \widetilde{K}^{\mu} f(x)$ and $\lim_{\alpha \to 0} \widetilde{T}_{t}^{(\alpha)} f(x) = \widetilde{T}_{t} f(x)$ boundedly on S, if $\int_{B} f(z) \mu(dz) = 0$, we have

(3.6)
$$\widetilde{K}^{\mu}f(x) = \int_0^t \widetilde{T}_s f(x) ds + \widetilde{T}_t \widetilde{K}^{\mu}f(x).$$

As $\widetilde{T}_t f(x)$ is right-continuous in $t \in [0, \infty)$ and $\lim_{t \to 0} \widetilde{T}_t f(x) = f(x)$ for $x \in B$, we have (3.3) by (3.6).

Since $\varphi_{\sigma_R}(w) = 0$, we have

$$E_x(e^{-\alpha\sigma_B}\widetilde{K}^{\mu}_{\alpha}f(x_{\sigma_B})) = \widetilde{K}^{\mu}_{\alpha}f(x)$$
, for all $x \in S$,

from which we have (3.4).

REMARK. If $E_x(\tau_t(w)) < +\infty$, we have, by (3.5),

$$\widetilde{K}^{\mu}f(x) = \int_0^t \widetilde{T}_s f(x) ds + \widetilde{T}_t \widetilde{K}^{\mu}f(x) - E_x(\tau_t(w)) \cdot \int_R f(z) \mu(dz)$$

for any $x \in S$.

§ 4. Boundary value problem for elliptic differential operators of the second order.

Let D be a connected domain with compact closure \overline{D} in an N-dimensional orientable manifold of class C^{∞} and the boundary ∂D consists of a finite number of N-1 dimensional hypersurface of class C^{3} . Let $\{x_{t}, W, \mathcal{B}, P_{x}\}$ be a reflecting A-diffusion¹⁴⁾ on D with transition probability $U(t, x, y)dy^{15)}$. U(t, x, y) is the unique fundamental solution¹⁶⁾ for the initial value problem of the equation

$$\frac{\partial}{\partial t}u(t, x) = Au(t, x)$$

with the boundary condition

$$\frac{\partial}{\partial n}u(t,x)=0$$
.

A is a second order elliptic differential operator

$$Au(x) = \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x^i} \left(a^{ij}(x) \sqrt{a(x)} \frac{\partial u(x)}{\partial x^j} \right) + b^i(x) \frac{\partial u(x)}{\partial x^i}$$
₁₇₎

- 14) For the definition of a reflecting A-diffusion, vid. [13].
- 15) We denote the local coordinate of the point x as (x^1, \dots, x^N) .
- 16) Its construction is given by S. Ito [8].
- 17) Here, we used the summation convention in differential geometry.

where $a^{ij}(x)$ and $b^i(x)$ are contravariant tensors on \overline{D} of class C^3 , $a^{ij}(x)$ is symmetric and strictly positive definite for each $x \in \overline{D}$ and $a(x) = \det(a^{ij}(x))^{-1}$.

The operator $\frac{\partial}{\partial n}$ is defined as

$$\frac{\partial u(x)}{\partial n} = \frac{1}{\sqrt{a^{NN}(x)}} a^{Ni}(x) \frac{\partial u(x)}{\partial x^i} , \quad x \in \partial D,$$

when in a neighborhood of x.

(4.1)
$$\partial D$$
 is represented as $x^N = 0$, and D as $x^N > 0$.

dx and $d\tilde{x}$ are the Riemannian volume and surface elements respectively, that is, $dx = \sqrt{a(x)}dx^1 \cdots dx^N$ and in case of (4.1), $d\tilde{x} = \sqrt{a(x)}\sqrt{a^{NN}(x)}dx^1 \cdots dx^{N-1}$. Theorem 4.1. The reflecting A-diffusion satisfies (A.1.1) and (A.1.2).

PROOF. From the properties of the fundamental solution, shown by S. Ito [8, p. 83], we can prove that (A.1.1).

For the verification of (A.1.2), we have only to show that any family of functions: $\{\varphi_{\alpha}(x); T_t f_{\alpha}(x) = \varphi_{\alpha}(x), \alpha \in \Lambda, \|f_{\alpha}\|_{\infty} \leq 1, f_{\alpha} \in C(S)\}$ are equicontinuous and uniformly bounded. But, $\{\varphi_{\alpha}, \alpha \in \Lambda\}$ are uniformly bounded since $\|\varphi_{\alpha}\|_{\infty} \leq 1$.

On the other hand, $T_t f(x) \in C^1(\overline{D})$ and

$$\left| \frac{\partial}{\partial x^i} T_i f(x) \right| \leq \int_{\overline{D}} \left| \frac{\partial U(t, x, y)}{\partial x^i} \right| |f(y)| \, dy \leq \|f\|_{\infty} \int_{D} \left| \frac{\partial U(t, x, y)}{\partial x^i} \right| \, dy \leq M(t) \, \|f\|_{\infty} \,,$$

by the result in S. Ito [8], where M(t) is a constant independent of x. Then, by the mean value theorem, we have for an appropriate ξ ,

$$T_t f(x) - T_t f(y) = \sum_{i=1}^{N} (x_i - y_i) \left(\frac{\partial T_t f(x)}{\partial x^i} \right)_{x=\xi}.$$

Hence,

$$|T_t f(x) - T_t f(y)| \le \max_{1 \le i \le N} |x_i - y_i| \cdot M(t)$$
,

from which follows the equicontinuity of $\{\varphi_{\alpha}, \alpha \in \Lambda\}$, completing the proof of the theorem.

Now, we remark that the transition probability function $P(t, x, \cdot)$ of the reflecting A-diffusion is written as follows

$$P(t, x, \cdot) = \int_{\bullet}^{\bullet} U(t, x, y) \frac{1}{k(y)} k(y) dy = \int_{\bullet}^{\bullet} p(t, x, y) m(dy), \quad \text{for } \cdot \in \mathcal{B}(\overline{D}),$$

where $p(t, x, y) = U(t, x, y) \frac{1}{k(y)}$, k(y)dy = m(dy), $k(y) \in C^1(\overline{D})$ and k(y)dy is the invariant in the sense of § 1¹⁸. By means of the properties of the fundamental

¹⁸⁾ This is shown in [11].

solution, given in [8, § 4], there exists $R^{\alpha}f(x)=\int_{0}^{\infty}e^{-\alpha t}dt\int_{\partial D}U(t,x,y)f(y)d\tilde{y}=\int_{0}^{\infty}e^{-\alpha t}dt\int_{\partial D}p(t,x,y)f(y)k(y)d\tilde{y}.$ If we put $k(y)d\tilde{y}=\mu(dy)$, we can write $R^{\alpha}f(x)=\int_{0}^{\infty}e^{-\alpha t}dt\int_{\partial D}p(t,x,y)f(y)\mu(dy)=\int_{\partial D}g_{\alpha}(x,y)f(y)\mu(dy),$ where $g_{\alpha}(x,y)=\int_{0}^{\infty}e^{-\alpha t}p(t,x,y)dt.$ For such $\mu(\cdot)$ and the p(t,x,y), we can see that conditions C), (A.3.1), (A.3.2'), (A.3.3) are satisfied and that $R^{\alpha}f(x)\in C(\overline{D})$, by use of the result of [8]. Since $R^{\alpha}f(x)\in C(\overline{D})$ and path functions are continuous, we can define a continuous additive functional $\varphi_{t}(w)$ such that $E_{x}(\varphi_{t}(w))=\int_{0}^{t}ds\int_{\partial D}p(s,x,y)\mu(dy).$ Then, $\varphi_{\sigma_{\partial D}}(w)=0$ and $P_{x}(\varphi_{\sigma_{\partial D}+t}(w)>0)=1$ for t>0, are shown in Theorem 1 of [13].

Thus, we can apply the theorems in $\S 2$ and $\S 3$ to the reflecting A-diffusion. Especially, by Theorem 2.2, there exists

$$Kf(x) = \int_0^\infty (T_t f(x) - mf) dt$$
, for any $f \in B(\overline{D})$.

By Dynkin's formula, we have, for any t > 0,

(4.2)
$$Kf(x) = \int_0^t T_s f(x) ds - mf \cdot t + T_t Kf(x).$$

For $R^{\alpha}g(x)$, by Theorem 3.2, there exists

$$\begin{split} \widetilde{K}g(x) &= \lim_{\alpha \to 0} \left(R^{\alpha}g(x) - \frac{1}{\alpha} \int_{\partial D} g(y) \mu(dy) \right) \\ &= \lim_{\alpha \to 0} \int_{0}^{\infty} e^{-\alpha t} dt \int_{\partial D} (p(t, x, y) - 1) g(y) k(y) d\widetilde{y} \,, \qquad \text{for any } g \in B(\partial D) \,. \end{split}$$

Thus,

$$\begin{split} \widetilde{K}g(x) &= \lim_{\alpha \to 0} \int_0^t e^{-\alpha s} ds \int_{\partial D} (p(s, x, y) - 1) g(y) k(y) d\widetilde{y} \\ &+ \lim_{\alpha \to 0} \int_t^\infty e^{-\alpha s} ds \int_{\partial D} (p(s, x, y) - 1) g(y) k(y) d\widetilde{y} \\ &= \int_0^t ds \int_{\partial D} U(s, x, y) g(y) d\widetilde{y} - t \cdot \int_{\partial D} g(y) k(y) d\widetilde{y} \\ &+ \lim_{\alpha \to 0} e^{-\alpha t} T_t \Big(\int_0^\infty e^{-\alpha s} ds \int_{\partial D} (p(s, x, y) - 1) g(y) k(y) dy \Big) \,. \end{split}$$

Therefore, we have

(4.3)
$$T_t \widetilde{K}g(x) - \widetilde{K}g(x) = -\int_0^t ds \int_{\partial D} U(s, x, y) g(y) d\widetilde{y} + t \cdot \int_{\partial D} g(y) \mu(dy).$$
If we put $\widetilde{K}g(x) - Kf(x) = u_0(x)$, by (4.2) and (4.3), we have

(4.4)
$$u_0(x) = T_t u_0(x) - \int_0^t ds \int_D U(s, x, y) f(y) dy + \int_0^t ds \int_{\partial D} U(s, x, y) g(y) d\tilde{y} + t \cdot (\mu g - mf),$$

where we put $\mu g = \int_{\partial D} g(y) \mu(dy)$.

Now, we can prove

THEOREM 4.2. Assume that f(x) is Hölder continuous and bounded on D, that g(x) is Hölder continuous on ∂D and that $\mu g = mf$.

Then, $u_0(x)$ is the solution of the differential equation

$$Au = f$$
, for $x \in D$,

with boundary condition

$$\frac{\partial}{\partial n}u = g$$
, for $x \in \partial D$.

PROOF. If $\mu g = mf$, from (4.3), we have

$$u_0(x) = \int_D U(t, x, y) u_0(y) dy - \int_0^t ds \int_D U(s, x, y) f(y) dy$$
$$+ \int_0^t ds \int_{\partial D} U(s, x, y) g(y) d\tilde{y}.$$

When f and g satisfy the conditions stated above, by Theorem 1 VI)* in S. Ito [8], u_0 satisfies the differential equation

$$\frac{\partial}{\partial t}u_0(x) = Au_0(x) - f(x)$$
, for $x \in D$,

and

$$\frac{\partial}{\partial n}u_0(x)=g(x)$$
, for $x \in \partial D$.

But, $\frac{\partial}{\partial t}u_0(x)=0$, therefore, we have

$$Au_0(x) = f(x), \quad x \in D$$

and

$$\frac{\partial}{\partial n} u_0(x) = g(x), \quad x \in \partial D,$$

which proves the theorem.

REMARK. Theorem 4.2 was obtained by S. Ito [9] in the case Laplace-Beltrami operator. We are informed the result for general cases has been proved in his forthcoming paper.

Nagoya Institute of Technology

References

- [1] M.I. Freidlin, Diffusion processes with reflection and a third boundary value problem, Theor. Probability Appl., 8 (1963), 80-88.
- [2] I. V. Girsanov, Strong Feller processes, I, General properties, Theor. Probability Appl., 5 (1960), 7-28.
- [3] R.Z. Hasminsky, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equation, Theor. Probability Appl., 5 (1960), 196-214.
- [4] G. A. Hunt, Markov processes and potentials, I, II, III, Illinois J. Math., 1 (1957), 44-93, 1 (1957), 316-369, 2 (1958), 151-213.
- [5] J.G. Kemeny-J.L. Snell, Potentials for denumerable Markov chains, J. Math. Analysis and Applications, 8 (1960), 196-260.
- [6] N. Ikeda, On the construction of two dimensional diffusion processes satisfying Wentzell's boundary conditions and its application to boundry value problems, Mem. Coll. Sci. Univ. Kyoto Ser. A, 33 (1961), 368-427.
- [7] K. Ito, Lectures on the stochastic processes, Tata Inst., Bombay, 1961.
- [8] S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math. 27 (1957), 55-102.
- [9] S. Ito, On the Neumann problem for Laplace-Beltrami operators, Proc. Japan Acad., 37 (1961), 267-272.
- [10] P.A. Meyer, Fonctionelles multiplicatives et additives de Markov, Ann. Inst. Fourier, 12 (1962), 125-230.
- [11] M. Nagasawa, The adjoint process of a diffusion with reflecting barrier, Kōdai Math. Sem. Rep., 13 (1961), 235-248.
- [12] M. Nagasawa-K. Sato, Some theorems on the time change and killing of Markov processes, to be appeared.
- [13] K. Sato-H. Tanaka, Local times on the boundary for multi-dimensional reflecting diffusion, Proc. Japan Acad., 38 (1962), 699-702.
- [14] M.G. Shur, Continuous additive functionals of Markov processes and excessive functions, Dokl. Akad. Nauk SSSR, 137 (1961), 800-803.
- [15] T. Ueno, On recurrent Markov processes, Kōdai Math. Sem. Rep., 12 (1960), 109-142.
- [16] T. Ueno, Some limit theorems for temporally discrete Markov processes, J. Facul. Sci. Univ. Tokyo, 7 (1957), 449-462.