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§0. Introduction.

The purpose of this paper is to define the potential operator for a recurrent
strong Feller process in the strict sense on a compact metric space and apply
it to the boundary value problem for elliptic differential operators of the second
order.

G. A. Hunt [4] has mainly dealt with the potentials of transient Markov
processes. Similar problems? have been considered for recurrent Markov
chains with discrete time parameter, by J.G. Kemeny-J.L. Snell [5] and
for some classes of diffusion processes, by N. Ikeda and S. Ito [9]. The
fundamental idea of the latter works consists in excluding the infinite part
of the Green operator G,.f(x) which may be divergent for recurrent Markov
processes even for functions with compact carrier.

If a Markov process is a strong Feller process in the strict sense on a.

compact metric space, lim T[f(x):ff(x)m(a’x):mf converges (§1.
t—oo

1.1).
Then, in §2 we define the potential operator by

K= [ (T.f(—mpydt

If mf=0, Kf(x) satisfies the Poisson equation.
In §3, we consider the potential R“f(x):Exdme““‘f(xt)dgoc(w)) correspond-
0

ing to an additive functional ¢,(w) and we investigate the finite part of this.
potential for a—0.
We discuss in §4 an application of the above results to the boundary
value problem
Au=7f, on D,

1) The author is informed recently that along the similar line, M. I. Freidlin
had some results. But, our paper deals with more general cases.
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and

iu:g, on 0D,
on

‘where D is a compact domain in an N-dimensional manifold, 0D is the boundary
of D, A is a sufficiently smooth elliptic differential operator of the second
order. The purely analytical approach for this problem is given in S. Ito [9].

We remark that the definition of the kernel of our potential is not a
generalization of the kernel of the logarithmic potential, but is a generaliza-
tion of the Neumann kernel. In fact, the kernel of the logarithmic potential
is obtained by

1

§ 7ot 5900t o 3t =L tog | o=

x—y

2)
’

|z -yi|2

where x ﬂ;y,’ Xo ¥ Yo, P, X, V)= Tzln)—e‘ zz  and x,y, x, v, € R%

The author wishes to express his hearty thanks to Professor N. Ikeda,
Professor M. Motoo, Professor T. Ueno and Mr. K. Sato for their kind sug-
gestions and discussions.

§1. Strong Feller processes in the strict sense.

Let M= {x, W, P,, xS} be a Markov process®, where S is a simply
connected® compact metric space and W is the space of continuous path func-
tions on S.

We assume following conditions

(A1) P, x, U)>0, for any xS, t>0 and any non-null open set
Ue B(S)yY, and P(t, x,S)=1.

(A12) M is a strong Feller process in the strict sense, that 1is, each

operator T, (t >0), defined by Tﬁf(x):Ex(f(xt)):jsP(t, x, dy)f(y) maps any
bounded set in C(S)® into a compact set in C(S).

Condition (A.1.2) is equivalent to

(A.1.2)) P(i, x, »), for each positive t, is a continuous junction in x, taking
values in measures on S, with respect to the norm of the total variation,
and if (A.1.2") is satisfied, then M is a strong Feller process. These were
proved by Girsanov [2, Lemma 4.17.

2) |e| implies the distance in two-dimensional Euclidean space R2.

3) For the definition of the Markov processes, vid. K. Ito [7]

4) We suppose it only for clarification of discussions.

5) @B(+) = the topological Borel field of «.

6) C(+) ={f; f is a continuous function on «}. The topology in C(+) is the one
induced by the uniform norm. ‘
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If (A.1.1) holds and if M is a strong Feller process, then M is recurrent®,
that is, Py(oy < +c0)=1® for any x= S, where U is any non-null open subset
of S. For each fixed ¢ >0, the family of measures {P(¢, x, ), x= S} on S are
mutually absolutely continuous®.

THEOREM 1.1. Assume (A.1.1) and (A.1.2). Then, there exists a unique
probability measure m(s) on S such that

| T f(x)—mfl = Ke=*|| -, (x€S)

for any f< B(S)® and any t=0, where we pul mf:f S(m(dy) and where K
S

and ¢ are constants independent of f(x), t and x.
PrOOF'®», We fix a positive number #,>0. We put

QP)= -3 sup | Pt x, )Pty 3, 9]

— L sup sup [ (P, x, d2)—P(ts, 3, d2)f(2)

2 r,yES fEB1(S) Y S

where B,(S)={f; f€ B(S), | fll.=1}.
We prove that Q(P)<1. If we assume the contrary, there are two se-
quences x,<S and y,=S with lim | P{t,, Xn, *)—P(ty, Vn, )| =2. Since S is

compact, there are subsequences x,, and y,, with limits x, and y, in S respec-
tively. By the continuity of P(¢, x, «) in x with respect to the norm, we have
“P(tm Xos ')_P(tOY Yos ') H :JIEI;IOHP(Z-O: Xnss ')_P(tm Yuts ') H =2 .
By the Hahn decomposition of P(%,, x,, «)—P(t,, ¥s, *), we have two mutually
disjoint subsets S* and S~ for which we have
P(tO: XO: S+):P(t0’ yOr Sﬂ): 1 ] P<t0’ xo, S—'):P(tOr yo: S+):O .

This fact contradicts the mutual absolutely continuity of P(t, x, «) and
P(t,, ¥y, +). Therefore, we have Q(P) < 1.

Hence, by the theorem in T. Ueno [16, 454-455], there exists a probability
measure m(+) and positive constants ¢’ and K’ independent of x such that

| P(nty, x, )—m(+)| < K’e®»  for any x&S.

On the other hand, by means of the relation T, 7sf(x)=TTwu,f(x) for

7) E.g. vid. Nagasawa [11]

8) We denote by oy the first hitting time for U.

9) Vid. Hasminsky [3, p. 197].

10) S lleo = sup | F(2)]-

2ES

11) B(+) ={f; f is a bounded B(-)-measurable function on -}.

12) The half part of the proof of is completely analogous to the
Proposition 2.2 in T. eno [I5], but we describe it for reader’s convenience.
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arbitrary s >0, we can see that m7f= Lfsm(dy)P(s, y, dx)f(x) = Lm(a’x)f(x),

that is, m(+) is an invariant measure of 7.

For any t >0, we put n=max k and t—nt,=—s. Then, we have
kto=t

| T f ) —mf| = | Tnio Ts f(X) =T f1 £ | Ts flloo = || P(nity, x, )—m(+)]
= || flleKren = | fllKre T
(1.1) — ”f!]ooK/ecle_%(7l+l)tO

= fleKe™,

14
where K= K’e” and C:";—‘*. From [(1.1), we can see that m(+) is independent

0
of ¢,

§2. The potential of the recurrent strong Feller processes in the strict
sense.

Under the assumptions (A.l.1) and (A.1.2), we can define by [Theorem 1.1.
@.1) Kf)= | (Tof(—mp)dt, for fFe B(ES).
0

We call K the potential operator of M.
Since j m(dxX)P(t, x, E)=m(E) for any Ee B(S), m(E)=0 implies P(t, x,

E)=0 for all x except for a set of m(+)-measure zero. But, since P(¢, x, E)
is continuous in x, P(f, x, E)=0 for all x&S. Therefore, P(¢, x, ) is absolutely
continuous with respect to m(+). Denoting by p(Z, x, ¥) the density of P(t, x, «)
in the sense of Radon-Nykodium with respect to m(+), we have

2.2) plts, 2 )= _plt, % 2ym(d2)p(s, z,9),

@23) [ @, x =1,

for each xS, t >0, s >0, and for almost all y with respect to m(.).
Furthermore, we have

[Carf 1o 2 =115 m@n = [ I PG D=m() | di- | Flle < 4o0.

By Fubini’s Theorem, we have

1, x—11dt < oo,
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for all y except for a subset N of m(+)-measure zero. Therefore, if we put,
for each xS, K(x, y):fw(p(t, x, V)—1dt for yeS—N and K(x, y)=-+oco for
0

ye& N, then we can write
Kf ()= | K, )f(Im(dy).

By and the property (A.l.2), we can easily prove that
Kf(x)e C(S) for any fe B(S).

Thus, we have

THEOREM 2.1. Assume that (A.1.1) and (A.1.2) hold. Then, Kf(x):‘fm(th(x)

0
—mf)dt converges absolutely and Kf(x)e C(S) for any fe B(S). Also, G,f(x)
—mf/a:jme‘“‘(Tzf(x)—mf)dt is convergent to Kf(x) as a tends to zero.
0

THEOREM 2.2. Under the same assumptions as Theorem 2.1, we have Kf
e D(@y). Furthermore, if mf=0,
24 9Kf(x)=—f(n), x€8,
holds for any fe B(S), where &G, is the generator in the sense of K. Ito [7].
The same statement holds if we replace @; by the Hille-Yosida generator A
and B(S) by C(S).

PROOF OF THEOREM 2.2. By the resolvent equation, we have
(2.5) (Gpf()—mf/B)—(Guf(X)—mf/a) = (a—B)Gs{Guf(X)—mf/a} .
Let a tend to zero in (25). Then, we have Ggf(x)—mf/B—Kf(x) = —BGgKS(x).
Thus, we have
(2.6) Kf(x)=Gg(f(0)+BKSf(x)—mf),
since G,1=1/«. ‘

Hence, by the definition of D(&;), we have Kf(x)= D(&,). If mf=0, also

by (2.6), we have (2.4). Accordingly, we have the first part of the theorem.
For the proof of the second part, we have only to remark

TKF@D—Kf@)=—{ Tf(ds+mst,
which follows from (2.1) by Dynkin’s formula.
If we replace mf/a in (2.5) by mG,f (=mf/a), we have
@2.7) (Gpf()—mf/B)—(Gof(X)—mf/a) = (a—B)G{ G f(X)—mGo S} .
Letting B tend to zero in (2.7), we have
Kf(0)—Guf(0)+mf/a=aKGf(x),

which implies G,f(x)=mf/a+K(f—aG,f)(x). Since Kf is not a non-zero con-
stant for any f& B(S), we have G,f(x) € Range(K)={g; Kf=g, f< B(S)} if
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and only if mf=0. Hence, we have
THEOREM 2.3. Range(K) coincides with the set

{g; Gaf=g, mf=0, feB(S)}.

§3. The potential corresponding to an additive functional.

In this section, we assume (A.l.1) and (A.1.2). For the purpose of more
delicate discussions, upon p(t, x,y), given in §1 and a regular positive Borel
measure p(-) concentrated on a non-null closed subset B of S, we impose the

following conditions:
C) o, x, ) is B0, co)Q B(S)RQ B(S)-measurable with respect to (¢, x, ),

where t<[0,), x and yS. Let gylx,v)= roe”‘”p(t, x, y)dt (not possibly
0

JSinite). Then, Rf(x)= ngw(x, NI Nu(dy), for any fe B(S) and f:ds ij(s, x,¥)

Fuldy), for any fe= B(S) and any t >0, ave absolutely convergent. and
are satisfied for almost all y with respect to the measure p(s).
We remark that the last assumption in C) is satisfied if

{ b, x, ) € C(S),

(A3.D)
J @,y s Cs).

Let us consider the finite part of R*f(x) for «—0. If we fix arbitrary
s> 0, we have

Ry = [ et [ FO)p(t 3 e+ [ et | r)pet, % ()
= [ emat| rpct, x pdytes et | f)pttts, 5 )

= [Cemdt| e, x ypdy)ree [Teat | p x De(m@,

where g(y)= fB (s, ¥, 2)1(2)p(dz).

Furthermore, we have

Ref ()= - [ g(medy) = edt | 1()pct, 5, 3)pcd)
+e [ et (f p(t, x eImidn— [ eGIm@n)at

+ 2 f_gCm@e—1).

If we assume for any fe B(S) and for any s >0,
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(A32) sup [ p(s, %, 2)1 /()| id2) < oo

which is satisfied if

(A327) [ ot o DD eCS),  for any e BES),
then, we have by [Theorem 2.1,

lim (R“'f (0— %fg(wm(dy)) = f: di | ACERNCIIC)

+ f K(x, y)g(3ym(dy)—s « f g(Im(dy) .

Moreover, if we assume

(A3.3) { : dtf Fp, % NdHECS),  for any e B(S)

then, lim (R"‘f(x)— 7}[— j ( y)m(dy)) —= R*f(%) exists and K#f(x) e C(S).
a—0
Since fm(dy)p(t, y,x)=1 for p-almost all x, we have L m(dy)g(y) =

| ] fs m(dNp(t, ¥, D FDpdD) = | _f(dp(d). Therefore, we see that lim (Rer(ay

a—0
1 . ..
*—7j‘g(y)m(dy)> = }115101 (R“f(x)—}lx—jf(x)y(dx)) is independent of s.
Summing up the above discussions, we have
THEOREM 3.1. Under the conditions (A.1l.1l), (A.1.2), C), (A.3.2) and (A.3.3),
R~ — [ foutdy) = [ “edt [ (p(t, %, 3)—~1)f () converges to R 7(x)
B V] B

€ C(S) as a tends to zero for any f< B(S).
THEOREM 3.2. Assume that (A.1.1) and (A.1.2) hold. For p(t, x,y) and a
regular, positive, Borel measure p(+), we assume that R“f(x) e C(S) for any

F€B(S) and that (A3.1), (A3.2") and (A.3.3) hold. Then the result of Theorem
3.1 follows.

We suppose that there exists a a-th order continuous additive'® functional

¢ () such that E(p%/ () =RYF@. 1f we put ¢,(w)= | 0‘ eBde®i(0) we have

E (o w)) = j :ds { (s, %, b)p(de), by the definition of ¢f'(w). We assume that
for o5 (the first hitting time for B)

(A34) P (¢, (w)=0)=1

and for any >0

13) For the definition of the a-th order continuous additive functional, vid. [13]
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(A35) Ppsprw)>0)=1, for any x&S.

Then, by use of the argument in of Nagasawa-Sato [12], we can
prove that

RY@=E( [ e rtaddpw)).

Now, putting 7, w)=inf {s; ;W) > t} if @.(w)>t and = +o0 if p(w)=t,
‘'we have

@D R = Eof |~ e  Geegu@at ) -
We put

(3.2) Eo(e™ 1 f ryun@)) = T 1 (),
and

Ex(f(xrt(w)(w))) - th(x) .

Then, we can see that 7§® and 7T, are semi-groups on B(S), by the definition
of 7, (w). Furthermore, we have lim 7®f(x)=T,f(x) for any fe C(S) and
a—0

11131 T./(0)=f(x) for fe C(S) and x < B.

THEOREM 3.3. Assume the same conditions as Theorem 3.2. Moreover,
assume that (A.3.4) and (A.35) hold. Let A be the weak infinitesimal generator

of the semi-group T, on B. Then, if | f(u(dz)=0, it holds that
B ¢

(3.3) AR f(x)= —f(x),  for x=B and f=CS),
(3.4) heK"f()=K*f(x), for x<S and f< B(S),

where th(JC) - Ex(f(xaB))-
PROOF. Since RYf(x)e C(S), Rf(x) (f=0) is the regular excessive function
in the sense of Shur [14] and Meyer [10]. Therefore, there exists a continuous

additive functional ¢,(w) such that Em(gpc(w)):foz ds j‘Bp(s, x, b)p(db). By (3.1)
and (32), we have RY(=[ T{reod. We put Rife=Rof(——
| 7)(dz). Then, we have
Rer=["(Ter@—e- [ reudz)ds
= [ Tereods— [ e f f@uda)ds
+[(Fer@—ee- [ r@mud:)ds

= J'O‘(Téw)f(x)—e—%. f f(z)y(@)ds
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+ 1@ (" (Tore—e- [ r@uda)ds)

+(Fo1—e. [ Tewds @),
Since lim K2f(x)=RK"f(x) and lim T@rx)=T,f(x) boundedly on S, if
fB F(x)u(dz)=0, we have
36 Rrpy= [ Toreds + TR 7).

As T.7(x) is right-continuous in ¢ & [0, o) and lirrg T.f(x)=f(x) for x& B, we
t—
have (3.3) by (3.6).
Since ¢,,(w)=0, we have
EfesK4f(x, ) =K4f(x), forall xe8S,
from which we have (3.4).
REMARK. If E,(z(w)) < 4co, we have, by (3.5),

Ref) = Topods+ TR 90— Eeo)) - f@pcdz),

for any x< S.

§4. Boundary value problem for elliptic differential operators of the
second order.

Let D be a connected domain with compact closure D in an N-dimensional
orientable manifold of class C* and the boundary @D consists of a finite
number of N—1 dimensional hypersurface of class C*® Let {x, W, 8, P,} be
a reflecting A-diffusion'® on D with transition probability U(Z, x, y)dy'®.
U(t, x, v) is the unique fundamental solution'® for the initial value problem
of the equation

% u(t, x) = Au(t, x)

with the boundary condition

\58;; u(t, x)=0
A is a second order elliptic differential operator
3 [ au(x) au(x) 1
Aux) = \/ = a (@i am- 2 )b

14) For the definition of a reflecting A-diffusion, vid. [I37]

15) We denote the local coordinate of the point x as (at, .-+, 2¥).

16) Its construction is given by S. Ito [8]

17) Here, we used the summation convention in differential geometry.
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where a¥(x) and bi(x) are contravariant tensors on D of class C3, a¥(x) is
symmetric and strictly positive definite for each x= D and a(x) = det (a¥(x))~".

The operator 9 is defined as

on
ou(x) 1 ; au(x)
on vy ¢ eon,
when in a neighborhood of x.
“4.1 0D is represented as x¥ =0, and D as x¥>0.

dx and dX are the Riemannian volume and surface elements respectively, that
is, dx=+~/a(x)dx* -+ dx¥ and in case of (4.1), d¥=~a(x)Va" (xX)dx* --- dx".
THEOREM 4.1. The reflecting A-diffusion satisfies (A.1.1) and (A.1.2).

ProOOF. From the properties of the fundamental solution, shown by S. Ito
[8, p. 8313, we can prove that (A.1.1).

For the verification of (A.1.2), we have only to show that any family of
functions: {Qu(%); Tifulx) = 0 %), aE A, | fulle =1, f, € C(S)} are equicontinuous
and uniformly bounded. But, {¢,, @ = A} are uniformly bounded since | ¢
<1.

On the other hand, 7,f(x) = CYD) and

|z [ | 292D iz i f,| 22D dy< MOl

by the result in S. Ito [87, where M(?) is a constant independent of x. Then,
by the mean value theorem, we have for an appropriate &,

Tf(x> T.f( »= E (lf—y»( aTt (X) >

x=£& '
Hence,

| Tef ()= Tef ()] = max Lx—y.| - M),

from which follows the equicontinuity of {¢,, a € 4}, completing the proof
of the theorem.

Now, we remark that the transition probability function P(t, x, -) of the
reflecting A-diffusion is written as follows

P(t, x, )= j ut, x, 3 ,(’Tk(y)dy:j“ bty x, ym(dy),  for - BD),

where p(¢, x, ¥) = U(t, x, y)~7€@—— , R(Mdy =m(dy), k(y)e CY(D) and k(»)dy is the

invariant in the sense of §1'®. By means of the properties of the fundamental

18) This is shown in [117
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solution, given in [8, §47], there exists R“f(x):fme‘“‘dt J‘a Ut x, ) f(»)dy
0 D .

:I:e‘“‘dt j‘app(z‘, xRy, 1f we put k(y)dy=p(dy), we can write
R ()= f:o e~“dt fﬂD p(t, %, M) () dy) = fabgm(x, NF(udy),  where  go(x, ¥)

_—_‘f ooe“"“p(z‘, x, y)dt. For such p(+) and the p(¢, x, ¥), we can see that conditions
0

0), (A.3.1), (A.3.2), (A.3.3) are satisfied and that R*f(x) e C(D), by use of the
result of [8]. Since R%(x) e C(D) and path functions are continuous, we can

define a continuous additive functional ¢,(w) such that FE.(¢w))= jot ds
j‘m)p(s, x, yu(dy). Then, (pgav(w):O cand  Py(@ozp(w)>0)=1 for t>0, are

shown in Theorem 1 of [13].
Thus, we can apply the theorems in §2 and §3 to the reflecting A-
diffusion. Especially, by [[heorem 2.2, there exists

Kf(x)= jow(Tm)—mf)dt, for any e BD).

By Dynkin’s formula, we have, for any ¢ >0,

42) Kf=| 0‘ T f(x)ds—mf « t+T,KF(x).
For R%(x), by [Theorem 3.2, there exists

Re(=lim (Rigto—4 [ ()

= lim Ome-mdt jaD(p(z‘z x, N—Dg(Nk()dj, for any ge BGD).

Thus,
ReGo=1im  “e=ds | (p(s, % H—De)dF
a=0 Yo oD

t1im [ “emds [ (p(s, % )~ De(KG)T
t oD

a—0

=['as [ U xNeOs—1-[ (k)5

+lim e T, ([ “emeuds [ (pGs, 3 )—Da(K)dy)

a=0

Therefore, we have
~ ~ t ~
4 TReW-Rew=—[ ds| Ut x0e0dditt[ epd).

If we put Kg(x)—Kf(x)=uyx), by and (4.3), we have
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44) w9 = Tau()— [ 'ds  UGs, x, 30/ )y
+ [ as [ UG 5 0gGMg+t - (ng—mp),

where we put yg:japg(y)ﬂ(dy).

Now, we can prove

THEOREM 4.2. Assume that f(x) is Holder continuous and bounded on D,
that g(x) is Holder continuous on 0D and that pg = mf.

Then, uyx) is the solution of the differential equation

Au=Ff, for xeD,
with boundary condition
iu:g, for x€oD.
on

Proor. If pug=mf, from (4.3), we have

u() = [ U, % udy— [ 'ds [ UGs, % 07y

+f ds f UGs, x, Y)(3)d5 .
0 oD

When f and g satisfy the conditions stated above, by Theorem 1 VI)* in
S. Tto [87, u, satisfies the differential equation

_Wa.at_uo(x) — Auo(x)——f(x) , fOf X ED 5

and

% u()=g(x), for x=0D.

But, gt-uo(x):o, therefore, we have

A=, xeD,
and

Dum=aty, e,

which proves the theorem.

REMARK. Theorem 4.2 was obtained by S. Ito [9] in the case Laplace-
Beltrami operator. We are informed the result for general cases has been
proved in his forthcoming paper.

Nagoya Institute of Technology
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