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Introduction. In this paper a ring means a commutative ring with a
unit element. An integral domain R is said to be a PF domain if any finite
projective R-module is free.

J. P. Serre raised in the following question:

(S) Is the polynomial ring K[ X, X,, ---,X,] with a finite number of
variables X, X,, ---, X, over a field K a PF domain?

It is well-known (cf. that any principal ideal domain is a PF domain.
Therefore, when =1, the answer to (S) is affirmative. Also, when #=2,
C.S. Seshadri gave in an affirmative answer to (S). He proved in [9]
more generally, that the polynomial ring R[X] with a variable X over a
principal ideal domain R is a PF domain. This was further generalized by
Seshadri [10], Serre [8] and Bass to the following form: If R'=R[X]
is the polynomial ring with a variable X over a Dedekind domain R, then
every finite projective R’-module P’ is expressible as P/ =R’ QP for some
finite projective R-module P. *

For =3 the question (S) is still open. D. Lissner gave in some
results suggesting a negative answer to (S) in case z =3. Recently H. Bass
and S. Schanuel showed in [2] that, for the polynomial ring R’ = R[X,, X,,
---, X,]] with a finite number of variables X, X,, ---, X,, over a semi-local
principal ideal domain R, any projective R’-module of rank ># is free.

Our main results in this paper are Theorems .7 and In
we give a necessary and sufficient condition for a Noetherian integral domain
R of dimension 1, whose derived normal ring (cf. [5]) is a finite R-module,
to the effect that, for the polynomial ring R'= R[ X ] with a variable X over
R, every finite projective R’-module P’ is expressible as P’ zR’QI?P for some

finite projective R-module P. This is a generalization of all the above-men-
tioned result in [1], [8], and [10]. In we give a necessary
and sufficient condition for a semi-local integral domain R of dimension 1 to
the effect that the polynomial ring R[X, Y] with two variables X, Y over R
is a PF domain. This is related with the above-mentioned result in [2].

In both cases, the conditions are expressed in the form that the ring R
should be “weakly normal”. Thus the concept of weakly normal rings will
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play an important part throughout this paper. This concept will be introduced
in §1. Another fundamental tool of this paper is the [Proposition 2.2 in §2,
which seems to be the most general result proved by the method used by
Seshadri, Serre and Bass.

Our notations and terminologies are the same as those in for the ring-
theoretical facts with some exceptions. The “dimension” of a ring means the
“altitude” of it in [5]) An ideal a of a ring R is said to be “unmixed” in
it if, for any prime divisor p of a in R, we have heightyzp=heightza. A
“multiplicative system” of a ring means a multiplicatively closed subset of
it which does not contain 0. Let R be a ring, S be a multiplicative system
of R and M be an R-module. Then we denote by Rg and Mg the quotient
ring and the quotient module of R and M with respect to S, respectively.
Especially, if S is the complementary set of a prime ideal p in R, we use Ry
and M, instead of Rg and M, respectively. A projective R-module P is said
to be of “rank »” in R if, for any maximal ideal m of R, P, has an R,-free
base consisting of » elements. A projective R-module is called “quasi-free”
if it is expressible as a direct sum of R-modules, each of which is isomorphic
to an ideal generated by an idempotent of R. Let R'=R[X,, X,, -, X,] be
the polynomial ring with a finite number of variables X, X,, ---, X, over a
ring R. Then a finite R’-module A’ is said to be “extended” if there exists
a finite R-module M such that M’ zR’(%)M.

§1. Preliminaries.

First we refer to some well-known facts, which will be freely used
throughout this paper.

LEMMA 1.1 (cf. [3)]). Let R be an integral domain and M be a finile R-
module. Then M is R-projective if and only if, for any maximal ideal m of R,
M, is Ry-free.

LEmMaA 1.2 (cf. (7). A semi-local integral domain is a PF domain.

LEMMA 1.3 (cf. [5]). Let R be an integral domain and R be an integral
extension of R. Then, for any prime ideal b of R, theve is a prime ideal D of
R such that =9\ R. Furthermore, p has height 1 in R if v has height 1 in
R, and v is maximal in R if and only if b is maximal in R.

LEMMA 14 (cf. [5]). Let R be a Noetherian integral domain of dimension
1 and R be an almost finite integral extension of R. Then R is also a Noe-
thevian integral domain of dimension 1, and, if R is a novmal ving, it is a
Dedekind domain. Especially, if R is semi-local, then R is also semi-local, and,
in case R is normal, it is a principal ideal domain.

LEMMA 15 (cf. [57). Let R be a Noetherian ving and R' = R[X,, X,, -+, X1
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be the polynomial rving with a finite number of vaviables X,, X,, -+, X, over R.
Then there exists a maximal ideal w' in R’ such that m’ N\ R is not maximal in
R if and only if theve is a prime ideal p in R such that R/p is a semi-local
integral domain of dimension 1. If m/ R is not maximal in R, R/m" "R
becomes, in fact, a semi-local integral domain of dimension 1.

We now introduce a notion of weakly normal rings.

DEFINITION. Let R be a local integral domain of dimension 1 with a
maximal ideal m. Let R be the derived normal ring of R and n be the
Jacobson radical of B. Then R is said to be a weak (discrete) valuation ring
if we have m=1 in the set-theoretical sense.

In general, a Noetherian integral domain R is said to be a weakly normal
ring if R satisfies the following two conditions:

1) For any prime ideal p of height 1 in R, R, is a weak valuation ring.

2) Any principal ideal (#+0) in R is unmixed, i.e.,, any prime divisor of
it has height 1 in R.

Now we prove

PROPOSITION 1.6. A Noethervian normal ving is a weakly normal rving.
However, a weakly normal ring is not always a normal ving.

PRrROOF. The first part of our proposition is obvious by our definition (cf.
[57). Hence we have only to give an example of a weak valuation ring
which is not a valuation ring. Let @ be the field of all rational numbers and
QI[X, Y1] be the formal power-series ring with two variables X, Y over Q.
If we put p=(X2+Y?)Q[[X, Y]], then p is a prime ideal of QLLX, Y]]
Furthermore put R,=Q[[X, Y]]/p and denote by @, b the residues of X, YV
in R, respectively. Then R, is a local integral domain of dimension 1 with
a maximal ideal m,= aR,+bR,. Let R be the derived normal ring of R, As
R, is complete, R is a valuation ring with a maximal ideal m (cf. [5]). Let
R be an integral domain generated by m over R,. Then R is obviously a
weak valuation ring. If we put a=05/a, then we have a?+1=0, hence
a,a*c R, and so a & m. If we suppose « & R, then we have a=u+pj for a
unit # of R, and an element 8 of m. From a®*+1=0, we obtain A(8+2u)-+u*
+1=0. As feim, we haveu*+lemR,=m, Let fAX,Y) be a representa-
tive of # in Q[[X, Y]]. Then we have (f(X, Y)):*+1e XQLLX, Y]I+YQLLX,
Y]], If we denoted by g the constant term of f(X,Y), then we obtain
#+1=0. As geQ, this is obviously a contradiction. Thus a & R. This
shows R # F. Consequently R is a weak valuation ring which is not a valua-
tion ring.

Here we show some basic properties of weakly normal rings.

LEMMA 1.7. Let R be a weakly normal ving and S be a multiplicative
system of R. Then Rg is also a weakly normal ving.
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LEMMA 1.8. Let R be a Noetherian integral domain of dimension 1. Then
R is a weakly normal ring if and only if, for any prime ideal p of R, Ry is «a
weak valuation ving. [Especially, if R is semi-local, and n is the Jacobson radical
of R, them R is a weakly normal ring if and only if we have n=n for the
Jacobson radical n of the derived novmal ring of R.

These two results follow immediately from our definition.

LEMMA 19. Let R be a weakly novmal ving. Then the polynomial ring
R =R[X, X,, -, X, ] with a finite number of variables X,, X,, -+, X, over R is
also a weakly normal ring.

ProOF. Let us show our lemma for n =1, i.e.,, R’= R[X ] with a variable
X. The general case follows easily by induction on #. First we prove that,
for any prime ideal P’ of height 1 in R/, R} is a weak valuation ring. If
p" "\ R=0, then we have R} = (K[ X, xx; where K is the quotient field of
R, and so R} is a discrete valuation ring. On the other hand, if p’ "\ R=p+#0,
then we have P’ =pR’, hence Ry = (R[ X Dprprx;- Therefore we may suppose
that R is a weak valuation ring and p is a maximal ideal of it. Let R be
the derived normal ring of R and 1 be the Jacobson radical of R. Then we
have p=nu. Since R[X] is the derived normal ring of R[X], putting
S'=R[X]—pR[X],(R[X])s is also the derived normal ring of (R[X]),zcx:-
From p=1u we see easily PRLX Dyrixs=01(R[XDs. As n(R[X])s coincides
with the Jacobson radical of (P[ X ])g, this shows that (RLX Dyrexy 1s a weak
valuation ring. Thus, in every case, R} is a weak valuation ring.

Let a’ be a non-zero principal ideal of R’ and p’ be a prime divisor of it.
Suppose heightgp’=2. Then we have » \R=x0. Hence there exists a
non-zero element @ of R in p’. Then p’ is a prime divisor of aR’ (cf. [5],
12.6). However, as R is weakly normal, ¢R is unmixed in R, and so aR’ is
unmixed in R’. This is a contradiction. Thus p’ must be of height 1 in R’,
i.e., o/ must be unmixed in R’. This completes our proof.

§2. Fundamental proposition.

We first prove a proposition, which gives in the most general form a
reasoning which played essential parts in the proofs of the Seshadri-Serre-
Bass’s results.

LEmMMA 2.1. Let R be an integral domain and p be a prime ideal of R such
that R/p is Fuclidean. Let P be a finite projective R-module and L be a finite
projective R-submodule of P such that L=L,PL,P---PL, with each L; a
Sinite projective R-module of rank 1. Then there exists an automorphism ¢ of
L and an integer v, 0=r=wn, such that ¢(L.(BL,PB - BL,YCHP and ¢(L,.,
DL @ - DLINDPP =D ¢(Lys1D Ly @ - D Ly).

The proof is omitted, because it runs in the same line as in [1], 2.2.
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PROPOSITION 2.2. Let R be a Noetherian integral domain and S be a
multiplicative system of R consisting of elements {a;} such that a;R is expres-
sible as the product of invertible prime ideals 9., p,, -+ ,9s in R, for any p; of
which R/p;, is Fuclidean. Let P be a finite projective R-module. If Pg is Rg-
free, then P is expressible as a direct sum of projective R-modules of rank 1.
Especially, if S is a multiplicative system of R genervated by prime elements {p;}
such that each R/p;R is Euclidean, and if Ps is Rg-free, then P is R-free.

ProorF (cf. [1], [8], [9] or [107]). As Ps is Rg-free, we can choose a free
base wu,, u, -+, u, for Py in P. If we put L=#u,R+u,R+ --- +u,R, then we
have LC P and sPC L for some s S. By our assumption on S we have
SR =ypmpr2 ... prs for invertible prime ideals p,, by, --+, ps in R such that all R/p,’s
are Euclidean. Hence we established the existence of an R-submodule L of
P satisfying the following conditions:

1) L=L,PL,P - PL, with each L; a projective R-module of rank 1.

2) phplr...plePC L with each p; an invertible prime ideal of R such that
R/p; is Euclidean.

Since R is Noetherian, we may choose . maximal satisfying 1). Now we
shall prove P=L. Suppose L & P. If we put p=p, and a=pi~ipl2 ... pix(, = 1),
we may assume paPC L but aPc L. If paPCpL, then aPCp~pL =L, contra-
diction. Therefore baP ¢ pL, however paPC PP\ L. This shows that pL &P L.
By (2.1) we have an automorphism ¢ of L for which ¢(L, L, P --- HL,) CpP
and DPﬂ @(Lr»l-l@Lrw@ @Ln>:p ) gD(Lr+IEBLr+2@ EBLn) As DP/_\L + DL,
we have > 0. Hence, if weput H=p"'- oL, DOL, P - BL,)DoL, 11 PL P
-« P L,), then H contradicts the maximality of L. Thus we obtain P=1L.
This completes the proof of the first part of our proposition. The second
part is obvious from the above proof of the first part.

COROLLARY 2.3. Let R be a Noetherian integral domain and S be a multi-
Plicative system of R consisting of elements {a;} such that each a;R is expres-
sible as the product of maximal invertible ideals in R. Let R'= R[X] be the
polynomial ring with a variable X over R and P’ be a finite projective R’-module.
If P§ is Rifree, then P’ is expressible as a divect sum of projective R’-modules
of rank 1. Especially, if S is a multiplicative system of R generated by prime
elements {p;} such that all p;R’s ave maximal in R and if P is Rifree, then
P’ is also R’-free.

LEMMA 24. Left R be a ving and P be a finite quasi-free R-module. If P
has its rank, then P is a free R-module.

Proor. Put n=rankzP. When n=0, this is obvious. Hence we may
assume #=1. We put P=e¢,RBe,RP --- De,R for idempotents, e, e, -+, ¢,
(t=zmn) in R. If we put ej=~A—eey ei=A—e)A—eye,, -, e =(1—e)(1—e,)
-« (1—e,_e; and ef =e,—es, -+, ef —e,—e], then we have P=e,RDe,RP -
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Pe; RPe/RPefRD - Ge/R. We see easily that R=e,RPe,RD --- Def R.
Putting P'=e/RPe{RD --- Be/R, then P’ is a quasi-free R-module of rank
n—1 and we have P=R@ P’. By repeating this procedure to P/, we conclude
that P is a free R-module of rank .

PROPOSITION 2.5. Let R be an integral domain, n be an ideal contained in
the Jacobson radical of R and P be a finite projective R-module. If P/nP is a
quasi-free R/n-module, then P is R-free.

PrROOF. As R is an integral domain, P has its rank. If we put
n=rankpP, P, is a free R,-module of rank », for any maximal ideal m of R.
Since n Cm, (P/nP)y, is also a free (R/n),,,-module of rank n. Therefore we
have rankpmP/nP=n. As P/uP is R/n-quasi-free, P/uP is R/u-free by (2.4).

Let {i,, @, -+, %,} be a free base of P/nP over R/nR, and u,, u,, -, u, be the
representatives of #,, @,, --+, %, in P, respectively. If we put M= u,R+u,R+
- 4u,R, we have P=M+nP. Then, by the Krull-Azumaya’s lemma, we
obtain P=JM, i.e., P has a base {u,, #,, ---,u,} over R. As P, is of rank #,
{wy, 5, -+, u,} is a free base of P, over R, for any maximal ideal m of R.
From this it follows that {w,, u#,, ---,%,} is a free base of P over R. Thus P
is R-free.

§3. Polynomial rings over semi-local integral domains of dimension 1, I.

Here we give

PROPOSITION 3.1. Lel R be a semi-local integral domain of dimension 1
with the Jacobson rvadical n and R’ = R[X,, X,, -+, X, ] be the polynomial ving
with a finite number of vaviables X,, X,, -, X, over R. Then the following
conditions are equivalent:

1) R is @ weakly normal ring.

2) Awny prime ideal P’ of height 1 in R’ such that Y -+nR’' = R’ is principal
in R.

PrOOF. Let R be the derived normal ring of R and n be the Jacobson
radical of B. Denote by K the quotient field of R and put ' = R[X,, X,, -+, X, 1.

The implication 1)—2): Suppose that R is weakly normal. Then, by
(1.8), we have n=7, hence nR’=uR’. Let »’ be a prime ideal of height 1 in
R’ such that p’4+nR’=R’. As R’ is integral over R’, there exists a prime
ideal §’ of height 1 in R’ such that p’=p" AR’ by (1.3). Since R is a semi-
local principal ideal domain by (1.4), R’ is a unique factorization domain, as
is well-known, hence p’ is principal in R’ (cf. [5], 13.1). As V' +uR’ = R’, we
have p’ = (f+ 1R’ for some f€ R’ =nR’. From ' =9 ~ R’, we obtain f+1&yp’.
Hence we have also VK[ X, X, -, Xol=(U+DK[X, Xz, -+, Xul =VK[ X, X,
-, X, . If m’ is a maximal ideal of R’ containing f+1, then we have m’\R=0
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and so we have Ry =(K[X;, X, -+, XuDwxrxy,x,- Therefore we have
VR, =(f+1)R},. Thus we must have v’ =(f+1)R’. This proves that p’ is
principal in R’.

The implication 2)—1): Suppose that R is not weakly normal. Then,
again by (1.8), we have a) nR+#n or b) nR=n=+n. In order to prove 2)—1)
it suffices to show that there exists a non-principal prime ideal p’ of height
1 in R’ such that p’+nR’'=R’, in case a), b).

Case a): When nR #n, we see easily nR ¢ R. Therefore we find an ele-
ment b/a of R, @,b< R such that bc/a & R for a suitable element ¢ of n. As
b/a < R but b/a<s R, b/a is the root of an equation:

T*+7, T 4 oo 47 T4, =0, v, -, nER, E=2.

Hence bc/a is also the root of an eqation:

ToA-cr, TF 1+ oo +c* 2 THc*r,=0.

If we put d;=c%,;, 1<i<k, then all d;/s are contained in n. Hence a/bc is
tke root of the following equation:

ayT*+dy, T* 1+ -+ d,T+1=0.

On the other hand, as is easily seen, @/bc is also the root of an equation
bcT—a=0. Putpy =0bcX,—a)R'+d X +dp X+ -« +d, X;+1DR’. We shall
now prove that 9 is as required. Let m’ be a maximal ideal of R’. If
m’ Dp’, we have m' "\ R=0, as d,, d,, -, dr €1, hence we obtain R}, =(K[X,,
Xo o XoDwkrxy,x,7- Lherefore we have YRy, =(X,—a/bo)Ry,. 1f m" DY,
we have P'R,,= R, This shows that p’ is an invertible prime ideal of
height 1 in R’. However, as bce& aR, P’ is not principal in R/, and, as
dy,d,, - ,d,=n, we have p+nR’=R’. This shows that p’ is as required.

Case b): As nR=n=n, we find a positive integer 2=2 such that n*Cn.
Then there exists an element b/a of n such that b/a<n but (b/a)f=cen.
Hence a/b is the root of equations ¢7%—1=0 and 07T—ae¢=0. If we put
p =(bX,—a)R' +(cX%—-1)R’, we can prove, as in case a), that p’ is as required.
This completes our proof.

COROLLARY 3.2. Let R be a semi-local integral domain of dimension 1 and
R =R[X,, X,, -, Xn] be the polynomial ring with a finite number of vaviables
X, X,, -, X, over R. If R is not weakly normal, then there exists an invertible
ideal in R’ which is not principal.

Proor. It is obvious from the proof of 2)—1) in (3.1).

PROPOSITION 3.3. Let R be a semi-local integral domain of dimension 1
and let R’ =R[ X be the polynomial ring with a variable X over R. Then the
following conditions arve equivalent :

1) R is a weakly normal ving.
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2) R’ is a PF domain.

Proofr. The implication 2)—1) was already proved by (3.2). Hence we
have only to show the implication 1)—2). Suppose that R is weakly normal.
Let n be the Jacobson radical of R, and m’ be a maximal ideal of height 1
in R/. Then we have m’+nR’= R’ by (1.5). Therefore, by (3.1), m’ is principal
in R’. Let S be the multiplicative system of R’ generated by all prime
generators of maximal ideals of height 1 in R’. Then, for any maximal ideal
m’ of height 2 in R/, we have m’ S’ =¢. Accordingly, if we put R”= Ry,
m’R” is also maximal in R”. Conversely, for any maximal ideal m” of R”,
m” N R’ is a maximal ideal of height 2 in R’. As any maximal ideal of
height 2 in R’ contains nR’, any maximal ideal of R” contains nR” and so
nR” is contained in the Jacobson radical of R”. Now we have R”/nR”
2 (R/MIX]=R/mILX]IP - BDR/m)LX], where m,, m,, ---, m, are all maximal
ideals of R. Since any (R/m;)[X] is a PF domain, any projective R”/nR”-
module is quasi-free. Hence, by (2.5), R” is a PF domain. By applying (2.2)
to S/, we see that R’ is also a PF domain.

§4. Polynomial rings over Noetherian integral domains of dimension 1.

First we give two lemmas.

LEMMA 4.1. Let R be an integral domain and R' = R[ X be the polynomial
ring with a varviable X over R. Then any finite projective R'-module of rank 1
is isomorphic to an invertible ideal of R’ containing a non-zero element of R.

PrOOF. Let P’ be a finite projective R’-module of rank 1. If we denote
by K the quotient field of R, we have P’CK%{)P’. As K(%{)P’ is a free

K[ X7]-module of rank 1, we may choose a generator a of K(%)P’ such that

P cCaR'. If we consider «R’ as R’, we can also consider P’ as an invertible
ideal o’ of R’. Since, for some ¢+ 0 in R, we have aa € P/, we have clearly
a’ "\ R=+0.

LEMMA 4.2. Let R be a PF domain and R' = R[X] be the polynomial ving
with a variable X over R. Let P be a finite projective R’-module of vank 1.
If P’ is extended, then P’ is isomorphic to R’.

PROOF. As this is easy, we omit it (cf. [3], X, Ex. 1).

Now we prove

THEOREM 4.3. Let R be a Noetherian integral domain such that any prin-
cipal ideal in it is unmixed, and R’ = R[X,, X,, -+, Xn] be the polynomial ring
with a finite number of variables X,, X,, -, X, over R. Then the following
conditions arve equivalent:

1) R is a weakly normal ving.
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2) Any finite projective R’-module of rank 1 is extended.

ProoOF. It suffices to prove our theorem in case =1, i.e,, R’ =R[X]
with a variable X, by the last part of the proof of (1.9) and by (1.9).

The implication 1)—2): Suppose that R is weakly normal. According to
(4.1), it suffices to show that, for an invertible ideal a/ of R’ such that a/ "\ R
=a+0, we have o’ =aR’. As, for any maximal ideal m’ of R/, 'R}, is prin-
cipal in R%. a’R}, is unmixed in R}, by (1.7) and (1.9). So a’ must be un-
mixed in R’. Let p{,p}, ---,d{ be all prime divisors of o’ in R’. As all ps
contain a, we have p;\R=p;#0 for any ¢. As heightzd;=1 we have
b/ =p;R’" for any i. Now let a’=q{ "o =+ N0 be a primary decomposition
of a’ in R’ where each ¢f is a primary ideal belonging to p;R’. Then we
have also 9/ \R=0;+0, for any i. Now we shall prove q;R'=qf for any 1.
Since Ry, is a weak valuation ring, Ry,[X] is a PF domain by (3.3). As we
have o’Ry,[X]=10qf{ Ry,[X], and o’R,,[ X] is invertible in Ry [X], af Ry,[X] is
principal in Ry,[X]. From q;+0 of{ Ry,[X] has a generator ¢; in Ry,. If we
put 9f =¢Ry;, we have o}Ry,[X]=0f Rp,[X] and ¢f{ Ry,[ X\ Ry, =0f. There-
fore of is a primary ideal belonging to p,R,,. Since q;,=0aF R, we have
Ry, =qF, and so q; is also a primary ideal belonging to p. As q;Ry,[X]
=q{ Ry,[X], we have qR'=c¢{. From this we easily see a=aq; "\, - N\
and a’ =aR’. This proves 1)—2).

The implication 2)—1): Suppose that R is not weakly normal. Then,
for some prime ideal p of height 1 in R, R, is not a weak valuation ring.
Let R be the derived normal ring of R, and put S=R—p. Then Ry is the
derived normal ring of Ry. As R, is not a weak valuation ring, pR, does not
coincide with the Jacobson radical u of Ry in the set-theoretical sense. Hence
we have a) pRg# PRy or b) pRg=0pR, 1. It suffices to show that there is an
invertible ideal in R’ which is not extended, in each case a), b).

Case a): There exists an element 8 of Ry such that ¢8& R, for some
¢ € PpR,. By multiplying B, ¢ by a suitable element of S, we may assume
g &R such that cf« R, for some cep. Put f=0b/a, a,b= R. Then there
exist only a finite number of prime divisors p,(=9), p,, -+, P, of aR, each of

which is of height 1 in R. If we put U:b (R—b,), Ry is a semi-local inte-
gral domain of dimension 1 with maximal ;;lleals PRy, 0, Ry, -+, 0, Ry, wWhich is
not weakly normal. Again, by multiplying ¢ by a suitable element of (i\pi
which is not contained in p, we may assume that £ is an element of R stfch
that c¢f & Ry for some Ceidpi' If we put a=cp, then, as in 3.3), a™! is a

root of an equation ¢f(T)+1=0, f(T)= R[T]. Furthermore put P =(bcX
—@)R' +(cf(X)+1R'. Let m’ be a maximal ideal of R’. If we put q=m’' N\ R,
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q is a prime ideal of R. If ¢ €q, then ¢f(X)+1 & w’, hence we have V'R, =R).
If c&q, then p, P, -+, 0, q, and so aeq, i.e, e m’. Therefore we have
YRy, =(@X—1)R},,. This shows that p’ is an invertible prime ideal of R’.
However, p"R,[ X7 is not principal in Ry[X] as in the proof of Case a) in
(3.3). By (4.2), then, p’Ry;[ X7 is not extended in Ry[X]. Consequently p’ is
not extended in R’. Thus §’ is as required.

Case b): There exists an element «a of Ry such that a & R, but af € pR,
for some £=2. As in a) we may assume « & R such that a & R, but o« € pR,.
Put a=b/a, a, b= R. There exist a finite number of prime divisors

P(=0), by, -+, p, of aR. If we put U= ft\ (R—Jp;), then we may assume also
i=1

— t
that « is an element of R such that a & Ry and a* = Np,. If we put c=a®
i=1

and ' =0X—a)R'+(cX*—1)R’, then, as in a), we can show that p’ is as re-
quired. This completes our proof.

COROLLARY 44. Let R be a Noetherian integral domain of dimension 1
and R' = R[X,, X,, -+, X,,] be the polynomial ving with a finite number of vari-
ables X, X,, -+, X, over R. Then the following conditions are equivalent:

1) R is a weakly normal ring.

2) Any finite projective R-module of rank 1 is extended.

COROLLARY 4.5 (cf. [1]). Let R be a Noetherian normal ving and R’
=R[X, X, -+, X, be the polynomial ring with a finite number of varviables
X, X, o, X, over R. Then any finite projective R’-module of rank 1 is ex-
tended.

LEMMA 4.6. Let R be a Noetherian integral domain, whose derived normal
ring, R, is a finite R-module. Then there exist only a finite number of prime
ideals Dy, 9y, -+, 0, of height 1 in R such that R,'s arve not discvete valuation
Yings.

PrOOF. Let a be the conductor of Rto R, i.e.,a={a;eRC R,a= R}. By
our assumption a is a non-zero ideal of K. There exist only a finite number
of prime ideals p,p,, ---,d of height 1 in R containing a. If p is a prime
ideal of height 1 in R which does not coincide with any of p’s, we have
RC R, as aRC R. Putting S=R—), we have Ry,=FRg This shows that R,
is a discrete valuation ring.

Our main result is given in the following :

THEOREM 4.7. Let R be a Noetherian integral domain of dimension 1,
whose derived normal ring, R, is a finite R-module and let R'=R[X] be the
polynomial ring with a wvariable X over R. Then the following conditions are
equivalent :

1) R is a weakly normal ving.

2) Any finite projective R'-module is extended.
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Proor. The implication 2)—1) was proved in (4.3). Hence we have only
to show the implication 1)—2). As R is one-dimensional, any prime ideal
p(#0) of R is of height 1 in R. According to (4.6), there exists only a
finite number of prime ideals p,, p,, ---, 9, in R such tnat R,,’s are not discrete
valuation rings. Let p be a prime ideal of R different from py, p,, -+, 9. Then
Ry, is a discrete valuation ring and so p is invertible in R. Now put

L
S= N (R—p;). Then, for any element s of S, we have se&p, D, -+, b, hence:
i=1

SR is expressible as the product of invertible prime ideals of R. Therefore:
S satisfies the condition in (2.3). Suppose that R is a weakly normal ring.
Then Ry is also weakly normal. Hence, by (3.3), Ri= Rs[X] is a PF domain.
So, by (2.3), any finite projective R’-module is expressible as a direct sum of
projective R’-modules of rank 1. On the other hand, by (4.4), any finite pro-
jective R’-module of rank 1 is extended. Thus our proof is completed.

COROLLARY 4.8. Let R be a Noethervian PF integral domain of dimension
1, whose derived novmal ving, R, is a finite R-module, and let R’ = R[X] be
the polynomial ring with a variable X over R. Then the following conditions
are equivalent :

1) R is a weakly normal ving.
2) R’ is a PF domain.

§5. Polynomial rings over semi-local integral domains of dimension 1, II..

We begin with

LEMMA 5.1. Let R be a unique factorization domain and R'=R[ X,, X, -+, X, ]
be the polynomial rving with a finite number of varviables X, X,, ---, X, over R.
Let o be an ideal of R' generated by «,X,+b,, a,X,+by, -+, @, Xn+0b, such that,
for any i, a;, b; are relatively prime non-zevo elements of R. Then there exist
relatively prime mnon-zero elements a;, b; of R and positive integers [, -+, /[,

such that a(X,+ X2+ - ~XW) 4 bea and ac (N aR.
i=1

PrROOF. This is obvious in case #=1. First we suppose n=2. If «, a,
are relatively prime, a,a, and a,b,+«,b, are also relatively prime. We have
now a,(@,X,+by)+aa, X,+b)=a,a,(X,+X,)V‘a.b,+ab,=a’. Hence, if we put
a=a,a,, b=a,b,+a,b, and /,=1, then our conclusion holds. If a,, @, are not
relatively prime, then there exist common prime divisors p,, p,, -+, p; of a,, a,
and we may write a; = piips2 --- pita] and a,= p{1ps? --- ptas for relatively prime
elements «af, a; of R such that «f, @, & p;R, 1 <:<¢ and positive integers #;, S;.
Now, for a suitably large integer [, we have [ls; > #; for any { and &l Xi+bica’.
Then we have

PP e gl (@, X+ b))+ af (X 4B
=ppie - plaf ay' (X, + XD +-plrriphere e pinneag’b al by e o’



350 S. Enpd

If we put a=pbiplse ... ple and b= plsrriplera ... plsregilh 1+ b, then a, b are
relatively prime non-zero elements of R. Accordingly, for @, b,l,=/, our con-
clusion holds.

In general case, we use the induction on #. Suppose that the conclusion
holds for n=~% (=2). Let a;,; be an ideal of R[X,, X,, -+, Xi, Xi+1] generated
by @, X,+0b,, @, X+ b, -+, @ X+ iy @11 Xir1+brer sSuch that for any i, a;, b; are
relatively prime non-zero elements of R. If we put af=(e. X, +b)R[X,, X,,
o, X+ s H (@ X0 RLX, X, -, X, then af is also an ideal of R[ X, X,,
---, X, ] satisfying the condition in our lemma for #=%. By the assumption
of induction, there is an element «/(X,+X84 --- +X}*)+b’ in a; such that

k
< Na;R and ¢/’ R+b'R=R,a’,b' +0. As a,Capyy, &' (X+X8+-- + X+
i=1

Eafy. Put Y=X,+Xb+ .. +XI and let o/ be an ideal of R[Y, Xi.i]
generated by @'Y+, @441 Xie1+bree If we apply the proof for n=2
to @' Y+0b', @y 1 Xjr1+0rs, we can find relatively prime elements @, b of R
such that a(Y+Xkt)+bea” and e=a’' RN\ apR. As o’ Cajy, we have
a(Y+ X +b = a(X,+XP+ - + X%+ beaiy,.  Obviously we also have

kE+1
kE+1

as N\ a;R. This shows that our conclusion holds for #—=4%-+1. Thus our

i=1
proof is completed.

PROPOSITION 5.2. Let R be a semi-local integral domain of dimension 1
and R"=R[X,, X,, -+, X, be the polynomial ving with a finite number of vari-
ables X, X,, -+, X, over R. Then any maximal ideal wm’ of height n in R’
contains a prime ideal Y’ of height 1 in R’ such that R’/Y’ is isomorphic to the
polynomial ring with n—1 variables over a field.

PrOOF. If # =1, this is trivial. Hence we may suppose #=2. As wm'
has height # in R/, at least one of X;’s is not contained in m’. Suppose that
X Xigy -+ » Xip, € m/ and X, Xy, o+, X;,_, €w’, for some £2=1. Then we have
m’=m"R'+X; R'+X;,R'+ -+ +X, R for a maximal ideal m” of height % in
R[ Xy, Xig, -+, X5 1

If we use m” instead of m’, we may assume X, X,,---, X, &m’. If we
put p;=m’ "\ R[X,] for any i, then p; is a prime ideal of height 1 in R[X,]
and we have p;\R=0. If at least one p;, of p;’s is maximal in R[X;,], then
we have R//p; R’ =(R[X;1/p:i)[ X1 Xo o0y Xig—1y Xiger ++» Xnl, and therefore
our assertion is true. Hence we assume that any p; is not maximal in R[X;].
Let K be the quotient field of R. Then p,K[X;] is a prime ideal of K[X;],
and so it is generated by an irreducible polynomial f3(X;) in K[X;]. As is
easily seen, we can suppose fy(X;) ;. Let af, af?, -+, af be all the roots
of the algebraic equation f(T)=0 over K for any 7, and put K= K[a{®, af®,
vy, af?, e af®, e V] Let R be the integral closure of R in K. Then,
by (1.4), R is a semi-local principal ideal domain. If we put R’ =R[X, X,

n—k
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.+, X,], then R’ is a unique factorization domain integral over R’. There
exists a maximal ideal m’ of R’ such that m’=m’'~ R’ by (1.3). Similarly,
by (1.3), we have heightzm’=#. Since any f«(X;) is expressible as the prod-
uct of linear polynomials in R[X;], and any X, is not contained in m/, we
have
m = (@, X, +b )R +(@:X,+b)R'+ -+ +(@ X0 +b)R,

for non-zero relatively prime elements &;, b; of R for any i. Then, by (5.1),
there is an element @(X,+ X%+ -+ +X™)+h in W’ such that gR+bR=R and
de NaR. As w’ is maximal in R’, it is easily seen that 11 is con-

i=1 i=1
tained in the Jacobson radical n of F. Hence & is also contained in n. Since
@R-+bR =R,b must be a unit of R, and so we may suppose b=1. If we put
U= X,+X¥+ -+ +X!, then we have R"=R[U, X,, -+, X,] and R'=R[U, X,,
-, X,]. Also we have ' \R[Ul=(@U+DR[U]. Asaei, (@U+DRLU] is
a maximal ideal of height 1 in R[U7]. If we put vy, =@U+DRLUIAR[U],
then b, is a prime ideal of height 1 in R[UJ]. Since R[U] is integral over
R[U], py is also maximal in R[U] by (1.3). If we put p’ :'pUR’, then we
have
Ry = (RLU/pp)[Xe, X5, -, Xi].

Obviously we have p"Cm’. This completes our proof.

COROLLARY 53. Let R be a semi-local principal ideal domain and R’
=R[X,, X,, -+, Xl be the polynomial ring with a finite number of variables
X, X, -+, X, over R. Then any maximal ideal m’ of R’ is gemnerated by ele-
ments in numbers equal to its height.

Now we give

THEOREM b5.4. Let R be a semi-local integral domain of dimension 1 and
let R" =R[X,Y] be the polynomial ring with two variables X, Y over R. Then
the following conditions are equivalent :

1) R is a weakly normal ving.

2) R’ is a PF domain.

ProoF. As the implication 2)—1) was proved in (3.2), we have only to
show the implication 1)—2). Suppose that R is weakly normal. Let m’ be a
maximal ideal of height 2 in R’. Then, by (5.2), there exists a prime ideal
p’ of height 1 in R’ contained in m’ such that R’/p is isomorphic to the
polynomial ring with a variable over a field, i.e., to a Euclidean ring. If we
denote by n the Jacobson radical of R, we see easily p’+nR’=R’. Hence, by
(3.1), v’ is principal in R’ and so we can put P’ =p'R’ for a prime element p’
of R/. Let S be the multiplicative system of R’ generated by all prime
elements {p/} in R’ such that any R’/p; R’ is Euclidean. If a maximal ideal
m’ of R’ has height 2 in R/, then we have m’' " S # ¢ by the preceding argu-
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ment, and if m’ has height 3 in R/, then we have m’ NS = ¢, as is easily
seen. If we put R” = R}, there is no maximal ideal of height 2 in R”. Let
m” be a maximal ideal of height 1 in R”. If we put p=m” ~ R/, then P’ is
a prime ideal of height 1 in R’ such that y’4+nR’'=R’. Again, by (3.1), ' is
principal in R’. As wm”=9'R”,m” is also principal in R”. Let S” be the
multiplicative system of R” generated by all prime elements {p/} in R” such
that any R”/p/R” is a field. Then, for a maximal ideal m” of height 1 in
R”, we have m” ~S” +# ¢ by the preceding argument, and while, for a maximal
ideal m” of height 3 in R”, we have m”" "\ S”"=¢. If we put R*= Rg, then
any maximal ideal m* of R* has height 3 in R* and is generated by a
maximal ideal m’ of height 3 in R’. So we have m* DnR*. This shows that
nR* is contained in the Jacobson radical of R*, According to (2.2), if R* is
a PF domain, then R” is so and if R” is a PF domain, then R’ is so. Further-
more, if any finite projective R*/nRK*-module is quasi-free, then, by (2.5), R*
is a PF domain. Therefore it suffices to prove that R*/nR* is a direct sum
of PF domains. In fact, if we denote by m,, m,, ---, m; all maximal ideals of R,
we have

RE/mR* = (R/wlX, Y]=R/m)LX, YID - & ER/mLX, Y].

As any R/m; is a field, any (R/my)[X] is a principal ideal domain. Then, by
4.8), any (R/m)LX, Y] is a PF domain. This completes our proof.

Kei6é University
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