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In this paper we consider so called Hasse’s principle concerning quater-
nionic anti-hermitian forms over an algebraic number field. Our main result
will show that, when the number of variables is different from two, a quater-
nionic anti-hermitian form over an algebraic number field represents zero if
and only if it represents zero in all local fields. We shall also show that two
anti-hermitian forms which are equivalent in all local fields are not always
equivalent in the original field. Thus Hasse’s principle in the first sense is
valid while that in the second sense is not. §1 is preliminaries: the most
part of it is devoted to resume the local theory of quaternionic anti-hermitian
forms (Tsukamoto [3]). In §2 we give results affirming Hasse’s principle in
the first sense and in § 3 a counter-example to Hasse’s principle in the second
sense.

§1. Preliminaries

Let k£ be a field of characteristic not two, and let D be a quaternion
division algebra over k, having a basis: ¢ (=the unit element of D), ¢, ¢,, &
satisfying e}=c¢,, ed=c, (¢, c;, € k¥), 6,6,= —¢,6,=¢,. Sometimes we write:
D = (¢, co/B)=(cy, cy).

D has an involution which fixes only the elements of 2 ( main involution”)

which transforms & = 3251@ to & :eoao—ésiai. The reduced norm N(¢) and
] i=1

=

the reduced trace Tr(€) are defined by the formulae: NE)= &€, Tr(&)=¢&+E.
D~ denotes the set of all elements of D whose trace is zero, i.e. D~={¢£;
Tr(&)=0}.

We consider a finite dimensional right vector space V over D. A sesquili-
near form ¢: VX V—D is called anti-hermitian if it has the property:

o(y, %)= —¢(x,y) for any (x,y) in VX V.

A mapping H from V to D is called an anti-hermitian form on V if the
following two conditions are fulfilled:

1) Hxa)=aH(x)a for any (a,x) in DX V.

2) There exists an anti-hermitian sesquilinear form ¢ satisfying

H(x+y)—H@x)—H(y) = ¢(x, y)—¢(x,y) for any (x,3) in VX V.
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We resume here some fundamental results in the local theory from Tsuka-
moto [3] which we shall use freely in the following.

PROPOSITION 1. If H(x)=0 for all x in V, then ¢(x,y)=0 for all (x,y) in
VX V. As a consequence, V has an orthogonal basis.

PROPOSITION 2. 1) Witt’s theorvem is valid, i.e. if W, W, are subspaces of
V' and if there exists a linear isomorphism p from W, onto W, such that
H(o(x))= H(x) for all x in W,, then p can be extended to an automorphism of
(V,H) (.e. a linear isomorphism of V onto itself which preserves H(x)). 2) We
have ¢ Witt’s decomposition’ of (V, H) i.e.

V=V,+ i {e; el } (orthogonal sum),
i=1

where H(e;)=H(ej)=0,¢(e;,ef)=1 (1 =i=<v) and V, is anisotropic.

This decomposition is ##nigue up to an automorphism of (V, H). v is called
the index of (V,H), and the isomorphism class of V, is called the fype of
(V,H). The discreminant 3(V) of (V, H) is defined by

o(V)=(—1"Me(x;, %))  (mod &*%)

where (x;) is a basis of V. It is easily seen that (V) thus defined is a type
invariant and (V4 V")=a(V)o(V").

Now we restrict our field to the local one.

PROPOSITION 3. Let & and n be in D~. Then £ is equivalent to 7 (i.e. there
exists an element o of D* satisfying n=aéa), if and only if N(&)=N(7)
(mod k*?). From this we can deduce that any anti-hermitian space of dimension
=4 is isotropic.

PROPOSITION 4. [n case of the local field, (V,H) is completely determined
by (=14 agnd dV), which can be prescribed arbitrvarily. The list of all the
anisotropic anti-hermitian spaces arve as follows:

dim V o(V)

0 1

(p-adic case) 1 c=£1 (mod £*?)
2 c =1 (mod %&*?)
3 1
0 1

(the real case)

1 c %=1 (mod k*?)
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Finally we introduce some notations for the later use. H,(D) means the
set of all non degenerate n X » anti-hermitian matrices over D, namely H;,(D)
={Xe MD)*;'X=—X}.

If, for X, Y in H,(D), there exists an element Z of M,(D)* satisfying
‘7XZ=7Y, we say X is equivalent to Y, and express as X~ Y.

Moreover if, for X, Y in H, (D), there exist Z in M,(D)* and ¢ in k¥
satisfying ‘ZXZ=cY, we say X is multiplicatively equivalent to Y, and use the
notation XA Y. Both relations are clearly equivalence relations and there is
a one-to-one correspondence between the elements of H;(D)/~ and the isomor-
phism classes of non-degenerate anti-hermitian spaces over D. In view of
Weil’s paper [1], H;(D)/L corresponds to the isomorphism classes of quater-
nionic algebraic groups of type D,.

§2. From now on k denotes exclusively an algebraic number field and D
denotes a quaternion division algebra over k. k&, means the completion of
k with respect to a prime p (finite or infinite) of £, and D, means the algebra
over kp obtained from D by extending the field of coefficients from % to ky.
We consider everything over %k as imbedded naturally in the corresponding
thing over ky, e.g. VC Vy and M,(D)C M,(Dy), etc.

For the shortness of expressions we say “ (H.1) is true for »” if the next
proposition is true: “If U< H;(D) represents zero in ky, (i.e. there exists a
non-zero element x, of V), satisfying ’X,Ux, =0) for all p, then U represents
zero in k (i. e. there exists a non-zero element x of V satisfying ‘XUx=0).”

In the same way we consider two more propositions: “(H.II) is true for
n” means “ U and U’ in H,;(D) are equivalent by an element of M_,(D)* if and
only if they are equivalent by an element of M,(Dy)* for all p.”

The third proposition we consider is “ U and U’ in H;(D) are multiplica-
tively equivalent by an element of M, (D)* if and only if they are multiplica-
tively equivalent by an element of M, (Dy)* for all p.”

Or symbolically we may express it as

(H. ID U~U < U~U for all p
k kp

(H. 11D LU <> ULU for all p
k kp

where 4 means the multiplicative equivalence introduced in §1; (H. III) is
nothing but,the Hasse’s principle for quaternionic algebraic groups of type D,
over k.

LemMMA 1. (H. III) s true for n=1.

PrROOF. Assume #»,v< D* and # L v for all p, i.e. there exist for each
P %€ Df and ¢, € kF satisfying Xyux, =cw. Then we have clearly Nu)/NQv)
< k¥ for any p, and consequently Mu)/N@w)< k**. So we can find ¢ in %*
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with the property: N(u)= N(cv), and # can be transformed to cv by an inner-
automorphism of D, i.e. there exists y & D*¥ such that y~'uy=cv, whence we
get Juy= N(y)cv. q.e.d.

LeMMA 2. (H. III) is true for n=3.

ProoF. We make use of the well-known isogeny between SO(6) and SL(4)
over the universal domain £. Considering projective groups, we get the
isomorphism

9] PO(6) = PL(4).

For a given element U of H;(D), we construct an involutive algebra
(4, ay) with the underlying algebra A= M(D) and the involution «y defined
by

ay: X—-U-1'XU  for any X in A.

Let G(U) be the connected component of the algebraic group consisting

of all automorphisms of (A4, ay). Let U and U’ be in H;(D), then G(U) is

isomorphic to G(U”) as an algebraic group over & if and only if U is multipli-
catively equivalent to U’ over k&:

G(U)—ICEG(U’)@ Ur”?U’.

On the other hand, from the isomorphism (1) G(U) is isomorphic over £k
to one and only one (up to an isomorphism over k) group of type PL(4); we
denote this group (of type PL(4) defined over k) by G*(U):

GU)=G¥U) over k.

By the result of Weil [1], G¥(U) is realized as the connected component of
the automorphism group of an involutive algebra (By, 8y) which is isomorphic
over the universal domain to M(2)P M,(2) with the involution; (x,y)— (Cy, *x).
It is easily shown that such an algebra (By, ) must be one of the following
types:

1 By = Mk)D M) By (%, 5)—(y, %)

2) By =M(D)YPMLD)  By:(x3)—(F %)

where D’ denotes a quaternion division algebra defined over k£ and x—Z%
denotes the main involution of D’.

3) By=DM(K) By:x—'%

where K denotes a quadratic extension of £ and x— % denotes the conjugation
of K over k.

4) By = M,(D) By:x—'x

where ® denotes a quaternion division algebra over a quadratic extension K
of £ with the involution ¢ which does not fix the elements of K.
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5) By=%®"  fyix—x

where ®©’ denotes a division algebra of degree 4 over a quadratic extension
K of k, with the involution ¢ which does not fix the elments of K.

Let (B, 8) and (B’, 3) be two involutive algebras, isomorphic to one of the
above types, and assume that they are isomorphic (as an involutive algebra
over ky) for all p, then we can conclude that they are isomorphic over % as
an involutive algebra over k. For (B, f)=(B’,p’) over ky means firstly
BRky= B Qky for all p, and this means by the Hasse’s theorem in associa-
tive algebras that B= B’ over k. In case of 1), 2) there is nothing more to
say; in case of 3), 4) and 5) the problem is reduced to the (H. III) type
theorem in hermitian forms over involutive algebras which was proved by
Landherr in (2], p. 229, Satz 4).

Now let U and U’ be in H;(D), and suppose that U is multiplicatively
equivalent to U’ over &y for all p. Then G(U) is isomorphic to G(U’) over kp
for all p, and this means G*(U) is isomorphic to G*(U’) over k, for all p.

We realize G¥(U) and G*(U’) as the automorphism groups of the involutive
algebras (By, fy) and (By/, By.), respectively, both algebras being chosen from
the above list; Then these involutive algebras must be isomorphic over k;
for all p, so that by the above argument they are isomorphic over %, and
consequently G*(U) is isomorphic to G*(U") over k. Finally this means that
G(U) is isomorphic to G(U’") over k and we have thus shown that U is multi-
plicatively equivalent to U’ over k. q.e.d.

LEmMMA 3. (H. D) is true for n=3.

PrOOF. Let U be in H;(D) and represents zero in all k,, Consider Witt’s
decomposition (proposition 2) in each &y:

010
UN(——I 0 0 ) &y € Dy, where &, is determined by
"\ 0 0 £ d(U)=N(») (mod £}®).

As 0(U) is a norm of the pure-quaternion in D, for each p, there exists & in
D~ such that N(&)=086(U).

Then ¢ satisfies the equation N(&) = N(&;) (mod ky*?) for each b, so by the
argument in the proof of Lemma 1 we can find, for each p, an element », of
ky* such that né~¢&,. We get

010 010
Urkv<—1 0 0 )rkvrp(—l 0 0 ) for every .
"No o e/ Noo ¢

We can conclude from Lemma 2 that U is multiplicatively equivalent to
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(~

010
r(-l 0 0 ) This shows that U represents zero in Z. q.e.d.

0 0 ¢

LEMMA 4. Let A=MyD), UcH,;(D),a: X—U1'XU(Xec A), D=(p, q/k),
KDk q), B=My(K),B:Y— (@I Y (@U)).

Then (A, a)Q K is isomorphic to (B, B)Q K over K.
Where @ : M,(D)— M,,(K) is defined by O(X)=(p(x:;)) and ¢:D— M(K) is an
injection defined by ¢(y)= (a%—cx/ff pb—dVq)\ for r =a-+tbe,+ce,+des =D
b+dvqg — a—cVgq

As a consequence, U represents zero (as an anti-hermitian form) in K, if
and only if ®(U)J (as a quadratic form) represents zero in K.

In particular, y € D~ represents zero in K if and only if ¢(7)/ represents
zero in K. If K is the real field the last condition is equivalent that
Ni)=det(p()J)<0 in K.

The proof is straightforward and is omitted.

Now we will give some supplementary definitions and notations.

DEFINITION 1. Let f be a definite quadratic form over the real field. We
put sgn(f)=1 if f is positive definite, and sgn(f)=—1 if f is negative
definite.

Let p;, (1=<i<s) be all the finite primes of £ at which D does not split,
boo,; (1 =7 =1¢) all the real primes of £ at which D splits, p=.,; (¢ <j=u) all the
real primes of k2 at which D does not split. We use these notations in the
next definition and Lemmas 5, 6, 7 and 8.

DEFINITION 2. Let £ € D~, and N(&)=1 (mod P, ;), £ the image of & in
DRk, ;. We fix an injection ¢;: DQRks.,, ;— Myks., ;) once for all, and define
as sgn; (&) =sgn (¢, (£9)]) (notations of Lemma 4 and Definition 1).

By this definition and Lemma 4, we get

LEMMA 5. diag (&, &, -+, €,) € H (D) represents zero in ky. ; if and only if
one of the following two conditions be satisfied :

1) There exists &, such that N(&)= —1 (mod p- ;).

2) N(&)=1 (mod p=,;) for all I, and there exist &, &, ({+m) such that
sgn; (&) # sgn; (€,).

LEMMA 6. Let & (I=1,2,3)e D, and N(&)=1 (mod .. ;) for all I if and
only if j=t,=t. Then diag(&,, &, &)< Hy(D) represents zero in k if and only if

O O O

1
0 ) over k, i.e. there exists 7 in £* such that U is equivalent to
0

wm O O
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the following two conditions are satisfied:
1) o(diag (€, &, &) = —N(EDMEIN(E) =1 (mod £32), 1=i<s.
2) For each j <t,, there exist &, and &, ({+m) such that
sgn; (&) # sgn; (Ex) .

PrOOF. By Lemma 3, it is sufficient to show that diag (¢, &,, &) represents
zero in all k. As any quadratic form of 6 variables over a p-adic field repre-
sents zero, this is a direct consequense of Proposition 4, Lemmas 4 and 5.

LEMMA 7. U e Hi(D) represents zero in k if and only if U vepresents zero
in ky,; Q=70

PrOOF. “Only if” part is clear, we will show “if ” part. Let U be dia-
gonalized as

'51 0
&,

= 0 53 ): diag (El) 521 53) 54)7 El e D~ (l: 1’ 2, 3, 4) .
&,

As U represents zero in all %y, we can find for each p,%® and x{” (=1,
2,3,4) such that

FEAPHEPE AP = 10 = —EPERP—EEaP @

Where we can assume without loss of generality that ¥ =0 for any p, be-
cause Witt’s decomposition shows that a zero-form represents any element of
the pure quaternion. Moreover we may assume that N(n®=9 )=1 (mod bYo,;)
if and only if 1<j<¢# <¢ Consider the set of equations:

y=N»n%) (mod &), 1=i<s
¥y = N#n%?) (mod Yo,p), 1=j=u.

By the approximation theorem, (3) has a solution y, in 2. By Hasse’s theorem
on quadratic forms, there exists », € D, such that M#,)=y,.
Let ¢, be a solution of

¢ =sgn (n%=?)sgn (7,) (mod y=,5), L=j=1¢;. 4

Then 7 =c¢,7, satisfies

©))

N =Nx*?) (mod &), l=iss
N(p) = Nn®=?) (mod 9--,), 1=j=u
sgn; (7) = sgn (7%=7) l=j=st.
So it can readily be seen that diag(¢,, &,, —7) and diag(—§&;, —¢&,, —n) satisfy the

condition 1) and 2) of and both of them represent zero in k. q.e.d.
LEMMA 8. Ue H;(D) (n=4) represents zero in k if and only if U represents
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zero in ky,, ; 1 =j=12)
PrROOF. Let U=diag (¢, &, - ,&,), &€ D-(U=1,2,---,n). Take, for each
p non-zero 7® such that

= = — — Z( ¢ 7(
xiv)flxgp)+xép)52xép) — 7](9) — _x3¥‘)§3x§7)_ cee __,xnp)é'nxnv) .

Let 7, ¢, be a solution of (3), (4) of Lemma 7 respectively, and 7 =c¢;7;.
Then by Lemma 5, 6, 7, and the mathematical induction on the numbers of
variables #, diag (§,, &,, —#) and diag (—§&,, —&,, ---, —&n, —7) represent zero in k.
Now, (H. 1) being trivially true for =1, we get by Lemmas 3 and 8.
THEOREM (H. 1) is true for n + 2.
i.e. A quaternionic anti-hermitian form in (n + 2) variables over an algebraic
number field represents zero if and only if it vepresents zevo in all local fields.
§3. Let D be a quaternion division algebra over a perfect field 2. Let
A=M/(D) and UeH;(D), a:X—U'XU (X< A) is an involution of A.
Then G(U)= Aut, (4, «) is an algebraic group defined over k&, and isomorphic
to PO(4)=S0O(4)/center over the universal domain £. On the other hand,
S0O(4) is isogenious to SL(2) X SL(2) over £. Going to a projective group, we
get:
PO4) = PL(2) x PL(2) over 2.

So G(U) must be isomorphic to one and only one of the k-forms of
PL(2) X PL(2). The complete list of the k-forms of PL(2) x PL(2) is as follows:
1) PL(Z, k) x PL(2, k)
2) PL(2,k)x PL(, D’) where D’ is a quaternion division algebra over Z.
3) PLA,D)YXPL(l,D") where D/,D” is a quaternion division algebra
over k.

4) PL(2, K) where K is a quadratic extension of k.

5) PL(1,®) where ® is a quaternion division algebra over a quadratic
extension K of k.

In the classical theory, it is known that any group of type 1) or 4) of the
above list is a k-form of some orthogonal group defined over %, so our group
G(U) can not be isomorphic to 1) or 4). If the index »(U) of U is not zero,
then an easy calculation shows that G(U) is isomorphic to a group of type 2)
with D’=D over k. If the discreminant 6(U) of U is not 1 (mod k*?), then
y(U) is necessarily zero and it can be shown that G(U) is isomorphic to a
group of type 5) over 2 The last case to consider is that 6(UU)=1 (mod %*?)
and »(U)=0.

This corresponds to the type 3) of the above list, where some singularity
occurs and Hasse’s principle fails. Now we will determine explicitly the
isomorphism over k. of this case.

Let 8(U)=1 (mod %£*?). Taking suitable basis 1,¢,7,{, we may assume
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E=pP=q,En=—nE={ (p,q< k¥), D=(p,q/k) and U=diag (£, 7€) r € k*.
PROPOSITION, If D=(p,q) and U=diag (¢, r¢)e M, (D) with & =p, then
G(U) is isomorphic to G=PL(Q, D,) x PL{, D,) over k, where D,=(p,7/k) and
D, =(p, rq/k).
PrROOF. Let K=Fk(+/r ), and
G=PLQ1, D,) X PL(, D,)
G’'=PL(2, K) X PL(1, D)

G"” = Aut, (My(D), a,) a;r X— (_(l) (1))4&)?(—(1) %)) )

Each group is defined over K and isomorphic to PL(2) X PL(2) over £.
Now we fix a basis of quaternions as follows:

the basis of D =(p,q): 1,& 7 and {
the basis of D,=(p,7): L,&7 =7 /vq pand ' =Wr Vg X
the basis of D,=(p,79): 1,&7"=+~rn and {"=~r(.

Let z be a generic point of G over K, then its affine representative z=(x,y)
is written as x = x,+ 5.+ 4,7+ %7, ¥y = ¥+ 36 +v.7"+3{”. Let 2’ be a generic
point of G’ over K with affine representative

2=y) &=y ¥ =yity&tyint+yl.
Define the mapping from G to G’ by ¢(z)=¢:(x) X ¢(»)
Ko+ 2,V T Xy X VT
P, — 2,V ) xo—xlx/7)
L) =90+ 9:E+y, V1 ataVr £

then ¢ is a rational isomorphism defined over K,
Define n: G’ — G” by n(z’)=i,(x")i(y’), where i, and i, denote respectively
the canonical injections
i M(K)— M{D)QK,

Z.2: D'—’Mz(D)®K:

then =z is a rational isomorphism defined over K.

Define ¢: G”—G(U) by ¢(2”)=Si(2")S™, where S:(l/i/F —f//f/FE/P>

and ¢ denotes the identification of the underlying algebra of (My(D), @,) and
that of (M,(D), @), then ¢ is also a rational isomorphism defined over K.

The composite f=¢omo¢ gives a rational isomorphism from G to G(U)
defined over K. We will show that f is actually defined over %, then the
proposition is proved. Let o be a generator of the Galois group of K over k.
It is sufficient to show that f(z)=f(z). After trivial identifications we may

(%)= (
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write f(2) = ¢(¢:1(x)¢(9)) = S(P1()¢(yNS™ and f(2) = SU(${(x)¢5(y)S~. Direct

calculation shows:

sw= e ) dm=enme
p ~1/0 1\t
St=5¢ (p 0>

0
b

but & commutes with ( (1)) and ¢,(x). Therefore we get f(z)=f(2).

g.e.d.
From this proposition we can easily construct the example in which (H. I)
(and consequently (H. II) and (H. III)) is not valid.
COUNTER-EXAMPLE. Let 2= @Q (rational number field), p = —5, g=—13 and

r=-—3, U=diag (¢, +&), U, = (_(1) (1)) Then the above proposition shows

G(U) = PL{, (p, ) X PL(, (p, rq)) over Q
G(U,) = PL(2, Q) X PL(, (p, @) over Q.

Now we calculate the Hilbert’s symbol for p,q,r and 7q:

L e e e

5 —1 —1 1
13 —1 1 -1
oo —1 —1 1

2 —1 1 —1

3

other prime

The above table and the proposition in this § show that G(U) is isomor-
phic to G(Uy) in all Qy, but G(U) is clearly not isomorphic to G(U,) over Q, i.e.
(H. III) is not valid for U and U,. In this case corresponding group G(U) or
G(U,) is not simple over @, so the failure of Hasse’s principle is rather
natural. But this example gives a simple group in which Hasse’s principle

fails. For instance, let U,= (_(1) (1)> U= (g 7’2) and

U,=diag (U, Uy, -+, Uy) € Hy(D)
Ui=diag (Uy, Uy, -, U e H3(D)  n=2.

Then G(U,) and G(U{) are isomorphic to PO(4#n) over £, and simple over
2. U, is multiplicatively equivalent to U{ in all @, because U~ U, for all p,
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say U~mnU,, then Uy~nU, and U,~nU{ (i.e. G(U,) is isomorphic to G(U})
over Q,) but U, is not multiplicatively equivalent to Uj (i.e. G(U,) is not
isomorphic to G(U;) over Q).
Now we sum up the results which are easily seen from the above example.
ProprosITION. ) (H. I) is not valid for n=2.
I H. II) is not valid any n.
IID) (H. III) is not valid for even n.
(H. III) is true for =1 and 3. It is likely to be true for any odd #, but
we have no proof.
Proor. 1) diag (&, 7€) in the above example gives a counter-example.
I §&,78 € H{(D) gives a counter-example for n=1. For general zn, we
consider any U’ e H; (D) and let U, =P U’ (direct sum) and U =+DU’
(direct sum). Then U,~ U] in all @,, but U, is not equivalent to Ui over Q.
III) We have already given a counter-example for this. q.e.d.
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