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1. Introduction

In we showed :

THEOREM A. If every recursive set is representable in a theory (T) then
(T) is undecidable.

THEOREM B. If every recursive set is definable in (T) and if (T) is con-
sistent, then the set T, of Gidel numbers of the provable sentences of (T') is
recursively inseparable from the set R, of Godel numbers of the refutable sen-
tences of (T).

The above propositions combine notions of recursive function theory with
those of mathematical logic—i.e. with the concept of a “first order theory”.
In this note we obtain generalizations of these propositions which are purely
recursive function theoretic in nature. We also show that the conclusions of
Theorems A and B hold under still weaker hypotheses.

2. Pseudo-uniform reducibility

The word “ number ” shall mean natural number. We use “A”, “B”,
“a” “B7” for sets of natural numbers. A set A is (many-one) reducible to
« if there is a recursive function g(¢) (called a (many-one) reduction of A to
a) such that A =g (a)—i.e. for each number i, i € A-g(@) = a. Consider now
a collection X of recursively enumerable sets. The collection % is uniformly
reducible to a (as defined in [2]) if there is a recursive function g(x,y) (called
a uniform reduction of 2 to «) such that for every i for which w; 2%, the
function g(Z,») (as a function of the one variable y) is a reduction of ®; to
22 Thus, if 2 is uniformly reducible to «, then not only is every element
of 3 reducible to «a, but given any such element ®; (in the sense of given
its index i) we can effectively find a reduction of it to «.

It is trivial to verify that if some non-recursive set is reducible to «,

1) This research was supported in part by a grant from the Air Force Office of
Scientific Research.

2) By wi we mean the set of all numbers x satisfying the condition (3) 71, x,¥)
where T,(z, x,y) is the predicate of Kleene’s enumeration theorem @
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then « is non-recursive. Hence, it follows that if every recursively enumer-
able set is reducible to «, then « is non-recursive (since there exists a recur-
sively enumerable set which is not recursive). This fact is well known.
Suppose that every recursive set is reducible to «; does it follow that «a is
non-recursive ? Clearly not, for if « is any non-empty set whose complement
is also non-empty, then every recursive set A is reducible to «a (just take an
element @, of @ and an element @, of @ and define g(x)=a, if x=A;g(x)=a,
if xe A). Since A is recursive, g(x) is a recursive function, and clearly a
reduction of A to «. Suppose that the collection of all recursive sets is
uniformly reducible to «; does it follow that « is non-recursive ? In we
showed that this hypothesis implies not only that « is non-recursive, but that
the complement of « is productive. Thus, to establish the non-recursivity of
a set «, the hypothesis that all recursive sets be reducible to « is too weak,
and the hypothesis of uniform reducibility is stronger than necessary. We
now consider a notion which is of intermediate strength.

We shall say that X is pseudo-uniformly reducible to « if there is a recur-
sive function g(x,y) (called a pseudo-uniform reduction of 2 to «) such that
for every set A<, there is a number ¢ such that g(a,y) (as a function of
the one variable y) is a reduction of A to @. We note that this definition
(unlike that of uniform reducibility) does #of require that such a number «
be an index of the set A, nor that there be a recursive function ¢(x) which
assigns to any index of A such a number @. If there were such a recursive
function ¢(x), then 2 would indeed be wuniformly reducible to « under the
function g(e(x),y). We shall soon see that a sufficient condition for a to be
non-recursive is that the collection of all recursive sets be pseudo-uniformly
reducible to «@. And in light of our next proposition, we feel that this fact
constitutes the mathematical essence of A.

The notion of pseudo-uniform reducibility arises naturally in connection
with metamathematics in the following way. Suppose we have a theory (T°)
with standard formalizations (cf. [4]). Let F, F,, -+, F,, -~ be an effective
enumeration of all the formulas with exactly one free variable; let 4; be the
numeral designating the natural number i; let g be an effective Godel num-
bering of all closed sentences; let 7 be the set of all provable (closed) sentences
and R the set of all (closed) sentences whose negation is provable; let T, R,
respectively be the set of G6del numbers of the provable, refutable sentences
of (T); let ¢(i,7) be the Godel number of Fi(4;). Under the usual requirements
of “effectiveness” of the Godel numbering and of the sequence 4,, 4,, 4,, ---, 4;,
the function ¢(x,y) is (general) recursive.

A formula F(x) is said to represent the set of all numbers # for which
F(4,)eT. We pointed out in that if a set A is representable in (T), then
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A is (many-one) reducible to 7,. We now note the following stronger fact:

PROPOSITION 1. If each element of a collection X is representable in (T),
then the collection 2 is pseudo-uniformly reducible to T,.

Proor. For each element A of ¥ there is, by hypothesis, a formula Fy(x)
which represents A in (7). Then for every number j,j € Ao F4;) € T ¢@,J)
€ T,. Thus ¢(x,y) is a pseudo-uniform reduction of 3 to T,.

We now show

THEOREM 1. If the collection of all recursive sets is pseudo-uniformly reduci-
ble to a, then « is not vecursive.

We actually show in the following stronger form.

THEOREM 1'. Each of the following conditions implies the next.

(@) The collection of recursive sets is pseudo-uniformly reducible to «.

(b) There is a recursive function g(x) such that for every recursive set A,

there is a number i such that ic A-g(i)e a.

(¢) « is not recursive.

PROOF. Suppose (a); let f(x,y) be such a uniform reduction. Define
g(®)=f(x,%). Then g(x)is recursive. Let A be any recursive set. By hypoth-
esis there is a number 7 such that for every number y,ic€ A-f(, ) E .
Setting y=i,ic Aof@G,i)ca --l.e. ic Aogli)e a. Thus (2)=(b).

Suppose (b). We must show that « is not recursive. Suppose it were.
Then & would be recursive. Then g (a) is recursive [ g~(a)=df the set of
all 7 such that g(?) € &]. Then there is a number 7 such that i € g7(@) - g() = a.
But ieg(@)og@i)=a Hence g(i) = @< g(i) = «, which is impossible.

In view of Proposition 1, Theorem 1 is indeed a generalization of Theorem
A.

We also note that the statement (b)=(c) of Theorem 1’ is a stronger
statement than Theorem 1, and implies the following stronger form of Theo-
rem A (by setting g(i) = ¢(, 7).

THEOREM A’. If for every vecursive set A, theve is a number i such that
1€ AoF4)e T, then T, is non-recursive.

The hypothesis of A’ is obviously weaker than that of Theo-
rem A, for the latter says that for any recursive set A there is a number ¢
such that for every j (whether equal to 7 or not), j€e Ao Fi(d) e T.

3. Pseudo-uniform reducibility of ordered pairs

Let A, B, «a, 3 be number sets. A recursive function f(x) is a (many-one)
rveduction of the ordered pair (A4, B) to the ordered pair («, #) (as defined in
[2]) if f(x) is simultaneously a reduction of A to « and of B to f.—i.e. for
every number i: (1) icAof(ea; 2)ice Bof@E) ep.

Consider now a collection 2 of ordered pairs of number sets. We shall
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say that ' is pseudo-uniformly reducible to a pair («, B) if there is a recursive
function f(x,y) (which we will call a pseudo-uniform reduction of 2 to («, #))
such that for every pair (4, B) in 2, there is a number 7 such that 7(i,») (as
a function of the one variable y) is a reduction of (4, B) to («a, 5).2

The obvious analogue of is
PROPOSITION 2. Let S be a collection of sets and let 3 be the collection of
all ordered pairs (A, 171) such that A< S. Then if every element of S is definable
in (T), and if (T) is consistent, then X is pseudo-uniformly reducible to the pair
(T, Ry)-
PrOOF. As in the proof of Proposition 1, let ¢(i,7) be the Goédel number
of Fi(d;). Let A=S. Then for some number i, Fi(x) defines A in (7). Thus
for all j,je A=>F(d;)e T and j /~l:>Fi(A,-) e R. Since (T) is consistent, then
jEAF)eT, and je AeF(d)eR. [For F(d)e T=F(d)&R=>j& A
=je A. Similarly Fd,))e R=je ﬁ.] Thus je Ao, /)T, and j< A
- (i, ;) R,. Hence ¢(i,y) is a reduction of (A4, ﬁ) to (T,, R,)
We now show
THEOREM 2. Let Xz be the collection of all complementary pairs of recur-
sive sets and let «, B be disjoint. Then if Xy is pseudo-uniformly veducible to
(a, B), then («a, B) is recursively inseparable.”
We in fact shall show the stronger fact:
THEOREM 2’. Each of the following conditions implies the next:
(a) 2i is pseudo-uniformly reducible to («, fB) [«, B are disjoint].
(b) There is a recursive function g(x) such that for each pair (A, ;1)6 2,
there is a number i such that ic Aogllea and i e Ao g e p.

(©) The pair (g7 (), g7(B)) is recursively inseparable.

(d) The pair («a, B) is recursively inseparable—in fact, the subset gg™'a of
a is recursively inseparable from the subset gg™*f of B.

Proofr. (1) (@)=(b). Let f(x,») be a pseudo-uniform reduction of Xy to
(a, ). As in the proof of Theorem 1/, let g(x) be the recursive function
flx,x). Let (A4, Zl)e},‘ and let 7 be such that f(5,y) is a reduction of (A4, 171)
to (a, B). Since f(i,») is a reduction of A to «, then (by the argument in the
proof of Theorem 1) i€ A~ g(i) = a. Similarly, since f(4,¥) is a reduction of
A to B, then ic Awg(@) e p.

(2) (B)=(c). Suppose g(x) is as in (b). Suppose (g «a), g7*(p)) were

3) Again, this notion is midway in strength between the notions: (1) every
element of ¥ is reducible to (a,8); (2) X is uniformly reducible to (a, 8), as defined
in [_LQ_]] The latter says that given indices i,7 of A4, B where (4, B)eZ, we can effec-
tively find a number ¢ such that f(i,») is a reduction of (4, B) to (a, §).

4) A pair is called recursively inseparable if there is no recursive superset of
one disjoint from the other.
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recursively separable. Then there is a recursive superset A of g~%f) disjoint
from g'(a). Hence, g7i(A) S A; g“l(a)g;l. By the hypothesis of (b), there
is an 7 such that i€ Ao g(@ e a and ieﬁ«—»g(i)eﬂ. Hence, ic A=og(ea
sicga)=ic A, and ic Aogi)e fic g (f)=ic A.

Thusie Awie A, which is impossible. Hence g~ («), g7*(A) are recursively
inseparable.

3) (c)=(d). We have shown in [2] (p. 62, Proposition 4, Ch. II) that if
(A, 4,) is recursively inseparable and if (A4,, A,)is reducible to (B, B,) (or
even if there is a recursive function which maps A, into B, and A, into B,)
then (B, B,) is in turn recursively inseparable. But clearly g maps g *(«)
into gg'a and g7%(f) into gg 4.

Theorem 2 and [Proposition 2 clearly imply [Theorem B. But again, the
statement (b)=>(d) of [Theorem 2 is stronger than and implies
the following stronger form of B.

THEOREM B’. A sufficient condition for the nucleii (T, R,) of @ consistent
theory (T) to be recursively inseparable is that for every recursive set A there
exists a number i such that i€ AcF(4)e T and ic AwF(4;)E R.
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