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On the Eilenberg-MacLane invariants
of loop spaces.
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1. Let X be a simply connected topological space and let E be
the space of all paths in X starting from a fixed point x,& X, topologi-
zed by compact-open topology. Then E is contractible, and with the
projection p: E— X which associates each path to its terminal point,
(E, p, X) is a fiber space in the sense of Serre [1], where the fiber
at x, is the loop space 2, of X. It is well known that we have
m(X)=m;_(25), i=2,8,--.

Fixing integers p, g such that 2<<p<q, we assume in the follow-
ing that #»(X)=0 for p==i<<q and put =, (X)=m, = (X)=m, Then
m(L2x)=0 for pFi+1<q, and =, (2y)=m, 7, (Ly)<m, We shall
put =, (Lx)=m,_,, 7, _(2x)=m,_;, and consider these groups with the
canonical isomorphisms 7, ~=, ,, m ~mr, .

Now, the spaces X and 2, determine the Eilenberg-MacLane
invariants k' X)=He* (7, p,m,) and ki_(L2x)&H? (m,_,, p—1, 7, ,)
respectively. As will be shown, the latter invariant kJ_,(2x) is the
image of the former k¢"'(X) under the suspension homomorphism S
of the cohomology groups (Theorem 2 below). Therefore, if we as-
sociate to any system (=, 7', k§*') consisting of abelian groups ar, 7’
and an element k§*' in H*'(w, p, ') the system S*(w, =/, ki#")=(m, 7/,
Skg“), then the correspondence S* has a geometrical meaning.

If g is sufficiently small, we can define the inverse of this opera-
tion. When X is a CW-complex the homotopy type of X is deter-
mined by that of 2, (see §3 Cor. 4 below). There is also an
analogous relation about invariants of J. H. C. Whitehead which we
shall show for standard complexes and standard loop spaces [5].

1) Conversely, in arcwise connected spaces, homotopy types of loop spaces are deter-
mined by those of original spaces (see §5 below).
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2. Eilenberg-MacLane complexes K(m, p). We shall first give
a short description of complexes K(m, p) and suspension homomor-
- phisms of Eilenberg-MacLane cohomology groups [2]. For each posi-
tive integer =, let 4, be a standard »n-simplex with ordered vertices
(0,---,n). By e (i=0,.--,n) we denote the mapping of 4, , to 4, which
maps the vertices 0,1,---,#—1 of 4, , on the vertices of 4,, omitting
the vertex i of 4, and preserving their order. The g-cells of K(m,, p)
are cocycles of Z#(4,,w,). For each g=Z?(4,,w,) the mapping e}
gives a cocycle Fg--gei—Z?(d,_,m,). We define the boundary of the

n-cell g by 9g—=>(—1)F,g. The addition in the right hand side of

the last equation is to be regarded as a formal sum of cells.

DEFINITION. For each (p—1)-cocycle g=Z?"'(4,_,, m,_,) the sus-
pended p-cocycle Tg is defined for each p-dimensional ordered simplex
(7ope++,7,) of 4, by

(1) Tg(r(w"” rp) :g(roy"" rp-l) if rp:n ’
=0 if r,<m.

If by g, we denote the cocycle which is identically zero, in the
appropriate dimensions, then the suspension mapping S is defined by

(2) Sg=Tg—g,.

This is a chain transformation (raising dimensions by 1) of
K(m, ,p—1) into K(m,, p) and hence induces homomorphisms

S: Hrik(m,, p; G)— He =¥, p—1; G)

between corresponding cohomology groups, where G is any abelian
group and k£=0,1,---. In the following we take = ==, , for G.

THEOREM 1. For k<<p—1. the suspension homomorphism S is an
isomorphism onto. For k=p—1 it is an isomorphism into.

This theorem is proved by the singular cohomology theory of a
fiber structure of the path space E, using the theory of spectral
sequence (see [1], Proposition 10, p. 483). On the other hand this is
.shown by a purely algebraic method (see [2], [7], [8]).

8. THEOREM 2. Let S be the suspension homomorphism of co-
homology groups and let ki*(X) and ki_(2x) be Eilenberg-MacLane
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invariants of spaces X and 2y rvespectively.
We have

(3) | S(kg (X)) =kj-(2x) -

ProOF. Let M(£2,) be a minimal complex (see [3]) in £, based
on the constant path I—x,. Each mapping o of an (n—1)-singular

simplex o of M(£2,) induces a mapping To: 4, ,xI—X defined as
4) To(x,t)=o(%) @)

for any x=4, , and t<I. We map 4,.,x1I onto 4, by identifying
the set 4, ,x1 to the last vertex of 4,. Let ¢, be this identiflcation.

As To maps the set 4, <1 into a point x;,, the composite mapping
Tai,;l is a continuous mapping of 4, into X. Therefore, it defines a

singular z-simplex in X, which we denote by So.

We note that a singular simplex which is a constant mapping
to x, is called collapsed and two singular simplexes whose boundary
coincide are called compatible. If for these simplexes there exists a
homotopy which leaves the mapping on the boundary fixed, then we
say that they are homotopic. Obviously S and its inverse preserve
properties stated above. Therefore, because of the definition of the
minimal complex, we can take a minimal complex M(X) of X, which
contains S(M(£2y)) (see [3], §4). Let «, be a natural simplicial trans-
formation of M(X) into K(w, p) defined in [4] and let «, be that of
M(£2y) into K(m, p—1). Moreover, let ¥y be a simplicial transforma-
tion of the g-skeleton K¢(w, p) of K(m, p) into M(X) which is defined
by (3.1), (8.2), (8.83) of [4] and let x, be that of K¢ '(w,_,,p—1) into
M(L2y). Composite mappings xyxy and xgx, are identities. These
transformations can be so constructed that commutativity relation
holds in the following diagram:

S
M2y) ———> M(X)

(5) ,TEQ | IT?EX
T
Kq—](wp—up‘l) —_—> Kq(wi)’ D)
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i.e. we have §Eg,g:EXTg for any g K '(mw,_,p—1). Let 4,,, be
the g-skeleton of 4 ... If we attempt to continue the definition of

kx for (g+1)-cell g’ of K(m, p), we can only do it for 4,,,, so that
the mapping

fX(g,) ’ Aq-&-l,q-_')X

satisfies

(6) fX(g/)e£]+1:k-X(F‘ig/) izO,-u, Q+1 .

Since 7, is not assumed to vanish, the map fy(g’) in general will
not be extendible to a mapping of 4 ,, into X. Let cfx(g’) be an

element of =, containing fy(g’). We define a cochain k4*' in the
complex K, p) by

(7) k38" = cfx(8)Em(X) .

kI*' is a (g-+1) cocycle. Its cohomology class does not depend
on the choice of the simplicial transformation x,” and it is denoted
by k¢*'(X). Similarly a g-cocycle k§_, and its cohomology -class
ki_(2x) are defined. By f,(g) we denote a mapping corresponding
to (6) for any g-cell g of K(w,_,,p—1). Cohomology classes k§*'(X)

and kj_,(£2y) do not depend on the choice of the minimal complexes
(see [4]).

Because of the commutativity of (5), we have
fx(Tg)ef*' =k (F;Tg)

—kx(TF.g)=Sko(g)e? 0<i<gq,

and fx(Sg) el is a constant mapping to «x,.
This yields

Tfo(8) i;'=fx(Tg).

Therefore the element of the group =, (X) containing the mapping
fx(g) is the image of the element of the group =, (£4) containing

2) As kx is determined on the (g—1)-skeleton K¢-!(mp-1,2—1) uniquely only
E)‘é comes into question.
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the mapping f,(g) under the suspension isomorphism 3 of homotopy
groups. Since groups =, (2x) and = (X) are identified under the
isomorphism in introduction, we have

cfo(8)=cfx(Tg).
Using the relation cfx(g,)=0, this yields

k}_(8)=cfq(8)

=cfx(Tg)
=cfx(Tg)—cfx(&)
=ki*(Tg—g,)
=Fk§*(Sg)
—(SK*Y (2),

where S in the last term is a dual cochain transformation of the
chain transformation S. Therefore

kj (2x)=S(ki* (X))

holds good. Thus the theorem is proved.

Let K be a standard complex and let o(K) be a standard loop
space on the complex (see [5]). The injection mapping of the space
o(K) into the space £, induces isomorphisms of homotopy groups of
the two spaces. If we take the minimal complex M(£2;) in o(K)
particularly, we shall see that Eilenberg-MacLane invariants of two
spaces are identified by the isomorphism of injection. Therefore we
have the following result:

COROLLARY 8. The FEilenberg-MacLane invariant kj_(o(K)) of
the standard loop space is the image of the invariant k3*'(K) of the
standard complex under the suspension homomorphism S.

We suppose g<<2p—1. The Eilenberg-MacLane invariant of the
space 2, determines that of the original space X, since the homo-
morphisms S is one-to-one by the [Theorem 1. Therefore we obtain
the following result:

COROLLARY 4. Let X, Y be both arcwise connected CW-complexes,
such that wy (X )=z (Y), m(X)=m(Y) and 7w (X)=m(¥Y)=0 for 0<<i<<p
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and p<<i<<q where q<<2p—1. If the spaces 2y, 2, have the same q-
homotopy type, then X,Y have the same (q-+1)-type.

4. J.H.C. Whitehead invariants (see [6]).

In the following, we restrict our argument to simply connected
standard complexes K and their standard loop spaces o(K)¥ which
are also CW-complexes.

Let K* and o(K)" be n-skeletons of K and w(K) respectively.
Then the n-th Whitehead invariant [,(K) is defined as follows: Let
7 be the homomorphism of =, ,(K”) into =, (K", K*~') induced by the
injection mapping and let j* be its =, (K)-dual. We denote by /,(K)
the natural homomorphism

7 (K") — m (K")[0m, . (K", K*)=m,(K),
and we put |
L(K)={l,(K)}
eI (K, m,) = A (m (K)/J*C (7 (K) ) ,

where A*(w,(K)) is the group Ophom (= ,(K*), =,(K))" and C¥mr (K))
is the group Ophom (= (K", K*°"), =, (K))".

Let « be any element of 7w ,(w(K)”*) and let f, be a mapping of
(S7, s) into (o(K)”, x,) contained in «, where S, is an n-sphere, s is a
point of S”, and x, is the base point of w(K), i.e. the constant path
I—x,. A suspended class ¥« of a is the class which contains the
mapping 3f, of an (#-+1)-sphere into K»*'® defined as follows: we
identify the subset S” <0\ /S*x 1\ Jsx I of S”x I to a point and denote
the identification mapping by k,. We can take £,(S”xI) for Sn+.
The mapping 3f, is defined by

2f () =f%) @)

for each point y=~nh,(x,t). 3’ is a homomorphism of = (w(K)”) into
7, (K**"). We can extend the definition of 3’ to relative homotopy

3) As for singular polytopes of M(X) and M(2x), I don’t know whether the results
of this section hold good or not.

4) Since we assumed m,(K)=0, we have Ophom=Hom for the K.

5) This follows from the definition of the complex (K).
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groups similarly. It is a homomorphism of the group m, (w(K)”,
w(K)*"") into the group =,, (K**!, K*). Then commutativity relations
0X=230 and j3=237 hold good for the boundary operator ¢ and the
injection homomorphism j.

The homomorphism of the group =,(«(K)) into the group =, (K)
induced by 3’ coincides with the suspension isomorphism 3 of
homotopy groups. We identify these groups by the isomorphism
and denote it by =,,,. In the following diagramm commutativity
holds good:

>
T (oK) = m, (K) (=m,.)

[Tln(w(K)) |Tln+1(K)

zvl
T(0(K)") ——> (K"

Let 3* be a =,,.-dual of 3’ (here we do not consider operations on
the groups 7,(w(K)”) and =,, (K”*')). Then we have

ln(w(K)) - ln+1(K) O 2"/
=3t (K).

Therefore if we denote by X* the homomorphism of the group
7"+ (7,1, K) into the group [ [*(«(K), 7,) induced by 3% then we obtain

) L(o(K))=23*1,,(K).

This relation is analogous to (3).

5. Appendix. Finally we shall show that if two arc-wise con-
nected, simply connected spaces are homotopy equivalent, then their
loop spaces have the same property.

LEMMA 5. Let X,Y be two spaces as above and let f be a conti-
nuous mapping of X wmto Y. f induces a continuous mapping of 2y
mto 2.

PrOOF. Let v be an arbitrary element of £2,. We define a
mapping f, of 25 into £, by

(far) @)=1(=(?))
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for each t=1. Let C be a compact set of I=[0,1] and let U be an
open set of Y. If by (C,U) we denote an element of the open base
of 2., determined by C and U, then (C,f'(U)) is an open set of £2,.
Since we have f;'(C, U)=(C, f~'(U)), f, is continuous.

LEMMA 6. Let F: X<I—Y be a homotopy. This mapping induces
a homotopy of mappings of 2y into 2y defined by the above lemma.

Proor. Let T be an arbitrary element of £2,. We define a
mapping F, of 2,x1I into £, by

Fo(t,5) (t)=F(7(t), 5)

for any ¢t and s in I. Let (C,U) be an arbitrary element of the open
base in £, which contains F(r,s). An inverse image F~'(U) of U is
an open set in X x I and it contains (7(C),s). (7(C),s) is a compact set,
therefore there exists a finite open covering (U, (s—e¢, s +¢;)) contained
in F-'(U) for each i, where ¢; is a positive real number. We put
Min e;=e>0 and V=((C,\J;U)), (s—¢,s+¢)). We have (r,s)V and
FoV)c(C,U). Therefore F, is continuous.

THEOREM 7. If two spaces X and Y are homotopy equivalent then
their loop spaces have the same property.

This is an immediate consequence of the two lemmas stated
above.

Mathematical Institute, Tohoku University.
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