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1. Let $X$ be a simply connected topological space and let $E$ be
the space of all paths in $X$ starting from a fixed point $x_{0}\in X$, topologi-
zed by compact-open topology. Then $E$ is contractible, and with the
projection $\rho:E\rightarrow X$ which associates each path to its terminal point,
$(E, \rho, X)$ is a fiber space in the sense of Serre [1], where the fiber
at $x_{0}$ is the loop space $\Omega_{X}$ of $X$. It is well known that we have
$\pi_{i}(X)\approx\pi_{i-1}(\Omega_{X}),$ $ i=2,3,\cdots$ .

Fixing integers $p,$ $q$ such that $2<p<q$ , we assume in the follow-
ing that $\pi_{i}(X)=0$ for $p\neq i<q$ and put $\pi_{p}(X)=\pi_{p},$ $\pi_{q}(X)=\pi_{q}$ . Then
$\pi_{i}(\Omega_{X})=0$ for $p\neq i+1<q$, and $\pi_{p-J}(\Omega_{X})\approx\pi_{p}$ $\pi_{q-1}(\Omega_{X})\approx\pi_{q}$ . We shall
put $\pi_{p-1}(\Omega_{X})=\pi_{p-1},$ $\pi_{q-1}(\Omega_{X})=\pi_{q-1}$ , and consider these groups with the
canonical isomorphisms $\pi_{p}\approx\pi_{p-1},$ $\pi_{q}\approx\pi_{q-1}$ .

Now, the spaces $X$ and $\Omega_{X}$ determine the Eilenberg-MacLane
invariants $k_{p}^{q+1}(X)\in H^{q+1}(\pi_{p}, p, \pi_{q})$ and $k_{p-1}^{q}(\Omega_{X})\in H^{q}(\pi_{p-1},p-1, \pi_{q-1})$

respectively. As will be shown, the latter invariant $k_{p-1}^{q}(\Omega_{X})$ is the
image of the former $k_{p}^{q+1}(X)$ under the suspension homomorphism $S$

of the cohomology groups (Theorem 2 below). Therefore, if we as-
sociate to any system $(\pi, \pi‘, k_{p}^{q+1})$ consisting of abelian groups $\pi,$

$\pi^{\prime}$

and an element $k_{p}^{q+1}$ in $H^{q+1}(\pi, p, \pi^{\prime})$ the system $S^{\star}(\pi, \pi^{\prime}, k_{p^{l^{1}}}^{q})=(\pi,$
$\pi^{\prime}$ ,

$Sk_{p}^{q+1})$ , then the correspondence $S^{\star}$ has a geometrical meaning.
If $q$ is sufficiently small, we can define the inverse of this opera-

tion. When $X$ is a CW-complex the homotopy type of $X$ is deter-
mined by that of $\Omega_{X^{1)}}$ (see \S 3 Cor. 4 below). There is also an
analogous relation about invariants of J. H. C. Whitehead which we
shall show for standard complexes and standard loop spaces [5].

1) Conversely, in arcwise connected spaces, homotopy types of loop spaces are deter-
mined by those of original spaces (see \S 5 below).
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2. Eilenberg-MacLane complexes $K(\pi_{p}, p)$ . We shall first give
a short description of complexes $K(\pi_{p},p)$ and suspension homomor-
phisms of Eilenberg-MacLane cohomology groups [2]. For each posi-
tive integer $n$ , let $\Delta_{n}$ be a standard n-simplex with ordered vertices
$(0,\cdots, n)$ . By $e_{n}^{i}(i=0,\ldots, n)$ we denote the mapping of $\Delta_{n-1}$ to $\Delta_{r}$. which
maps the vertices $0,1,\cdots,$ $n-1$ of $\Delta_{n- 1}$ on the vertices of $\Delta_{n}$ , omitting
the vertex $i$ of $\Delta_{n}$ and preserving their order. The q-cells of $K(\pi_{p},p)$

are cocycles of $Z^{p}(\Delta_{n}, \pi_{p})$ . For each $g\in Z^{p}(\Delta_{n}, \pi_{p})$ the mapping $e_{n}^{i}$

gives a cocycle $F_{i}g=ge_{n}^{i}\in Z^{p}(\Delta_{n-1}, \pi_{p})$ . We define the boundary of the

n-cell $g$ by $\partial g=\sum_{i=0}^{n}(-1)^{i}F_{i}g$. The addition $i_{I}i$ the right hand side of

the last equation is to be regarded as a formal sum of cells.
DEFINITION. For each $(p-1)$ -cocycle $g\in Z^{p- 1}(\Delta_{n-1}, \pi_{p-1})$ the sus-

pended p-cocycle $Tg$ is defined for each p-dimensional ordered simplex
$(r_{0},\cdots,r_{p})$ of $\Delta_{n}$ by

(1) $Tg(r_{0},\cdots, r_{p})=g(r_{0},\cdots, r_{p-\iota})$ if $r_{p}=n$ ,

$=0$ if $r_{p}<n$ .
If by $g_{0}$ we denote the cocycle which is identically zero, in the
appropriate dimensions, then the suspension mapping $S$ is defined by

(2) $Sg=Tg-g_{0}$ .
This is a chain transformation (raising dimensions by 1) of

$K(\pi_{p- 1}, p-1)$ into $K(\pi_{p}, p)$ and hence induces homomorphisms

$S:H^{p+k}(\pi_{p}, p;G)\rightarrow H^{p- 1+k}(\pi_{p- 1}, p-1;G)$

between corresponding cohomology groups, where $G$ is any abelian
group and $ k=0,1,\cdots$ . In the following we take $\pi_{q}=\pi_{q-1}$ for $G$ .

THEOREM 1. For $k<p-1$ . the suspension homomorphism $S$ is an
isomorphism onto. For $k=p-1$ it is an isomorphism into.

This theorem is proved by the singular cohomology theory of a
fiber structure of the path space $E$, using the theory of spectral
sequence (see [1], Proposition 10, p. 483). On the other hand this is
shown by a purely algebraic method (see [2], [7], [8]).

3. THEOREM 2. Let $S$ be the suspension homomorphism of co-
homology groups and let $k_{p}^{q+1}(X)$ and $k_{p- 1}^{q}(\Omega_{X})$ be Eilenberg-MacLane
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invariants of spaces $X$ and $\Omega_{X}$ respectively.
We have

(3) $S(k_{p}^{q+1}(X))=k_{p-1}^{q}(\Omega_{X})$ .
PROOF. Let $M(\Omega_{X})$ be a minimal complex (see [3]) in $\Omega_{X}$ based

on the constant path $I\rightarrow x_{0}$ . Each mapping $\sigma$ of an (n-l)-singular

simplex $\sigma$ of $M(\Omega_{X})$ induces a mapping $\overline{\tau}_{\sigma}$ ; $\Delta_{n-1}\times I\rightarrow X$ defined as

(4) $\overline{\tau}_{\sigma(x,t)=\sigma(x)(t)}$

for any $x\in\Delta_{n-1}$ and $t\in I$. We map $\Delta_{n- 1}\times I$ onto $\Delta_{n}$ by identifying
the set $\Delta_{n-1}\times 1$ to the last vertex of $\Delta_{n}$ . Let $i_{n}$ be this identiflcation.
As $\overline{\tau}_{\sigma}$ maps the set $\Delta_{n-1}\times 1$ into a point $x_{0}$ , the composite mapping
$\overline{\tau}_{\sigma i_{n}^{-1}}$ is a continuous mapping of $\Delta_{n}$ into $X$. Therefore, it defines a
singular n-simplex in $X$, which we denote by $\overline{s}_{\sigma}$ .

We note that a singular simplex which is a constant mapping
to $x_{0}$ is called collapsed and two singular simplexes whose boundary
coincide are called compatible. If for these simplexes there exists a
homotopy which leaves the mapping on the boundary fixed, then we
say that they are homotopic. 0bviously $S$ and its inverse preserve
properties stated above. Therefore, because of the definition of the
minimal complex, we can take a minimal complex $M(X)$ of $X$, which
contains $S(M(\Omega_{X}))$ (see [3], \S 4). Let $\kappa_{X}$ be a natural simplicial trans-
formation of $M(X)$ into $K(\pi_{p}p)$ defined in [4] and let $\kappa_{\Omega}$ be that of
$M(\Omega_{X})$ into $K(\pi_{p}p-1)$ . Moreover, let $\overline{\kappa}_{X}$ be a simplicial transforma-
tion of the q-skeleton $K^{q}(\pi_{p}, p)$ of $K(\pi_{p}, p)$ into $M(X)$ which is defined
by (3.1), (3.2), (3.3) of [4] and let $\overline{\kappa}_{\Omega}$ be that of $K^{q-1}(\pi_{p-1},p-1)$ into
$M(\Omega_{X})$ . Composite mappings $\kappa_{X}\overline{\kappa}_{X}$ and $\kappa_{\Omega}\overline{\kappa}_{\Omega}$ are identities. These
transformations can be so constructed that commutativity relation
holds in the following diagram:

$\overline{S}$

$M(\Omega_{X})$ $-\rightarrow$ $M(X)$

(5) $\uparrow_{1}\overline{\kappa}_{\Omega}$ $\uparrow\overline{\kappa}_{X}|$

$T$

$K^{q-l}(\pi_{p-1},p-1)$ $-\rightarrow$ $K^{q}(\pi_{p},p)$,
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$i$ . $e$ . we have $\overline{\mathscr{T}}_{\kappa_{\Omega}}g=\overline{\kappa}_{X}Tg$ for any $g\in K^{q-1}(\pi_{p-1}, p-1)$ . Let $\Delta_{q+1,q}$ be
the q-skeleton of $\Delta_{q+1}$ . If we attempt to continue the definition of
$\overline{\kappa}_{X}$ for $(q+1)$ -cell $g^{\prime}$ of $K(\pi_{p}, p)$ , we can only do it for $\Delta_{q+1,q}$ so that
the mapping

$f_{X}(g^{\prime});\Delta_{q+1,q}\rightarrow X$

satisfies

(6) $f_{X}(g^{\prime})e_{q+1}^{i}=\overline{\kappa}_{X}(F_{i}g^{\prime})$ $i=0,\cdots,$ $q+1$ .
Since $\pi_{q}$ is not assumed to vanish, the map $f_{X}(g^{\prime})$ in general will
not be extendible to a mapping of $\Delta_{q+1}$ into $X$. Let $cf_{X}(g^{\prime})$ be an
element of $\pi_{q}$ containing $f_{X}(g^{\prime})$ . We define a cochain $k_{p}^{q+1}$ in the
complex $K(\pi_{p}, p)$ by

(7) $k_{p}^{q+l}(g^{\prime})=cf_{X}(g^{\prime})\in\pi_{q}(X)$ .
$k_{p}^{q+1}$ is a $(q+1)$ cocycle. Its cohomology class does not depend
on the choice of the simplicial transformation $\overline{\kappa}_{X^{2)}}$ and it is denoted
by $k_{p}^{q+1}(X)$ . Similarly a q-cocycle $k_{p-1}^{q}$ and its cohomology class
$k_{p- 1}^{q}(\Omega_{X})$ are defined. By $f_{\Omega}(g)$ we denote a mapping corresponding
to (6) for any q-cell $g$ of $K(\pi_{p- 1}, p-1)$ . Cohomology classes $k_{p}^{q+1}(X)$

and $k_{p-1}^{q}(\Omega_{X})$ do not depend on the choice of the minimal complexes
(see [4]).

Because of the commutativity of (5), we have

$f_{X}(Tg)e_{i}^{q+1}=\overline{\kappa}_{X}(F_{i}Tg)$

$=\kappa_{X}(TF_{i}g)=\overline{S}_{\overline{\kappa}_{\Omega}}(g)e_{i}^{q}$ $0\leqq i\leqq q$ ,

and $f_{X}(Sg)e_{q}^{q}\ddagger_{1}^{1}$ is a constant mapping to $x_{0}$ .
This yields

$\overline{T}f_{\Omega}(g)i_{q}^{-1}=f_{X}(Tg)$ .
Therefore the element of the group $\pi_{q}(X)$ containing the mapping
$f_{X}(g)$ is the image of the element of the group $\pi_{q-1}(\Omega_{X})$ containing

2) As $\overline{\kappa}_{X}$ is determined on the $(q-1)$ -skeleton $Kq-1(\pi_{p-1},p-1)$ uniquely only

$\overline{\kappa}_{X^{q}}$ comes into question.



On the Eilenberg-MacLane invariants of loop spaces. 97

the mapping $f_{\Omega}(g)$ under the suspension isomorphism $2_{i}$
’ of homotopy

groups. Since groups $\pi_{q-1}(\Omega_{X})$ and $\pi_{Q}(X)$ are identified under the
isomorphism in introduction, we have

$cf_{\Omega}(g)=cf_{X}(Tg)$ .
Using the relation $cf_{X}(g_{0})=0$ , this yields

$k_{p-1}^{q}(g)=cf_{\Omega}(g)$

$=cf_{X}(Tg)$

$=cf_{X}(Tg)-cf_{X}(g_{0})$

$=k_{p}^{q+1}(Tg-g_{0})$

$=k_{p}^{q+1}(Sg)$

$=(Sk_{p}^{q+1})(g)|$

where $S$ in the last term is a dual cochain transformation of the
chain transformation $S$. Therefore

$k_{p-1}^{q}(\Omega_{X})=S(k_{p}^{q+1}(X))$

holds good. Thus the theorem is proved.
Let $K$ be a standard complex and let $\omega(K)$ be a standard loop

space on the complex (see [5]). The injection mapping of the space
$\omega(K)$ into the space $\Omega_{K}$ induces isomorphisms of homotopy groups of
the two spaces. If we take the minimal complex $M(\Omega_{K})$ in $\omega(K)$

particularly, we shall see that Eilenberg-MacLane invariants of two
spaces are identified by the isomorphism of injection. Therefore we
have the following result:

COROLLARY 3. The Eilenberg-MacLane invariant $k_{p- 1}^{q}(\omega(K))$ of
the standard loop space is the image of the invariant $k_{p}^{q+1}(K)$ of the
standard complex under the suspension homomorphism $S$.

We suppose $q<2p-1$ . The Eilenberg-MacLane invariant of the
space $\Omega_{X}$ determines that of the original space $X$, since the homo-
morphisms $S$ is one-to-one by the Theorem 1. Therefore we obtain
the following result:

COROLLARY 4. Let $X,$ $Y$ be both $ar$.cwise connected CW-complexes,
such that $\pi_{p}(X)\approx\pi_{p}(Y),$ $\pi_{q}(X)\approx\pi_{q}(Y)$ and $\pi_{l}(X)=\pi_{i}(Y)=0$ for $0<i<p$
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and $p<i<q$ where $q<2p-1$ . If the spaces $\Omega_{X},$ $\Omega_{Y}$ have the same q-
homotopy type, then $X,$ $Y$ have the same $(q+1)$ -type.

4. J. H. C. Whitehead invariants (see [6]).
In the following, we restrict our argument to simply connected

standard complexes $K$ and their standard loop spaces $\omega(K)^{3)}$ which
are also CW-complexes.

Let $K^{n}$ and $\omega(K)^{n}$ be n-skeletons of $K$ and $\omega(K)$ respectively.
Then the n-th Whitehead invariant $l_{n}(K)$ is defined as follows: Let
$j$ be the homomorphism of $\pi_{n}(K^{n})$ into $\pi_{n}(K^{n}, K^{n-1})$ induced by the
injection mapping and let $j^{\#}$ be its $\pi_{n}(K)$ -dual. We denote by $l_{n}(K)$

the natural homomorphism

$\pi_{n}(K^{n})\rightarrow\pi_{n}(K^{n})/\partial\pi_{n+1}(K^{n+1}, K^{n})=\pi_{n}(K)$ ,

and we put

$l_{n}(K)=\{l_{n}(K)\}$

$\in\Gamma I^{n}(K, \pi_{n})=A^{P}(\pi_{n}(K))/j^{t}C^{\#}(\pi_{n}(K))$ ,

where $A^{\mathfrak{p}}(\pi_{n}(K))$ is the group Ophom $(\pi_{n}(K^{n}), \pi_{n}(K))^{4)}$ and $C^{t}(\pi_{n}(K))$

is the group Ophom $(\pi_{n}(K^{n}, K^{n-1}),$ $\pi_{n}(K))^{4)}$ .
Let $\alpha$ be any element of $\pi_{n}(\omega(K)^{n})$ and let $f_{\alpha}$ be a mapping of

$(S^{n}, s)$ into $(\omega(K)^{n}, x_{0})$ contained in $\alpha$ , where $S_{n}$ is an n-sphere, $s$ is a
point of $S^{n}$ . and $x_{0}$ is the base point of $\omega(K),$ $i$ . $e$ . the constant path
$I\rightarrow x_{0}$ . A suspended class $\Sigma^{\prime}\alpha$ of $\alpha$ is the class which contains the
mapping $2f_{a}$ of an $(n+1)$-sphere into $K^{n+15)}$ defined as follows: we
identify the subset $S^{n}\times 0\cup S^{\tau}\times 1\cup s\times I$ of $S^{n}\times I$ to a point and denote
the identification mapping by $h_{n}$ . We can take $h_{n}(S^{n}\times I)$ for $S^{n+1}$ .
The mapping $2_{i}f_{a}$ is defined by

$\Sigma f_{a}(y)=f_{a}(x)(t)$

for each point $y=h_{n}(x, t)$ . $\Sigma^{\prime}$ is a homomorphism of $\pi_{n}(\omega(K)^{n})$ into
$\pi_{n+1}(K^{n+1})$ . We can extend the definition of $\Sigma^{\prime}$ to relative homotopy
–

3) As for singular polytopes of $M(X)$ and $M(\Omega_{X})$ , I don’t know whether the results
of this section hold good or not.

4) Since we assumed $\pi_{1}(K)=0$ , we have Ophom$=Hom$ for the $K$.
5) This follows from the definition of the complex $\omega(K)$ .
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groups similarly. It is a homomorphism of the group $\pi_{n}(\omega(K)^{n}$ ,
$\omega(K)^{n-1})$ into the group $\pi_{n+}(K^{n+1}, K^{n})$ . Then commutativity relations
$\partial\Sigma=^{\tau}\rightarrow\partial$ and $j\Sigma=.\geq j$ hold good for the boundary operator $\partial$ and the
injection homomorphism $j$.

The homomorphism of the group $\pi_{n}(\omega(K))$ into the group $\pi_{n+1}(K)$

induced by 2’ coincides with the suspension isomorphism $\Sigma$ of
homotopy groups. We identify these groups by the isomorphism
and denote it by $\pi_{n+1}$ . In the following diagramm commutativity
holds good:

$\Sigma$

$\pi_{n}(\omega(K))$ $=$ $\pi_{n+1}(K)(=\pi_{n+1})$

$\uparrow\ell_{n}(\omega(K))$ $(l_{n+1}(K)$

$\Sigma^{\prime}$

$\pi_{n}(\omega(K)^{n})\rightarrow\pi_{n+1}(K^{n+1})$ .
Let $\Sigma^{\#}$ be a $\pi_{n+1}$-dual of $\Sigma$‘ (here we do not consider operations on
the groups $\pi_{n}(\omega(K)^{n})$ and $\pi_{n+1}(K^{n+1}))$ . Then we have

$l_{n}(\omega(K))=l_{n+1}(K)O\Sigma^{\prime}$

$=2^{\prime\#}l_{n+1}(K)$ .
Therefore if we denote by $\Sigma^{\star}$ the homomorphism of the group
$\pi^{n+1}(\pi_{n+1}, K)$ into the group $\prod^{n}(\omega(K), \pi_{n})$ induced by $\Sigma^{\#}$, then we obtain

(9) $l_{n}(\omega(K))=\Sigma^{\star}l_{n+1}(K)$ .
This relation is analogous to (3).

5. Appendix. Finally we shall show that if two arc-wise con-
nected, simply connected spaces are homotopy equivalent, then their
loop spaces have the same property.

LEMMA 5. Let $X,$ $Y$ be two spaces as above and let $f$ be a conti-
nuous mapping of $X$ into Y. $f$ induces a continuous mapping of $\Omega_{X}$

into $\Omega_{Y}$.
PROOF. Let $\tau$ be an arbitrary element of $\Omega_{X}$. We define a

mapping $f_{\Omega}$ of $\Omega_{X}$ into $\Omega_{Y}$ by

$(f_{\Omega^{T}})(t)=f(\tau(t))$
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for each $t\in I$. Let $C$ be a compact set of $I=[0,1]$ and let $U$ be an
open set of $Y$. If by $(C, U)$ we denote an element of the open base
of $\Omega_{Y}$, determined by $C$ and $U$, then $(C,f^{-J}(U))$ is an open set of $\Omega_{X}$.
Since we have $f_{\Omega}^{-1}(C, U)=(C,f^{-1}(U)),$ $f_{\Omega}$ is continuous.

LEMMA 6. Let $F:X\times I\rightarrow Y$ be a homotopy. This mapping induces
a homotopy of mappings of $\Omega_{X}$ into $\Omega_{Y}$ defined by the above lemma.

PROOF. Let $\tau$ be an arbitrary element of $\Omega_{X}$. We define a
mapping $F_{\Omega}$ of $\Omega_{X}\times I$ into $\Omega_{Y}$ by

$F_{\Omega}(\tau, s)(t)=F(\tau(t), s)$

for any $t$ and $s$ in $L$ Let $(C, U)$ be an arbitrary element of the open
base in $\Omega_{Y}$ which contains $F(\tau, S)$ . An inverse image $F^{-1}(U)$ of $U$ is
an open set in $X\times I$ and it contains $(\tau(C), s)$ . $(\tau(C), s)$ is a compact set,
therefore there exists a finite open covering $(U_{i}, (s-e_{i}, s+\epsilon_{i}))$ contained
in $F^{-1}(U)$ for each $i$, where $\epsilon_{i}$ is a positive real number. We put
${\rm Min} e_{i}=e>0$ and $V=((C, \bigcup_{i}U_{j}),$ $(s-\epsilon, s+\epsilon))$ . We have $(\tau, s)\in V$ and
$F_{\Omega}(V)\subset(C, U)$ . Therefore $F_{Q}\ovalbox{\tt\small REJECT}$ is continuous.

THEOREM 7. If two spaces $X$ and $Y$ are homotopy equivalent then
their loop spaces have the same property.

This is an immediate consequence of the two lemmas stated
above.

Mathematical Institute, Tohoku University.
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