On a positive harmonic function in a half-plane.

By Masatsugu TSUJI

(Received Sept., 6, 1954)

THEOREM 1. Let u(z)=u(x+iy) be harmonic and u>0 for x>0. Let C be a Jordan arc, contained in the half-plane x>0, which ends at z=0 and is contained in a Stolz domain, whose vertex is at z=0. If u(z) is bounded on C, then u(z) is bounded in a sector $\Delta: |z| \leq 1$, $|\arg z| \leq \varphi_0 < \frac{\pi}{2}$.

PROOF. Since u(z) > 0 for x > 0, u(z) can be expressed by

$$u(z) = \int_{-\infty}^{\infty} \frac{x d\chi(t)}{x^2 + (y - t)^2} + cx, \qquad c \ge 0, \qquad (1)$$

where $\chi(t)$ is an increasing function of t, such that $\chi(0)=0.10$ From (1),

$$\int_{|t|\geq 1} \frac{d\chi(t)}{t^2} < \infty. \tag{2}$$

Let $0 < u(z) \le M$ on C and z=x+iy lie on C, then $|y| \le k_0 x$ $(k_0=\text{const.})$, so that

$$M \ge u(z) - cx \ge \int_{-x}^{x} \frac{xd \, \chi(t)}{x^2 + (|y| + |t|)^2} \ge \int_{-x}^{x} \frac{d \, \chi(t)}{x(1 + (k_0 + 1)^2)}$$

$$= \frac{\chi(x) - \chi(-x)}{x(1 + (k_0 + 1)^2)},$$

hence

$$|\chi(t)| \leq K|t|, \quad |t| \leq 1, \quad K = (1 + (k_0 + 1)^2) M.$$
 (3)

¹⁾ A. Dinghas: Über das Phragmén-Lindelöfsche Prinzip und den Julia-Carathéodoryschen Satz. Sitzungsber. Preuss. Akad. Wiss. (1938). M. Tsuji: On a positive harmonic function in a half-plane. Jap. Journ. Math. 15 (1939).

Let $z=x+iy\in \Delta$, then y=kx, $|k| \leq \tan \varphi_0$,

$$u(z) - cx = \int_{|t| \le x} \frac{x d \chi(t)}{x^2 + (kx - t)^2} + \int_{x \le |t| \le 1} \frac{x d \chi(t)}{x^2 + (kx - t)^2} + \int_{|t| \ge 1} \frac{x d \chi(t)}{x^2 + (kx - t)^2} = I + II + III,$$

$$(4)$$

where

$$\begin{split} & \mathrm{I} \! \leq \! -\frac{1}{x} \! - \! \int_{-x}^{x} \! d \, \chi(t) \! \leq \! 2K \qquad \text{by (3)} \,, \\ & \mathrm{II} \! = \! \int_{x}^{1} + \! \int_{-1}^{-x} \! = \! \mathrm{II}_{1} \! + \! \mathrm{II}_{2} \,, \\ & \mathrm{II}_{1} \! \leq \! \left[\frac{x \, \chi(t)}{x^{2} \! + \! (kx \! - \! t)^{2}} \right]_{x}^{1} \! + \! 2 \! \int_{x}^{1} \! \frac{x \, \chi(t) |t \! - \! kx| \, dt}{(x^{2} \! + \! (kx \! - \! t)^{2})^{2}} \leq \! \frac{x \, \chi(1)}{x^{2} \! + \! (kx \! - \! t)^{2}} \\ & + \! 2K \! \int_{x}^{1} \! \frac{x \, |t \! - \! kx| \, t \, dt}{(x^{2} \! + \! (kx \! - \! t)^{2})^{2}} \! \leq \! O(1) \! + \! 2K \! \int_{1}^{\infty} \! \frac{|\tau \! - \! k| \, \tau \, d \, \tau}{(1 \! + \! (\tau \! - \! k)^{2})^{2}} \! = \! O(1) \,, \\ & t \! = \! \tau \, x \,. \end{split}$$

Hence $II_1 = O(1)$. Similarly $II_2 = O(1)$, hence II = O(1).

III
$$\leq$$
 const.
$$\int_{|t|>1} \frac{d\chi(t)}{t^2} = O(1).$$

Hence $u(z) \leq \text{const.}$ in Δ , q. e. d.

By Theorem 1, we can prove simply the following Loomis' theorem.² Theorem 2. Let u(z) be harmonic and u > 0 for x > 0. If $\lim_{r \to 0} u(re^{i\alpha}) = \lim_{r \to 0} u(re^{i\beta}) = \omega\left(\alpha < \beta, |\alpha|, |\beta| < \frac{\pi}{2}\right)$ exist, then $\lim_{r \to 0} u(re^{i\theta}) = \omega$ uniformly for $|\theta| \le \varphi_0 < \frac{\pi}{2}$.

PROOF. By Theorem 1, u(z) is bounded in $\Delta: |z| \leq 1$, $|\arg z| \leq \varphi_0$ $< \frac{\pi}{2}$, where we take $\varphi_0 > |\alpha|$, $|\beta|$, so that, since $\lim_{r \to 0} u(re^{i\alpha}) = \lim_{r \to 0} u(re^{i\beta})$ $= \omega$, we have $\lim_{r \to 0} u(re^{i\beta}) = \omega$ uniformly for $\alpha \leq \theta \leq \beta$.

²⁾ L. H. Loomis: The converse of the Fatou theorem for positive harmonic functions. Trans. Amer. Math. Soc. 53 (1943).

78

Let $D: \frac{1}{2} \leq |z| \leq 1$, $|\arg z| \leq \varphi_0 < \frac{\pi}{2}$ and consider a family of functions $u_{\tau}(z) = u(\tau z)$ $(0 < \tau \leq 1)$ in D, then $u_{\tau}(z)$ are uniformly bounded in D, so that they form a normal family and $u_{\tau}(z) \to \omega$ $(\tau \to 0)$ in its partial domain: $\frac{1}{2} \leq |z| \leq 1$, $\alpha \leq \arg z \leq \beta$, so that $u_{\tau}(z) \to \omega$ in D, or $\lim_{r \to 0} u(re^{i\theta}) = \omega$ uniformly for $|\theta| \leq \varphi_0 < \frac{\pi}{2}$.

Mathematical Institute,
Tokyo University.