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Note on Betti numbers of Riemannian
manifolds II.

By Yasuro TOMONAGA
(Received Nov. 25, 1952)
§1. An extension of a theorem of Bochner-Lichnerowicz.
Consider a harmonic vector X; and a symmetric tensor A4, ;.

By Green’s theorem we have
(1.1) o:j(A,-,Xf: kX 7). kdvsz,.,.;,,,Xf: “X T dy +§A,-,.4Xf X7 av
+| A, X705, , do= ( Ay XX idy+ SA,- SR XEX G dy
+jA,- SXEEXG
(1:2) 0= (A, XX *av= (4 A XX do+2[ Ay, X4 X d
From (1.1) and (1.2) we have
1.3) o={(a,, R"k—; AAXIXH dv+ | A XX o

Hence we have the

THEOREM 1.1 Let A;; be any symmetric tensor such that the
quadratic form

(1.4) A Xi X7

is positive definite. Then if the quadratic form
_ .1 -

(1.5) Q—<A,- ; Rip— Z—AAjk>XJX

is everywhere positive definite, we have
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_ Bl=0 .
If Q is everywhere positive semi-definite, we have
X,'; j=0 .

Jor every harmonic vector X;, and consequently B, < n.
Especially when

(1.6) Aij=p"9i; (pF0),
we have the
THEOREM 1.2 If the quadratic form

(1.7) Q'=(PRn—1 (46 9.)X7 X*,
where p is a certain non zero scalar, is everywhere positibe definite,
we have
B,=0.
If @ is everywhere positive semi-definite, we have
X;;;=0,and Bix<#n.
From we have

(1.8) Q’=[P2{'§9j~k+ (Rjk— _}5 gjk)} — %(Apz)gjk]x IXkE

=(Bp-Lar)xixi+ (R g, x %8

.2—(%,,2_%. Ap2>XiX" — sz/(Rjr‘%gjk)(Rjk_ %g;ik XX

— ___JE 2.__~1 2 2 ' . jk_.___‘Rz X Yi
( P Ap P ,/RJkR ) F .
Hence we have the

THEOREM 1.3 If there exists a scalar such that
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)< B VRur-E

1/ 4p*
(1.9) S (4

we have X;, ;=0 for every harmonic vector and consequently

Bl é ”n.
If in the equality does not hold, we have
BI=0 .

§ 2.—Consider a harmonic tensor Xi,.is and a symmetric tensor
A;;. We have from Green’s theorem

2.1) O=S(Aer D= P=D1 5 X yic-Ds): & BV
_ S A5, XiO-@-Drs kX dy
+ jA S(AX QLD X1y mic o~ s BV
| 4 S A XV Dk X o dy,
2.2) O=S(Ars; p X VLD Xy ip-1° ) F AV
=S(AA,S)X"(l"""'(ﬁ_l)’Xi(Dw.w~1>§ dv
+2[ 4,0 Xi0-i-Dr kX S

From and we have

(23)  0=[ A (aXH DN syt
— %S(AA)‘S) X201 X sy icp-1s GV
+ X A, XFOAP- DR X o d

= s{(p—l) (P—Z) Aadeecj+ 2(p—1)gadRembfA”;
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+ (p— l)gadeeAcf + Ya2a9be RcmA';_ ‘%‘gadgbedAcf}
Xi(l)mi(p_s)ach,'(l)...,'(p-wfﬁ:’... dv
+ SAerl'(l)"'i(ﬁ -Dr; kXi(l)"'i(f"l)s;k dv .

Hence we have the

THEOREM 2.1 Let A;; be any symmetric tensor such that the
quadratic form

A fif7
is positive definite. If the quadratic form
(24) Q”: {(p—l) (p—z) Aadeccf+2(p_1) gadRembfA";
+(p—l)gadeeAcf+gadgbeRcmA’7‘_' ; gadgbedAcf}Xachdef ’
where X is any skew-symmetric tensor, is everywhene positive
semi-definite, we have
Xivmier; » =0,
for every harmonic tensor X ;q,-is), and consequently By < (%).
If Q"' is everywhere positive definite, we have
Bp:O .
When A;;=p%;; (p5F0) we have the

THEOREM 2.2 If there exists a scalar p such that the quadratic
form

@5) Q=] | PV Ruseut biacRoa)— L (45 astna |Forfet (fot=—pra)

is everywhere positive semi-definite, we have

X (DD ; = 0
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for every harmonic tensor X,y.ip, and consequently B, < (3).
If Q" is everywhere positive definite, we have

B,=0.
From (2.5) we have
@6 @z {177
_/(p—— )R R'Jkl+ n— 420+2R R"+{i—2(*z_&{)%}Rz}

_...i 2_ “ab
2 4p _|fabf .

Hence we have the
THEOREM 2.3 If therve exists a scalar such that

(2.7) %(‘2;2) <p|-"=P R

n(n—1)
—w/( " LYR, Ry ju R4+ 4:’*213 Ru+{4 Z(Z(np);) | 2}
we have
Xiwicpr; »=0

for every harmonic vector X ;g .-is, and consequently

By = (%),
If in (2.7) the equality does not hold, we have

B,=0.

- Utunomiya University.
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