Note on Betti numbers of Riemannian manifolds II.

By Yasuro Tomonaga

(Received Nov. 25, 1952)

§ 1. An extension of a theorem of Bochner-Lichnerowicz. Consider a harmonic vector X_i and a symmetric tensor A_{ij} . By Green's theorem we have

$$(1.1) \quad 0 = \int (A_{ij}X^{i;k}X^{j})_{;k} dv = \int A_{ij;k}X^{i;k}X^{j} dv + \int A_{ij}\Delta X^{i} X^{j} dv + \int A_{ij}X^{i;k}X^{j}_{;k} dv = \int A_{ij;k}X^{i;k}X^{j} dv + \int A_{ij}R^{i}_{k}X^{k}X^{j} dv + \int A_{ij}X^{i;k}X^{j}_{;k} dv ,$$

$$(1.2) \quad 0 = \int (A_{ij;k} X^i X^j)^{;k} dv = \int (\Delta A_{ij}) X^i X^j dv + 2 \int A_{ij;k} X^{i;k} X^j dv.$$

From (1.1) and (1.2) we have

$$(1.3) \quad 0 = \int (A_{ij} R^{i}_{k} - \frac{1}{2} \Delta A_{jk}) X^{j} X^{k} dv + \int A_{ij} X^{i;k} X^{j}_{;k} dv.$$

Hence we have the

Theorem 1.1 Let A_{ij} be any symmetric tensor such that the quadratic form

$$A_{ij} X^i X^j$$

is positive definite. Then if the quadratic form

(1.5)
$$Q = \left(A_{ij} R^{i}_{k} - \frac{1}{2} \Delta A_{jk}\right) X^{j} X^{k}$$

is everywhere positive definite, we have

$$B_1=0$$
.

If Q is everywhere positive semi-definite, we have

$$X_{i;j}=0$$
.

for every harmonic vector X_i , and consequently $B_1 \leq n$. Especially when

(1.6)
$$A_{ij} = \rho^2 g_{ij} \quad (\rho \neq 0)$$
,

we have the

THEOREM 1.2 If the quadratic form

(1.7)
$$Q' = \left(\rho^2 R_{jk} - \frac{1}{2} (\Delta \rho^2) g_{jk}\right) X^j X^k,$$

where ρ is a certain non zero scalar, is everywhere positive definite, we have

$$B_1=0$$
.

If Q' is everywhere positive semi-definite, we have

$$X_{i;j}=0$$
, and $B_1 \leq n$.

From (1.7) we have

$$(1.8) \quad Q' = \left[\rho^{2} \left\{ \frac{R}{n} g_{jk} + \left(R_{jk} - \frac{R}{n} g_{jk} \right) \right\} - \frac{1}{2} (\varDelta \rho^{2}) g_{jk} \right] X^{j} X^{k}$$

$$= \left(\frac{R}{n} \rho^{2} - \frac{1}{2} \varDelta \rho^{2} \right) X_{i} X^{i} + \rho^{2} \left(R_{jk} - \frac{R}{n} g_{jk} \right) X^{j} X^{k}$$

$$\geq \left(\frac{R}{n} \rho^{2} - \frac{1}{2} \varDelta \rho^{2} \right) X_{i} X^{i} - \rho^{2} \sqrt{\left(R_{jk} - \frac{R}{n} g_{jk} \right) \left(R^{jk} - \frac{R}{n} g^{jk} \right)} X_{i} X^{i}$$

$$= \left(\frac{R}{n} \rho^{2} - \frac{1}{2} \varDelta \rho^{2} - \rho^{2} \sqrt{R_{jk} R^{jk} - \frac{R^{2}}{n}} \right) X_{i} X^{i}.$$

Hence we have the

THEOREM 1.3 If there exists a scalar such that

$$(1.9) \qquad \frac{1}{2} \left(\frac{\Delta \rho^2}{\rho^2} \right) \leq \frac{R}{n} - \sqrt{R_{jk} R^{jk} - \frac{R^2}{n}}$$

we have $X_{i;j}=0$ for every harmonic vector and consequently

$$B_1 \leq n$$
.

If in (1.9) the equality does not hold, we have

$$B_1=0$$
.

§ 2.—Consider a harmonic tensor $X_{i(1)\cdots i(p)}$ and a symmetric tensor A_{ij} . We have from Green's theorem

$$(2.1) 0 = \int (A_{r}^{s} X^{i(1)\cdots i(p-1)r}; {}^{k} X_{i(1)\cdots i(p-1)s}); {}_{k} dv$$

$$= \int A_{r}^{s}; {}_{k} X^{i(1)\cdots i(p-1)r}; {}^{k} X_{i(1)\cdots i(p-1)s} dv$$

$$+ \int A_{r}^{s} (AX^{i(1)\cdots i(p-1)r}) X_{i(1)\cdots i(p-1)s} dv$$

$$+ \int A_{r}^{s} X^{i(1)\cdots i(p-1)r}; {}^{k} X_{i(1)\cdots i(p-1)s}; {}^{k} dv$$

$$+ \int (A_{r}^{s} X^{i(1)\cdots i(p-1)r}; {}^{k} X_{i(1)\cdots i(p-1)s}; {}^{k} dv$$

$$= \int (A_{r}^{s}) X^{i(1)\cdots i(p-1)r} X_{i(1)\cdots i(p-1)s}, {}^{s} dv$$

$$+ 2 \int (A_{r}^{s}; {}^{k} X^{i(1)\cdots i(p-1)r}; {}^{k} X_{i(1)\cdots i(p-1)s}, {}^{s} dv.$$

From (2.1) and (2.2) we have

$$(2.3) 0 = \int A_{rs} (\Delta X^{i(1)\cdots i(p-1)r}) X_{i(1)\cdots i(p-1)}^{s} dv$$

$$- \frac{1}{2} \int (\Delta A_{rs}) X^{i(1)\cdots i(p-1)r} X_{i(1)\cdots i(p-1)}^{s} dv$$

$$+ \int A_{r}^{s} X^{i(1)\cdots i(p-1)r} X_{i(1)\cdots i(p-1)s;k} dv$$

$$= \int \{ (p-1) (p-2) A_{ad} R_{becf} + 2(p-1) g_{ad} R_{embf} A_{c}^{m} \}$$

$$\begin{split} + (p-1)g_{ad}R_{be}A_{cf} + g_{ad}g_{be}R_{cm}A_{f}^{m} - \frac{1}{2}g_{ad}g_{be}\Delta A_{cf} \Big\} \\ X^{i(1)\cdots i(p-3)abc}X_{i(1)\cdots i(p-3)\overset{def}{\dots}}dv \\ + \Big\{A_{r}^{s}X^{i(1)\cdots i(p-1)r}; {}^{k}X_{i(1)\cdots i(p-1)s}; {}^{k}dv \,. \end{split}$$

Hence we have the

Theorem 2.1 Let A_{ij} be any symmetric tensor such that the quadratic form

$$A_{ij}f^{i}f^{j}$$

is positive definite. If the quadratic form

$$(2.4) \quad Q'' = \left\{ (p-1)(p-2) A_{ad} R_{bccf} + 2(p-1) g_{ad} R_{embf} A_{c}^{m} + (p-1) g_{ad} R_{be} A_{cf} + g_{ad} g_{be} R_{cm} A_{f}^{m} - \frac{1}{2} g_{ad} g_{be} \Delta A_{cf} \right\} X^{abc} X^{def},$$

where X^{abc} is any skew-symmetric tensor, is everywhene positive semi-definite, we have

$$X_{i(1)\cdots i(p); r} = 0$$
,

for every harmonic tensor $X_{i(1)\cdots i(p)}$, and consequently $B_p \leq \binom{n}{p}$.

If Q" is everywhere positive definite, we have

$$B_{p}=0$$
.

When $A_{ij} = \rho^2 g_{ij} (\rho + 0)$ we have the

Theorem 2.2 If there exists a scalar ρ such that the quadratic form

$$(2.5) \quad Q''' = \left[\rho^2 \left\{ \frac{p(p-1)}{2} R_{abcd} + p g_{ac} R_{bd} \right\} - \frac{1}{2} (\Delta \rho^2) g_{ac} g_{bd} \right] f^{ab} f^{cd} \quad (f^{ab} = -f^{ba})$$

is everywhere positive semi-definite, we have

$$X_{i(1)\cdots i(p)}$$
: $r=0$

for every harmonic tensor $X_{i(1)\cdots i(p)}$, and consequently $B_p \leq \binom{n}{p}$. If Q''' is everywhere positive definite, we have

$$B_p=0$$
.

From (2.5) we have

$$(2.6) \quad Q''' \ge \left[p\rho^2 \left\{ \frac{n-p}{n(n-1)} R - \sqrt{\left(\frac{p-1}{2}\right)^2 R_{ijkl} R^{ijkl} + \frac{n-4p+2}{4} R_{ij} R^{ij} + \left\{ \frac{1}{4} - \frac{(n-p)^2}{2n(n-1)} \right\} R^2 \right\} - \frac{1}{2} \Delta \rho^2 \right] f_{ab} f^{ab}.$$

Hence we have the

THEOREM 2.3 If there exists a scalar such that

$$(2.7) \quad \frac{1}{2} \left(\frac{\Delta \rho^2}{\rho^2} \right) \leq p \left\{ \frac{n-p}{n(n-1)} R - \sqrt{\left(\frac{p-1}{2} \right)^2 R_{ijkl} R^{ijkl} + \frac{n-4}{4} \frac{p+2}{4} R_{ij} R^{ij} + \left\{ \frac{1}{4} - \frac{(n-p)^2}{2n(n-1)} \right\} R^2 \right\}}$$

we have

$$X_{i(1)\cdots i(p); r} = 0$$

for every harmonic vector $X_{i(1)\cdots i(p)}$, and consequently

$$B_{\mathfrak{p}} \leq \binom{n}{\mathfrak{p}}$$
,

If in (2.7) the equality does not hold, we have

$$B_{\mathfrak{p}}=0$$
.

Utunomiya University.