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Symbolic methods in the problem of
three-line Latin rectangles.

By Koichi YAMAMOTO

(Receivéd July 1, 1951)

1. Introduction. In previous papers the author gave
an asymptotic series for the number f (3, #) of 3x n Latin rectangles :

£ 3, m)~e 3n W H — 1) /it (n)

where H;(x)is Hermite polynomial and (n);=n!/(n—i)! is Jordan facto-
rial. The method of was rather complicated, and the author has
attempted in (written actually after [2]) to clarify derivation of the
asymptotic series. The present paper will make a slight improvement
of

One of the most powerful instruments in such a problem would
be the symbolic method, recently recognized in its full power by
Touchard, Fréchet, Kaplansky and others. This method also clarifies
results on the number f (3, n), and our states f(3,n) as a
polynomial in the shift operator (to the left) applying on partial sums
for e3. This explicit form, though complicated in itself, is undoubtedly
the most reasonable for the asymptotic expansion (Theorem 2).

Mr. John Riordan of Bell Telephone Laboratories kindly communi-
cated to the author an application of obtaining a very neat recur-
sive formula for the number f(3,n) (Memorandum, Sept. 8, 1950).
This would be the simplest . recursion one can expect, and it is a
great pleasure for the author to include it in this paper (Theorem 3).

Our method strongly suggests an extension to the general Latin
rectangles. The first and the chief obstacle, however, lies in establish-
ing analogue of [Theorem 1, and this would have to be overcome only
through elaborate inductions.

Several symbolisms are used in this paper to simplify description.
One is the symbolic representation of sieve process (or Poincaré’s
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formula in the theory of probability), most important in combinatorial
analysis, another is that of the so-called Blissard umbra for sequences
(in our case for Jordan powers), and shift operator may be regarded
as one such. » :
2. Symbolic representation of sieve process. Let S be a
field of subsets of 2 and s be a completely additive abstract measure
defined on S, assuming measure values in a commutative topological
group (written in additive form). Denoting intersection of subsets by
product, and complementation by accent, we have for A’s in S

mA'=m—mA=m(L—A), m=m L2,

mAjAs=m—mA,—mA,+mAA=m(2—A)) (2—A),

.......................................

mAiA;- A’,=m—ZmA, -+ ZmA,-Aj —EMA,AJAk’i‘ e
(Y MAA A= @ — A7) (2~ A)+(2~A,).

The symbolism should be understood in an obvious way: in order to
evaluate m (2—A4,)---(2—A,), we first develop the set part as if it
were an element of an ordinary (zof Boolean) algebra with £ as
neutral element and with A’s as idempotent bases, and then operate
m term by term. The function m is additive on this algebra.

This is a symbolic representation of the sieve process and of
Poincarés formula in the thery of probability. We shall not enume-
rate its various applications in algebra and number-theory, but content
ourselves with one example: the Mobius inversion formula of number-
theoretical summatorial functions.

3. Latin rectangles. Consider the totality @ of kxn “rect-
angles ”, i.e. kx»n matrices whose k& rows are permutations of integers
1,2,--,n. Let S=2° and let mA denote the number of elements in
A. Denote now by A,(u,v) the set of “rectangles”, whose (9, %)-
element is the integer v, and define Ag,...(%, v)=A, (u,v) Aq (%, v) .
Then Latin rectangles constitute the subset
(1) L=11 (glq)(Q—qu(u, v))
and f(k,n)=mL is the number of Latin rectangles. Note that if
u=u', v’
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(2) Apa(tt, ©)Apa (U, v)= A po(,0) A po(1t, V)= =empty subset.

4. The case k=3. We consider the special case of k’=3’ in the

rest of the present paper. Developing inner product in (1) first, we
find

(ﬁH)(.Q—qu)=.Q——(A12+Am+AB)+2Am=Q—B+2C ,
if we define symbolic subsets
3) B=Ap+Ap+Ayn, C=A.
Making use of these, (1) is written as

(4) L=11(2—B(u, v)+2C(u, v))

U, v

=11(£2 — B(z, v))+2>C(w,, 2))11(2— B(2, v))+ -

U, ¥

+2i3C(wy, 2)- - C(w;, 2)11(2—B(u, v))+---.

UV
In the -th summand the product may be taken over all #,» such that
u=w,, -, w; and that v 5= z,, --- , &= z;, since if v=z; then C(w;j, z;)
B(w;, v)=¢, ie., C(w,, z;) (2—B(w,, v))=C(w}, z,) according to (2) and
(3), and we may spare the*factor 2—B(w;, v). The same holds for
factors with # == w;, v=2;. Then the summation in this i-th summand
is over (n)¥/i! combinations (w,, z)), -+, (w;, z;) such that all w’s are ==
and that all 2’s are =&, since other terms are suppressed at the restitu-
tion m, by the same reason.
Let us define the subset

L=11(2—B(n, v))

U, U

and put mL=x=x,. We assert that
(5) mC (wy, 21)---C (w;. z;)T11(2— B(u, v))=n\y_;

for any one of the (»)¥/i! permissible combinations (wy, zy), -, (w;, z;).
Indeed 1C(wyj, z;) consists of “rectangles” whose w;-th columns are
filled up with the integer z; for j=1,---,i. If we delete these 7 col-
umns, we would have 3 x(n—i7) *‘rectangles” in the integers different
from z,---,2;. Since in the ensuing product neither #=w; nor v=z;,,

this product bears the same meaning as I for the case of 3 x(n—i)
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“ rectangles ”. We thus have proved

mL:ﬁ)‘ 2'(72)? 7\11—1' ’

i=0 7!
or if we write

bn :f (3’ n)/(n !)'} ’ ‘!’;zzxfz/(n ')3

the relation

_ 20, Iy (2F)
B zzﬁz' (n); 0i!(n); Vo

(6) b

5. In the present paper throughout the shift operator F will be
applied only to sequences denoted by small Grecks, ex. gr., «, (=0,
1, ---), and diminish argument by 1; ex. gr., Fa,=a,_; (n = 1), Fa,=0.
This operator may be considered as an inverse of the usual shift
operator £ such that Fa,=c,.-

6. Now let us proceed to evaluate r=mlL. Developing the set
portion we have

E=§;(—>/~EB<:41, )+ B (g, 1) -

Here the inner summation may be restricted over (n);/k! combinations
of k pairs (uy, vy), -~ , (uy, vp) such that z’s are all 3= and that o’s are
all g=. Other terms are again to be suppressed as before. We assert
again that any of these (n)i/k! permissible symbolic subsets B(u,, v))--
B(u,, v,) has the same measure. Indeed such a symbolic subset is the
sum of 3* subsets substituting each factor B by A,,, A;; or Ay Sup-
pose a, b and ¢ of the B’s are replaced by Aj, A;; and Ax respectively
(a+b+c=EFk). Then, since the measure of this replaced term is

(n—a—b)!(n—a—c)! (n—b—0c) = 1Y/(1)q:s(n)as(M)p:c,
the measure of symbolic subset B(u,, v,) - B(ut,, vg) 1S

k! (n 1y
ardic=k @l blc! (1) p(1)ar(M)psc

We have found that



Symbolic methods in the problem of three-line Latin rectangles 17

Z( ) (m); T k! (n!)

k | a+drc=k @ b lc! (ﬂ)a+b<n>a+c(n)b+c

or

(7) 4,,,:? 1 < <—(n—k+1)>(—(n—k+1)><—(n—k+1>>

=0 (), a+brc-k a b c
ie.,
_ 1 (—3(n—Fk+1)
® b= (T3 oRr).

The formulas (6) and (8) express the number ¢, in terms of
known functions. In the author has developed (8) in negative
Jordan powers, but since this short cut does not seem to clarify the
matters enough, we prefer in this paper to stop at (7) and develop it
into negative Jordan powers. This method seems to explain best the
intrusion of Hermite polynomials in our problem.

7. The next step is to develop (7) in negative Jordan powers
1/i!(n); of n. And this is carried out by expanding

(=(n—k+1), (—(—k+1)) (—(n—Fk+1)).

in terms of (—(»—k+1));. Thus we are led to define symmétric
functions P; of a, b, ¢ by

(©) (O)a)aw=23 T80 (), (k=a-+b+c).

Then (7) is transformed as follows:

(10 o= SR 5 S
Y v, BB

In order to find P; in (9), we make use of the Vandermonde
binomial theorem for Jordan powers

(x+y)a=]§;)< ? ) (2); (¥)a-j

or
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(x+a)y= JS;I‘; (i)’}}(,b)" (X)p-

the upper end of summation being min. (g, 4) for integral values of a
and 5. Now we find

@Del2s =) (#=@)+ =33 D1 D (..,

j=0

(D)), =33 (D1 B =S (@b (O,

o = ) ik

Hence P; in (9) is given by
P=3 (%) (@); ) @+ b= (O
i=0\ 7

Expanding again (a+b—j),-__,-=((a——j)+(b—j)+j),-_,- according to the
Vandermonde multinomial theorem we find

! G=D @y BYe. (o). (i
R*E '}v!zz:‘_—]j'!‘ r+s§i—j ;;!?.Tﬁ‘ (a)J +7 (b)J +s (C)I ~-J O)t .

Noting that P; is symmetric polyrnomial in a, b, and ¢ we write for
the moment usual power products a?b? instead of Jordan power pro-
ducts (a),(b)q(c), (method of Blissard umbra). Then

P.= ; __,,z:!_,, — cttu _zi r bs (ab)?
TR e Gotiu O e a1 @D
= ! = W (a4 Bysce - (ab)i~t (abe)

wiZt=i Pl ! utizt=w u !l (F—1)!

= ——(i)Fj (ab+ac+ bey % (abc)?
i=o 7!

=H; (—(ab+ ac+ bc),—abc),

if we define modified Hermite polynomials

H; (&, n)=(=) E:é‘) (—X¥ .(%L Ei-2ind
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8. These modified Hermite polynomials are connected Wlth ‘the
usual Hermite polynomials H;(x) by the relations

(11) Hi&,n)=v"75  H;(—&2v ),
(12) H(x)=H(—2x, 1).

These polynomials have the exponential generating function

oo

(13) exp. F_{t Z (‘E 7)) H—=e k- nt*

i-0

and satisfy the recurrence relation

(14) H; (& n)=—¢H; ., (&,7)—2GE-1)n H; ,(&7) (1=2),
Hy(&n)=1, Hi(&n)=—¢

They have also the reproducible property

(15) (L Es @ =8 B+,

and the homogeneity property
(16) H; (t& t2n)=t H; (£,7).

9. Now let us return to v, [10). Consider the generic term
(@) (B)q (c), of P; instead of P; itself. Then

Sty s (@00 (e),

*=i atbrc~k al!b!lc!

T k- Y ( )ka+b2+c=k (a—p)! (b—Q) He—r)!

e
L)
+
Q
+
]

. é (__.)k 3k-(ﬁ+q+r)
k=Draty (k—(p+q+»)!

=(=)*"""g,_(prgrp=(—F)?*""q,,

with o,=3"_(—3)*/u!, since in the inner sum of the first member we
have only to sum those terms such as a>p, b=q and c=7r; and
hence in particular we may restrict the summation range of & to
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Dyg+r=k=n.

Thus the generic power product a? 42 ¢” in the symbolic represen-
tation of P; contributes (—F)?*?*75, to ¥, in [10). We know on the
other hand that the symbolic representation of P; is the modified
Hermite polynomial H; (—(ab+ac+bc), —abc). Hence we may write

; Hi (=3F%L F%) & H,(3F2 F?)
Z( )y z'(n) o i!(n);

by and we may write ¢, by (6), [15), and

Z';M

n -

4) :% 2,’ n:‘- [_1 (3F2 I‘B) F‘
" i1 (n); i-o j’(ﬂ—l)_,
_ -‘!1»_* ___21( >H (3F2 FS) (zp)z J
i=071(n); -0
=0 i.’(?’l),' *
& H,(—2+3F, F) Fi o
0 t!(n); e

We have proved
THEOREM 1. The number f (3, n) of three-line Latin rectangles is
given by

F3,m)=(n1y 3V F¥H; (2—3F)/2,/F)

iy,

where o, is the partial sum of order n for ¢3, F is a shift operator
to the left, and H,/x) is Hermite polynomial.

Since Fig, — e73 as n — < we obtain

THEOREM 2. The number (3, n) is asymplotically given by

~1

10. John Riordan has derived a new recursive formula for the
number f(3,#n) from our results. We state it here in our termmology
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THEOREM 3 (RIORDAN). The numbers b, satisfy the recursive
relation

br=cpn_1+ (;) ¢n—2+‘(57‘ bPr-3+n, (n_>—=3):
2 3 .

¢J:1’ ¢1:¢J:'0,

where

En=nln,=(—)3 24 (=2)y4/u! —2"*Yn! .
=
The auxiliary numbers &, satisfy the recursive formula

Ent&nat gﬁ(’;——'——l—):O (n= 1),
&H=1.
11. Proor. Let us start from the recurrence for the negative
Jordan powers

1 _ 1 1 1 (n—1=>i>1)

il(m);  il(n—1)  (n) G—1)1(m—2)
and the recurrence for H(—2+3F, F), which may be written

H,=(2-3F)H;_ ,—2(i—1) FH,_, (=2).

It is convenient to define an=(1~F)op=0p,—0n1=(—3)"/n!, and to
put

(17) pa=3 HE S H FIQ-F)
i=0 2! (n); i=0 i1 (n);
= S Hitl_Ei
g'n = (n)‘ (27}

Then we deduce from the two recurrence relations that

1
n=Qu1tPp— —— &,
¢ br-1+p (1), &

In the same manner we can rewrite &, as
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— 2
Ei=2 ¢pp—3 (‘f’n‘“Pn)— '; (‘;bn—l_‘Pn—l)

=—¢p— 34’7:-1"‘3 Pnt 2 Pn--1 -
. n n
Combining these two we obtain for n >3,

_ 1 2
(18) bn=pu-1+ ), bu-2+ o

It is natural to introduce

bn-3t (Pn‘— T%;Pn—Z" (ﬁj—)s_p”ﬂ) .

3 2
My=Pn— 7 Pn-2— < Pn-3 (n Z 3) ’
4 (n), (n)s
— _ _ 3
70=P0s M=—P1y M2=—P2— —2— Po»
and
En=nln,, wp=n!p,.
Since

c”:w,‘-‘swn..z_z Wp-3,

the generating functions Z(t)=i(; ¢&nt*, and G(t)=§;} w, * of &s and of
»’s are linked by
(19) Z(t)=(1—3t2—2¢%) G(¢),

and these generating functions converge for |[¢]<(1/3, as seen from
wx~ (—3)".
12. Now G(t) is readily evaluated. Consider its generic part

Ay .

Stntpm FEEY
0 (n);

If we put 8= —3 for convenience this is transformed as follows:

o2 . Bn—i—k
1 —_— | I £ e
O

5 (i tn i

”=3
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. 8 \*
=1 (2] 3 it (2 ) 1—-88)1.
o8 L (1-p5t)"

Multiplying_ by suitable factors and summing over £ we find that the
i-th term H;(—2+3F, F) Fi a,/i!(n); of contributes to G(¢) the

fraction (¢/i1) H, (—2+3 5%’ 5%—) - (1—B¢)". Again summing over i
and using the relation we finally obtain

G(#) =exp. tﬁ( 2+3 -0 a ——) (1—4t)!

—2 _ 2y 0 Y. (1_ -1
—e‘exp.( (3t+t)a,8) (1—p0)
=e# (1—(B—3t—t3) t) 1=e* (1+1¢)73,
by Taylor expansion for (1—g¢#)~!. Since generating function
3
= —312—28) =2t (2 _
Zt)=G@#) (1 —3t2— 283 =e (1+t 2)

for ¢, was found, we may regard Theorem 3 as proved.

Kanazawa University.
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