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If we wish to develop a theory of normed spaces over non-
archimedean fields after the model of the usual theory in archimedean
cases, the first thing to do would be to establish an analogue of the
Hahn-Banach theorem on linear functionals. We shall examine in the
present note in which case this is possible. We shall prove a simple
theorem, which answers completely the question when the ground field
is e. g. the p-adic field. The idea of the ‘binary intersection pro-
perty” given by L. Nachbin in his paper? was very useful to our

purpose. _
Let 2 be a complete field with a non-trivial discrete valuation | |.

This field £ will be fixed throughout this paper.
Suppose a vector space S over k is normed? ; i. e. to each element

x e S corresponds a recal number || x ||, which has the properties :
1. x| >=0; llx||=0 if and only if x=0
2. Nlx+yil ZMlxll + Nyl
3. laxll=laillxll for all ack.
A space S in which the stronger form of the triangular inequality

2. Nx+yll <Max(lxll, llyID

holds is called non-archimedeun®.

A linear and continuous mapping f from a normed space S into &
is called a ZLinear functional. The set of all such functionals is written
by S*.

As in the ordinary case, we call a linear mapping f from S into k&
bounded if there exists a real number ¢ such that |f(x)| < cll x|l for
all xe S.
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A linear mapping f is continuous if and only if it is bounded. In
fact, first, suppose f is bounded. Letting x, — x, we have

|f (@) —f ) =1 (x—x0) | S cll x— 20 ]

and so f(x,) — f(x), which proves the sufficiency. Next, suppose

f is not bounded. Since | | is non-trivial, we can select a sequence
{B.} such that |[B,|— . To each B, there exists x,€S such
that | f(xa) | > 18511l xall.  Puat v, = (Ba/f(xx)) %, then ||y, ||

=81/ f(x) DIl 221l <<1/18Bnl; hence y,->0. On the other hand,
| f (9n) |=1 (B / f (X)) f (%) |=|Br|— o, and so f is not continuous,
which proves the necessity.

Therefore, we may define norm for feS* as usual: || f st,}ﬂ))

(Ax)1/1lx1]). S* becomes thus a normed space over k: the conjugate
space of S. From the definition of || f]|, S* is non-archimedean, and
it is complete.

Let S be a normed space over k. S is said to have the extension
property if for any subspace S, of S and for every fye S,*, there exists
fe S* such that f is identical with f, on S, (written f— f;) and || fil=
Hfoli.

We aim at the following

THEOREM. A normed space S over k has the extension property
if and only if S is non-archimedean.

PROOF. Suppose S is non-archimedean, and fye S§, where S, is a
subspace of S. If f,=0, f=0 is the only norm-preserving extension.
So we may suppose that f;==0. Put M={f; /L €SX, SDSDS, /i~ fo
A=A, Since foe M, M is non-empty. For f,, f.e M, we shall
write fi > f., if fa—f., ie. if fi is a norm-preserving extension of
fu. M is inductively ordered by this relation >-, ie. any non-empty
linearly ordered subset € in 9 has a supremum in M. In fact, put
Se=US,, fo(x)=fi(x), xe S\, then foeST and ||fell=Ilfoil, hence

frel

fa e M. Obviously fg=sfup fr. By Zorn’s lemma there exists at least
. Iaes

one maximal fpe M. The ‘if’-part of our theorem will be proved, if
we show that the domain Sy of fi; is identical with S, or that the f,
whose domain S, is not identical with S, is not maximal.

For this purpose we prove the following

LEMMA. Let {C,} bc a set of circles® in k, and suppose that for
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any o, B, CoCaF0. Then the total intersection() C,3=0%.

PrOOF OF LEMMA. As the valuation of % is non-archimedean,
every point of the circle may be considered as a center®. Hence,
C,~Cg==0 implies that two circles are concentric. So {C,} is linearly
ordered with respect to the inclusion relation.

Now, it is to be noted that a circle may have different radii, i.e. we
may have C={n; nek,|n—&|<r}={n; nek,|n—¢| <7} for r==7"
We shall call the radius of the circle C the infimum of all such #s,
and denote with 7, the radius of C,.

Then, C, D C; if and only if », =7, particularly C,=C, if and
only if 7,=vp.

If »,=0 for some «, then C, consists of a single point, and the
lemma is trivial. So we may exclude this case, and suppose 7, are
all > 0. We consider separately the following two cases.

First, let inf »,=0. Then we can select a decreasing sequence of

the radii {#,} such that »,— 0. We take a point v,e C,—C,,; for
n=1, 2,---, then {v,} forms a Cauchy-sequence in k. The limit v of
this sequence belongs to the total intersection.
Next, let inf », >0, and B be an arbitrarily fixed index. Then,
o

according to the discreteness of k, we have only a finite number of 7,,
such that », <7 So we have only a finite number of C,, such that
C., € Cs. Hence the total intersection(C,= N Ca=-0, q.e.d.

o

7‘&57’3
We return to our f,, whose domain S, is not identical with S. As
f.3=0, we have f, (S,)=k. Since we can select ze S—S,, p (B)=|lfo il
dist(z, fz1(B)) is defined for all Be k. We consider the set of circles
{Cs; Bek}, where Co={a; |la—B| < p(B)}. It follows that
|B—B |=]fux) —fuX)|=1fu(x—2) | Z 1 fullll x—x" ||
=i foll li = | < Max (1 | 2= Il, 1155 11 I} z— ' ).
So we get '
| B—B'| < Max (p (B), p(8)).

This means that CeCp=0. From the lemma there exists ryeﬂf’lkC,;.
Namely, |y—8 | < p(B) for all Bek, or )

y—fu @) [ Z N foll I z—2 ] (*)
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for all xe S,. Let S’ be the space spanned by S, and z. Then, 1’ ¢S
can be written as x'=x+az, xe S, aek, uniquely. Put f'(x')=f.(x)
+a v, then obviously f’ is linear and f' — f,. If a==0, | y—f. (—x/c) |
S follll z—(—=2x/a) || from (»). And so |ay+f ()| SN az+x]].
This inequality holds even for a«=0. Hence, for all ¥’ ¢ S/, we get
LA/ I UAINTZ . So I f i < fll (bounded), and f’ is continuous.
Thus, f' e $'*. Since f' - f,, we havel|f' || =1l f,|l. Therefore f’ e M.
Since S’ is not identical with S,, f. can not be maximal. Thus the
“if >-part of the theorem is proved.

To prove the converse, suppose that S has the extension property.
As the conjugate S™* is non-archimedean, S** is also non-archimedean.
Thus, it is sufficient to show that S can be imbedded in S**.

Defining X(f)=f(x), xeS,f€S* X may be considered ase S**,
The mapping: x — X is a k-homorphism and we have || X < il x|
Moreover, we shall show that x — X is a norm-preserving £k-isomor-
phism: || X ||=lix|l. Suppose, namely, x==0. The functional f, for
subspace S;={ax; aek}, defined by fy(ax)=« is € S;*, and f(x)=1,
Il foll=1/ll xll. According to the extension property of S, there exists
at least one feS™ such that f—f, |[|fll=Ilf,1l. Then, f(x)=f(x)=1
=+0. Hence x — X is a k-isomorphism. Lastly, for above f we have

X (N FN=IF@ /A Il=1/1 fli=li x il and so llel—Squ (I X()
/I FID) =1l x1l, namely || X |/=|| x ||, which proves the ‘only if ’-part.

Addendum. After this paper had been prepared, we knew that
the same subject was treated by A. W. Ingleton,” A. F. Monna® and
I. S. Cohen®. We have not yet access to the papers of A. F. Monna
and I. S. Cohen. We acknowledge that this paper has the essential
part in common with the pap i of Ingleton, but we submit this paper
to publication, as there is some difference in the formulation of the
final result in both papers, and we have a certain generalization of our
result in view, which will be published on a later occasion.

University of Tokyo.
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