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On the Schur relations for the representations
of a Frobenius algebra.

By Masaru OsiMA

(Received April, 2, 1952)

The Schur relations for the representations of a Frobenius algebra
was studied in [1], [6]°. In the present note we shall prove the
Schur relations by a new method. Some supplementary results are also-
obtained. In § 1 we shall study the properties of corresponding bases?
of a Frobenius algebra. § 2 deals with the Cartan basis¥of an algebra.
Using the results obtained in §§ 1 and 2, we shall derive in § 3 the
Schur relations for the representations of a Frobenius algebra.

1. Corresponding bases of a Frobenius algebra. We con-
sider an algebra A with unit element over a given field K. Let u,,
#, .- ,un be a basis of A. Let us denote by S(e) and R(a) the left
and the right regular representations of A defined by the basis (u;):

(1) (i) b=(ui) S(a) R'(b) (a, b in A)

where R/(6) is the tranSpose of R(b). A is called a Frobenius algebra.
if S(a) is similar to R(a):

(2) S(a)=P'R(a)P.
We then have .
(3) (P')1 R(a) P=S(a*) (@ in A).

The mapping @ — @® forms an automorphism @ of A. This automor-
phism is completely determined by A, apart from an inner automor-
phism. We see that

(4) (uf)=(ui) (P) P

where (#?) is obtained from («;) by application of the automorphism
@: a—a’. If we set

1) The numbers in the brackets refer to the references at the end of the paper.
2) Brauer (11.
3) Nesbitt [[4], Nesbitt and Scott (5].
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(5) (#:)=(ui) (P)?,
‘then we have from (2) and (3)
(6) a’(#;) b=(#;) R(a) S'(b) .

‘We say that (#;) and (#;) are corresponding bases of A belonging to
the automorphism . Generally (#;) and (v;) are called corresponding
‘bases of A belonging to ¢, if (v:;) is a basis such that e%v:;)b =
(vi) R(a) S'(B).

LEMMA 1. If there exists a second matrix Q such that S(a)=
Q1Ra)Q, then Q=S't )P (t in A) and conversely®.

We denote by ¢@(#) the automorphism of A: @ —ta?t!. Then o=
@(1)=g¢(c) if and only if a regular element c lies in the center C of
A. From we have

LeMMA 2. (u;) and (vi) are corresponding bases belonging to
(1) if and only if vi=ctu; where c isaregular element in C. In
particular, (u;) and (cuu;) are corresponding bases belonging to ¢.

Let (p:) be any basis of A: (pi)=(u:)T. We set (p:)=(m:)(T')™.
Then we have

LemMMA 3. (pi) and (pi) are corrvesponding bases of A belonging
o @

Proor. Let Si(a) and R,(a) be the left and the right regular re-
presentations of A defined by the basis (p;). Then

S a)=T1Sa)T, Ry(a)=TR(a) (T')!.
Hence Sy(@)=M"1 R\(a)M where M=T'PT. We see that (M")"'R(a)M'

=Si(a?) and (p;)=(p;) (M")1. This implies that (p;) and (;) are corres-
ponding bases belonging to .

LEMMA 4. Let (u:) and (v:i) be corvesponding bases belonging to
@. Then (v:) and (u?) are corrvesponding bases belonging to o.
ProoF. From Lemma 2 we have v;=cu;. Hence (v;)=(u:)S(c)(P')™L
If we set T=S(c)(P)7L, then
(00)=(a:) (T') = (i) (P') S'(¢™?) P=(ui) (P') 1 S'(c) P(P) 1P
=(ui) R'(c™) (P') P=(c"'u?) .

4) Osima (7).
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By [Lemma 3, (v;) and (9:)=(c'u?) are corresponding bases belonging
to @. Then shows that (v;) and («¢) are corresponding bases
belonging to o.

LEMMA 5% Let o be an automorphism of A which leaves in-

T variant every element in K and let (ud)=W,(u;). Then there exists a
regular element b, in A such that
P W,/ (PY1W,=R(,).

THEOREM 1. Let (u:) and (vi) be corresponding bases of A be-
longing to ¢. If o is an automorphism of A, then (u?) and (v?) are
corresponding bases belonging to ¢(b%) wherve b, has the same signifi-
cance as in Lemma 5.

Proof. We set (wi)=/(st:;) W;i. By [Lemma 3, (#7) and (w:) are

corresponding bases belonging to @. We have from (6) and
(07 wi)=(w:) R(b,) W t=(u:) (P')* R(b,) W ;1
=(u:) W, (P)1=(u3) (P")'=(%7) .

shows that (#7) and (#2)=(6? w;) are corresponding' bases
- belonging to @(6%). Since vi=cit: (c in C), we have v7=c" 2. It follows
that (#7) and (v7) are corresponding bases belonging to ¢(5%).

LeMmMA 6. If (u:) and (v:) ave corresponding bases belonging to
@, then

(1) Stvini= > ulvi=vi ui)?.
(ii) Suivi= S vi uf= wi vi)* .

ProoF. From (4) and (5) we have («¢)=(#:;) P. Further (5) yields
(#2)=(u?) (P')"'. We then see that

Slufi=(uf) (@) =(:) PP (u:) = (0:) (wi) = >3 thi i
(Dt w:)*= () () =) (P')™ P'(a:) =(u?) (i) =25 uf v
> ui uf =(2;) (u? Y = () () => u; u;

(X0 o ;)= (u? ) (U ) = (98:) (o7 Y =2 0t

By Lemma 2, we have vi=cw; (:=1,2,---,n) where ¢ is a regular
element in C. This proves our assertions (observe that c’=c).

5) Osima (7).
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Generally we have for any element ¢ in A
(7) Nu; an;=>u; au? => u? an? =X u; an;)®.

THEOREM 2. Let (p;) and (q;) be corresponding bases belonging
to @, then .

Spigi=c>Suu;, D1 pi=c> % u;

where ¢ is a regular element in the center of A.
Proor. If (p;)=(u;) T, then Lemma 3 yields g¢;=cp, where (p;)
=(u;) (7). Now we have

(8) S0 0:=(0) 0)) =(w;) TT ' (o) =(w;) (38;) = w; %;
9 > 0i 0i=08) (T") T'(w,) = @) () =33 94, u;

We obtain generally for any element @ in A
(10) | S ap;=>u; au; .

COROLLARY. Let (w;), (v;) and (p;), (q;) be a pair of corresponding
bases belonging to ¢(t,) and ¢(t,) respectively. Then
Sv;u=ct >1q; p;, Slu; v;=c > p; tq;
where t=t, ;.
ProoFr. First formula follows readily from v,=cit,#%; and g;=ct:p;.
Since tg,=c¢, t, p;, we have from (10)
Sipitgi=aS pithipi=c > u it u, = S u,v;.

If S is a set of elements in A, then we denote by »(S) [/S)] the
set of all right (left] annihilators of S in A. We have r(NY=I(N) for
the radical N of a Frobenius algebra A.

LEMMA 7. Let (u,) and (v;) be corresponding bases belonging to
@. Then, for any element b in A

(i) Su;bv; e C,
(ii) a’(Slv; bu)=( v, bu;) a,
(iii) v, u; e (N)=IN).

ProOOF. (i) We have for any element  in A
a(> u, bv,) =a(u; b) (v;) =(u; b) S(a) (v;Y =(u; b) (v,)Ya= (X u; bv;) a.
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(ii) a*(> v; bu;)=a*(v; b) (w;) =(v; b) R(a) (u;) =
=(v; b) (u;) a= (3 v; bu;) a .

(iii) Let

(11 A=[>oL>o-- >0

be a composition series of the left-module A. Let us denote by (w;)
a basis of A defined by If Si(a) and R(a) are the left and the
right regular representations defined by the basis (w;), then there exists
a matrix @ such that Sya)=@Q !'Ria) Q. We set (w;)=(w;) (@)
With a suitable choice of @, corresponding bases (w;) and (#;) belong
to @. Further (#;) is a basis defined by a composition series®

(12) O 7(I§) = -+ () A.

Let w;elx and w; ¢ [u,;. Then @w;er(I¢.;). As nw;els,; for any z in
N, we find

(nwi)wa?i:o; (izly 2, ,ﬂ).
Hence #°(>) wfw;)=0. This implies
Stwf wi=>w; wier(N).
It follows from >} v; u;=c >, @; w; that our assertion is valid.

The algebra A is called a symmetric algebra, when the matrix P
in (2) can be chosen as a symmetric, non-singular matrix. Then
a*=a and @ becomes the identical automorphism. The equation (6)
now reads
(13) a(tt;) b=(u;) R(a) S'(D).

We then say that (#;) and (#&;) are quasi-complementary- bases”. If
(#;) and (v;) are quasi-complementary bases, then (v;) and' (%;) are also
quasi-complementary. From Lemmas 6 and 7 we have

(14) Eu;v;eCﬁr(N).

If (p;) and (g;) are any quasi-complementary bases, then from
Theorem 2

(15) 2 pigi=c>u; v;

6) Osima [7].
7) Brauer (1].
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where ¢ is a regular element in C.
Let G be a group of finite order g and let A be the group ring of .
G over an arbitrary field K :

(16) A=G K+G, K+ ------ +Ge: K, G =1.

As is well known, A is a symmetric algebra and (Gs) and (G!) are
quasi-complementary bases. Hence, by (14)

VG Gs=ger(N).

If the characteristic of the underlying field K is zero or a prime
P which does not divide g, then 31 G;!G,=g is a regular element in
A. This implies N=0, that is, A is semisimple.

In what follows we assume that the group ring A is a semisimple
algebra over an algebraically closed field K. Let

be a decomposition of A into a direct sum of simple two-sided ideals.
We denote by ¢;, s (a, R=1,2, -, f(i)) a set of matrix units for the
simple algebra A;. E;=> e, .., 1S a unit element of A;. Let Fj,

Fy -eeen , Fr be the distinct irreducible representations of A. We set
(17) F; (Gy)=(fis (Gy).

Then Gs=3 Zﬁ fia(Gs) e;, o5 Or in matrix form

(18) (G)=(e:, us) (fie(G)))

(Z, «, B row indices, s column index). We then have

(19) (ei, u)=(Gy) (fin(GJ)) ™.

If we set

(20) (vi, 8.)=(G;Y) (Fin(Gs))',

then, by [Lemma 3|, (e;, .s) and (v;, s,) are quasi-complementary. Since
(ei, «p) and (e;, gs) are also quasi-complementary, yields

(21) Viy B —CEj, 8o

where c¢ is a regular element in the center of A. Now becomes

(22) (e:, 8a) S()=(G3) (Fin(Gy))' .
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On the other hand we have

(23) (GSY=(e, op) (Fie(GsY)) =(ei, 8a) (f1al GD))
(22) and yield
(24) (f3GY) (fis(Gs))' = S(c) .

By (8), we find

21 G? Gs=g=ci2 g €iypa Cir ap=C sz(i) E;.
Hence ¢=3> g/f(i) E;. This shows that f,(c)=g/f(i) 8.s and hence we
have from -
(25) >ifwlGs) f G =g/f(&) 8;j 80 85u -

The same arguments may be also applied to the representations of
a Frobenius algebra.

2. Cartan basis. Let A be an algebra with unit element over
an algebraically closed field, and let

(26) A=A+N

be a splitting of A into a direct sum of a semisimple subalgebra A
and the radical N of A. We shall denote by

(27) AZA_1+A2+ ...... +Ak

the uniqu_q splitting of A into a direct sum of simple invariant sub-
algebras A,.. Let

(28) A=A13A2: """ >A, >0
be a composition series for A considered as the A-A-module. Let
&4 a8 (a, B=1,2,:----- , f(/c)) denote a set of matrix units for the simple

algebra A, We set e=>)e, ;5. Then A°=eAe becomes an algebra

with unit element e. - The algebra A° is called the basic algebra® of A.
Corresponding to we obtain a composition series for A° considered
as the A%A%module:

(29) A=A} DA} -+ DAY 50, Al=ceAue.
Let composition factor group Au./Au... be of type (pu,ou), (=1,

8) See Nesbitt and Scott [5].
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2, , 7). Then we can choose a basis &, by, - , b» of A° corresponding
to such that bue A, bu¢ A%y and e,, ybue,, n=b.. Further we

may choose by, b, --- , br such that b.=e, ;, («=1,2,---, k). The elements
u=1,2,--,7

(30) €, o1 bues, 15 a=1,2, -, f(pu)
B=1,2, -, f(ou)

form a basis of A. This basis is called the Cartan basis of 4. In
regard to this basis an element @ in A may be expressed as

(31) a= ?_‘lﬁhﬁs ((l) epu' @l bu eo'u_ 18 -

The additive group formed by the matrices H.(a)= ( h:g(a)) is called
an elementary module of A belonging to b.. Let F}, F,,---, F: be the
distinct irreducible representations of A. We set

(32) F(a)=(fs(a) .
F(a) is the elementary module belonging to e, j;, that is,
h;p(a)—:f;p(a) (lc=1, 2’ R k) .

The number of &. which are of type («, 1) is denoted by c... The
c.. are called the Cartan invariants of A. We have

(33) g Cor=7.

Let us assume that o,;),=A (1=1,2, -, =] c.n) where A(1) < A(2)
< - <A(). Then )
(34) AwerundDAweun>d DA exu>D0

is a composition series of Ae, ;; considered as the left-module. The
elements

(35) €x; a1 bvo e, (k= paci>)

(6=1,2,-,t; «=1,2, -, f(«;)) form the basis of Ae,, . Let U, be the

indecomposable representation of A defined by Then we see that
F,

(36) Ux=

..................
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where H,, is the elementary module of A belonging to &.,.

In what follows we assume that A is a Frobenius algebra over an
algebraically closed field. Let S(a) and R(a) be the left and the right
regular representations of A defined by the Cartan basis (e,,u a1 bu €5, 18).

Then we have S(@)=P~' R(@)P and (P)R(a)P'=S(*). Let U, U,
-, Ur and V1, Vs, -+, Vi be the indecomposable parts of S(a) and R(a)
respectively. Then | '
(.37) . ’ UA;—- v‘()\)

where (71-(1), w(2), -+, ér(k)) is a permutation of (1,2, ---, k).

In we have proved that the automorphism @ may be chosen
such that o ,

(38) » efz()\), ap = ef, af (mOd N)'

From now on we consider only the automorphism @ : @ — @ which
satisfies [38). The element a® will be denoted simply by a*. We
obtain the irreducible representation a* — F,(a) which will be de-
noted by F,«(a). If we set FA*(a):( ;;f(a)),' then, by [38), we see
that f25(e@)=r%"(a). Hence we may set

Fy
) ' H}\(Z) Fv
(39) : U= i,
Hyy woooeeeeee Fix
If we set
(40) (v, Bm):(epu, a1 bu €o, 18 ) (P'),

then (v, g.) is a basis of A corresponding to a composition series
(41) Ocr7(A) ------ cr(AH)c A. )
Further (epu‘ w1 Du e, 18) and (v, g,) are corresponding basis of A belong-
ing to @. (1) and (6) yield -
(42) Vs b=, 1 du €, 10

where dy, dy, -+ , d» form a basis of the (A%*-A%module e*Ae. Further
from we see that

(43) OceinrAig)s - Cenn V(Af(n)c exn A
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is a composition series of the right-module ¢\ ;; A and

(44) ) ex. 1 Ay €x; 13 5 (ki=praiy)

form a basis of e 3y A. We can see that €r, 16 =€), 1a- Thus we
obtain v
(45) {a(e,,.. a1 bacn €x,11)=(q; a1 Brco» €, 11) Un(@)
(ex. 11 dror €y 10) @=(ex, 11 drciy €, 1) U\ (a),
where U, is written in the form We set in
(46) Gia)=(gi(a)) =(m(a)) .

Let (p,) and (g;) be any corresponding bases of A belonging to ¢.
Then, by

(47) (Bs)=(es, a1 bu €5, 16) (PEa(D5))
(#, a, B row indices, s column index). Hence
(48) (€, a1 b €5, 19)=(05) (R2s(B)) "
If we set

(49) (W, 8:)=(a) (R2a(85))’ ,

then (e,,” a1 bu s 18) and (w,_ s,) are corresponding bases belonging to
». Hence we may assume without restriction that

(50) wu, Ba = e:‘:“. Bl du epu‘ 1a

In regard to this new basis an element @ in A may be expressed as

(51) a= ,,Zu‘b kg,,(a) e;:" 81 du e,,u. 1o *
Then
(52) (@5)=(eZ, p1du €, 1a) (Fhalgs)) -

Now [(49), and ((52) yield

(kﬂv(qs)) (e B(Ps))"— I
that is,
(53) ST k4(02) hialDs) = 8uv B Sp
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3. The Schur relations. From and fii(a)=f%"(a) we

have

(54) ex. g1 Ay €xry, 16 = Cx €X. B (mod N)
where ¢, == 0 is an element of K. It follows from that
(55) & B (a)=F32(a).

Using (53) and (55) we have the following

THEOREM 3. Let A be a Frobenius algebra which has (ps) and
(gs) as corresponding bases belonging to ¢ : a— a*. If U, is written
in the form (39), then '

(56) stﬁf(Qs) 923@9)"—‘0}\ Owv OBy »
(57) | S1£3(a) epp) =0 (H.=E G))

where the element ¢, == 0 of K is independent of «,f, p,v.
Further we obtain .

THEOREM 4. If Uda)=(u%(a)) (m row index, n column index),
then, under the assumptions of Theorem 3, we have

(58) ;fﬁj(QS) u:nn(ps):O (’C=1’ 2, k)

provided that ut, does not belong to the elementary module G, in the

lower left corner in U,, (39).
PrROOF. If (uf,(a)) belongs to the elementary module Hu(a) 3= G\(a),

then (58) becomes (57). Hence we consider #%,(a) which does not
belong to the elementary module H.(a). From (31) we see that #,(p)
is a linear combination of 4%s(p;) where the coeflicients of 92s( ps)=hi(ps)
vanish. Observe that the elementary module G,(@) belongs to b, € {(N).
Thus (57) shows that our assertions are valid.

Now we set

(
H], D

(2, 1 (2, 2)
HA ) H)\

¢, 1 @, 2...... t, 0
H®Y H H;

(59) U,=
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where HV=F,; H"?=F,«, H»"Y=G, and H:*V=H,;. We write
(60) H{- (@)= (h)-(a)) . |
We see from and that A3 7X(a) is a linear combination of
ki a).

LemMmA 8. &) 7(a) is a linear combination of kjifa) where the
coefficient of kp’(a) is ¢\ 8., 8s. and the coefficients of k4. (a) (u <\ j))
vanish.

ProoF. Since #(A,) in (41) are the two-sided ideals of 4, N7 {AJ})
—nAZ.). From (54) we then have

* *
€\ n Arxty €xc0, 11 ° €x, B1 dris €x; 1o

_ {cx Gudpe e (mod n(A%G-p))  (u=8)
0 (mod HA¥;-1)  (uFRB).
This proves the first part of the lemma. The second part follows from

e\ 1 Arry Cir 5 1n * €s, B1 du € 1e€€x 1 V(Au) Senn r(AA(j—l)) .
u, u,

According to (53) and Lemma 8, we have

(61) Z h::\(‘, i) (QS) kﬁéi' D(ps): Cx Bwv 83/.:. ’
(62) >0 R gs) hagt V(9s)=0 (<J).

LEMMA 9. A)E2a) (1<7) is a lnear combination of h¥ya)
where the coefficients of h¥ga) (x(i)gu) vanish.

ProoF. (31) and (45) show that &) 7(a) (1 <j) is a linear combi-
nation of #%g(a). We have from (28), AuNc Ay,;. Since €e; ul bajy e,

e A\, N, it follows from A(z) < « that
€, al bu s, 18" €x; p1 bairex ne Auiy e\xus Axin e\, 1.

This implies that the coefficients of A%s{a) ( IO u) vanish.

LEMMA 10. A&)-7(a) (i< t) is a linear combination of ki a)
where the coefficients of k%.[a) (ugw)) vanish.
PRrROOF. Since e;i 1 d)\(,') e,‘i w € N,

*x * * * * *
ex118ri) €e; 10" €5, p1du €, 1a€ €\ 11 (Au-) = e, u 7(AXG-n) -

This proves the lemma.
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Lemmas &, 9, 10, combined with (53), yield
(i) </,
(63)  STAM™P(g) Mg P(p)=0  for( (i) i=4 j>1,
) 1(iii) i=1, j=1, m<¢.
We denote by #u(n) the degree of U,. If we set U,(a)=( ui;m(a))
(m row index: # column index), then above arguments show that

o 1=ZI1Sf(N), m=u(\)—f(\)+1,
0 otherwise.

69 Subedwnr)= |

This implies
65) . UM(S a0 00)= U (g) Us (5s)= (O 0)
s s a I 0

where I is the unit matrix of degree f(A) and a,=c z(1).

Department of Mathematics
Okayama University
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