On the Schur relations for the representations of a Frobenius algebra.

By Masaru Osima

(Received April, 2, 1952)

The Schur relations for the representations of a Frobenius algebra was studied in [1], [6]¹⁾. In the present note we shall prove the Schur relations by a new method. Some supplementary results are also obtained. In § 1 we shall study the properties of corresponding bases²⁾ of a Frobenius algebra. § 2 deals with the Cartan basis³⁾ of an algebra. Using the results obtained in §§ 1 and 2, we shall derive in § 3 the Schur relations for the representations of a Frobenius algebra.

1. Corresponding bases of a Frobenius algebra. We consider an algebra A with unit element over a given field K. Let u_1 , u_2 , \cdots , u_n be a basis of A. Let us denote by S(a) and R(a) the left and the right regular representations of A defined by the basis (u_i) :

(1)
$$a(u_i) b = (u_i) S(a) R'(b)$$
 $(a, b in A)$

where R'(b) is the transpose of R(b). A is called a Frobenius algebra if S(a) is similar to R(a):

(2)
$$S(a) = P^{-1} R(a) P$$
.

We then have

(3)
$$(P')^{-1} R(a) P' = S(a^{\varphi})$$
 $(a^{\varphi} in A).$

The mapping $a \to a^{\varphi}$ forms an automorphism φ of A. This automorphism is completely determined by A, apart from an inner automorphism. We see that

$$(4) \qquad (u_i^{\varphi}) = (u_i) (P')^{-1} P$$

where (u_i^{φ}) is obtained from (u_i) by application of the automorphism $\varphi: a \to a^{\varphi}$. If we set

¹⁾ The numbers in the brackets refer to the references at the end of the paper.

²⁾ Brauer (1).

³⁾ Nesbitt (4), Nesbitt and Scott (5).

$$(5) \qquad (\widetilde{u}_i) = (u_i) (P')^{-1},$$

then we have from (2) and (3)

(6)
$$a^{\varphi}(\widetilde{u}_i) b = (\widetilde{u}_i) R(a) S'(b).$$

We say that (u_i) and (\tilde{u}_i) are corresponding bases of A belonging to the automorphism φ . Generally (u_i) and (v_i) are called corresponding bases of A belonging to φ , if (v_i) is a basis such that $a^{\varphi}(v_i)b = (v_i) R(a) S'(b)$.

LEMMA 1. If there exists a second matrix Q such that $S(a) = Q^{-1}R(a)Q$, then $Q=S'(t^{-1})P$ (t in A) and conversely⁴.

We denote by $\varphi(t)$ the automorphism of $A: a \to ta^{\varphi} t^{-1}$. Then $\varphi = \varphi(1) = \varphi(c)$ if and only if a regular element c lies in the center C of A. From Lemma 1 we have

LEMMA 2. (u_i) and (v_i) are corresponding bases belonging to $\varphi(t)$ if and only if $v_i = ct\tilde{u}_i$ where c is a regular element in C. In particular, (u_i) and $(c\tilde{u}_i)$ are corresponding bases belonging to φ .

Let (p_i) be any basis of $A: (p_i) = (u_i)T$. We set $(\tilde{p}_i) = (\tilde{u}_i)(T')^{-1}$. Then we have

LEMMA 3. (p_i) and (\tilde{p}_i) are corresponding bases of A belonging to φ .

PROOF. Let $S_1(a)$ and $R_1(a)$ be the left and the right regular representations of A defined by the basis (p_i) . Then

$$S_1(a) = T^{-1} S(a) T$$
, $R_1(a) = T' R(a) (T')^{-1}$.

Hence $S_1(a) = M^{-1} R_1(a) M$ where M = T'PT. We see that $(M')^{-1} R_1(a) M' = S_1(a^{\varphi})$ and $(\tilde{p}_i) = (p_i) (M')^{-1}$. This implies that (p_i) and (\tilde{p}_i) are corresponding bases belonging to φ .

LEMMA 4. Let (u_i) and (v_i) be corresponding bases belonging to φ . Then (v_i) and (u_i^{φ}) are corresponding bases belonging to φ .

PROOF. From Lemma 2 we have $v_i = c\widetilde{u}_i$. Hence $(v_i) = (u_i)S(c)(P')^{-1}$. If we set $T = S(c)(P')^{-1}$, then

$$(\tilde{v}_i) = (\tilde{u}_i) (T')^{-1} = (u_i) (P')^{-1} S'(c^{-1}) P = (u_i) (P')^{-1} S'(c^{-1}) P'(P')^{-1} P$$
$$= (u_i) R'(c^{-1}) (P')^{-1} P = (c^{-1}u_i^{\varphi}).$$

⁴⁾ Osima (7).

By Lemma 3, (v_i) and $(\tilde{v}_i) = (c^{-1}u_i^{\varphi})$ are corresponding bases belonging to φ . Then Lemma 2 shows that (v_i) and (u_i^{φ}) are corresponding bases belonging to φ .

Lemma 5.5 Let σ be an automorphism of A which leaves invariant every element in K and let $(u_i^{\sigma}) = W_{\sigma}(u_i)$. Then there exists a regular element b_{σ} in A such that

$$P' W_{\sigma}'(P')^{-1} W_{\sigma} = R(b_{\sigma})$$
.

Theorem 1. Let (u_i) and (v_i) be corresponding bases of A belonging to φ . If σ is an automorphism of A, then (u_i^{σ}) and (v_i^{σ}) are corresponding bases belonging to $\varphi(b_{\sigma}^{\varphi})$ where b_{σ} has the same significance as in Lemma 5.

Proof. We set $(w_i) = (\tilde{u}_i) W_{\sigma}^{-1}$. By Lemma 3, (u_i^{σ}) and (w_i) are corresponding bases belonging to φ . We have from (6) and Lemma 5

$$(b_{\sigma}^{\varphi} w_{i}) = (\widetilde{u}_{i}) R(b_{\sigma}) W_{\sigma}^{-1} = (u_{i}) (P')^{-1} R(b_{\sigma}) W_{\sigma}^{-1}$$
$$= (u_{i}) W_{\sigma}' (P')^{-1} = (u_{i}^{\sigma}) (P')^{-1} = (\widetilde{u}_{i}^{\sigma}).$$

Lemma 2 shows that (u_i^{σ}) and $(\tilde{u}_i^{\sigma}) = (b_{\sigma}^{\varphi} w_i)$ are corresponding bases belonging to $\varphi(b_{\sigma}^{\varphi})$. Since $v_i = c\tilde{u}_i$ (c in C), we have $v_i^{\sigma} = c^{\sigma} \tilde{u}_i^{\sigma}$. It follows that (u_i^{σ}) and (v_i^{σ}) are corresponding bases belonging to $\varphi(b_{\sigma}^{\varphi})$.

LEMMA 6. If (u_i) and (v_i) are corresponding bases belonging to φ , then

(ii)
$$\sum u_i v_i = \sum v_i u_i^{\varphi} = (\sum u_i v_i)^{\varphi}.$$

PROOF. From (4) and (5) we have $(u_i^{\varphi})=(\widetilde{u}_i)P$. Further (5) yields $(\widetilde{u}_i^{\varphi})=(u_i^{\varphi})(P')^{-1}$. We then see that

$$\sum u_i^{\varphi} \widetilde{u}_i = (u_i^{\varphi}) (\widetilde{u}_i)' = (\widetilde{u}_i) PP^{-1} (u_i)' = (\widetilde{u}_i) (u_i)' = \sum \widetilde{u}_i u_i,$$

$$(\sum \widetilde{u}_i u_i)^{\varphi} = (\widetilde{u}_i^{\varphi}) (u_i^{\varphi})' = (u_i^{\varphi}) (P')^{-1} P'(\widetilde{u}_i)' = (u_i^{\varphi}) (\widetilde{u}_i)' = \sum u_i^{\varphi} \widetilde{u}_i,$$

$$\sum \widetilde{u}_i u_i^{\varphi} = (\widetilde{u}_i) (u_i^{\varphi})' = (u_i) (\widetilde{u}_i)' = \sum u_i \widetilde{u}_i,$$

$$(\sum u_i \widetilde{u}_i)^{\varphi} = (u_i^{\varphi}) (\widetilde{u}_i^{\varphi})' = (\widetilde{u}_i) (u_i^{\varphi})' = \sum \widetilde{u}_i u_i^{\varphi}.$$

By Lemma 2, we have $v_i = c\tilde{u}_i$ $(i=1, 2, \dots, n)$ where c is a regular element in C. This proves our assertions (observe that $c^{\varphi} = c$).

⁵⁾ Osima (7).

Generally we have for any element a in A

(7)
$$\sum u_i a \widetilde{u}_i = \sum \widetilde{u}_i a u_i^{\varphi} = \sum u_i^{\varphi} a \widetilde{u}_i^{\varphi} = (\sum u_i a \widetilde{u}_i)^{\varphi}.$$

THEOREM 2. Let (p_i) and (q_i) be corresponding bases belonging to φ , then

$$\sum p_i q_i = c \sum u_i \tilde{u}_i$$
, $\sum q_i p_i = c \sum \tilde{u}_i u_i$

where c is a regular element in the center of A.

PROOF. If $(p_i)=(u_i) T$, then Lemma 3 yields $q_i=cp_i$ where $(\tilde{p}_i)=(\tilde{u}_i) (T')^{-1}$. Now we have

(8)
$$\sum p_i p_i = (p_i) (p_i)' = (u_i) TT^{-1} (\widetilde{u}_i)' = (u_i) (\widetilde{u}_i)' = \sum u_i \widetilde{u}_i,$$

(9)
$$\sum p_i p_i = (\widetilde{u}_i) (T')^{-1} T'(u_i)' = (\widetilde{u}_i) (u_i)' = \sum \widetilde{u}_i u_i.$$

We obtain generally for any element a in A

COROLLARY. Let (u_i) , (v_i) and (p_i) , (q_i) be a pair of corresponding bases belonging to $\varphi(t_1)$ and $\varphi(t_2)$ respectively. Then

$$\sum v_i u_i = ct \sum q_i p_i$$
, $\sum u_i v_i = c \sum p_i tq_i$

where $t = t_1 t_2^{-1}$.

PROOF. First formula follows readily from $v_i = c_1 t_1 \tilde{u}_i$ and $q_i = c_2 t_2 \tilde{p}_i$. Since $tq_i = c_2 t_1 p_i$, we have from (10)

$$\sum p_i tq_i = c_2 \sum p_i t_1 p_i = c_2 \sum u_i t_1 \widetilde{u}_i = c_2 c_1^{-1} \sum u_i v_i.$$

If S is a set of elements in A, then we denote by r(S) [l(S)] the set of all right [left] annihilators of S in A. We have r(N)=l(N) for the radical N of a Frobenius algebra A.

LEMMA 7. Let (u_i) and (v_i) be corresponding bases belonging to φ . Then, for any element b in A

(i)
$$\sum u_i bv_i \in C,$$

(ii)
$$a^{\varphi}(\sum v_i bu_i) = (\sum v_i bu_i) a,$$

(iii)
$$\sum v_i u_i \in r(N) = l(N).$$

PROOF. (i) We have for any element a in A $a(\sum u, bv_i) = a(u, b) (v_i)' = (u, b) S(a) (v_i)' = (u, b) (v_i)' a = (\sum u, bv_i) a.$

(ii)
$$a^{\varphi}(\sum v_i bu_i) = a^{\varphi}(v_i b) (u_i)' = (v_i b) R(a) (u_i)' = (v_i b) (u_i)' a = (\sum v_i bu_i) a$$
.

(iii) Let

$$(11) A = \mathfrak{l}_1 \supset \mathfrak{l}_2 \supset \cdots \supset \mathfrak{l}_t \supset 0$$

be a composition series of the left-module A. Let us denote by (w_i) a basis of A defined by (11). If $S_1(a)$ and $R_1(a)$ are the left and the right regular representations defined by the basis (w_i) , then there exists a matrix Q such that $S_1(a) = Q^{-1} R_1(a) Q$. We set $(\widetilde{w}_i) = (w_i) (Q')^{-1}$. With a suitable choice of Q, corresponding bases (w_i) and (\widetilde{w}_i) belong to φ . Further (\widetilde{w}_i) is a basis defined by a composition series⁶⁾

$$(12) 0 \subset r(\mathfrak{l}_2^{\varphi}) \subset \cdots \subset r(\mathfrak{l}_r^{\varphi}) \subset A.$$

Let $w_i \in \mathcal{I}_u$ and $w_i \notin \mathcal{I}_{u+1}$. Then $\widetilde{w}_i \in r(\mathcal{I}_{u+1}^{\varphi})$. As $nw_i \in \mathcal{I}_{u+1}$ for any n in N, we find

$$(nw_i)^{\varphi} \widetilde{w}_i = 0$$
, $(i=1,2,\cdots,n)$.

Hence $n^{\varphi}(\sum w_i^{\varphi} \widetilde{w}_i) = 0$. This implies

$$\sum w_i^{\varphi} \widetilde{w}_i = \sum \widetilde{w}_i w_i \in r(N)$$
.

It follows from $\sum v_i u_i = c \sum \widetilde{w}_i w_i$ that our assertion is valid.

The algebra A is called a symmetric algebra, when the matrix P in (2) can be chosen as a symmetric, non-singular matrix. Then $a^{\varphi} = a$ and φ becomes the identical automorphism. The equation (6) now reads

(13)
$$a(\widetilde{u}_i) b = (\widetilde{u}_i) R(a) S'(b).$$

We then say that (u_i) and (\tilde{u}_i) are quasi-complementary bases⁷⁾. If (u_i) and (v_i) are quasi-complementary bases, then (v_i) and (u_i) are also quasi-complementary. From Lemmas 6 and 7 we have

$$\sum u_i v_i \in C \cap r(N).$$

If (p_i) and (q_i) are any quasi-complementary bases, then from Theorem 2

⁶⁾ Osima (7).

⁷⁾ Brauer (1).

where c is a regular element in C.

Let G be a group of finite order g and let A be the group ring of G over an arbitrary field K:

(16)
$$A = G_1 K + G_2 K + \cdots + G_8 K, \qquad G_1 = 1.$$

As is well known, A is a symmetric algebra and (G_s) and (G_s^{-1}) are quasi-complementary bases. Hence, by (14)

$$\sum G_s^{-1} G_s = g \in r(N)$$
.

If the characteristic of the underlying field K is zero or a prime p which does not divide g, then $\sum G_s^{-1}G_s=g$ is a regular element in A. This implies N=0, that is, A is semisimple.

In what follows we assume that the group ring A is a semisimple algebra over an algebraically closed field K. Let

$$A=A_1+A_2+\cdots\cdots+A_k$$

be a decomposition of A into a direct sum of simple two-sided ideals. We denote by e_i , $_{\alpha\beta}\left(\alpha,\beta=1,2,\cdots,f(i)\right)$ a set of matrix units for the simple algebra A_i . $E_i=\sum e_i$, $_{\alpha\alpha}$ is a unit element of A_i . Let F_1 , F_2 , \cdots , F_k be the distinct irreducible representations of A. We set

(17)
$$F_{i}(G_{s}) = \left(f_{\alpha\beta}^{i}(G_{s})\right).$$

Then $G_s = \sum_i \sum_{\alpha \beta} f_{\alpha\beta}^i(G_s) e_i$, $\alpha\beta$ or in matrix form

(18)
$$(G_s) = (e_i, _{\alpha\beta}) \left(f_{\alpha\beta}^i(G_s) \right)$$

 (i, α, β) row indices, s column index). We then have

(19)
$$(e_{i,\alpha\beta}) = (G_s) \left(f_{\alpha\beta}^i(G_s) \right)^{-1}.$$

If we set

$$(20) (v_i, \beta_{\alpha}) = (G_s^{-1}) \left(f_{\alpha\beta}^i(G_s) \right)',$$

then, by Lemma 3, (e_i, α_β) and (v_i, β_α) are quasi-complementary. Since (e_i, α_β) and (e_i, β_α) are also quasi-complementary, Lemma 2 yields

$$(21) v_i, \, \beta_{\alpha} = ce_i, \, \beta_{\alpha}$$

where c is a regular element in the center of A. Now (20) becomes

$$(22) (ei, βa) S(c) = (Gs-1) (fiαβ(Gs))'.$$

On the other hand we have

$$(G_s^{-1}) = (e_i, _{\alpha\beta}) \left(f_{\alpha\beta}^i(G_s^{-1}) \right) = (e_i, _{\beta\alpha}) \left(f_{\beta\alpha}^i(G_s^{-1}) \right).$$

(22) and (23) yield

(24)
$$\left(f_{\beta\alpha}^{i}(G_{s}^{-1})\right)\left(f_{\alpha\beta}^{i}(G_{s})\right)' = S(c).$$

By (8), we find

$$\sum G_s^{-1} G_s = g = c \sum_i \sum_{\alpha,\beta} e_i, \, _{\beta\alpha} e_i, \, _{\alpha\beta} = c \sum_i f(i) E_i$$
.

Hence $c = \sum g/f(i) E_i$. This shows that $f_{\beta\alpha}^i(c) = g/f(i) \delta_{\alpha\beta}$ and hence we have from (24)

(25)
$$\sum_{s} f_{\alpha\beta}^{i}(G_{s}) f_{\mu\nu}^{j}(G_{s}^{-1}) = g/f(i) \, \delta_{ij} \, \delta_{\alpha\nu} \, \delta_{\beta\mu}.$$

The same arguments may be also applied to the representations of a Frobenius algebra.

2. Cartan basis. Let A be an algebra with unit element over an algebraically closed field, and let

$$(26) A = \overline{A} + N$$

be a splitting of A into a direct sum of a semisimple subalgebra \overline{A} and the radical N of A. We shall denote by

$$(27) \overline{A} = \overline{A}_1 + \overline{A}_2 + \cdots + \overline{A}_k$$

the unique splitting of \overline{A} into a direct sum of simple invariant subalgebras \overline{A}_{κ} . Let

$$(28) A = A_1 \supset A_2 \supset \cdots \supset A_r \supset 0$$

be a composition series for A considered as the A-A-module. Let $e_{\kappa;\,\alpha\beta}\left(\alpha,\,\beta=1,2,\cdots,f(\kappa)\right)$ denote a set of matrix units for the simple algebra \overline{A}_{κ} . We set $e=\sum_{\kappa}e_{\kappa,\,11}$. Then $A^0=eAe$ becomes an algebra with unit element e. The algebra A^0 is called the basic algebra A^0 considered as the A^0 - A^0 -module:

$$(29) A^0 = A^0_1 \supset A^0_2 \supset \cdots \supset A^0_r \supset 0, A^0_u = eA_ue.$$

Let composition factor group A_u/A_{u+1} be of type (ρ_u, σ_u) , $(u=1, \sigma_u)$

⁸⁾ See Nesbitt and Scott [5].

2,, r). Then we can choose a basis b_1, b_2, \cdots, b_r of A^0 corresponding to (29) such that $b_u \in A^0_u$, $b_u \notin A^0_{u+1}$ and $e_{\rho_{u_1} 11} b_u e_{\sigma_{u_1} 11} = b_u$. Further we may choose b_1, b_2, \cdots, b_k such that $b_{\kappa} = e_{\kappa, 11} (\kappa = 1, 2, \cdots, k)$. The elements

(30)
$$e_{\rho_{u,\alpha_1}} b_u e_{\sigma_{u,1\beta}} \qquad \alpha = 1, 2, \dots, f(\rho_u)$$
$$\beta = 1, 2, \dots, f(\sigma_u)$$

form a basis of A. This basis is called the Cartan basis of A. In regard to this basis an element a in A may be expressed as

(31)
$$a = \sum_{u, \alpha\beta} h_{\alpha\beta}^{u}(a) e_{\rho_{u,\alpha}} b_{u} e_{\sigma_{u,1}\beta}.$$

The additive group formed by the matrices $H_u(a) = (h_{a\beta}^u(a))$ is called an elementary module of A belonging to b_u . Let F_1, F_2, \dots, F_k be the distinct irreducible representations of A. We set

$$(32) F_{\kappa}(a) = \left(f_{\alpha\beta}^{\kappa}(a)\right).$$

 $F_{\kappa}(a)$ is the elementary module belonging to $e_{\kappa, 11}$, that is,

$$h_{\alpha\beta}^{\kappa}(a)=f_{\alpha\beta}^{\kappa}(a)$$
 $(\kappa=1,2,\cdots,k)$.

The number of b_u which are of type (κ, λ) is denoted by $c_{\kappa\lambda}$. The $c_{\kappa\lambda}$ are called the Cartan invariants of A. We have

$$\sum_{\kappa,\lambda} c_{\kappa\lambda} = r.$$

Let us assume that $\sigma_{\lambda(i)} = \lambda$ $(i=1, 2, \dots, t=\sum_{\kappa} c_{\kappa\lambda})$ where $\lambda(1) < \lambda(2)$ $< \dots < \lambda(t)$. Then

$$(34) A_{\lambda(1)} e_{\lambda, 11} \supset A_{\lambda(2)} e_{\lambda, 11} \supset \cdots \supset A_{\lambda(t)} e_{\lambda, 11} \supset 0$$

is a composition series of $Ae_{\lambda, 11}$ considered as the left-module. The elements

$$(35) e_{\kappa_i \text{ all } b_{\lambda(i)}} e_{\lambda_i \text{ 11}}, (\kappa_i = \rho_{\lambda(i)})$$

 $(i=1,2,\dots,t; \alpha=1,2,\dots,f(\kappa_i))$ form the basis of $Ae_{\lambda,11}$. Let U_{λ} be the indecomposable representation of A defined by (35). Then we see that

(36)
$$U_{\lambda} = \begin{pmatrix} F_{\lambda} \\ H_{\lambda(2)} F_{\nu} \\ \dots \\ H_{\lambda(\ell)} \dots F_{\mu} \end{pmatrix}$$

where $H_{\lambda(i)}$ is the elementary module of A belonging to $b_{\lambda(i)}$.

In what follows we assume that A is a Frobenius algebra over an algebraically closed field. Let S(a) and R(a) be the left and the right regular representations of A defined by the Cartan basis $(e_{\rho_u, \alpha_1} b_u e_{\sigma_u, 1\beta})$.

Then we have $S(a)=P^{-1}R(a)P$ and $(P')^{-1}R(a)P'=S(a^{\varphi})$. Let U_1, U_2, \dots, U_k and V_1, V_2, \dots, V_k be the indecomposable parts of S(a) and R(a) respectively. Then

$$(37) U_{\lambda} \cong V_{\pi(\lambda)}$$

where $(\pi(1), \pi(2), \dots, \pi(k))$ is a permutation of $(1, 2, \dots, k)$.

In [7] we have proved that the automorphism φ may be chosen such that

(38)
$$e_{\pi(\lambda), \alpha\beta} \equiv e^{\varphi}_{\lambda, \alpha\beta} \pmod{N}.$$

From now on we consider only the automorphism $\varphi: a \to a^{\varphi}$ which satisfies (38). The element a^{φ} will be denoted simply by a^* . We obtain the irreducible representation $a^* \to F_{\lambda}(a)$ which will be denoted by $F_{\lambda*}(a)$. If we set $F_{\lambda*}(a) = (f_{\alpha\beta}^{\lambda*}(a))$, then, by (38), we see that $f_{\alpha\beta}^{\lambda*}(a) = f_{\alpha\beta}^{\mu(\lambda)}(a)$. Hence we may set

(39)
$$U_{\lambda} = \begin{pmatrix} F_{\lambda} \\ H_{\lambda(2)} & F_{\nu} \\ \dots \\ H_{\lambda(\ell)} & \dots \\ F_{\lambda^{*}} \end{pmatrix}.$$

If we set

(40)
$$(v_{u,\beta\alpha}) = (e_{\rho_{u,\alpha}} b_u e_{\sigma_{u,\beta}}) (P')^{-1},$$

then $(v_{u,\beta\alpha})$ is a basis of A corresponding to a composition series

$$(41) 0 \subset r(A_2^*) \subset \cdots \subset r(A_r^*) \subset A.$$

Further $(e_{\rho_{u,\alpha}} b_u e_{\sigma_{u,1}})$ and $(v_{u,\beta\alpha})$ are corresponding basis of A belonging to φ . (1) and (6) yield

(42)
$$v_{u, \beta \alpha} = e_{\sigma_{u, \beta 1}}^* d_u e_{\rho_{u, 1\alpha}}$$

where d_1, d_2, \dots, d_r form a basis of the $(A^0)^*$ - A^0 -module e^*Ae . Further from (34) we see that

$$(43) 0 \subset e_{\lambda,11}^* r(A_{\lambda(2)}^*) \subset \cdots \subset e_{\lambda,11}^* r(A_{\lambda(t)}^*) \subset e_{\lambda,11}^* A$$

is a composition series of the right-module $e_{\lambda,11}^* A$ and

$$(44) e_{\lambda_{i} 11} d_{\lambda(i)} e_{\kappa_{i} 12}, (\kappa_{i} = \rho_{\lambda(i)})$$

form a basis of $e_{\lambda, 11}^* A$. We can see that $e_{\kappa_{\ell}, 1\alpha} = e_{\pi(\lambda), 1\alpha}$. Thus we obtain

(45)
$$\begin{cases} a(e_{\kappa_{i},\alpha_{1}} b_{\lambda(i)} e_{\lambda,11}) = (e_{\kappa_{i},\alpha_{1}} b_{\lambda(i)} e_{\lambda,11}) U_{\lambda}(a), \\ (e_{\lambda,11}^{*} d_{\lambda(i)} e_{\kappa_{i},1\alpha}) a = (e_{\lambda,11}^{*} d_{\lambda(i)} e_{\kappa_{i},1\alpha}) U_{\lambda}'(a), \end{cases}$$

where U_{λ} is written in the form (39). We set in (39)

(46)
$$G_{\lambda}(a) = \left(g_{\alpha\beta}^{\lambda}(a)\right) = \left(h_{\alpha\beta}^{\lambda(t)}(a)\right).$$

Let (p_s) and (q_s) be any corresponding bases of A belonging to φ . Then, by (31)

$$(47) \qquad (p_s) = (e_{\rho_{u_*} \circ l} b_u e_{\sigma_{u_*} 1\beta}) \left(h_{\circ \beta}^u(p_s)\right)$$

 (u, α, β) row indices, s column index). Hence

(48)
$$(e_{\rho_{u_*} \text{ ol}} b_u e_{\sigma_{u_*} 1\beta}) = (p_s) (h_{\alpha\beta}^u(p_s))^{-1}.$$

If we set

$$(49) \qquad (w_{u,\beta x}) = (q_s) \left(h_{\alpha\beta}^{u}(p_s)\right)',$$

then $(e_{\rho_{u,\alpha_1}}b_u e_{\sigma_{u,1\beta}})$ and $(w_{u,\beta\alpha})$ are corresponding bases belonging to φ . Hence we may assume without restriction that

$$(50) w_{u,\beta\alpha} = e_{\sigma_{u,\beta1}}^{\star} d_u e_{\rho_{u,\beta\alpha}}.$$

In regard to this new basis an element a in A may be expressed as

(51)
$$a = \sum_{\mathbf{u} \in \mathcal{B}} k_{\beta \mathbf{u}}^{\mathbf{u}}(a) e_{\sigma_{\mathbf{u},\beta 1}}^{*} d_{\mathbf{u}} e_{\rho_{\mathbf{u},1\alpha}}.$$

Then

$$(52) \qquad (q_s) = \left(e_{\sigma_{\boldsymbol{u}},\beta_1}^* d_{\boldsymbol{u}} e_{\rho_{\boldsymbol{u}},1\alpha}\right) \left(k_{\beta\alpha}^{\boldsymbol{u}}(q_s)\right).$$

Now (49), (50) and (52) yield

$$\left(k^{u}_{\beta\alpha}(q_s)\right)\left(h^{u}_{\alpha\beta}(p_s)\right)'=I$$

that is,

(53)
$$\sum_{s} k_{\mu\nu}^{u}(q_s) h_{\alpha\beta}^{v}(p_s) = \delta_{\mu\nu} \delta_{\alpha\nu} \delta_{\beta\mu}.$$

3. The Schur relations. From (38) and $f_{\alpha\beta}^{\lambda*}(a) = f_{\alpha\beta}^{\pi(\lambda)}(a)$ we have

$$(54) e_{\lambda, \beta_1}^* d_{\lambda(t)} e_{\pi(\lambda), 1\alpha} \equiv c_{\lambda} e_{\lambda, \beta\alpha}^* \qquad (\text{mod } N)$$

where $c_{\lambda} \neq 0$ is an element of K. It follows from (51) that

$$(55) c_{\lambda} k_{\beta\alpha}^{\lambda(t)}(a) = f_{\beta\alpha}^{\lambda*}(a).$$

Using (53) and (55) we have the following

THEOREM 3. Let A be a Frobenius algebra which has (p_s) and (q_s) as corresponding bases belonging to $\varphi: a \to a^*$. If U_{λ} is written in the form (39), then

(56)
$$\sum_{s} f_{\mu\nu}^{\lambda*}(q_s) g_{\alpha\beta}^{\lambda}(p_s) = c_{\lambda} \delta_{\alpha\nu} \delta_{\beta\mu},$$

(57)
$$\sum_{s} f_{\mu\nu}^{\lambda*}(q_s) h_{\alpha\beta}^{u}(p_s) = 0 \qquad (H_u \neq G_{\lambda})$$

where the element $c_{\lambda} \neq 0$ of K is independent of α, β, μ, ν . Further we obtain

THEOREM 4. If $U_{\kappa}(a) = (u_{mn}^{\kappa}(a))$ (m row index, n column index), then, under the assumptions of Theorem 3, we have

(58)
$$\sum_{s} f_{\mu\nu}^{\lambda \times}(q_s) u_{mn}^{\kappa}(p_s) = 0 \qquad (\kappa = 1, 2, \dots, k)$$

provided that u_{mn}^{κ} does not belong to the elementary module G_{λ} in the lower left corner in U_{λ} , (39).

PROOF. If $(u_{mn}^{\kappa}(a))$ belongs to the elementary module $H_u(a) \neq G_{\lambda}(a)$, then (58) becomes (57). Hence we consider $u_{mn}^{\kappa}(a)$ which does not belong to the elementary module $H_u(a)$. From (31) we see that $u_{mn}^{\kappa}(p_s)$ is a linear combination of $h_{\alpha\beta}^u(p_s)$ where the coefficients of $g_{\alpha\beta}^{\lambda}(p_s) = h_{\alpha\beta}^{\lambda(t)}(p_s)$ vanish. Observe that the elementary module $G_{\lambda}(a)$ belongs to $b_{\lambda(t)} \in l(N)$. Thus (57) shows that our assertions are valid.

Now we set

(59)
$$U_{\lambda} = \begin{pmatrix} H_{\lambda}^{(1,1)} \\ H_{\lambda}^{(2,1)} H_{\lambda}^{(2,2)} \\ \dots \\ H_{\lambda}^{(t,1)} H_{\lambda}^{(t,2)} \dots H_{\lambda}^{(t,t)} \end{pmatrix}$$

where $H_{\lambda}^{(i,1)} = F_{\lambda}$, $H_{\lambda}^{(i,1)} = F_{\lambda}$, $H_{\lambda}^{(i,1)} = G_{\lambda}$ and $H_{\lambda}^{(i,1)} = H_{\lambda(i)}$. We write (60) $H_{\lambda}^{(i,j)}(a) = (h_{\mu\nu}^{\lambda(i,j)}(a))$.

We see from (45) and (51) that $h_{\mu\nu}^{\lambda(i,j)}(a)$ is a linear combination of $k_{Ba}^{u}(a)$.

LEMMA 8. $h_{\mu\nu}^{\lambda(i,j)}(a)$ is a linear combination of $k_{\beta\sigma}^{n}(a)$ where the coefficient of $k_{\beta\sigma}^{\lambda(j)}(a)$ is $c_{\lambda} \delta_{\alpha\nu} \delta_{\beta\mu}$ and the coefficients of $k_{\beta\nu}^{n}(a)$ $\left(u < \lambda(j)\right)$ vanish.

PROOF. Since $r(A_u^*)$ in (41) are the two-sided ideals of A, $Nr(A_u^*) \subset r(A_{u-1}^*)$. From (54) we then have

$$e_{\lambda, 11}^* d_{\lambda(t)} e_{\pi(\lambda), 1\mu} \cdot e_{\lambda, \beta 1}^* d_{\lambda(j)} e_{\kappa_{j, 1} \alpha}$$

$$\equiv \begin{cases} c_{\lambda} e_{\lambda, 11}^{*} d_{\lambda(j)} e_{\kappa_{j}, 1\alpha} & \left(\text{mod } r(A_{\lambda(j-1)}^{*}) \right) & (\mu = \beta) \\ 0 & \left(\text{mod } r(A_{\lambda(j-1)}^{*}) \right) & (\mu \neq \beta) \end{cases}.$$

This proves the first part of the lemma. The second part follows from $e_{\lambda, 11}^* d_{\lambda(t)} e_{\pi(\lambda), 1\mu} \cdot e_{\sigma_{u}, \beta 1}^* d_u e_{\rho_{u}, 1\sigma} \in e_{\lambda, 11}^* r(A_u^*) \subseteq e_{\lambda, 11}^* r(A_{\lambda(j-1)}^*)$.

According to (53) and Lemma 8, we have

(61)
$$\sum_{s} h_{\mu\nu}^{\lambda(t,i)}(q_s) h_{\alpha\beta}^{\lambda(i,1)}(p_s) = c_{\lambda} \delta_{\alpha\nu} \delta_{\beta\mu},$$

(62)
$$\sum_{s} h_{\mu\nu}^{\lambda(t,j)}(q_s) h_{\alpha\beta}^{\lambda(i,1)}(p_s) = 0 \qquad (i < j).$$

LEMMA 9. $h_{\mu\nu}^{\lambda(i, j)}(a)$ (1 < i) is a linear combination of $h_{\alpha\beta}^{u}(a)$ where the coefficients of $h_{\alpha\beta}^{u}(a)$ $(\lambda(i) \leq u)$ vanish.

PROOF. (31) and (45) show that $h_{\mu\nu}^{\lambda(i,j)}(a)$ (1 < j) is a linear combination of $h_{\alpha\beta}^{u}(a)$. We have from (28), $A_{u}N \subset A_{u+1}$. Since $e_{\kappa_{j},\mu_{1}}b_{\lambda(j)}e_{\lambda,11}$ $\in A_{\lambda(j)} \subset N$, it follows from $\lambda(i) \leq u$ that

$$e_{\rho_{\boldsymbol{u},\,\,\boldsymbol{o}\!1}}\,b_{\boldsymbol{u}}\,e_{\sigma_{\boldsymbol{u},\,\,\boldsymbol{1}\beta}}\cdot e_{\kappa_{\boldsymbol{j},\,\,\boldsymbol{\mu}\!1}}\,b_{\lambda(\boldsymbol{j})}\,e_{\lambda,\,\,\boldsymbol{1}\!1}\in A_{\boldsymbol{u}+1}\,e_{\lambda,\,\,\boldsymbol{1}\!1}\subseteq A_{\lambda(\boldsymbol{i}+1)}\,e_{\lambda,\,\,\boldsymbol{1}\!1}\,.$$

This implies that the coefficients of $h_{\alpha\beta}^{u}(a)$ $(\lambda(i) \leq u)$ vanish.

LEMMA 10. $h_{\mu\nu}^{\lambda(i,j)}(a)$ (i < t) is a linear combination of $k_{\beta\sigma}^{u}(a)$ where the coefficients of $k_{\beta\sigma}^{u}(a)$ $(u \le \lambda(j))$ vanish.

PROOF. Since $e_{\lambda,11}^* d_{\lambda(i)} e_{\kappa_i,1\mu} \in N$,

$$e_{\lambda,11}^* d_{\lambda(i)} e_{\kappa_{i,1}} u \cdot e_{\sigma_{u,\beta}}^* d_u e_{\rho_{u,1}} e \in e_{\lambda,11}^* r(A_{u-1}^*) \subseteq e_{\lambda,11}^* r(A_{\lambda(j-1)}^*).$$

This proves the lemma.

Lemmas 8, 9, 10, combined with (53), yield

(63)
$$\sum_{s} h_{\mu\nu}^{\lambda(m, l)}(q_s) h_{\alpha\beta}^{\lambda(i, j)}(p_s) = 0 \quad \text{for } \begin{cases} (i) & i < l, \\ (ii) & i = l, j > 1, \\ (iii) & i = l, j = 1, m < t. \end{cases}$$

We denote by $u(\lambda)$ the degree of U_{λ} . If we set $U_{\lambda}(a) = (u_{mn}^{\lambda}(a))$ (m row index: n column index), then above arguments show that

(64)
$$\sum_{s} u_{mn}^{\lambda}(q_{s}) u_{nl}^{\lambda}(p_{s}) = \begin{cases} c_{\lambda} & 1 \leq l \leq f(\lambda), & m = u(\lambda) - f(\lambda) + l, \\ 0 & \text{otherwise.} \end{cases}$$

This implies

$$(65) \quad U_{\lambda}(\sum_{s} q_{s} p_{s}) = \sum_{s} U_{\lambda}(q_{s}) U_{\lambda}(p_{s}) = \begin{pmatrix} 0 & 0 \\ a_{\lambda} I & 0 \end{pmatrix}$$

where I is the unit matrix of degree $f(\lambda)$ and $a_{\lambda} = c_{\lambda} u(\lambda)$.

Department of Mathematics Okayama University

References

- [1] R. Brauer, On hypercomplex arithmetic and a theorem of Speiser, Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (1945).
 - [2] T. Nakayama, On Frobeniusean algebras I, Ann. of Math., 40 (1939).
 - [3] —, On Frobeniusean algebras II, Ann. of Math, 42 (1941).
 - [4] C. Nesbitt, On the regular representations of algebras, Ann. of Math., 39 (1938).
- [5] and W. M. Scott, Some remarks on algebras over an algebraically closed field, Ann. of Math., 44 (1943).
- [6] and R. M. Thrall, Some ring theorems with applications to modular representations, Ann. of Math., 47 (1946).
 - [7] M. Osima, Some studies on Frobenius algebras, forthcoming.