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Abstract. An orbifold version of the Hitchin-Thorpe inequality is used to prove that
certain weighted projective spaces do not admit orbifold Einstein metrics. Also, several esti-
mates for the orbifold Yamabe invariants of weighted projective spaces are proved.

1. Introduction. This article is concerned with certain orbifolds in dimension four
with isolated singularities modeled on R4/Γ , where Γ is a finite subgroup of SO(4) acting
freely on R4 \ {0}. The examples considered are weighted projective spaces:

DEFINITION 1.1. For relatively prime integers 1 ≤ r ≤ q ≤ p, the weighted projec-
tive space CP 2

(r,q,p) is S5/S1, where S1 acts by

(1.1) (z0, z1, z2) �→ (eirθz0, e
iqθ z1, e

ipθ z2) ,

for 0 ≤ θ < 2π .

The weighted projective space CP 2
(r,q,p) has no singular points if and only if (r, q, p) =

(1, 1, 1). In general, the orbifold group at each singular point is a cyclic group, with action
described below in Subsection 2.2.

A Riemannian metric on an orbifold is a smooth Riemannian metric away from the sin-
gular set, such that near any singular point the metric locally lifts to a smooth Γ -invariant
metric on B4.

1.1. Einstein metrics. The first result is the following non-existence theorem.

THEOREM 1.2. If p > 1, then the weighted projective space CP 2
(r,q,p) does not admit

any Kähler-Einstein metric with respect to any complex structure. Furthermore, if

(1.2) p ≥ (
√
q + √

r)2 ,

then the weighted projective space CP 2
(r,q,p)

does not admit any Einstein metric.
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REMARK 1.3. Assuming the complex structure is standard, non-existence of a Kähler-
Einstein metric on weighted projective spaces for p > 1 was shown in previous works
[Mab87, GMSY07, RT11]. It is emphasized that the non-existence proof given in this pa-
per does not make any assumptions about the complex structure.

Robert Bryant proved that every weighted projective space admits a Bochner-Kähler
metric [Bry01], and subsequently, David and Gauduchon gave an alternative construction and
showed that this metric is the unique Bochner-Kähler metric on a given weighted projective
space [DG06, Appendix D]. Consequently, this metric will be called the canonical Bochner-
Kähler metric. It is noted that this metric is the quotient of a Sasakian structure on S5 under
the S1-action, which implies that it is an orbifold Riemannian metric in the above sense.

Note that in real dimension four, Bochner-Kähler metrics are the same as self-dual Kähler
metrics. Derdzinski [Der83] proved that for self-dual Kähler metric g , the conformal metric
g̃ = R−2

g g is a self-dual Hermitian Einstein metric, away from the zero set of the scalar
curvature Rg . This conformal metric is not Kähler unless Rg is a constant.

For a weighted projective space CP 2
(r,q,p) with Bochner-Kähler metric g , the zero set of

the scalar curvature is easily identified using [DG06, (2.32)], which yields the following 3
cases:

• If p < r + q , then Rg > 0 everywhere, and g̃ is a positive Einstein metric.
• If p = r + q , then Rg > 0 except at one point, and g̃ is Ricci-flat away from this

point.
• If p > r + q , Rg vanishes along a hypersurface and the complement consists of two

open sets on which g̃ has negative Einstein constant.

REMARK 1.4. In relation to Theorem 1.2, g̃ is a global Einstein metric in the case
p < r + q , but the author does not know if there exists an Einstein metric on CP 2

(r,q,p) in the

range r + q ≤ p < (
√
q + √

r)2; this is a very interesting problem.

The main tools used in proving Theorem 1.2 are an orbifold version of the Hitchin-
Thorpe inequality [Hit74, Tho69] and the triple reciprocity law for Dedekind sums of
Rademacher [Rad54]. Similar computations for the signature were previously done by Hirze-
bruch and Zagier [HZ74, Zag72]. For another recent application of this reciprocity law, see
[LV12].

The weighted projective space CP 2
(1,1,p) is the one-point compactification of O(−p),

the complex line bundle over CP 1, which will be denoted by ̂O(−p) (noting that O(−p) is
diffeomorphic to O(p)). The above theorem in this special case is then simply as follows.

THEOREM 1.5. If p ≥ 4 then ̂O(−p) does not admit any Einstein metric.

The case p = 1 is just CP 2 which of course admits an Einstein metric, the Fubini-
Study metric. The author does not know if either ̂O(−2) or ̂O(−3) admits an Einstein metric.
Exactly as above, O(−2) does admit a complete Ricci-flat Einstein metric, the well-known
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Eguchi-Hanson metric [EH79], but this does not yield an Einstein metric on the compactifi-
cation ̂O(−2).

1.2. Orbifold Yamabe invariants. The next results deal with orbifold Yamabe in-
variants (see [AB04] for background on the orbifold Yamabe problem). The conformal orb-
ifold Yamabe invariant is defined by

(1.3) Yorb(M, [g]) = inf
g̃∈[g]

Vol(g̃)−1/2
∫
M

Rg̃dVg̃ ,

where [g] denotes the conformal class of g . The orbifold Yamabe invariant is then defined as

(1.4) Yorb(M) = sup
[g]
Yorb(M, [g]),

where the supremum is taken over all conformal classes.
If M is a weighted projective space satisfying 1 ≤ r ≤ q ≤ p, then since p is the size of

the largest orbifold group, any conformal class satisfies the estimate

(1.5) Yorb(M, [g]) ≤ 8π
√

6√
p

.

This follows from [AB04, Corollary 2.10], and will be called the elementary estimate of
Akutagawa-Botvinnik.

The main estimate for the orbifold Yamabe invariants of weighted projective spaces is
the following:

THEOREM 1.6. If M = CP 2
(r,q,p), then

(1.6) Yorb(M) ≤ 4π
√

2
(r + q + p)√

rqp
,

and if

(1.7) p < (
√
r + √

q)2 ,

then the lower estimate

(1.8) Yorb(M) ≥ 4π
√

6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr

is satisfied. Furthermore, if r + q ≤ p < (
√
r + √

q)2 then strict inequality holds in (1.8).

The upper and lower estimates on the Yamabe invariant in Theorem 1.6 coincide only
for (p, q, r) = (1, 1, 1). In this case, the Fubini-Study metric is a supreme Einstein metric,
using terminology of LeBrun [Leb99]. In the case p < q + r , the lower bound in (1.8) is in
fact the Yamabe energy of the Einstein metric g̃ . Interestingly, the upper bound in (1.6) turns
out to be the Yamabe energy of the canonical Bochner-Kähler metric. However, for p > 1,
this is not a Yamabe minimizer in its conformal class; it does not even have constant scalar
curvature. The upper estimate in (1.6) is likely not sharp; except for the Fubini-Study metric,
the upper bound in (1.6) is not attained by any conformal class:
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THEOREM 1.7. If M = CP 2
(r,q,p) and p > 1, then any conformal class [g] satisfies

(1.9) Yorb(M, [g]) < 4π
√

2
(r + q + p)√

rqp
.

Note that in case

(1.10) 4π
√

2
(r + q + p)√

rqp
>

8π
√

6√
p

,

Theorem 1.7 is trivial and follows from the elementary estimate (1.5). However, there are
many cases when the upper bound in (1.9) is strictly smaller than the elementary estimate (see
Theorem 1.8 below).

The proof of (1.8) follows more or less immediately from the Hitchin-Thorpe inequality
on orbifolds used to prove Theorem 1.2. However, the proof of (1.6) is more subtle, and
follows the idea of Gursky-LeBrun [GL98] adapted to orbifolds by Akutagawa-Botvinnik
[AB04]. For convenience, a slightly simplified proof of this result is given in Section 3, which
is also used to prove Theorem 1.7. In [AB04], the estimate (1.6) was applied to the example
of O(−p) (the case of CP 2

(1,1,p)), but the upper estimate (1.6) is not “effective” for p > 1
since (1.6) is larger than the elementary estimate (1.5) in that case. So it is only interesting
when the upper estimate given in (1.6) is strictly smaller than the elementary estimate (1.5).
This turns out to hold for a large class of weighted projective spaces:

THEOREM 1.8. Let M = CP 2
(r,q,p), with 1 ≤ r ≤ q ≤ p. If

(1.11) p < (2
√

3 − 3)q + r ∼ 0.464q + r ,

then

(1.12)

0 < 4π
√

6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr

≤ Yorb(M) ≤ 4π
√

2
(r + q + p)√

rqp
<

8π
√

6√
p

.

To conclude, it is remarked that only a few orbifold Yamabe invariants are known ex-
actly. For example, in [Via10] it was shown that the orbifold conformal compactification of
a hyperkähler ALE metric in dimension four has maximal orbifold Yamabe invariant. That
argument also gives an exact determination of the orbifold Yamabe invariant in the “critical”
case p = q + r:

THEOREM 1.9. Let M = CP 2
(r,q,p), and let g be the canonical Bochner-Kähler met-

ric. If p = q + r , then there is no constant scalar curvature metric in the conformal class of
g , and

(1.13) Yorb(M, [g]) = 8π
√

6√
p

.
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Consequently,

(1.14) Yorb(M) = 8π
√

6√
p

.

The proof of this result is based on the Obata argument [Oba72], and is more or less is
the same as [Via10, Theorem 1.3], with a few minor modifications.

REMARK 1.10. The author does not know if the orbifold Yamabe problem has a solu-
tion if p > r + q on CP 2

(r,q,p) in the conformal class of the canonical Bochner-Kähler metric
g . However, symmetric solutions were ruled out in the case (1, 1, p) in [Via10, Theorem 1.4].

Acknowledgments. The author would like to thank Michael T. Lock for very useful discussions,
and Xiaodong Wang for assistance with the argument in Theorem 3.1. The author would also like to
thank the anonymous referee who made numerous helpful suggestions to improve the exposition of the
paper.

2. Einstein metrics. Let (M, g) be a Riemannian orbifold with singular points xi ,
i = 1, . . . , N . The Euler characteristic is given by

(2.1) χ(M) = 1

8π2

∫
M

(
|W |2 − 1

2
|E|2 + 1

24
R2

)
dVg +

N∑
i=1

|Γi | − 1

|Γi | ,

where E denotes the traceless Ricci tensor E = Ric − (R/4)g , and the signature is given by

(2.2) τ (M) = 1

12π2

∫
M

(|W+|2 − |W−|2)dVg −
N∑
i=1

η(S3/Γi) ,

where Γi ⊂ SO(4) is the orbifold group around the point pi , and η(S3/Γi) is the eta-invariant.
See [Hit97, Nak90] for a discussion of the formulas (2.1) and (2.2).

2.1. Cyclic group actions. For 1 ≤ q < p relatively prime integers, denote by Γ(q,p)
the cyclic action

(2.3)

(
exp2πik/p 0

0 exp2πikq/p

)
, 0 ≤ k < p ,

acting on R4 
 C2. The action Γ(q,p) will be referred to as a type (q, p)-action. If Γi is
conjugate to a Γ(q,p) action in SO(4), then

(2.4) η(S3/Γi) = 4s(q, p) ,

where

(2.5) s(q, p) = 1

4p

p−1∑
j=1

[
cot

(
π

p
j

)
cot

(
π

p
qj

)]

is the well-known Dedekind sum [APS75].
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2.2. Weighted projective spaces. For relatively prime integers a < b, let a−1;b de-
note the inverse of a modulo b. On CP 2

(r,q,p) there are three possible orbifold points:

(1) [1, 0, 0] with a type (q−1;rp, r)-action.
(2) [0, 1, 0] with a type (p−1;qr, q)-action.
(3) [0, 0, 1] with a type (r−1;pq, p)-action.

Consequently, on a weighted projective space, the Chern-Gauss-Bonnet formula is

(2.6)

χ(M) = 1

8π2

∫
M

(
|W |2 − 1

2
|E|2 + 1

24
R2

)
dVg

+
[ |r| − 1

|r| + |q| − 1

|q| + |p| − 1

|p|
]
.

Since χ(M) = 3 (see [Kaw73]), this may be rewritten as

(2.7)
1

8π2

∫
M

(
|W |2 − 1

2
|E|2 + 1

24
R2

)
dVg = 1

r
+ 1

q
+ 1

p
.

Next, on a weighted projective space, the Hirzebruch signature formula is

(2.8)
τ (M) = 1

12π2

∫
M

(|W+|2 − |W−|2)dVg

− 4
[
s(q−1;rp, r)+ s(p−1;qr, q)+ s(r−1;pq, p)

]
.

Rademacher’s triple reciprocity for Dedekind sums [Rad54]

(2.9) s(q−1;rp, r)+ s(p−1;qr, q)+ s(r−1;pq, p) = −1

4
+ 1

12

(
r

pq
+ q

pr
+ p

qr

)
,

implies that

(2.10) τ (M) = 1

12π2

∫
M

(|W+|2 − |W−|2)dVg + 1 − 1

3

(
r

pq
+ q

pr
+ p

qr

)
.

Since τ (M) = 1 (see [Kaw73]), this may be rewritten as

(2.11)
1

12π2

∫
M

(|W+|2 − |W−|2)dVg = 1

3

(
r

pq
+ q

pr
+ p

qr

)
.

The following argument to rule out Kähler-Einstein metrics for p > 1 is an adaptation
of the argument of [Der83, Lemma 3] to weighted projective spaces:

THEOREM 2.1. Let M = CP 2
(r,q,p). Then M admits a Kähler-Einstein metric if and

only if (r, q, p) = (1, 1, 1).

PROOF. Any Kähler metric satisfies

(2.12) |W+|2 = R2

24
.

Consequently, the Gauss-Bonnet formula for any Kähler metric onM is

(2.13)
1

8π2

∫
M

(
2|W+|2 + |W−|2 − 1

2
|E|2

)
dVg = 1

r
+ 1

q
+ 1

p
.
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Subtracting (2.13) from 3 times (2.11) yields

− 3

8π2

∫
M

|W−|2dVg + 1

16π2

∫
M

|E|2dVg

= r

pq
+ q

pr
+ p

qr
− 1

r
− 1

q
− 1

p

= 1

rqp
(r2 + q2 + p2 − pq − pr − qr)

= 1

2rqp

(
(p − r)2 + (p − q)2 + (q − r)2

)
.

(2.14)

Consequently, if g is Kähler-Einstein, this gives a contradiction since the left-hand side is
nonpositive and the right-hand side is strictly positive unless (p, q, r) = (1, 1, 1) in which
case the Fubini-Study metric is a Kähler-Einstein metric. �

The following theorem is a generalization of the Hitchin-Thorpe inequality [Hit74,
Tho69] to weighted projective spaces:

THEOREM 2.2. If

(2.15) p ≥ (
√
q + √

r)2 ,

then the weighted projective space CP 2
(r,q,p) does not admit any Einstein metric.

PROOF. Subtracting 3 times (2.11) from 2 times (2.7) yields

(2.16)
1

4π2

∫
M

(
2|W−|2 − 1

2
|E|2 + 1

24
R2

)
dVg = 2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
,

for any metric g . Next, assume that g is an Einstein metric on M = CP 2
(r,q,p). Then (2.16)

yields the inequality

(2.17)
r

pq
+ q

pr
+ p

qr
≤ 2

r
+ 2

q
+ 2

p
,

whereupon multiplication by pqr results in the inequality

(2.18) r2 + q2 + p2 ≤ 2(pq + pr + qr) ,

which is rewritten as

(2.19) p2 − 2(q + r)p + (q − r)2 ≤ 0 .

For fixed q and r , consider the left-hand side of the above equation as a quadratic polynomial
in p. By the quadratic formula, the roots are

(2.20) p± = q + r ± 2
√
qr ,

Clearly then, the inequality in (2.19) is satisfied if

(2.21) p− = (
√
q − √

r)2 ≤ p ≤ (
√
q + √

r)2 = p+ .
Since 1 ≤ r ≤ q ≤ p, it follows that

(2.22) p− = q + r − 2
√
qr ≤ q + r − 2r = q − r < q ,
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so the lower inequality is already satisfied. Consequently, the only requirement is that

(2.23) p ≤ (
√
q + √

r)2 = p+ .

In the case of equality p = p+, from (2.16), the metric must be Ricci-flat and self-dual, so the
bundleΛ2− is flat. Since CP 2

(r,q,p) is simply connected,Λ2− must be trivial, and the holonomy
reduces to SU(2). The metric is therefore Kähler with zero Ricci tensor, which contradicts
Theorem 2.1. �

Theorem 1.2 immediately follows from Theorems 2.1 and 2.2.

3. Orbifold Yamabe invariants. The following Proposition is a restatement of The-
orem 1.7, and immediately implies the upper estimate on the orbifold Yamabe invariant in
Theorem 1.6. The proof is based on the idea of Gursky-LeBrun [GL98] adapted to orbifolds
by Akutagawa-Botvinnik [AB04].

PROPOSITION 3.1. If g is any Riemannian metric on M = CP 2
(r,q,p), then

(3.1) Yorb(M, [g]) ≤ 4π
√

2
(r + q + p)√

rqp
.

Furthermore, if p > 1, then strict inequality holds in (3.1).

PROOF. First, one may assume that g has positive scalar curvature. Let L be the Spinc

structure associated to the almost complex structure J on M , and let D denote the Dirac
operator:

(3.2) D : Γ (S+) → Γ (S+) .

From [Fuk05, Theorem 2], it follows that Ind(D) = 1. Therefore, there exists a positive
harmonic spinor ψ �= 0. By the Lichnerowicz-Bochner formula,

(3.3) ∇∗∇ψ + R

4
ψ + 1

2
F+ · ψ = 0 ,

where F is the curvature form of the line bundle and one chooses the connection such that F
is a harmonic 2-form. Pairing this with ψ and using the Kato inequality

(3.4) |∇ψ|2 ≥ 4

3
|∇|ψ||2 ,

yield

(3.5)
1

2

|ψ|2 ≥ 4

3
|∇|ψ||2 + R

4
|ψ|2 + 1

2
〈F+ · ψ,ψ〉 .

It follows from the Cauchy-Schwarz inequality |〈F+ · ψ,ψ〉| ≤ √
2|F+||ψ|2 that

(3.6) |ψ|
|ψ| ≥ 1

3
|∇|ψ||2 + R

4
|ψ|2 −

√
2

2
|F+||ψ|2 .

Letting u = |ψ|2/3, it follows that

(3.7) −
u+ R

6
u ≤

√
2

3
|F+|u .
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Multiplying by 6 · u and integrating by parts,

(3.8)

∫
(6|∇u|2 + Ru2)dV

(
∫
u4dV )1/2

≤ 2
√

2

( ∫
|F+|2dV

)1/2

.

Since b2− = 0, c1(L) =
√−1
2π F , which yields

(3.9) Yorb(M, [g]) ≤ 4π
√

2

( ∫
M

c1(L)
2
)1/2

.

Since L is the anti-canonical bundle, the first Chern class satisfies c1(L) = c1(M), and from
elementary complex geometry, p1(M) = c1(M)

2 − 2c2(M). By Chern-Weil theory and (2.7)
and (2.11) above,∫

M

c1(L)
2 = 3

12π2

∫
M

(|W+|2 − |W−|2)dVg + 2

8π2

∫
M

(
|W |2 − 1

2
|E|2 + 1

24
R2

)
dVg

= r

pq
+ q

pr
+ p

qr
+ 2

r
+ 2

q
+ 2

p
= (r + p + q)2

rpq
,

and (3.1) follows.
If equality held in (3.1), then the function u in the above argument must be a minimizer

of the Yamabe energy, so it satisfies the elliptic PDE −6
u + Ru = cu3 where c > 0 is
a positive constant. By elliptic regularity and the Harnack inequality, u is a smooth positive
function. The metric g ′ = u2g has constant scalar curvature and ψ ′ = u−3/2ψ = ψ/|ψ| is
a g ′-harmonic spinor [LM89, Theorem 5.24]. Replacing g and ψ by g ′ and ψ ′ in the above
proof, one may then assume that ψ is a unit spinor and g has constant scalar curvature. In the
above argument, all the inequlities used must be equalities. In particular |F+| = (

√
2/4)R

and 〈F+ · ψ,ψ〉 = −√
2|F+|. Therefore F+ · ψ = −√

2|F+|ψ . The equation (3.3) then
implies that ψ is parallel, which implies that g is Kähler [Mor97, Theorem 1.1].

Addding 2 times (2.7) with 3 times (2.11) yields

(3.10)
1

4π2

∫
M

(
2|W+|2 − 1

2
|E|2 + 1

24
R2

)
dVg = (r + q + p)2

rqp
.

Since g is Kähler, using (2.12), it follows that

(3.11)
1

32π2

∫
M

R2dVg = (r + q + p)2

rqp
+ 1

8π2

∫
M

|E|2dVg .

This implies that g is also Einstein, since g attains the maximal value of the Yamabe energy
in (3.1). Thus g is Kähler-Einstein, and this contradicts Theorem 2.1, unless p = 1. �

The next lemma will be used in both the proofs of Theorems 1.6 and 1.9.

LEMMA 3.2. Let g be the canonical Bochner-Kähler metric on CP 2
(r,q,p). If p ≥ r+q

then there is no Einstein metric in the conformal class of g .
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PROOF. To begin, it is shown in [DG06, (2.32)] that with the scaling so that

(3.12) Vol(g) = π2

2

1

pqr
,

the scalar curvature of g is given by

(3.13) Rg = 24
(
r(−r + q + p)|u1|2 + q(r − q + p)|u2|2 + p(r + q − p)|u3|2

)
,

where (u1, u2, u3) are coordinates on the Sasakian sphere S5 ⊂ C3. Consequently, in the case
p = q + r ,

(3.14) Rg = 48rq(|u1|2 + |u2|2) ,
which is positive except at the single point [0, 0, 1] (the orbifold point with group of order p).
The metric g̃ = R−2

g g is Ricci-flat.
Since there are two Einstein metrics in the conformal class, the complete manifold (M \

[0, 0, 1], g̃) admits a nonconstant solution of the equation

(3.15) ∇2φ = 
φ

m
g̃ ,

which is called a concircular scalar field, and complete manifolds which admit a non-zero
solution were classified by Tashiro [Tas65] (see also [Küh88]), who showed that (X, g) must
be conformal to one of the following:

• (A) A direct productV ×J , where V is an (m−1)-dimensional complete Riemannian
manifold and J is an interval,

• (B) Hyperbolic space Hm,
• (C) the round sphere Sm.

IfM \ [0, 0, 1] were diffeomorphic to a product, then any element in H2(M) would have
zero self-intersection. However, from the determination of the cohomology ring of weighted
projective spaces in [Kaw73], this cannot happen, so case (A) is ruled out. Cases (B) and (C)
cannot happen since g is obviously not locally conformally flat. This is a contradiction, and
the nonexistence is proved.

In the case p > q + r , from (3.13), the scalar curvature vanishes along a hypersurface
which divides M into two components U+ and U−, with U− containing the orbifold point
[0, 0, 1] and U+ containing the other two orbifold points [1, 0, 0] and [0, 1, 0]. On U±, the
metric g̃ = R−2

g g is complete Einstein with negative Einstein constant. If there were an
Einstein metric in the conformal class of g , then U± would admit a concircular scalar field,
and the same argument above rules out this possibility. �

Next, the lower estimate in Theorem 1.6 is given by the following.

PROPOSITION 3.3. Let g be the canonical Bochner-Kähler metric on CP 2
(r,q,p). If

(3.16) p < (
√
r + √

q)2 ,
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then

(3.17) Yorb(CP 2
(r,q,p), [g]) ≥ 4π

√
6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
.

Furthermore, if r + q ≤ p < (
√
r + √

q)2 then strict inequality holds in (3.17).
If p < r + q then

(3.18) Yorb(CP 2
(r,q,p), [g]) = 4π

√
6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
.

PROOF. Since W−(g) = 0, any metric ĝ conformal to g also satisfies W−(ĝ) = 0.
Formula (2.16) above becomes

(3.19)
1

4π2

∫
M

(
− 1

2
|E|2 + 1

24
R2

)
dVĝ = 2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
,

for any metric ĝ in the conformal class of g . If p < r + q , the Bochner-Kähler metric g on
CP 2

(r,q,p) is conformal to a positive self-dual Einstein metric. Using the fact that an Einstein
metric achieves the Yamabe invariant in its conformal class [Oba72], the equality in (3.18)
follows.

Next, consider the case

(3.20) r + q ≤ p < (
√
r + √

q)2 .

Rewriting (3.19),

1

4 · 24 · π2

∫
M

R2dVĝ = 2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
+ 1

8π2

∫
M

|E|2dVĝ

≥ 2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
.

(3.21)

Note the important fact that

(3.22)
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
> 0 ,

precisely when p < (
√
r + √

q)2, this was the inequality above in the proof of Theorem 1.2.
Furthermore, the orbifold conformal Yamabe invariant of [g] is positive; this follows from
[DG06, equation (2.37)] which implies that

(3.23) Vol(g)−1/2
∫
M

RgdVg = 4π
√

2
r + q + p√

rqp
> 0 ,

together with [AB04, Lemma 3.4]. In contrast to the case of smooth manifolds, one is not
assured that there is a solution to the orbifold Yamabe problem. So to proceed, assume by
contradiction that

(3.24) Yorb(M, [g]) < 4π
√

6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
.
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If p < (
√
r + √

q)2, then the inequality

(3.25) 4π
√

6

√
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
<

8π
√

6√
p

is satisfied. To see this, squaring both sides of (3.25) results in

(3.26)
2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
<

4

p
.

Multiplying by pqr , and rearranging, this inequality is equivalent to

(3.27) r2 + q2 + p2 − 2pq − 2pr + 2qr > 0 .

But the left-hand side is a perfect square,

(3.28) r2 + q2 + p2 − 2pq − 2pr + 2qr = (p − (r + q))2

which is strictly positive since p < r + q .
Therefore, by [AB03, Theorem 5.2] or [Aku12, Theorem 3.1], there exists a solution

to the orbifold Yamabe problem which has constant scalar curvature. Choosing ĝ to be this
Yamabe minimizer, the inequality (3.21) is then

(3.29)
1

4 · 24 · π2 (Yorb(M, [g]))2 ≥ 2

r
+ 2

q
+ 2

p
− r

pq
− q

pr
− p

qr
,

which contradicts (3.24) and therefore (3.17) holds.
Finally, if equality holds in the inequality (3.21), then ĝ is Einstein. But Lemma 3.2 says

there is no global Einstein metric in the conformal class of g for p ≥ r+q , so strict inequality
must hold in (3.17) when p ≥ r + q . �

PROOF OF THEOREM 1.6. This clearly follows from Propositions 3.1 and 3.3. �

PROOF OF THEOREM 1.8. The inequality

(3.30) 4π
√

2
(r + q + p)√

rqp
<

8π
√

6√
p

is equivalent to

(3.31) (r + q + p)2 < 12rq .

Rewrite this

(3.32) (x + y + 1)2 < 12xy ,

where x = r/p and y = q/p. Since 1 ≤ r ≤ q ≤ p, one must determine the region where
the inequality (3.32) is satisfied in the triangle V = ([0, 1] × [0, 1]) ∩ {y ≥ x}. The level set
(x + y + 1)2 = 12xy is a convex curve in this region, so lies below the line connecting its
endpoints on the boundary. It is easy to verify that this line is given by

(3.33) y =
(

1 + 2√
3

)
(1 − x) .
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The inequality (3.32) is then satisfied for points above this line. Converting back to the original
variables, this is

(3.34)
q

p
>

(
1 + 2√

3

) (
1 − r

p

)
which is equivalent to

(3.35) p < (2
√

3 − 3)q + r ∼ 0.464q + r .

Finally, if p < (2
√

3 − 3)q + r , then p < q + r , so (1.7) is satisfied, and the lower estimate
(1.12) holds also. �

PROOF OF THEOREM 1.9. As noted above in the proof of Lemma 3.2, in the case p =
q + r ,

(3.36) Rg = 48rq(|u1|2 + |u2|2) ,
which is positive except at the single point [0, 0, 1] (the orbifold point with group of order p).

Assume by contradiction that ĝ is a constant scalar curvature metric on M = CP 2
(r,q,p)

in the conformal class of the Bochner-Kähler metric g . Letting E denote the traceless Ricci
tensor, since g̃ = R−2

g g is Ricci-flat, it follows that

(3.37) Eĝ = φ−1( − 2∇2φ + (
φ/2)g̃
)
,

where g̃ = φ−2ĝ , and the covariant derivatives are taken with respect to ĝ . Next, using the
argument of Obata [Oba72] by integrating onM it follows that∫

M

φ|Eĝ |2dV̂ =
∫
M

φE
ij

ĝ

{
φ−1( − 2∇2φ + (
φ/2)g̃

)
ij

}
dV̂

= −2
∫
M

E
ij

ĝ ∇i∇j φdV̂ = −2 lim
ε→0

∫
M\B([0,0,1],ε)

E
ij

ĝ ∇i∇jφdV̂ .
(3.38)

Since g̃ = R−2
g g = φ−2ĝ , and ĝ and g are related by a strictly positive conformal factor, it

follows from (3.36) that φ ∼ Rg ∼ ρ2 as ρ → 0, where ρ is the distance to [0, 0, 1] with
respect to the metric ĝ . Integration by parts yields

(3.39)

∫
M

φ|Eĝ |2dV̂

= −2 lim
ε→0

(∫
∂B([0,0,1],ε)

E
ij

ĝ ∇iφνj dσ −
∫
M\B([0,0,1],ε)

(∇jEijĝ · ∇iφ)dV̂
)
.

By the Bianchi identity, the second term on the right-hand side is zero since the scalar cur-
vature of ĝ is constant. By [TV05, Theorem 6.4], ĝ is a smooth Riemannian orbifold, which
implies that the curvature is bounded near [0, 0, 1]. Since |∇φ| ∼ ρ near [0, 0, 1], the first
term on the right-hand side of (3.39) therefore limits to zero as ε → 0. Consequently,Eĝ ≡ 0,
and ĝ is Einstein. This is ruled out by Lemma 3.2. �

REMARK 3.4. In the case p > r + q , there is a complete conformal Einstein metric
away from the zero set of the scalar curvature, which is a hypersurface. The above Obata
argument does not work in this case to prove that a possible Yamabe minimizer must be
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Einstein. Indeed, there are many known examples of Bach-flat extremal Kähler metrics which
are conformal to complete Einstein metrics away from a hypersurface on smooth manifolds
(see for example [TF02]). There is a Yamabe minimizer in any such conformal class by the
solution of the Yamabe problem on smooth manifolds [Sch84], which in these examples is
easily seen to be a non-Einstein metric.
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