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Abstract. We provide a necessary and sufficient condition that Lp-norms, 2 < p < 6,
of eigenfunctions of the square root of minus the Laplacian on two-dimensional compact
boundaryless Riemannian manifolds M are small compared to a natural power of the eigen-
value λ. The condition that ensures this is that their L2-norms over O(λ−1/2) neighborhoods
of arbitrary unit geodesics are small when λ is large (which is not the case for the highest
weight spherical harmonics on S2 for instance). The proof exploits Gauss’ lemma and the
fact that the bilinear oscillatory integrals in Hörmander’s proof of the Carleson-Sjölin theorem
become better and better behaved away from the diagonal. Our results are related to a recent
work of Bourgain who showed that L2-averages over geodesics of eigenfunctions are small
compared to a natural power of the eigenvalue λ provided that the L4(M) norms are similarly
small. Our results imply that QUE cannot hold on a compact boundaryless Riemannian mani-
fold (M, g) of dimension two if Lp-norms are saturated for a given 2 < p < 6. We also show
that eigenfunctions cannot have a maximal rate of L2-mass concentrating along unit portions
of geodesics that are not smoothly closed.

1. Introduction. The main purpose of this paper is to slightly sharpen a recent result
of Bourgain [5] concerning two-dimensional compact boundaryless Riemannian manifolds.
By doing so we shall be able to provide a natural necessary and sufficient condition concerning
the growth rate of Lp-norms of eigenfunctions for 2 < p < 6 and their L2-concentration
about geodesics.

There are different ways of measuring the concentration of eigenfunctions. One is by
means of the size of their Lp-norms for various values of p > 2. If M is a compact bound-
aryless manifold with Riemannian metric g = gjk(x) and if �g is the associated Laplace-
Beltrami operator, then the eigenfunctions solve the equation −�geλj (x) = λ2

j eλj (x) for a
sequence of eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 . . . . Thus, we are normalizing things so that
λj are the eigenvalues of the first-order operator

√−�g . We shall also usually assume that
the eλj have L2-norm one, in which case {eλj } provides an orthonormal basis of L2(M, dx)

where dx is the volume element coming from the metric. Earlier, in the two-dimensional case,
we showed in [26] that ifM is fixed then there is a uniform constant C so that for 2 ≤ p ≤ ∞
and j = 1, 2, 3, . . .

‖eλj ‖Lp(M) ≤ Cλ
δ(p)
j ‖eλj ‖L2(M) ,(1.1)
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These estimates are sharp for the round sphere S2, and in this case they detect two types
of concentration of eigenfunctions that occur there. Recall that on S2 with the canonical
metric the distinct eigenvalues are

√
k2 + k, k = 0, 1, 2, . . . , which repeat with multiplicity

dk = 2k+1. If Hk , the space of spherical harmonics of degree k, is the space of all eigenfunc-
tions with eigenvalue

√
k2 + k, and if Hk(x, y) is the kernel of the projection operator onto

Hk , then the k-th zonal function at x0 ∈ S2 is Zk(y) = (Hk(x0, x0))
−1/2Hk(x0, y). Its L2-

norm is one but its mass is highly concentrated at ±x0 where it takes on the value
√
dk/4π .

Explicit calculations show that ‖Zk‖Lp(S2) ≈ kδ(p) for p ≥ 6 (see e.g. [25]), which shows
that in the case of M = S2 with the round metric (1.1) cannot be improved for this range of
exponents. Another extreme type of concentration is provided by the highest weight spherical
harmonics which have mass concentrated on the equators of S2, which are its geodesics. The
ones concentrated on the equator γ0 = {(x1, x2, 0) ; x2

1 +x2
2 = 1} are the functionsQk , which

are the restrictions of the R3 harmonic polynomials k1/4(x1 + ix2)
k to S2 = {x ; |x| = 1}.

One can check that the Qk have L2-norms comparable to one and Lp-norms comparable to

k
1
2 (

1
2 − 1

p ) when 2 ≤ p ≤ 6 (see e.g. [25]). Notice also that the Qk have Gaussian type con-
centration about the equator γ0. Specifically, if Tk−1/2(γ0) denotes all points on S2 of distance
smaller than k−1/2 from γ0 then one can check that

lim inf
k→∞

∫
T
k−1/2 (γ0)

|Qk(x)|2dx > 0 .(1.2)

For future reference, obviously the Qk also have the related property that∫
γ0

|Qk|2ds ≈ k1/2 ,(1.3)

if ds is the measure on γ0 induced by the volume element.
Thus, the sequence of highest weight spherical harmonics shows that the norms in (1.1)

(for 2 < p < 6), (1.2) and (1.3) are related. A goal of this paper is to show that this is true for
general two-dimensional compact manifolds without boundary.

We remark that, although the estimates (1.1) are sharp for the round sphere, one expects
that it should be the case that, for generic manifolds, and L2-normalized eigenfunctions one
has

lim sup
j→∞

λ
−δ(p)
j ‖eλj ‖Lp(M) = 0(1.4)

for every 2 < p ≤ ∞. This was verified for exponents p > 6 by Zelditch and the author in
[30] by showing that if there are no points x through which a positive measure of geodesics
starting at x loop back through x then ‖eλ‖∞ = o(λ1/2). By interpolating with the estimate
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(1.1) for p = 6, this yields (1.4) for all p > 6. Corresponding results were also obtained
in [30] for higher dimensions. Recently, these results were strengthened by Toth, Zelditch
and the author [29] to allow similar results for quasimodes under the weaker condition that
at every point x the set of recurrent directions for the first return map for geodesic flow has
measure zero in the cosphere bundle S∗

xM over x.
Other than the partial results in Bourgain [5], there do not seem to be any results address-

ing when (1.4) holds for a given 2 < p < 6 (although Zygmund [37] showed that on the torus
L2-normalized eigenfunctions have uniformly bounded L4-norms). Furthermore, there do not
seem to be results addressing the interesting endpoint case of p = 6, where one expects both
types of concentration mentioned before to be relevant.

Recently authors have studied theL2 norms of eigenfunctions over unit-length geodesics.
Burq, Gérard and Tzvetkov [6] showed that if Π is the collection of all unit length geodesics
then

sup
γ∈Π

∫
γ

|eλj |2ds � λ
1/2
j ‖eλj ‖2

L2(M)
, j = 1, 2, 3, . . . ,(1.5)

which is sharp in view of (1.3). Related results for hyperbolic surfaces were obtained earlier
by Reznikov [20], who opened up the present line of investigation. The proof of (1.5) boils
down to bounds for certain Fourier integral operators with folding singularities (cf. Greenleaf
and Seeger [12], Tataru [32]). In Section 3, we shall use ideas from [12], [32], and [10], [16],
[29], [30] to show that if γ ∈ Π and

lim sup
j→∞

λ
−1/2
j

∫
γ

|eλj |2ds > 0 ,

then the geodesic extension of γ must be a smoothly closed geodesic. Presumably it also has
to be stable, but we cannot prove this. Further recent work on L2-concentration along curves
can be found in Toth [33].

In a recent paper [5], Bourgain proved an estimate that partially links the norms in (1.1)
and (1.5), namely that for all p ≥ 2

sup
γ∈Π

∫
γ

|eλj |2ds � λ
1/p
j ‖eλj ‖2

Lp(M) .(1.6)

Of course for p = 2, this is just (1.5); however, an interesting feature of (1.6) is that the
estimate for a given 2 < p ≤ 6 combined with (1.1) yields (1.5). Thus, if eλjk is a sequence
of eigenfunctions with (relatively) small Lp(M) norms for a given 2 < p ≤ 6, it follows
that its L2-norms over unit geodesics must also be (relatively) small. Bourgain [5] also came
close to establishing the equivalence of these two things by showing that given ε > 0 there is
a constant Cε so that for j = 1, 2, . . .

‖eλj ‖L4(M) ≤ Cε

(
λ

1/8+ε
j ‖eλj ‖L2(M)

)3/4
[
λ

−1/2
j sup

γ∈Π

∫
γ

|eλj |2ds
]1/8

.(1.7)

Since δ(4) = 1/8 in (1.1), if the preceding inequality held for ε = 0 one would obtain the
linkage of the size of the norms in (1.5) for large energy with the size of the L4(M) norms.
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Our main estimate in Theorem 1.1 is that a variant of (1.7) holds, which is strong enough to
complete the linkage.

Bourgain’s approach in proving (1.7) was to employ ideas going back to Córdoba [9]
and Fefferman [11] that were used to give a proof of the Carleson-Sjölin theorem [7]. The key
object that arose in Córdoba’s work [9] was what he called the Kakeya maximal function in
R2, namely,

Mf (x) = sup
x∈T

λ−1/2

|Tλ−1/2 |−1
∫
T
λ−1/2

|f (y)|dy , f ∈ L2(R2) ,(1.8)

with the supremum taken over all λ−1/2-neighborhoods Tλ−1/2 of unit line segments contain-
ing x, and |Tλ−1/2 | ≈ λ−1/2 denoting its area. The above maximal operator is now more
commonly called the Nikodym maximal operator as this is the terminology in Bourgain’s im-
portant papers [2]–[4] which established highly nontrivial progress towards establishing the
higher dimensional version of the Carleson-Sjölin theorem for Euclidean spaces Rn, n ≥ 3.

One could also consider variable coefficient versions of the maximal operators in (1.8).
In the present context if γ ∈ Π is a unit geodesic, one could consider the λ−1/2-tube about it
given by

Tλ−1/2(γ ) =
{
y ∈ M ; inf

x∈γ dg(x, y) < λ−1/2
}
,

with dg(x, y) being the geodesic distance between x and y. Then if Volg(Tλ−1/2(γ )) denotes
the measure of this tube, the analog of (1.8) would be

Mf (x) = sup
x∈γ∈Π

1

Volg (Tλ−1/2(γ ))

∫
T
λ−1/2

|f (y)|dy .

These operators have been studied before because of their applications in harmonic analysis
on manifolds. See e.g. [18], [28]. As was shown in [17], following the earlier paper [4], they
are much better behaved in 2-dimensions compared to higher dimensions.

As (1.7) suggests, it is not the size of theL2-norm of Mf for f ∈ L2(M) that is relevant
for estimating L4(M)-norms of eigenfunctions but rather the sup-norm of this quantity with
f = |eλj |2, which up to the normalizing factor in front of the integral is the quanitity

sup
γ∈Π

∫
T
λ−1/2 (γ )

|eλj (x)|2dx .

If the eλj are L2-normalized this is trivially bounded by one. In rough terms our results
say that beating this trivial bound is equivalent to beating the bounds in (1.1) for a given
2 < p < 6.

Let us now state our variant of (1.7):

THEOREM 1.1. Fix a two-dimensional compact boundaryless Riemannian manifold
(M, g). Then given ε > 0 there is a constant Cε so that for eigenfunctions eλ of

√−�g with
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eigenvalues λ ≥ 1 we have

‖eλ‖4
L4(M)

≤ ελ1/2‖eλ‖4
L2(M)

+ Cελ
1/2‖eλ‖2

L2(M)
sup
γ∈Π

∫
T
λ−1/2(γ )

|eλ(x)|2dx

+ C‖eλ‖4
L2(M)

,

(1.9)

with C being a fixed constant which is independent of λ and ε.

We shall prove this not by adapting Córdoba’s [9] proof of the Carleson-Sjölin theorem
but rather that of Hörmander [15]. He obtained sharp oscillatory integral bounds in R2 that
provided sharp Böchner-Riesz estimates forL4(R2) (i.e., the Carleson-Sjölin theorem), which
turns out to be the endpoint case for this problem in 2-dimensions. Hörmander’s approach
was to turn this L4-problem into an L2-problem by squaring the oscillatory integrals and then
estimating their L2-norms. As his proof shows, the resulting bilinear operators that arise are
better and better behaved away from the diagonal, and this fact is what allows us to take the
constant in front of the first term in the right side of (1.9) to be arbitrarily small (at the expense
of the 2nd term).

Stein [31] provided a generalization of Hörmander’s oscillatory integral theorem to
higher dimensions in a way that proved to be sharp because of a later construction of Bour-
gain [4]. Bourgain’s example and related ones in [17] suggest that extending the results of this
paper to higher dimensions (where the range of exponents would be 2 < p < 2(n+1)/(n−1))
could be subtle. On the other hand, since the constructions tend to involve concentration about
hypersurfaces as opposed to geodesics, their relevance is not plain.

We shall prove Theorem 1.1 by estimating an oscillatory integral operator, which up to a
remainder term, reproduces eigenfunctions. The remainder term in this reproducing formula
accounts for the last term in (1.9), which we could actually take to be ≤ CNλ

−N‖eλ‖4
2 for

any N , but this is not important for our applications. Also, we remark that the proof of the
theorem will show that the constant Cε in (1.9) can be taken to be O(ε−2) as ε → 0.

Let us now state an immediate consequence of Theorem 1.1 which states that the size of
L4-norms of eigenfunctions is equivalent to size of L2-mass near geodesics.

COROLLARY 1.2. Let eλjk be a sequence of eigenfunctions with eigenvalues λj1 ≤
λj2 ≤ . . . and unit L2(M)-norms. Then

lim sup
k→∞

sup
γ∈Π

∫
T
λ
−1/2
jk

(γ )

|eλjk (x)|2dx = 0(1.10)

if and only if

lim sup
k→∞

λ
−1/8
jk

‖eλjk ‖L4(M) = 0 .(1.11)
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To prove this, we first notice that if we assume (1.10), then (1.11) must hold because of
(1.9). Also, by Hölder’s inequality

(∫
T
λ−1/2 (γ )

|eλ(x)|2dx
)1/2

≤ (Volg (Tλ−1/2(γ )))
1/4‖eλ‖L4(M) � λ−1/8‖eλ‖L4(M) ,

and so (1.11) trivially implies (1.10).
If we use Bourgain’s estimate (1.6) and (1.1) we can say a bit more.

COROLLARY 1.3. Let {eλjk }∞k=1 be as above and suppose that 2 < p < 6. Then the
following are equivalent

lim sup
k→∞

λ
−1/2
jk

sup
γ∈Π

∫
γ

|eλjk (s)|2ds = 0(1.12)

lim sup
k→∞

sup
γ∈Π

∫
T
λ
−1/2
jk

(γ )

|eλjk (x)|2dx = 0(1.13)

lim sup
k→∞

λ
−δ(p)
jk

‖eλjk ‖Lp(M) = 0 .(1.14)

To prove this result, we first note that, by the M. Riesz interpolation theorem and (1.1) for
p = 2 and p = 6, (1.14) holds for a given 2 < p < 6 if and only if it holds for p = 4, which
we just showed is equivalent to (1.13). Clearly (1.12) implies (1.13). Finally, since Bourgain’s
estimate (1.6) shows that (1.14) implies (1.12), the proof of Corollary 1.3 is complete.

Let us conclude this section by describing one more application. Recall that a sequence
of L2-normalized eigenfunctions {eλjk }∞k=1 satisfies the quantum unique ergodicity property

(QUE) if the associated Wigner measures |eλjk |2dx tend to the Liouville measure on S∗M . If
this is the case, then one certainly cannot have

lim sup
k→∞

sup
γ∈Π

∫
T
λ
−1/2
jk

(γ )

|eλjk (x)|2dx > 0 ,

since the tubes are shrinking.
In the case where M has negative sectional curvature Schnirelman’s [22] theorem says

there is a density one subsequence {eλjk }∞k=1 of all the {eλj } satisfying QUE. Rudnick and
Sarnak [21] conjectured that in the negatively curved case there should be no exceptional
subsequences violating QUE, i.e., in this case QUE should hold for the full sequence {eλj } of
L2-normalized eigenfunctions. On the other hand, by Corollary 1.3, we have the following.

COROLLARY 1.4. Let M be a two-dimensional compact boundaryless Riemannian
manifold. Then QUE cannot hold for M if for a given 2 < p < 6 there is saturation of Lp

norms, i.e.,

lim sup
j→∞

λ
−δ(p)
j ‖eλj ‖Lp(M) > 0 ,

with eλj being the L2-normalized eigenfunctions.



KAKEYA-NIKODYM AVERAGES AND Lp-NORMS OF EIGENFUNCTIONS 525

See e.g. [36] for connections between QUE and the Lindelöf hypothesis, and see [8] for
recent developments regarding the QUE conjecture.

2. Proof of Theorem 1: Gauss’ lemma and the Carleson-Sjölin condition. As in
[5] and [6] we shall prove our estimate by using certain convenient operators that reproduce
eigenfunctions. Specifically, we shall use a slight variant of a result from [27], Chapter 5 that
was presented in [6].

LEMMA 2.1. Let δ > 0 be smaller than half of the injectivity radius of (M, g). Then
there is a function χ ∈ S(R) with χ(0) = 1 so that if dg (x, y) is the geodesic distance
between x, y ∈ M

χλf (x) = χ
(√−�g − λ

)
f (x) = λ1/2

∫
M

eiλdg(x,y)α(x, y, λ)f (y)dy + Rλf (x) ,(2.1)

where

‖Rλf ‖L∞(M) ≤ CNλ
−N‖f ‖L1(M) for all N = 1, 2, . . . ,

and α ∈ C∞ has the property that

|∂αx,yα(x, y, λ)| ≤ Cα for all α ,

and, moreover,

α(x, y, λ) = 0 if dg (x, y) /∈ (δ/2, δ) .(2.2)

Since χλeλ = eλ and since the 4th power of the L4-norm of Rλeλ is dominated by the
last term in (1.9), we conclude that in order to prove Theorem 1.1 it is enough to show that,
given ε > 0 there is a constant Cε so that when λ ≥ 1∫

M

∣∣∣∣ λ1/2
∫
M

eiλdg(x,y)α(x, y, λ)f (y)dy

∣∣∣∣
2

|f (x)|2dx

≤ ελ1/4‖f ‖2
L2(M)

‖f ‖2
L4(M)

+ Cελ
1/2‖f ‖2

L2(M)
sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (x)|2dx ,

(2.3)

for, if f = eλ, the first term in the right is bounded by a fixed constant times ελ1/2‖eλ‖4
L2(M)

,
because of (1.1).

After applying a partition of unity (and abusing notation a bit), we may assume that in
addition to (2.2), α(x, y, λ) vanishes unless x is in a small neighborhood of some x0 ∈ M

and y is in a small neighborhood of some y0 ∈ M with δ/2 < dg(x0, y0) < δ. We may
assume both of these neighborhoods are contained in the geodesic ball B(x0, 10δ) = {y ∈
M ; dg (x0, y) < 10δ}. As mentioned before, we are also at liberty to take δ > 0 to be small.

To simplify the calculations to follow, it is convenient to choose a natural coordinate
system. Specifically, we shall choose Fermi normal coordinates about the geodesic γ0 which
passes through x0 and is perpendicular to the geodesic connecting x0 and y0. These coordi-
nates will be well defined on B(x0, 10δ) if δ is small. Furthermore, we may assume that the
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FIGURE 1. Fermi normal coordinates about γ0.

image of γ0 ∩B(x0, 10δ) in the resulting coordinates is a line segment which is parallel to the
2nd coordinate axis and that all horizontal line segments s → {(s, t0)} are geodesic with the
property that dg((s1, t0), (s2, t0)) = |s1 − s2|. See Figure 1 below.

If we use these coordinates and apply Schwarz’s inequality, we conclude that, in order to
prove (2.3), it suffices to show that given ε > 0 we can find Cε < ∞ so that when λ ≥ 1

∫ (∫ ∣∣∣∣ λ1/2
∫
eiλdg(x,(s,t))α(x, (s, t), λ)f (s, t)dt

∣∣∣∣
2

|f (x)|2dx
)
ds

≤ ελ1/4‖f ‖2
L2(M)

‖f ‖2
L4(M)

+ Cελ
1/2‖f ‖2

L2(M)
sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (x)|2dx .

This, in turn would follow if we could show that given ε > 0

∫ ∣∣∣∣ λ1/2
∫
eiλdg(x,(s,t))α(x, (s, t), λ)h(t)dt

∣∣∣∣
2

|f (x)|2dx

≤ ελ1/4‖h‖2
L2(dt)

‖f ‖2
L4(M)

+ Cελ
1/2‖h‖2

L2(dt)
sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (x)|2dx ,
(2.4)

with Cε depending on ε > 0 but not on s or on λ ≥ 1.
To simplify the notation, we shall establish this estimate for a particular value of s, which,

after relabeling, we may assume to be s = 0. Since the proof of (2.4) for this case relies only
on Gauss’ lemma and the related Carleson-Sjölin condition, it also yields the uniformity in s,
assuming, as we may, that α has small support.

To prove this inequality, let us choose a function η ∈ C∞
0 (R) satisfying η(t) = 0,

|t| > 1, and
∑∞
j=−∞ η(t − j) ≡ 1. Given λ ≥ 1 fixed, we shall then set

ηj (t) = ηλ,j (t) = η(λ1/2t − j) .
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Then, given N = 1, 2, . . . , we have that
∣∣∣∣λ1/2

∫
eiλdg (x,(0,t ))α(x, (0, t), λ)h(t)dt

∣∣∣∣
2

≤ N
∑
j

∣∣∣∣ λ1/2
∫
eiλdg(x,(0,t ))ηj (t)α(x, (0, t), λ)h(t)dt

∣∣∣∣
2

+
∣∣∣∣ λ

∫∫
eiλ(dg(x,(0,t ))+dg(x,(0,t ′))aN(x, t, t ′)h(t)h(t ′)dtdt ′

∣∣∣∣ ,

(2.5)

where

aN(x, t, t
′) =

∑
|j−k|>N

ηj (t)α(x, (0, t), λ)ηk(t
′)α(x, (0, t ′), λ)

vanishes when |t − t ′| ≤ (N − 1)λ−1/2. The first term in the right side of the preceding
inequality comes from applying Young’s inequality to handle the double-sum over indices
with |j − k| ≤ N . Because of (2.5), we conclude that (2.4) would follow if we could show
that there is a constant independent of λ ≥ 1 and N = 2, 3, 4 . . . so that∥∥∥∥ λ

∫∫
eiλ[dg (x,(0,t ))−dg(x,(0,t ′)]aN(x, t, t ′)h(t)h(t ′)dtdt ′

∥∥∥∥
L2(dx)

≤ Cλ1/4N−1/2‖h‖2
L2(dt)

,

(2.6)

and also that there is a constant C independent of j ∈ Z and λ ≥ 1 so that

∫ ∣∣∣∣ λ1/2
∫
eiλdg(x,(0,t ))ηj (t)α(x, (0, t), λ)h(t)dt

∣∣∣∣
2

|f (x)|2dx

≤ Cλ1/2‖h‖2
L2(dt)

sup
γ∈Π

∫
T
λ−1/2 (γ )

|f (x)|2dx .
(2.7)

Indeed, by using the finite overlapping of the supports of the ηj , if we set ε = CN−1/2, then
we see that these two inequalities and (2.5) imply (2.4) withCε ≈ ε−2. Since the proof of (2.7)
only uses Gauss’ lemma and the fact that coordinates have been chosen so that s → (s, t0)

are unit speed geodesics for fixed t0, we shall just verify (2.7) for j = 0, as the argument for
this case will yield the other cases as well.

The next step is to see that these two inequalities are consequences of the following two
propositions.

PROPOSITION 2.2. Let a(x, t, t ′), x ∈ R2, t, t ′ ∈ R satisfy |∂αx a| ≤ Cα for all multi-
indices α and a(x, t, t ′) = 0 if |x| > δ or |t − t ′| > δ where δ > 0 is small. Suppose also that
φ ∈ C∞(R2 × R) is real and satisfies the Carleson-Sjölin condition on the support of a, i.e.,

det

(
φ′′
x1t

φ′′
x2t

φ′′′
x1t t

φ′′′
x2t t

)

= 0 .(2.8)
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Then if the δ > 0 above is sufficiently small, there is a uniform constant C so that when
λ,N ≥ 1

∥∥∥∥
∫∫

|t−t ′|≥Nλ−1/2
eiλ[φ(x,t)+φ(x,t ′)]a(x, t, t ′)F (t, t ′)dtdt ′

∥∥∥∥
2

L2(R2)

≤ Cλ−3/2N−1‖F‖2
L2(R2)

.

(2.9)

To state the next Proposition, we need to introduce one more coordinate system, which
finally explains where theL2 norms over small tubular neighborhoods of geodesics comes into
play. Since we are proving (2.7) with j = 0 and since η0 is supported in the small interval
[−λ−1/2, λ−1/2], it is natural to take geodesic normal coordinates about (0, 0). If we recall
that the 1st coordinate axis is a unit-speed geodesic in our original Fermi normal coordinates,
we shall naturally choose the geodesic normal coordinates x → κ(x) that preserve this axis
(and its orientation). Such a system is unique up to reflection about this axis, and we shall just
fix one of these two choices.

PROPOSITION 2.3. Let ψ(x, t) = dg(x, (0, t)), and suppose that ρ ∈ C∞
0 (R × R2)

satisfies

|∂mt ρ(t; x)| ≤ Cm(λ
1/2)m , and ρ(t; x) = 0, |t| ≥ λ−1/2 .(2.10)

Suppose also that ρ vanishes when x is outside of a small neighborhood N of a fixed point
(−s0, 0) (in the Fermi normal coordinates) with s0 > 0. If x → κ(x) = (κ1(x), κ2(x)) are
the coordinates described above, assume that points xj ∈ N are chosen so that∣∣∣∣ κ2(xj )

|κ(xj )| − κ2(xk)

|κ(xk)|
∣∣∣∣ ≥ cλ−1/2|j − k| , if |j − k| ≥ 10 ,(2.11)

with c > 0 fixed. It then follows that, if N is sufficiently small, then there is a uniform constant
C, which is independent of the {xj } chosen as above, so that

λ1/2
∫ ∣∣∣∣

∑
j

eiλψ(xj ,t)ρ(t; xj )aj
∣∣∣∣
2

dt ≤ C
∑

|aj |2 .(2.12)

Proposition 2.2 would imply (2.6) if φ(x, t) = dg(x, (0, t)) satisfies the Carleson-
Sjölin condition. The fact that this is the case is well known. See e.g., Section 5.1 in [27].
It follows from our choice of coordinates and the fact that if x0 ∈ M is fixed then the
set of points {∇xdg(x, y) ; x = x0, dg (x0, y) ∈ (δ/2, δ)} is the cosphere at x0, S∗

x0
M =

{ξ ; ∑
gjk(x0)ξj ξk = 1}, where gjk(x) is the cometric (inverse to gjk(x)). If we choose geo-

desic normal coordinates κ(y) vanishing at x0 then the gradient becomes κ(y). This turns out
to be equivalent to the usual formulation of Gauss’ lemma, saying that this exponential map
y → κ(y) is a local radial isometry. More specifically, it says that small geodesic spheres
centered at x0 get sent to spheres centered at the origin and small geodesic rays through x0

intersect these geodesic spheres orthogonally and get sent to rays through the origin, which is
what allows Proposition 2.3 to be true.
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Let us next see that Proposition 2.3 implies (2.7) for j = 0. If we take ρ(t; x) =
η0(t)α(x, (0, t), λ), then ρ satisfies (2.10). Also, if we let

Sj = {y ; θ(y) ∈ (λ−1/2j, λ−1/2(j + 1)]} ,
where θ(y) ∈ [0, 2π) is defined so that y = |y|(cos θ(y), sin θ(y)), then, if y = κ(x) are the
geodesic normal coordinates about (0, 0) in the Proposition 2.3, then the left side of (2.7) is
dominated by

∑
j

∥∥∥∥λ1/2
∫
eiλψ(x,t)ρ(t; x)h(t)dt

∥∥∥∥
2

L∞(κ−1(Sj ))

‖f ‖2
L2(κ−1(Sj )∩K)

≤ sup
k

‖f ‖2
L2(κ−1(Sk)∩K)

∑
j

∥∥∥∥λ1/2
∫
eiλψ(x,t)ρ(t; x)h(t)dt

∥∥∥∥
2

L∞(κ−1(Sj ))

,

where K is the x-support of ρ. Since the first factor on the right is dominated by the last
factor in the right-hand side of (2.7) (the sup can just be taken over (0, 0) ∈ γ ∈ Π here),
we conclude that we would obtain this inequality if we could show that there is a uniform
constant so that for all choices of xj ∈ κ−1(Sj )

λ1/2
∑
j

∣∣∣∣
∫
eiλψ(xj ,t)ρ(t; xj )h(t)dt

∣∣∣∣
2

≤ C‖h‖2
L2(dt)

.(2.13)

This inequality is an estimate for an operator from L2(dt) → �2. The dual operator is the one
in Proposition 2.3. Therefore since, by duality, (2.13) follows from (2.12) we get (2.7). To
verify this assertion, we use the fact that if ρ has small support then the terms in (2.13) with
ρ(t; xj ) 
= 0 will fulfill the hypotheses in Proposition 2.3.

To finish the proof of Theorem 1.1 we must prove the two propositions. Let us start with
the first one since it is pretty standard. It is based on the well known fact that the bilinear
oscillatory integrals arising in Hörmander’s [15] proof of the Carleson-Sjölin [7] theorem
become better and better behaved away from the diagonal.

PROOF OF PROPOSITION 2.2. Let Φ(x; t, t ′) = φ(x, t) + φ(x, t ′) be the phase func-
tion in (2.9). ThenΦ is a symmetric function in the (t, t ′) variables. So if we make the change
of variables

u = (t − t ′, t + t ′) ,

then since |du/d(t, t ′)| = 2, we see that (2.8) implies that the Hessian determinant of Φ
satisfies ∣∣∣∣det

(
∂2Φ

∂x∂u

)∣∣∣∣ ≥ c|u1| ,

for some c > 0 on the support of a, if the latter is small. Since Φ(x; u) is an even function of
the diagonal variable u1, it must be a C∞ function of u2

1. So if we make the final change of
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variables

v =
(

1

2
u2

1, u2

)
,

then since |dv/du| = |u1|, it follows that∣∣∣∣ det

(
∂2Φ

∂x∂v

)∣∣∣∣ ≥ c ,

for some c > 0. This in turn implies that if v and ṽ are close then

|∇x[Φ(x, v)−Φ(x, ṽ)]| ≥ c′|v − ṽ| ,
for some c′ > 0, and since x, v → Φ is smooth, we also have that

|∂αx [Φ(x, v)−Φ(x, ṽ)]| ≤ Cα|v − ṽ| ,
for all multi-indices α. Therefore, if we let

Kλ(v, ṽ) =
∫

R2
a(x, t, t ′)a(x, t̃, t̃ ′)eiλ[Φ(x,v)−Φ(x,ṽ)]dx ,

then by integrating by parts, we find that if the number δ > 0 in the statement of the Proposi-
tion is small then for j = 1, 2, 3, . . .

|Kλ(v, ṽ)| ≤ Cj(1 + λ|v − ṽ|)−2j

≤ Cj(1 + λ|(t + t ′)− (t̃ + t̃ ′)|)−j (1 + λ|(t − t ′)2 − (t̃ − t̃ ′)2|)−j .(2.14)

Note that the left side of (2.9) equals∫
· · ·

∫
|t−t ′|,|t̃−t̃ ′|≥Nλ−1/2

Kλ(t, t
′; t̃ , t̃ ′)F (t, t ′)F (t̃, t̃ ′)dtdt ′dt̃dt̃ ′ .

We next claim that there is a uniform constant C so that for λ,N ≥ 1

sup
t̃ ,t̃ ′

∫
|t−t ′|≥Nλ−1/2

|Kλ|dtdt ′ , sup
t,t ′

∫
|t̃−t̃ ′|≥Nλ−1/2

|Kλ|dt̃dt̃ ′ ≤ Cλ−2(λ1/2/N) .(2.15)

This follows from (2.14) and the fact that if τ = s2 then 2sds = dτ and so, given τ0 ∈ R, we
have

∫
s≥Nλ−1/2

(1 + λ|s2 − τ0|)−2ds = 1

2

∫
√
τ≥Nλ−1/2

(1 + λ|τ − τ0|)−2 dτ√
τ

≤ (λ1/2/N)

∫ +∞

−∞
(1 + λ|τ |)−2dτ ≤ Cλ−1(λ1/2/N) .

Since (2.15) and Young’s inequality yield (2.9), the proof is complete. �

To finish our task we need to prove the other Proposition, which is a straightforward
application of Gauss’ lemma.
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PROOF OF PROPOSITION 2.3. The support assumptions on the amplitude will allow
us to linearize the function t → ψ in the proof, which is a tremendous help. Specifically,

ψ(x, t) = ψ(x, 0)+ t (∂tψ(x, 0))+ r(x, t) ,

where

|∂mt r(x, t)| ≤ Cm|t|2−m , 0 ≤ m ≤ 2 , and |∂mt r| ≤ Cm , m ≥ 2 .(2.16)

Our choice of coordinates implies that

∂tψ(x, 0) = 〈ν, κ(x)/|κ(x)|〉 ,
where the inner-product is the euclidean one and ν ∈ R2 is chosen so that 〈ν,∇〉 is the
pushforward of ∂/∂x2 at (0, 0) under the map x → κ(x)—i.e., tangent vector to the curve
t → κ((0, t)). Since the pushforward of ∂/∂x1 is itself under this map, it follows that the
second coordinate of ν is nonzero. (See Figure 2 below.) Therefore, if N � (s0, 0) is small
enough, then our assumption (2.11) implies that

|∂tψ(xj , 0)− ∂tψ(xk, 0)| ≥ c′λ−1/2|j − k| , if |j − k| ≥ 10 , and xj , xk ∈ N ,(2.17)

for some constant c′ > 0.
It is easy now to finish the proof of (2.12). If we let

ρ(xj , xk; t) = ρ(t; xj )ρ(t; xk)eiλ(ψ(xj ,0)+r(xj ,t))e−iλ(ψ(xk,0)+r(xk,t)) ,
it follows from (2.10) and (2.16) that

|∂mt ρ(xj , xk; t)| ≤ Cmλ
m/2 ,

and

ρ(xj , xk; t) = 0 , if |t| ≥ λ−1/2 , xj /∈ N , or xk /∈ N .

We can use this since the left side of (2.12) equals

λ1/2
∑
j,k

aj ak

(∫
eitλ(∂tψ(xj ,0)−∂tψ(xk,0))ρ(xj , xk; t)dt

)
,

which, after integrating by parts N = 1, 2, 3 . . . times, we conclude is dominated by a fixed
constant CN times

∑
j,k

|ajak|(1 + |j − k|)−N .

Since, by Young’s inequality, this is dominated by the right side of (2.12) when N = 2, the
proof is complete. �
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FIGURE 2. Image of {(0, t)} in geodesic normal coordinates about (0, 0).

3. Local restrictions of eigenfunctions to non-smoothly closed geodesics. We have
shown above that if {eλjk }∞k=1 is a sequence of L2-normalized eigenfunctions satisfying

lim sup
k→∞

sup
γ∈Π

λ
−1/2
jk

∫
γ

|eλjk |2ds = 0 ,(3.1)

then λ−δ(p)
jk

‖eλjk ‖Lp(M) = 0, 2 < p < 6. While it seems difficult to determine when this
holds, one can show the following.

PROPOSITION 3.1. Suppose that γ ∈ Π is not contained in a smoothly closed geo-
desic. Then if {eλj } is the full sequence of L2-normalized eigenfunctions, we have

lim sup
j→∞

λ
−1/2
j

∫
γ

|eλj |2ds = 0 .(3.2)

In proving this proposition we may assume, after possible multiplying the metric by a
constant, that the injectivity radius is more than 10. This will allow us to write down Fourier
integral operators representing the solution of the wave equation up to times |t| ≤ 10. More
important, though, is that we shall use an observation of Tataru [32] that the map from Cauchy
data to the solution of the wave equation restricted to γ ×R is a Fourier integral operator with
a one-sided fold. Using this fact and the standard method of long-time averages (see e.g. [10],
[16], [30], [29]), we shall be able to prove Proposition 3.1.

To set up our proof, let us choose Fermi normal coordinates about γ so that, in these
coordinates, γ becomes {(s, 0) ; 0 ≤ s ≤ 1}. Note that in these coordinates the metric takes
the form g11(x)dx

2
1 + dx2

2 . As a consequence if p(x, ξ) =
√∑

gjk(x)ξj ξk is the principal

symbol of P = √−�g then p((s, 0), ξ) =
√
g11((s, 0))ξ2

1 + ξ2
2 is an even function of ξ2.

To proceed, let us fix a real-valued function χ ∈ S(R) with χ(0) = 1 and χ̂(t) = 0,
|t| > 1/2. Then if eλ is an eigenfunction with eigenvalue λ it follows that χ(N(P − λ))eλ =
eλ. Thus, in order to prove (3.2), it would suffice to prove that given λ,N ≥ 1∥∥χ(N(P − λ))f

∥∥
L2(γ )

≤ CN−1/2λ1/4‖f ‖L2(M) + CN‖f ‖L2(M) .(3.3)
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Note that

χ(N(P − λ))f (x) = N−1
∫
χ̂(t/N)e−itλ

(
eitP f

)
(x)dt ,(3.4)

and because of the support properties of the χ̂ the integrand vanishes when |t| ≥ N/2.
The operator

f → (
eitP f

)
(x)

is a Fourier operator with canonical relation

{(x, t, ξ, τ ; y, η) ; Φt(x, ξ) = (y, η),±τ = p(x, ξ)} ,
with Φt : T ∗M → T ∗M being geodesic flow on the cotangent bundle and p(x, ξ), as above,
being the principal symbol of

√−�g . Given that we want to restrict the operator in (3.4) to
γ = (s, 0), 0 ≤ s ≤ 1, we really need to also focus on the the Fourier integral operator

f → (
eitP f

)
(s, 0) .

Given the above, its canonical relation is

C={
Πγ×R(x, t, ξ, τ ; y, η) ∈ T ∗(γ × R)× T ∗M ; Φt(x, ξ)=(y, η),±τ = p(x1, 0, ξ)

}
,

withΠγ×R being the projection map from T ∗(M×R) to T ∗(γ ×R). Note that the projection
from the latter canonical relation to T ∗(γ × R) is the map

(s, t, ξ) → (s, t, ξ1, p((s, 0), ξ)) ,

which has a fold singularity when ξ2 = 0 but has surjective differential away from this set
(given the aforementioned properties of p).

Because of this, given the explicit formula in Fermi coordinates, if we choose ψ ∈
C∞

0 (M) equal to one on γ and α ∈ C∞
0 (R) satisfying α = 1 on [−1/2, 1/2] but α(τ) = 0,

|τ | ≥ 1, then

bε(x, ξ) = ψ(x)α(ξ2/ε|ξ |)
equals one on a conic neighborhood of the set that projects onto the set where the left projec-
tion of C has a folding singularity. This means that

Bε(x, ξ) = ψ(x)(1 − α(ξ2/ε|ξ |))
has symbol vanishing in a conic neighborhood of this set and consequently the map

f → (
Bε ◦ eitP f )

((s, 0)) , 0 ≤ s ≤ 1

is a nondegenerate Fourier integral operator of order zero. Therefore, Hörmander’s theorem
[14] about the L2 boundedness of Fourier integral operators yields∫ N

−N

∫ 1

0

∣∣∣(Bε ◦ eitP f )
(s, 0)

∣∣∣2
dsdt ≤ CN,Bε‖f ‖2

L2(M)
.

Therefore, an application of Schwarz’s inequality yields

‖χN,Bελ f ‖L2(γ ) ≤ C′
N,Bε

‖f ‖L2(M) ,
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if

χ
N,Bε
λ f = Bε ◦ χ(N(P − λ))f = N−1

∫
χ̂(t/N)e−itλ

(
Bε ◦ eitP )

f dt .

Therefore if we similarly define χN,bελ f = bε◦χ(N(P−λ))f , then χN,Bελ f+χN,bελ f =
ψχ(N(P − λ))f and since ψ = 1 on γ , the proof of (3.3) would be complete if we could
show that if ε > 0 is small enough (depending on N) then for λ ≥ 1 we have for a constant C
independent of ε,N and λ ≥ 1

‖χN,bελ f ‖L2(γ ) ≤ CN−1/2λ1/4‖f ‖L2(M) + CN,bε‖f ‖L2(M) .(3.5)

In addition to taking ε > 0 to be small, we shall also take the support of ψ about γ to be
small.

It is in proving (3.5) of course where we shall use our assumption that γ is not part of a
smoothly closed geodesic. A consequence of this is that, given fixed N , if ε and the support
of ψ are small enough then

bε(y, η) = 0 whenever (y, η) = Φt(x, ξ) , (x, ξ) ∈ supp bε , 2 ≤ |t| ≤ N .(3.6)

In what follows, we shall assume that ε and ψ have been chosen so that this is the case.
The point here is that if γ (s), s ∈ R, is the geodesic starting at (0, 0) and containing
{γ (s) = (s, 0) ; 0 ≤ s ≤ 1}, points on the curve γ (s), |s| ≤ N + 1 might intersect γ ,
but the intersection must be transverse as s → γ (s) is not a smoothly closed geodesic. Then
if ε is chosen to be a small multiple of the smallest angle of intersection and if ψ has small
enough support about γ , then we get (3.6). Using the canonical relation for eitP , we can
deduce from this that

bε ◦ eitP ◦ b∗
ε is a smoothing operator when2 ≤ |t| ≤ N + 1 ,(3.7)

i.e., for such times this operator’s kernel is smooth.
Let T be the operator χN,bελ f |γ , i.e., the truncated approximate spectral projection op-

erator restricted to γ . Our goal is to show (3.5) which says that

‖T ‖L2(M)→L2(γ ) ≤ CN−1/2λ1/4 + CN,bε .

This is equivalent to saying that the dual operator T ∗ : L2(γ ) → L2(M) with the same norm,
and since

‖T ∗g‖2
L2(M)

=
∫
M

T ∗gT ∗gdx =
∫
γ

T T ∗g gds ≤ ‖T T ∗g‖L2(γ )‖g‖L2(γ ) ,

we would be done if we could show that

‖T T ∗g‖L2(γ ) ≤ (
CN−1λ1/2 + CN,bε

)‖g‖L2(γ ) .(3.8)

But the kernel of T T ∗ is K(γ (s), γ (s′)), where K(x, y), x, y ∈ M is the kernel of the
operator bε ◦ ρ(N(P − λ)) ◦ b∗

ε with ρ(τ) = (χ(τ ))2 being the square of χ . Its Fourier
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transform, ρ̂, is the convolution of χ̂ with itself, and thus ρ̂(t) = 0, |t| ≥ 1. Consequently,
we can write

bε ◦ ρ(N(P − λ)) ◦ b∗
ε = N−1

∫
ρ̂(t/N)e−itλ

(
bε ◦ eitP ◦ b∗

ε

)
dt .(3.9)

Thus, if α ∈ C∞
0 (R) is as above, then by (3.6) and (3.7), the difference of the kernel of the

operator in (3.9) and the kernel of the operator given by

N−1
∫
α(t/10)ρ̂(t/N)e−itλ

(
bε ◦ eitP ◦ b∗

ε

)
dt(3.10)

is O(λ−J ) for any J . Thus, if we restrict the kernel of the difference to γ × γ , it contributes
a portion of T T ∗ that maps L2(γ ) → L2(γ ) with norm ≤ CN,bε .

To finish, we need to estimate the remaining piece, which has the kernel of the operator
in (3.10) restricted to γ × γ . Since we are assuming that the injectivity radius of M is 10
or more one can use the Hadamard parametrix for the wave equation and standard stationary
phase arguments (similar to ones in [27], Chapter 5, or the proof of Lemma 4.1 in [6]) to see
that the kernel K(x, y) of the operator in (3.10) satisfies

|K(x, y)| ≤ CN−1λ1/2(dg(x, y))
−1/2 + Cbε .

The first term comes from the main term in the stationary phase expansion for the kernel and
the other one is the resulting remainder term in the one-term expansion. Since this kernel
restricted to γ × γ gives rise to an integral operator satisfying the estimates in (3.8), the proof
is complete. �

4. Further questions. While as we explained before the condition that for the L2-
normalized eigenfunctions

lim sup
j→∞

sup
γ∈Π

λ
−1/2
j

∫
γ

|eλj |2ds = 0

is a natural one to quantify non-concentration, it would be interesting to formulate a geometric
condition involving the long-time dynamics of the geodesic flow that would imply it and its
equivalent version that λ−δ(p)

j ‖eλj ‖p → 0, 2 < p < 6. Presumably if γ ∈ Π and

lim sup
j→∞

λ
−1/2
j

∫
γ

|eλj |2ds > 0 ,(4.1)

then γ would have to be part of a stable smoothly closed geodesic, and not just a closed
geodesic as we showed above. Toth and Zeldtich made a similar conjecture to this in [34],
saying that, in n-dimensions, if γ is a closed stable geodesic then one should be able to find a
sequence of eigenfunctions on which sup-norms are blowing up like λ(n−1)/2. In [1], [19], it
was shown that there is a sequence of quasimodes blowing up at this rate.

It would also be interesting to formulate a condition that would ensure that ‖eλ‖L6(M) =
o(λδ(6)) = o(λ1/6), for L2-normalized eigenfunctions. Presumably, such a condition would
have to involve both ones like those in the present paper and conditions of the type in [29],
[30]. Since L6 is an endpoint for (1.1) one expects that one would need a condition that both
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guarantees that Lp bounds for 2 < p < 6 and p > 6 be small. Formally, the proof of
Theorem 1.1 suggests that L4-norms over geodesics might be relevant for the problem of de-
termining when the L6(M) norms of eigenfunctions are small. This is interesting because the
L4-norm is the unique Lp-norm taken over geodesics that captures both the concentration of
the highest weight spherical harmonics on geodesics and the concentration of zonal functions
at points. Indeed, the highest weight spherical harmonics saturate these norms for 2 ≤ p ≤ 4,
while the zonal functions saturate them for p ≥ 4 (see [6]).

Also, it would be interesting to see whether the results here generalize to the case of two-
dimensional compact manifolds with boundary. Recently, Smith and the author [24] were
able to obtain sharp eigenfunction estimates in this case. In this case, the critical estimate was
an L8 one. So the results here suggest that size estimates for the Kakeya-Nikodym maximal
operator associated with broken unit geodesics and applied to squares of eigenfunctions could
be relevant for improving the bounds in [24], which are known to be sharp in the case of
the disk (see [13]). An observation of Grieser [13] involving the Rayleigh whispering gallery
modes suggests that in order to obtain a variant of Corollary 1.2 for compact domains one
would have to consider L2-norms over λ−2/3

j -neighborhoods of broken geodesics. Smith and
the author [23] also showed that for compact manifolds with geodesically concave boundary
one has better estimates than one does for compact domains in Rn. For example, when n = 2
(1.1) holds. Based on this and the better behavior of the geodesic flow, it seems reasonable
that the analog of Corollary 1.2 might hold (with the same scales) in this setting.

Finally, as mentioned before it would be interesting to see to what extent the results for
the boundaryless case extend to higher dimensions. The arguments given here and in [5],
though, rely very heavily on special features of the two-dimensional case.
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