COMPLEX STRUCTURES, TOTALLY REAL AND TOTALLY GEODESIC SUBMANIFOLDS OF COMPACT 3-SYMMETRIC SPACES, AND AFFINE SYMMETRIC SPACES

Кол Толо

(Received March 16, 2007, revised April 21, 2008)

Abstract. We construct invariant complex structures of a compact 3-symmetric space by means of the canonical almost complex structure of the underlying manifold and some involutions of a Lie group. Moreover, by making use of graded Lie algebras and some invariant structures of affine symmetric spaces, we classify half dimensional, totally real and totally geodesic submanifolds of a compact 3-symmetric space with respect to each invariant complex structure.

1. Introduction. It was Gray [5] who classified 3-symmetric spaces (see also Wolf and Gray [20]), proving that each 3-symmetric space admits an invariant almost complex structure called the *canonical almost complex structure*, which is not integrable in general. According to [5], it is known that for a compact Riemannian 3-symmetric space G/H with a compact simple Lie group G, the dimension of the center Z(H) of H is either 0, 1 or 2 (see also [20, Theorem 3.3]), and if the dimension of Z(H) is not zero, then H is a centralizer of a toral subgroup of G. Therefore, it follows from Wang [19] that there exists a G-invariant complex structure I on G/H if dim $Z(H) \neq 0$. Moreover, invariant (almost) complex structures on G/H had been investigated by Borel and Hirzebruch [2] (see also Nishiyama [12] and Wolf and Gray [20]). In the present paper, first we describe invariant complex structures on a compact Riemannian 3-symmetric space G/H with dim $Z(H) \neq 0$, by means of the canonical almost complex structure and some involutive automorphisms of G (Section 3).

Half-dimensional totally real and totally geodesic submanifolds of Hermitian symmetric spaces are (non-Hermitian) symmetric R-spaces. Takeuchi [16] described those submanifolds by using graded Lie algebras of the first kind. In our previous papers [17, 18], we classified half dimensional, totally real and totally geodesic submanifolds of naturally reductive, compact Riemannian 3-symmetric spaces with respect to the canonical almost complex structures. In particular, when dim $Z(H) \neq 0$, these submanifolds are obtained from graded Lie algebras of the second kind. More precisely, let $\mathfrak g$ be the Lie algebra of G and $\mathfrak g^*$ a noncompact dual of $\mathfrak g$ with a Cartan involution τ and the corresponding Cartan decomposition $\mathfrak g^* = \mathfrak k + \mathfrak p$. For

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 17B70, 53C30.

Key words and phrases. 3-symmetric space, graded Lie algebra, totally geodesic submanifold, affine symmetric space.

550 к. тојо

any graded triple $(\mathfrak{g}^*, Z, \tau)$ associated with a gradation of the second kind, we put

$$\sigma := \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}Z\right), \quad H := G^{\sigma},$$

where G^{σ} denotes the set of fixed points of σ in G. It is obvious that σ is an inner automorphism of order 3 on G. Let K be the analytic subgroup of G with Lie algebra \mathfrak{k} , and N the K-orbit in G/H at the origin $o := \{H\} \in G/H$. Then N is a half dimensional, totally real and totally geodesic submanifold of a compact Riemannian 3-symmetric space G/H with respect to the canonical almost complex structure. Conversely, any such submanifold is obtained in this manner. On the other hand, a symmetric pair of type K_{ε} was introduced by Oshima and Sekiguchi [14], and subsequently Kaneyuki [9] proved that any symmetric pair of type K_{ε} is obtained from graded Lie algebras of the first kind or of the second kind.

The main purpose of the present paper is to classify the 'real forms' of a compact Riemannian 3-symmetric space G/H, i.e., half dimensional, totally real and totally geodesic submanifolds of G/H with respect to each G-invariant complex structure, by making use of symmetric pairs of type K_{ε} and their invariant geometric structures (Section 5).

The organization of this paper is as follows:

In Section 2, we recall several notions and facts regarding 3-symmetric spaces and graded Lie algebras used throughout the paper.

In Section 3, we describe invariant complex structures of a compact Riemannian 3-symmetric space G/H with dim $Z(H) \neq 0$ in terms of the canonical almost complex structures and involutions on G/H (see Proposition 3.3 and Corollary 3.4).

In Section 4, we prove that any half dimensional, totally real and totally geodesic submanifold of G/H with respect to each G-invariant complex structure is also totally real with respect to the canonical almost complex structure (Proposition 4.5).

In Section 5, by making use of symmetric pairs of type K_{ε} and their noncompactly causal structure (cf. Hilgert and Ólafsson [7]), we describe each invariant complex structure I and classify every real form with respect to I of G/H with dim $Z(H) \neq 0$ (Proposition 5.5, Theorem 5.6).

- **2. Preliminaries.** 2.1. Riemannian 3-symmetric spaces. In this subsection we recall relevant notions and results on compact Riemannian 3-symmetric spaces. Let G be a Lie group and H a compact subgroup of G, and let \langle , \rangle be a G-invariant Riemannian metric on G/H. A Riemannian homogeneous space $(G/H\langle , \rangle)$ is called a *Riemannian 3-symmetric space* if it is not isometric to a Riemannian symmetric space and there exists an automorphism σ of order 3 on G satisfying the following:
- (i) $G^{\sigma}{}_0 \subset H \subset G^{\sigma}$, where G^{σ} is the set of fixed points of σ and $G^{\sigma}{}_0$ the identity component of G^{σ} , and
- (ii) the transformation of G/H induced by σ is an isometry. We note that, except for the condition that $(G/H, \langle , \rangle)$ is not isometric to a Riemannian symmetric space, the definition of Riemannian 3-symmetric spaces in this paper is equivalent to that in [5] (see Proposition 5.1 and Theorem 5.4 of [5]).

In this paper, for each automorphism φ of G, we denote the differential of φ at $e \in G$ by the same symbol as φ .

Let $(G/H, \langle , \rangle, \sigma)$ be a Riemannian 3-symmetric space with an automorphism σ of order 3 on G. Let $\mathfrak g$ and $\mathfrak h$ be the Lie algebras of G and H, respectively, and let $\mathfrak g = \mathfrak h + \mathfrak m$ be an Ad(H)- and σ -invariant decomposition of $\mathfrak g$. We note that $\mathfrak h$ coincides with the set $\mathfrak g^{\sigma}$ of fixed points of σ . Under the canonical identification of $\mathfrak m$ with the tangent space $T_o(G/H)$ of G/H at $o = \{H\}$, we define an isometry J of $(\mathfrak m, \langle , \rangle)$ by

(2.1)
$$\sigma = -\frac{1}{2} \operatorname{Id} + \frac{\sqrt{3}}{2} J, \quad \operatorname{Id} = \text{the identity map of } \mathfrak{m}.$$

It is known that J induces a G-invariant almost complex structure on G/H, which is denoted by the same symbol as J. We call J the canonical almost complex structure (see [5]).

LEMMA 2.1 ([5]). For $X, Y \in \mathfrak{m}$, we have

$$[JX, JY]_{\mathfrak{h}} = [X, Y]_{\mathfrak{h}}, \quad [JX, Y]_{\mathfrak{m}} = -J[X, Y]_{\mathfrak{m}}.$$

Next, we describe an inner automorphism of order 3 on a compact simple Lie algebra. Let \mathfrak{g} be a compact simple Lie algebra and \mathfrak{t} a maximal abelian subalgebra of \mathfrak{g} . We denote by \mathfrak{g}_c and \mathfrak{t}_c the complexifications of \mathfrak{g} and \mathfrak{t} , respectively. Let $\Delta(\mathfrak{g}_c,\mathfrak{t}_c)$ be the root system of \mathfrak{g}_c with respect to \mathfrak{t}_c , and let $\Pi(\mathfrak{g}_c,\mathfrak{t}_c)=\{\alpha_1,\ldots,\alpha_n\}$ be a fundamental root system of $\Delta(\mathfrak{g}_c,\mathfrak{t}_c)$ for some lexicographic ordering. We define $H_j\in\mathfrak{t}_c, j=1,\ldots,n$, by

$$\alpha_i(H_i) = \delta_{ii} \,.$$

Then each inner automorphism of order 3 on g is given by the following lemma (cf. Wolf and Gray [20] and Helgason [6]).

LEMMA 2.2. Let G be a compact simple Lie group with Lie algebra \mathfrak{g} , and σ an inner automorphism of order 3 on G. Let $\delta = \sum_{p=1}^{n} m_p \alpha_p$ denote the highest root of $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$. Then σ is conjugate to $\mathrm{Ad}(g_i)$ for an element g_i of G which has one of the following forms:

- (1) $g_0 = \exp\{(2\pi\sqrt{-1}/3)H_i\}$ $(m_i = 3),$
- (2) $g_1 = \exp\{(2\pi\sqrt{-1}/3)H_i\}$ $(m_i = 2),$
- (3) $g_2 = \exp\{(2\pi\sqrt{-1}/3)(H_j + H_k)\}\ (m_j = m_k = 1),$
- (4) $g_3 = \exp\{(2\pi\sqrt{-1}/3)H_i\}$ $(m_i = 1)$.

REMARK 2.3. (1) In the case (4), we see that the pair $(\mathfrak{g}, \mathfrak{g}^{\sigma})$ is (Hermitian) symmetric.

- (2) Let $\mathfrak{z}(\mathfrak{g}^{\sigma})$ be the center of \mathfrak{g}^{σ} . If $\sigma = \mathrm{Ad}(g_k)$ for k = 0, 1, 2, then the dimension of $\mathfrak{z}(\mathfrak{g}^{\sigma})$ is equal to k.
- 2.2. Graded Lie algebras. In this subsection we recall several notions and results on graded Lie algebras. Let \mathfrak{g}^* be a noncompact semisimple Lie algebra over \mathbf{R} . Let τ be a Cartan involution of \mathfrak{g}^* and

(2.3)
$$\mathfrak{g}^* = \mathfrak{k} + \mathfrak{p}, \quad \tau|_{\mathfrak{k}} = \mathrm{Id}_{\mathfrak{k}}, \quad \tau|_{\mathfrak{p}} = -\mathrm{Id}_{\mathfrak{p}},$$

the Cartan decomposition of \mathfrak{g}^* corresponding to τ . Take a gradation of the ν -th kind on \mathfrak{g}^* :

(2.4)
$$\mathfrak{g}^* = \mathfrak{g}_{-\nu}^* + \dots + \mathfrak{g}_0^* + \dots + \mathfrak{g}_{\nu}^*, \quad \mathfrak{g}_1^* \neq \{0\}, \quad \mathfrak{g}_{\nu}^* \neq \{0\}, \\
[\mathfrak{g}_p^*, \mathfrak{g}_q^*] \subset \mathfrak{g}_{p+q}^*, \quad \tau(\mathfrak{g}_p^*) = \mathfrak{g}_{-p}^*, \quad -\nu \leq p, q \leq \nu.$$

It is known that there exists a unique element $Z \in \mathfrak{p} \cap \mathfrak{g}_0^*$, called the characteristic element of the gradation (2.4), such that

(2.5)
$$\mathfrak{g}_{p}^{*} = \{X \in \mathfrak{g}^{*}; [Z, X] = pX\}, \quad -\nu \le p \le \nu.$$

A triple $(\mathfrak{g}^*, Z, \tau)$ is called a *graded triple*. Let

$$\mathfrak{g}^* = \sum_{i=-v}^{v} \mathfrak{g}_i^*, \quad \bar{\mathfrak{g}}^* = \sum_{i=-\bar{v}}^{\bar{v}} \bar{\mathfrak{g}}_i^*$$

be two graded Lie algebras. These gradations are said to be *isomorphic* if $\nu = \bar{\nu}$ and there exists an isomorphism $\phi : \mathfrak{g}^* \to \bar{\mathfrak{g}}^*$ such that $\phi(\mathfrak{g}_i^*) = \bar{\mathfrak{g}}_i^*$ for $-\nu \le i \le \nu$.

Let $\mathfrak a$ be a maximal abelian subspace of $\mathfrak p$, and let Δ denote the set of restricted roots of $\mathfrak g^*$ with respect to $\mathfrak a$. We denote by $\Pi = \{\lambda_1, \dots, \lambda_l\}$ a fundamental root system of Δ with respect to a lexicographic ordering of $\mathfrak a$. We call subsets $\{\Pi_0, \Pi_1, \dots, \Pi_m\}$ of Π a partition of Π if $\Pi_1 \neq \emptyset$, $\Pi_m \neq \emptyset$ and

$$\Pi = \Pi_0 \cup \Pi_1 \cup \cdots \cup \Pi_m$$
 (disjoint union).

Let Π and $\bar{\Pi}$ be fundamental root systems of noncompact semisimple Lie algebras \mathfrak{g}^* and $\bar{\mathfrak{g}}^*$, respectively. Partitions $\{\Pi_0, \Pi_1, \ldots, \Pi_m\}$ of Π and $\{\bar{\Pi}_0, \bar{\Pi}_1, \ldots, \bar{\Pi}_n\}$ of $\bar{\Pi}$ are said to be *equivalent* if there exists an isomorphism ϕ from the Dynkin diagram of Π to that of $\bar{\Pi}$ such that m = n and $\phi(\Pi_i) = \bar{\Pi}_i$, $i = 0, 1, \ldots, m$.

Let $\{\Pi_0, \Pi_1, \dots, \Pi_m\}$ be a partition of $\Pi = \{\lambda_1, \dots, \lambda_l\}$. We define a map $h_{\Pi} : \Delta \to \mathbb{Z}$ by

$$(2.6) h_{\Pi}(\lambda) := \sum_{\lambda_i \in \Pi_1} k_i + 2 \sum_{\lambda_i \in \Pi_2} k_i + \dots + m \sum_{\lambda_i \in \Pi_m} k_i , \quad \lambda = \sum_{i=1}^l k_i \lambda_i \in \Delta .$$

Then there exists a unique $Z \in \mathfrak{a}$ such that $\lambda(Z) = h_{\Pi}(\lambda)$ for all $\lambda \in \Delta$. Since $h_{\Pi}(\lambda) \in \mathbb{Z}$ for all $\lambda \in \Delta$, there exists a gradation whose characteristic element equals Z, which is called the gradation defined by a partition $\{\Pi_0, \Pi_1, \dots, \Pi_m\}$ of Π . Moreover, Kaneyuki and Asano [10] proved the following theorem.

THEOREM 2.4 ([10]). Let \mathfrak{g}^* be a noncompact semisimple Lie algebra over \mathbf{R} and Π a fundamental root system of \mathfrak{g}^* . Then the correspondence

$$\{\Pi_0, \Pi_1, \dots, \Pi_m\} \mapsto \text{the gradation defined by } \{\Pi_0, \Pi_1, \dots, \Pi_m\}$$

induces a bijection between the set of equivalence classes of partitions of Π and the set of isomorphism classes of gradations of \mathfrak{g}^* .

Define
$$h_i \in \mathfrak{a}, i = 1, 2, \dots, l$$
, by

$$\lambda_i(h_i) = \delta_{ii} \,,$$

and denote the highest root of Δ by

(2.8)
$$\delta_{\mathfrak{a}} := \sum_{i=1}^{l} n_i \lambda_i .$$

According to Faraut, Kaneyuki, Korányi, Lu and Roos [4, pp. 115, Proposition I.2.7], the following Proposition holds.

PROPOSITION 2.5 ([4]). Let $Z \in \mathfrak{a}$ be a characteristic element of a graded Lie algebra of the second kind defined by a partition of Π . Then

$$Z = h_i$$
, or $h_i + h_k$,

with $n_i = 2$ and $n_j = n_k = 1$.

Finally, we clarify the relation between H_i and h_j . Let \mathfrak{t}^* be a Cartan subalgebra of \mathfrak{g}^* containing \mathfrak{a} . We denote by \mathfrak{g}_c and \mathfrak{t}_c the complexifications of \mathfrak{g}^* and \mathfrak{t}^* , respectively. Suppose that $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ and Δ have compatible orderings.

LEMMA 2.6. Let λ_i be any root in Π .

- (1) If there exists a unique $\alpha_i \in \Pi(\mathfrak{g}_c, \mathfrak{t}_c)$ such that $\alpha_i|_{\mathfrak{a}} = \lambda_i$, then $h_i = H_i$.
- (2) If there exist two fundamental roots α_j , $\alpha_k \in \Pi(\mathfrak{g}_c, \mathfrak{t}_c)$ such that $\alpha_j|_{\mathfrak{a}} = \alpha_k|_{\mathfrak{a}} = \lambda_i$, then $h_i = H_j + H_k$.

PROOF. (1) From the classification of the Satake diagrams (cf. Araki [1] and [6]) for $\alpha_p \in \Pi(\mathfrak{g}_c,\mathfrak{t}_c), \ p \neq j$, it follows that $\alpha_p|_{\mathfrak{a}} = 0$ or $\alpha_p|_{\mathfrak{a}} = \lambda_q$ for some $q, q \neq i$. Thus we have

$$\alpha_p(h_i) = \alpha_p|_{\mathfrak{a}}(h_i) = 0$$
, $\alpha_i(h_i) = \lambda_i(h_i) = 1$,

which implies that $h_i = H_i$.

(2) Similarly as above, for $\alpha_p \in \Pi(\mathfrak{g}_c, \mathfrak{t}_c)$, $p \neq j, k$, it follows that $\alpha_p|_{\mathfrak{a}} = 0$ or $\alpha_p|_{\mathfrak{a}} = \lambda_q$ for some $q, q \neq i$. Therefore

$$\alpha_p(h_i) = \alpha_p|_{\mathfrak{a}}(h_i) = 0 \,, \quad \alpha_m(h_i) = \alpha_m|_{\mathfrak{a}}(h_i) = \lambda_i(h_i) = 1 \,, \quad m = j,k \,,$$
 which implies that $h_i = H_j + H_k$.

3. Invariant complex structures and J. In this section we use the same notation as in Section 2.1. Let $(G/H, \langle , \rangle, \sigma)$ be a compact, simply connected Riemannian 3-symmetric space such that G is a compact simple Lie group, σ is inner and the dimension of the center Z(H) of H is not zero. In this case, H is a centralizer of a toral subgroup of G and so H is connected. Moreover, it is known that $(G/H, \langle , \rangle, \sigma)$ admits a G-invariant complex structure (cf. Wang [19]). In the remaining part of this paper we assume that a compact Riemannian 3-symmetric space $(G/H, \langle , \rangle, \sigma)$ is of inner type such that G is a compact simple Lie group, G is a centralizer of a toral subgroup of G and G is induced from a biinvariant metric on G.

In this section we construct invariant complex structures on a 3-symmetric space $(G/H, \langle , \rangle, \sigma)$ by means of J and some involutive automorphisms of G. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H, respectively. Since σ is inner, there exists a maximal abelian

subalgebra \mathfrak{t} of \mathfrak{g} contained in \mathfrak{h} . Let $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ be the root system of \mathfrak{g}_c with respect to \mathfrak{t}_c and \mathfrak{g}^{α} the root space for $\alpha \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$. We take the Weyl basis $\{E_{\alpha} \in \mathfrak{g}^{\alpha}; \alpha \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)\}$ of \mathfrak{g}_c so that

$$A_{\alpha} := E_{\alpha} - E_{-\alpha}$$
, $B_{\alpha} := \sqrt{-1}(E_{\alpha} + E_{-\alpha}) \in \mathfrak{g}$, $B(E_{\alpha}, E_{-\alpha}) = 1$,

where B denotes the Killing form of g. The following lemma is obvious.

LEMMA 3.1. For $T \in \mathfrak{t}_c$ and $\alpha \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, we have

$$Ad(\exp T)(E_{\alpha}) = e^{\alpha(T)}E_{\alpha}$$
.

Since $\mathfrak{t} \subset \mathfrak{h}$, there is a subset Δ_0 of $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ such that

$$\mathfrak{h}_c = \mathfrak{t}_c + \sum_{\alpha \in \Delta_0} \mathfrak{g}^{\alpha} \,.$$

Let I denote a G-invariant complex structure of $(G/H, \langle , \rangle, \sigma)$. Then we have $\mathfrak{m}_c = \mathfrak{m}_+ \oplus \mathfrak{m}_-$ (direct sum), where \mathfrak{m}_\pm denote the $\pm \sqrt{-1}$ -eigenspaces of I, respectively. Set $\mathfrak{a}^+ := \mathfrak{h}_c + \mathfrak{m}_+$. Since I is G-invariant, it follows that m_\pm are ad(\mathfrak{h})-invariant, and furthermore \mathfrak{a}^+ is a Lie subalgebra of \mathfrak{g}_c (cf. Borel and Hirzebruch [2] and Nishiyama [12]). Since $\mathfrak{t}_c \subset \mathfrak{h}_c \subset \mathfrak{a}^+$, there exists a subset Δ^+ of $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ such that

(3.2)
$$\mathfrak{a}^+ = \mathfrak{h}_c + \sum_{\alpha \in \Delta^+} \mathfrak{g}^{\alpha} .$$

Moreover, since *I* is integrable, it follows that

(3.3)
$$\Delta(\mathfrak{g}_c,\mathfrak{t}_c) = \Delta_0 \cup \Delta^+ \cup (-\Delta^+) \text{ (disjoint union)}, \\ \alpha \in \Delta_0 \cup \Delta^+, \quad \beta \in \Delta^+, \quad \alpha + \beta \in \Delta(\mathfrak{g}_c,\mathfrak{t}_c) \Rightarrow \alpha + \beta \in \Delta^+,$$

(cf. [12]), and hence by [2] (see also [12, Theorem 1]), there exists a fundamental root system $\tilde{\Pi} = \{\tilde{\alpha}_1, \dots, \tilde{\alpha}_n\}$ of $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ such that $\Pi(\mathfrak{h}) := \tilde{\Pi} \cap \Delta_0$ is a fundamental root system of Δ_0 and

(3.4)
$$\Delta^{+} = [\tilde{\Pi}]^{+} - [\Pi(\mathfrak{h})]^{+}.$$

Here, $[\tilde{\Pi}]^+$ and $[\Pi(\mathfrak{h})]^+$ denote the sets of positive roots generated by $\tilde{\Pi}$ and $\Pi(\mathfrak{h})$, respectively. Note that

$$(3.5) I_{\alpha} = \sqrt{-1} \operatorname{Id}_{\alpha} (\alpha \in \Delta^+), I_{\alpha} = -\sqrt{-1} \operatorname{Id}_{\alpha} (\beta \in -\Delta^+).$$

Conversely, if there exists a subset Δ^+ of Δ satisfying (3.3), then the linear automorphism I of $\mathfrak{m} = \sum_{\alpha \in \Delta^+} (\mathbf{R} A_\alpha + \mathbf{R} B_\alpha)$ given by (3.5) induces a G-invariant complex structure on G/H (cf. [12]).

Since $\sigma^3 = \text{Id}$, it follows from Lemma 3.1 that for $\alpha \in \Delta^+$ and a primitive cubic root of unity $\xi = e^{2\pi\sqrt{-1}/3}$, we have $\sigma(E_\alpha) = \xi E_\alpha$ or $\sigma(E_\alpha) = \xi^2 E_\alpha$. Define subsets Δ_1^+ , Δ_2^+ of Δ^+ by

(3.6)
$$\Delta^{+}_{i} := \{ \alpha \in \Delta^{+}; \, \sigma(E_{\alpha}) = \xi^{i} E_{\alpha} \}, \quad i = 1, 2.$$

Let $\mathfrak{z}(\mathfrak{h})$ be the center of \mathfrak{h} . Then, by Remark 2.3 (2), the dimension of $\mathfrak{z}(\mathfrak{h})$ is 1 or 2. Moreover

LEMMA 3.2. (1) If dim $\mathfrak{z}(\mathfrak{h})=1$, then there exists $\tilde{\alpha}_{i_0}\in\tilde{\Pi}$ such that $\tilde{\Pi}-\Pi(\mathfrak{h})=\{\tilde{\alpha}_{i_0}\}, m_{i_0}=2$ and

$$\sigma = \mathrm{Ad}\left(\exp\varepsilon\frac{2\pi}{3}\sqrt{-1}\tilde{H}_{i_0}\right)\,.$$

(2) If dim $\mathfrak{z}(\mathfrak{h})=2$, then there exist $\tilde{\alpha}_{i_1},\,\tilde{\alpha}_{i_2}\in\tilde{\Pi}$ such that $\tilde{\Pi}-\Pi(\mathfrak{h})=\{\tilde{\alpha}_{i_1},\,\tilde{\alpha}_{i_2}\},$ $m_{i_1}=m_{i_2}=1,$ and

$$\sigma = \operatorname{Ad}\left(\exp\varepsilon\frac{2\pi}{3}\sqrt{-1}(\tilde{H}_{i_1} + \tilde{H}_{i_2})\right).$$

Here $\tilde{\alpha}_i(\tilde{H}_j) = \delta_{ij}$, $\varepsilon = 1$ or -1 and we denote the highest root of $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ with respect to $\tilde{\Pi}$ by $\sum_i m_i \tilde{\alpha}_i$.

PROOF. (1) Set $\mathfrak{z}(\mathfrak{h}) = R\sqrt{-1}Z$. Since \mathfrak{h} is the centralizer of $\mathfrak{z}(\mathfrak{h})$ in \mathfrak{g} , it follows from (3.1) that

(3.7)
$$\tilde{\alpha}_i(Z) = 0, \quad \tilde{\alpha}_j(Z) \neq 0, \quad \tilde{\alpha}_i \in \Pi(\mathfrak{h}), \quad \tilde{\alpha}_j \in \tilde{\Pi} - \Pi(\mathfrak{h}).$$

Then there exists a unique $\tilde{\alpha}_{i_0} \in \tilde{\Pi}$ such that $\tilde{\Pi} - \Pi(\mathfrak{h}) = {\{\tilde{\alpha}_{i_0}\}}$. Indeed, if there are $\tilde{\alpha}_i$, $\tilde{\alpha}_j \in \tilde{\Pi} - \Pi(\mathfrak{h})$, $i \neq j$, then we obtain $\tilde{\alpha}_k(\tilde{H}_i) = \tilde{\alpha}_k(\tilde{H}_j) = 0$ for any $\tilde{\alpha}_k \in \Pi(\mathfrak{h})$, and hence, by (3.1), $\sqrt{-1}\tilde{H}_i$ and $\sqrt{-1}\tilde{H}_j$ are in $\mathfrak{z}(\mathfrak{h})$. This contradicts the assumption.

Now, we may put $Z = \tilde{H}_{i_0}$ and $\sigma = \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)c\tilde{H}_{i_0}\})$ for some $c \in \mathbb{Z}$. Moreover, since $\sigma(E_{\tilde{\alpha}_{i_0}}) = \xi E_{\tilde{\alpha}_{i_0}}$ or $\xi^2 E_{\tilde{\alpha}_{i_0}}$ by Lemma 3.1, we can put c = 1 or -1. From the classification of root systems of simple Lie algebras, it is easy to see that if $m_{i_0} \geq 3$, then there exists $\alpha \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ such that

(3.8)
$$\alpha = \sum_{j} n_{j} \tilde{\alpha}_{j} , \quad n_{i_{0}} = 3 .$$

By (3.4) and the fact that $\sigma = \operatorname{Ad}(\exp\{\pm(2\pi\sqrt{-1}/3)\tilde{H}_{i_0}\})$, we obtain $\sigma(E_\alpha) = E_\alpha$, i.e., $E_\alpha \in \mathfrak{h}_c$. However, we have $\alpha(Z) \neq 0$ from (3.8), and so $E_\alpha \notin \mathfrak{h}_c$. Hence $m_{i_0} \leq 2$. In the case where $m_{i_0} = 1$, it is known that $(G/H, \langle , \rangle, \sigma)$ is isometric to a Hermitian symmetric space (cf. [20, Theorem 3.3]). Consequently, we obtain $m_{i_0} = 2$.

(2) Next, we assume that dim $\mathfrak{z}(\mathfrak{h})=2$. By a similar argument as above, we can see that there exist $\tilde{\alpha}_{i_1}, \, \tilde{\alpha}_{i_2} \in \tilde{\Pi}$ such that

$$\tilde{\Pi} - \Pi(\mathfrak{h}) = {\{\tilde{\alpha}_{i_1}, \tilde{\alpha}_{i_2}\}}.$$

In this case, we have $\mathfrak{z}(\mathfrak{h}) = \mathbf{R}\sqrt{-1}\tilde{H}_{i_1} + \mathbf{R}\sqrt{-1}\tilde{H}_{i_2}$ and

$$\sigma = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}(a\tilde{H}_{i_1} + b\tilde{H}_{i_2})\right), \quad a, b \in \mathbf{Z}.$$

Since $\sigma(E_{\tilde{\alpha}_{i_1}}) = \xi^k E_{\tilde{\alpha}_{i_1}}$ and $\sigma(E_{\tilde{\alpha}_{i_2}}) = \xi^l E_{\tilde{\alpha}_{i_2}}$, k, l = 1 or 2, it follows that $a, b \not\equiv 0$ (mod 3). Hence we may assume that $(a, b) = \pm (1, 1)$ or $\pm (1, -1)$. From the classification of

root systems, we can take a root $\alpha = \sum_k n_k \tilde{\alpha}_k$ so that $n_{i_1} = n_{i_2} = 1$. If $(a, b) = \pm (1, -1)$, then $\sigma(E_\alpha) = E_\alpha$, and this contradicts the fact that $\alpha \in \Delta^+$. Therefore we have

(3.9)
$$\sigma = \operatorname{Ad}\left(\exp \pm \frac{2\pi}{3}\sqrt{-1}(\tilde{H}_{i_1} + \tilde{H}_{i_2})\right).$$

Finally, we show that $m_{i_1} = m_{i_2} = 1$. Suppose that $m_{i_1} + m_{i_2} \ge 3$. Then, from the classification of root systems, it is easy to see that there exists $\alpha = \sum_j n_j \tilde{\alpha}_j \in \Delta^+$ such that $n_{i_1} + n_{i_2} = 3$. By (3.9), it is easy to see that $\sigma(E_\alpha) = E_\alpha$, which is a contradiction. Consequently, we have $m_{i_1} = m_{i_2} = 1$.

Since $\mathfrak{g}^{\sigma} = \mathfrak{g}^{\sigma^{-1}} (= \mathfrak{h})$, we may assume that

$$\sigma = \begin{cases} \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)\tilde{H}_{i_0}\}) & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 1, \\ \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)(\tilde{H}_{i_1} + \tilde{H}_{i_2})\}) & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 2. \end{cases}$$

Considering (3.6) and (3.10) together with Lemma 3.2, we obtain

(3.11)
$$\Delta^{+}_{1} = \begin{cases} \{\beta = \sum_{j} n_{j} \tilde{\alpha}_{j}; \ n_{i_{0}} = 1\} & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 1, \\ \{\beta = \sum_{j} n_{j} \tilde{\alpha}_{j}; \ (n_{i_{1}}, n_{i_{2}}) = (1, 0) \text{ or } (0, 1)\} & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 2, \end{cases}$$

$$\Delta^{+}_{2} = \begin{cases} \{\beta = \sum_{j} n_{j} \tilde{\alpha}_{j}; \ n_{i_{0}} = 2\} & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 1, \\ \{\beta = \sum_{j} n_{j} \tilde{\alpha}_{j}; \ n_{i_{1}} = n_{i_{2}} = 1\} & \text{if } \dim \mathfrak{z}(\mathfrak{h}) = 2. \end{cases}$$

Now, we shall describe each G-invariant complex structure of G/H in terms of the canonical almost complex structure J of $(G/H, \langle , \rangle, \sigma)$.

PROPOSITION 3.3. (1) For any G-invariant complex structure I of G/H, define a mapping $\varphi : \mathfrak{g} \to \mathfrak{g}$ by $\varphi|_{\mathfrak{h}} := \mathrm{Id}_{\mathfrak{h}}, \varphi|_{\mathfrak{m}} := I \circ J$. Then φ is an involutive automorphism of \mathfrak{g} .

(2) Conversely, let φ be an involutive automorphism of G such that $\varphi|_{\mathfrak{h}} = \mathrm{Id}_{\mathfrak{h}}, \varphi \neq \mathrm{Id}$. Then $I := -\varphi|_{\mathfrak{m}} \circ J$ is a complex structure of \mathfrak{m} and induces a G-invariant complex structure of G/H.

PROOF. (1) Since I is a G-invariant complex structure, there exists a subset Δ^+ of Δ satisfying (3.3). As above, we take $\tilde{\Pi}$, $\Pi(\mathfrak{h})$ and Δ^+_i , i=1,2, for Δ^+ . Let β_i and γ_i , i=1,2, be elements in Δ^+_i . Then it follows from Lemma 3.2 and (3.11) that

$$(3.12) \beta_1 + \gamma_2, \quad \beta_2 + \gamma_2 \not\in \Delta(\mathfrak{g}_c, \mathfrak{t}_c).$$

Moreover, from (2.1) and (3.6) we have

(3.13)
$$J(E_{\pm\beta_1}) = \pm \sqrt{-1}E_{\pm\beta_1}, \quad J(E_{\pm\beta_2}) = \mp \sqrt{-1}E_{\pm\beta_2}.$$

Therefore, by (3.5) and (3.13), we get

$$(3.14) \quad \varphi(E_{\beta_1}) = -E_{\beta_1}, \quad \varphi(E_{\beta_2}) = E_{\beta_2}, \quad \varphi(E_{-\beta_1}) = -E_{-\beta_1}, \quad \varphi(E_{-\beta_2}) = E_{-\beta_2}.$$

In particular, we have $I \circ J = J \circ I$ and $\varphi^2 = \mathrm{Id}$.

Next, we shall show that $\varphi \in \operatorname{Aut}(\mathfrak{g})$. For $X, Y \in \mathfrak{h}$ we obtain

$$\varphi[X, Y] = [X, Y] = [\varphi(X), \varphi(Y)],$$

because $[X, Y] \in \mathfrak{h}$ and $\varphi|_{\mathfrak{h}} = \mathrm{Id}_{\mathfrak{h}}$. Since $\beta_1 + \gamma_1 \in \Delta^+_2$ if $\beta_1 + \gamma_1 \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, it follows from (3.14) that

$$\varphi[E_{\beta_1}, E_{\gamma_1}] = [E_{\beta_1}, E_{\gamma_1}] = [\varphi(E_{\beta_1}), \varphi(E_{\gamma_1})].$$

Similarly, we obtain

$$\begin{split} & \varphi[E_{\beta_1}, E_{-\gamma_1}] = [E_{\beta_1}, E_{-\gamma_1}] = [\varphi(E_{\beta_1}), \varphi(E_{-\gamma_1})], \\ & \varphi[E_{\beta_2}, E_{-\gamma_1}] = -[E_{\beta_2}, E_{-\gamma_1}] = [\varphi(E_{\beta_2}), \varphi(E_{-\gamma_1})], \\ & \varphi[E_{\beta_1}, E_{-\gamma_2}] = -[E_{\beta_1}, E_{-\gamma_2}] = [\varphi(E_{\beta_1}), \varphi(E_{-\gamma_2})], \end{split}$$

and hence $\varphi[X, Y] = [\varphi(X), \varphi(Y)]$ for any $X, Y \in \mathfrak{m}$. Furthermore, since I and J are G-invariant, it is obvious that

$$I \circ J \circ \operatorname{ad}(X) = \operatorname{ad}(X) \circ I \circ J$$
, $X \in \mathfrak{h}$,

which implies that $\varphi[X, Y] = [\varphi(X), \varphi(Y)]$ for $X \in \mathfrak{h}$ and $Y \in \mathfrak{m}$. We have thus proved (1).

(2) Let φ be an involutive automorphism of G such that $\varphi|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$ and $\varphi\neq\operatorname{Id}$. Since \mathfrak{h} contains a maximal abelian subalgebra of \mathfrak{g} , an involution φ is inner. Therefore, since J is G-invariant, φ is inner and H is connected, it follows that $\varphi\circ J=J\circ \varphi$ and $I:=-\varphi|_{\mathfrak{m}}\circ J$ is a complex structure of \mathfrak{m} such that I is $\operatorname{Ad}(H)$ -invariant. Hence I induces a G-invariant almost complex structure of G/H, denoted by the same symbol I. Now, we see that the Nijenhuis tensor

$$S_I(x, y) = [Ix, Iy] - [x, y] - I[x, Iy] - I[Ix, y]$$

x, y being vector fields of G/H, is identically zero. To prove this, it only has to show that $S_I = 0$ at o, since S_I is a tensor and I is G-invariant. Let $\pi : G \to G/H$ be the canonical projection and W an open subset in \mathfrak{m} such that $0 \in W$ and the mapping

$$\pi \circ \exp: W \to \pi(\exp W)$$

is diffeomorphic. For $X \in \mathfrak{m}$, we denote by X_* the vector field on $\pi(\exp W)$ defined by

$$(X_*)_{\pi(\exp x)} := (d \exp x)_*(X)$$
.

According to Nomizu [13], the Levi-Civita connection ∇ of $(G/H, \langle , \rangle, \sigma)$ at o is given by

(3.15)
$$(\nabla_{X_*} Y_*)_o = \frac{1}{2} [X, Y]_{\mathfrak{m}}, \quad X, Y \in \mathfrak{m},$$

and therefore we get

$$[X_*, Y_*]_o = [X, Y]_{\mathfrak{m}}.$$

By the definition of X_* and G-invariance of I and J, it follows that

$$(3.17) I(X_*) = (IX)_*, J(X_*) = (JX)_*.$$

By making use of (3.16) and (3.17), for $X, Y \in \mathfrak{m}$ we have

$$S_{I}(X_{*}, Y_{*})_{o} = [I(X_{*}), I(Y_{*})]_{o} - [X_{*}, Y_{*}]_{o} - I([X_{*}, I(Y_{*})]_{o}) - I([I(X_{*}), Y_{*}]_{o})$$

$$= [(IX)_{*}, (IY)_{*}]_{o} - [X_{*}, Y_{*}]_{o} - I([X_{*}, (IY)_{*}]_{o}) - I([(IX)_{*}, Y_{*}]_{o})$$

$$= [IX, IY]_{\mathfrak{m}} - [X, Y]_{\mathfrak{m}} - I([X, IY]_{\mathfrak{m}}) - I([IX, Y]_{\mathfrak{m}})$$

$$= \varphi([JX, JY]_{\mathfrak{m}}) - [X, Y]_{\mathfrak{m}} - \varphi(J[X, \varphi(JY)]_{\mathfrak{m}})$$

$$- \varphi(J[\varphi(JX), Y]_{\mathfrak{m}}).$$

Applying Lemma 2.1 and the commutativity of φ and J to (3.18), we obtain

(3.19)
$$S_{I}(X_{*}, Y_{*})_{o} = -\varphi([X, Y]_{\mathfrak{m}}) - [X, Y]_{\mathfrak{m}} - \varphi([X, \varphi(Y)]_{\mathfrak{m}}) - \varphi([\varphi(X), Y]_{\mathfrak{m}}) \\ = -\varphi([X, Y]_{\mathfrak{m}}) - [X, Y]_{\mathfrak{m}} - [\varphi(X), Y]_{\mathfrak{m}} - [X, \varphi(Y)]_{\mathfrak{m}}.$$

Let $\mathfrak{m}(\varphi, \pm 1)$ be the ± 1 -eigenspaces of $\varphi|_{\mathfrak{m}}$. If $X, Y \in \mathfrak{m}(\varphi, -1)$, then $[X, Y]_{\mathfrak{m}} \in \mathfrak{m}(\varphi, 1)$ and it follows from (3.19) that

$$S_I(X_*, Y_*)_o = -\{[X, Y]_{\mathfrak{m}} + [X, Y]_{\mathfrak{m}} - [X, Y]_{\mathfrak{m}} - [X, Y]_{\mathfrak{m}}\} = 0.$$

Similarly, if $X \in \mathfrak{m}(\varphi, -1)$, $Y \in \mathfrak{m}(\varphi, 1)$, then

$$S_I(X_*, Y_*)_o = -\{-[X, Y]_m + [X, Y]_m - [X, Y]_m + [X, Y]_m\} = 0.$$

Finally, we suppose that $X, Y \in \mathfrak{m}(\varphi, 1)$. Then we have

$$S_I(X_*, Y_*)_o = -\{[X, Y]_{\mathfrak{m}} + [X, Y]_{\mathfrak{m}} + [X, Y]_{\mathfrak{m}} + [X, Y]_{\mathfrak{m}}\} = -4[X, Y]_{\mathfrak{m}}.$$

To complete the proof of (2), we show that $[X,Y]_{\mathfrak{m}}=0$ for any $X,Y\in\mathfrak{m}(\varphi,1)$. Noting Lemma 2.2 and Remark 2.3, we may assume that there exist a maximal abelian subalgebra \mathfrak{t} of \mathfrak{g} contained in \mathfrak{h} , the root system $\Delta(\mathfrak{g}_c,\mathfrak{t}_c)$ and a fundamental root system $\Pi(\mathfrak{g}_c,\mathfrak{t}_c)=\{\alpha_1,\ldots,\alpha_n\}$ such that

$$\sigma = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}Z\right),\,$$

where $\sqrt{-1}Z \in \mathfrak{t}$ is one of the following forms:

(i)
$$\sqrt{-1}Z = \sqrt{-1}H_{j_1} \ (m_{j_1} = 2) \ ,$$
 (ii) $\sqrt{-1}Z = \sqrt{-1}(H_{j_2} + H_{j_3}) \ (m_{j_2} = m_{j_3} = 1) \ .$

Here $H_i \in \mathfrak{t}_c$, $1 \leq i \leq n$, is given by (2.2) and $\delta = \sum_{p=1}^n m_p \alpha_p$ is the highest root of $\Delta(\mathfrak{g}_c,\mathfrak{t}_c)$ with respect to $\Pi(\mathfrak{g}_c,\mathfrak{t}_c)$. Since φ is an involution of inner type, we can put $\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1}T)$ for some $\sqrt{-1}T \in \mathfrak{t}$. In the case (i), for $\alpha_j \in \Pi(\mathfrak{g}_c,\mathfrak{t}_c)$, $j \neq j_1$, we have $E_{\alpha_j} \in \mathfrak{h}_c$ and so

$$\varphi(E_{\alpha_j}) = E_{\alpha_j}, \quad j \neq j_1.$$

Therefore, it follows from Lemma 3.1 that

$$T = aH_{j_1} + \sum_{j \neq j_1} a_j H_j, \quad a_j \equiv 0 \pmod{2},$$

and hence $\varphi = \operatorname{Ad}(\exp a\pi \sqrt{-1}H_{j_1})$. Moreover, since φ is a nonidentical involution, it follows from Lemma 3.1 that

(3.20)
$$\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1} H_{j_1}).$$

By Lemma 3.1 and (3.20), it is easy to see that $\mathfrak{m}(\varphi, 1)$ is spanned by the following vectors:

$$A_{\alpha} = E_{\alpha} - E_{-\alpha}, \quad B_{\alpha} = \sqrt{-1}(E_{\alpha} + E_{-\alpha}), \quad \alpha = \sum_{j=1}^{n} n_{j}\alpha_{j} \in \Delta(\mathfrak{g}_{c}, \mathfrak{t}_{c}), \quad n_{j_{1}} = 2.$$

Now, set

$$\Delta(\varphi, 1) := \left\{ \alpha = \sum_{i=1}^{n} n_j \alpha_j \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c) \; ; \; n_{j_1} = \pm 2 \right\}.$$

If α , $\beta \in \Delta(\varphi, 1)$ and $\alpha + \beta \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, then $\alpha + \beta$ must be of the form $\alpha + \beta = \sum_j k_j \alpha_j$, $k_{j_1} = 0$, since $m_{j_1} = 2$. Hence we have $[E_\alpha, E_\beta] \in \mathfrak{h}_c$ and

$$[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}} = \{0\}.$$

In the case (ii), by a similar argument as above, the involution φ has the following form:

(3.21)
$$\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1}(aH_{j_2} + bH_{j_3})), \quad a, b \in \mathbb{Z},$$

and so we may assume that

$$(a, b) = (1, 0), (0, 1) \text{ or } (1, 1).$$

Then $\mathfrak{m}(\varphi, 1)$ is spanned by the following vectors:

- A_{α} , B_{α} , where $\alpha = \sum_{j=1}^{n} k_{j} \alpha_{j} \in \Delta(\mathfrak{g}_{c}, \mathfrak{t}_{c}), \ k_{j_{2}} = 0, \ k_{j_{3}} = 1$, if (a, b) = (1, 0),
- A_{α} , B_{α} , where $\alpha = \sum_{j=1}^{n} k_j \alpha_j \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, $k_{j_2} = 1$, $k_{j_3} = 0$, if (a, b) = (0, 1),
- A_{α} , B_{α} , where $\alpha = \sum_{j=1}^{n} k_j \alpha_j \in \Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, $k_{j_2} = k_{j_3} = 1$, if (a, b) = (1, 1).

Since $m_{j_2} = m_{j_3} = 1$, we can easily check that $[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}} = \{0\}$ for each case, and this completes the proof of the proposition.

From the proof of Proposition 3.3, we have the following

COROLLARY 3.4. Let φ be an involutive automorphism of G such that $\varphi \neq \operatorname{Id}$ and $\varphi|_{\mathfrak{h}} = \operatorname{Id}_{\mathfrak{h}}$, and let $\Pi(\mathfrak{g}_c, \mathfrak{t}_c) = \{\alpha_1, \ldots, \alpha_n\}$, H_i and m_i , $1 \leq i \leq n$, be as in Section 2.1.

(1) Suppose that $\dim_{\mathfrak{Z}}(\mathfrak{h})=1$ and $\sigma=\operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_{j_1}\})$ for some $\alpha_{j_1}\in\Pi(\mathfrak{g}_c,\mathfrak{t}_c)$ with $m_{j_1}=2$. Then

$$\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1} H_{j_1})$$
.

(2) Suppose that $\dim_{\mathfrak{F}}(\mathfrak{h})=2$ and $\sigma=\operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_{j_2}+H_{j_3})\})$ for some $\alpha_{j_2},\ \alpha_{j_3}\in\Pi(\mathfrak{g}_c,\mathfrak{t}_c)$ with $m_{j_2}=m_{j_3}=1$. Then

$$\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1} H_{j_2}) , \quad \operatorname{Ad}(\exp \pi \sqrt{-1} H_{j_3}) \quad or \quad \operatorname{Ad}(\exp \pi \sqrt{-1} (H_{j_2} + H_{j_3})) .$$

REMARK 3.5. A Riemannian 3-symmetric space $(G/H, \langle , \rangle, \sigma)$ is not Kählerian for any G-invariant complex structure I on G/H. Indeed, for $X, Y \in \mathfrak{m}$, it follows from (3.15)

and Lemma 2.1 together with Proposition 3.3 that

$$\begin{split} (\nabla_{X_*}I)_o(Y_*) &= \frac{1}{2} \left\{ [X,IY]_{\mathfrak{m}} - I([X,Y]_{\mathfrak{m}}) \right\} \\ &= \frac{1}{2} \left\{ [X,-\varphi(JY)]_{\mathfrak{m}} + \varphi J([X,Y]_{\mathfrak{m}}) \right\} \\ &= \frac{1}{2} \varphi J([\varphi(X)+X,Y]_{\mathfrak{m}}) \,, \end{split}$$

where φ is the involution of \mathfrak{g} such that $I = -\varphi J$. If $\nabla I = 0$, then it follows that

$$[\mathfrak{m}(\varphi, 1), \mathfrak{m}]_{\mathfrak{m}} = \{0\}.$$

Therefore, since \langle , \rangle is biinvariant, we obtain

$$\langle [\mathfrak{m}(\varphi,-1),\mathfrak{m}(\varphi,-1)],\mathfrak{m}(\varphi,1)\rangle = \langle [\mathfrak{m}(\varphi,-1),\mathfrak{m}(\varphi,1)],\mathfrak{m}(\varphi,-1)\rangle = \{0\}\,,$$

which implies that

$$[\mathfrak{m}(\varphi, -1), \mathfrak{m}(\varphi, -1)]_{\mathfrak{m}} = \{0\}.$$

Since g = h + m is an Ad(H)-invariant decomposition, we have

$$[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m}.$$

Moreover, since $\varphi|_{\mathfrak{h}} = \mathrm{Id}_{\mathfrak{h}}$, we obtain

$$[\mathfrak{h},\mathfrak{m}(\varphi,\pm 1)]\subset\mathfrak{m}(\varphi,\pm 1).$$

Put $\mathfrak{l} := \mathfrak{m}(\varphi, -1) + [\mathfrak{m}(\varphi, -1), \mathfrak{m}(\varphi, -1)]$. Then it follows from (3.22), (3.23) and (3.25) that \mathfrak{l} is an ideal of \mathfrak{g} , which is a contradiction. Consequently, $(G/H, \langle , \rangle, \sigma)$ is not Kählerian.

4. Totally real and totally geodesic submanifolds. In this section we shall investigate a relationship between half dimensional, totally real and totally geodesic submanifolds of $(G/H, \langle , \rangle, \sigma)$ with respect to I and those with respect to J. Let ∇ be the Levi-Civita connection on $(G/H, \langle , \rangle, \sigma)$ and I a G-invariant complex structure on G/H. For vector fields X, Y of G/H, we set

(4.1)
$$\tilde{\nabla}_X Y := \nabla_X Y + I((\nabla_X I)(Y)).$$

Then $\tilde{\nabla}$ is an affine connection on G/H, since I and $(\nabla I)(X,Y) := (\nabla_X I)(Y)$ are tensor fields on G/H. Let N be a half dimensional, totally real and totally geodesic submanifold of $(G/H, \langle , \rangle, \sigma)$ with respect to I.

Lemma 4.1. N is also totally geodesic with respect to $\tilde{\nabla}$.

PROOF. First, note that $(G/H, \langle , \rangle, I)$ is an almost Hermitian manifold, since J and φ preserve \langle , \rangle . Let X, Y be vector fields of G/H which are tangent to N. Because N is totally geodesic, a vector field $\nabla_X Y$ is tangent to N. Moreover, by the assumption on N and the fact that $(G/H, \langle , \rangle, I)$ is an almost Hermitian manifold, it follows that $\nabla_X (IY)$ is perpendicular to N, and hence $I(\nabla_X (IY))$ is tangent to N. Since

$$\tilde{\nabla}_X Y = \nabla_X Y + I(\nabla_X (IY) - I(\nabla_X Y)) = 2\nabla_X Y + I(\nabla_X (IY)),$$

it follows that $\tilde{\nabla}_X Y$ is tangent to N.

Let \tilde{T} be the torsion tensor of $\tilde{\nabla}$. For $X \in \mathfrak{m}$, let X_* be as in the proof of Proposition 3.3. Then

$$\tilde{T}(X_*, Y_*) = \tilde{\nabla}_{X_*} Y_* - \tilde{\nabla}_{Y_*} X_* - [X_*, Y_*] = [X_*, Y_*] + I(\nabla_{X_*} (IY)_* - \nabla_{Y_*} (IX)_*),$$

and hence by (3.15) and (3.16) we have

(4.2)
$$\tilde{T}(X,Y) = [X,Y]_{\mathfrak{m}} + \frac{1}{2}(I[X,IY]_{\mathfrak{m}} - I[Y,IX]_{\mathfrak{m}}), \quad X,Y \in \mathfrak{m}.$$

Since *I* is *G*-invariant, we may assume that $o \in N$. Put $U = T_oN(\subset \mathfrak{m})$. Then it follows from Lemma 4.1 that $\tilde{T}(U,U) \subset U$. Therefore, by (4.2), we obtain

$$(4.3) [X,Y]_{\mathfrak{m}} + \frac{1}{2} (I[X,IY]_{\mathfrak{m}} - I[Y,IX]_{\mathfrak{m}}) \in U, \quad X,Y \in U.$$

On the other hand, the integrability of I implies (see (3.18))

$$(4.4) [IX, IY]_{\mathfrak{m}} - [X, Y]_{\mathfrak{m}} - I[X, IY]_{\mathfrak{m}} - I[IX, Y]_{\mathfrak{m}} = 0.$$

Hence, by (4.3) and (4.4), we obtain

$$[X, Y]_{\mathfrak{m}} + [IX, IY]_{\mathfrak{m}} \in U, \ X, Y \in U.$$

Let φ be an involutive automorphism of G such that $I = -\varphi|_{\mathfrak{m}} \circ J$ and let $\mathfrak{m}(\varphi, \pm 1)$ be the eigenspaces of $\varphi|_{\mathfrak{m}}$ with eigenvalues ± 1 as in Section 3. Then we have a decomposition $\mathfrak{m} = \mathfrak{m}(\varphi, 1) + \mathfrak{m}(\varphi, -1)$ of \mathfrak{m} . It follows from the proof of Proposition 3.3 that

$$[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}} = \{0\}.$$

For $X \in \mathfrak{m}$, let X_+ (resp. X_-) be the $\mathfrak{m}(\varphi, 1)$ -component (resp. $\mathfrak{m}(\varphi, -1)$ -component) of X.

LEMMA 4.2. For $X, Y \in U$, we have

$$[X_+, Y_-]_{\mathfrak{m}} \in U.$$

PROOF. Let X and Y be in U. Since φ and J are commutative, it follows from Lemma 2.1 that

$$[IX, IY]_{\mathfrak{m}} = -[\varphi(X), \varphi(Y)]_{\mathfrak{m}}.$$

Using (4.5) and (4.7), we obtain

$$(4.8) [X, Y]_{\mathfrak{m}} + [IX, IY]_{\mathfrak{m}} = [X_{+} + X_{-}, Y_{+} + Y_{-}]_{\mathfrak{m}} - [X_{+} - X_{-}, Y_{+} - Y_{-}]_{\mathfrak{m}} = 2([X_{+}, Y_{-}]_{\mathfrak{m}} + [X_{-}, Y_{+}]_{\mathfrak{m}}) \in U.$$

By (4.5) and the fact that \langle , \rangle is induced from the Killing form of g, it follows that

$$0 = \langle [X, Y]_{\mathfrak{m}} + [IX, IY]_{\mathfrak{m}}, IX \rangle = \langle [IX, X]_{\mathfrak{m}}, Y \rangle,$$

and hence $[IX, X]_{\mathfrak{m}} \in IU$, i.e.,

$$(4.9) I[IX, X]_{\mathfrak{m}} \in U, \quad X \in U.$$

Then, by Lemma 2.1 and (4.9), it follows that

(4.10)
$$I[IX, X]_{\mathfrak{m}} = -\varphi J[-J\varphi(X), X]_{\mathfrak{m}} = \varphi[\varphi(X), X]_{\mathfrak{m}}$$
$$= [X, \varphi(X)]_{\mathfrak{m}} = [X_{+} + X_{-}, X_{+} - X_{-}]_{\mathfrak{m}}$$
$$= 2[X_{-}, X_{+}]_{\mathfrak{m}} \in U, \quad X \in U.$$

Therefore, by replacing X in (4.10) with X + Y, we obtain

$$[X_+, X_-]_{\mathfrak{m}} + [Y_+, Y_-]_{\mathfrak{m}} + [X_+, Y_-]_{\mathfrak{m}} + [Y_+, X_-]_{\mathfrak{m}} \in U$$

and hence, by (4.10), we have

$$[X_+, Y_-]_{\mathfrak{m}} + [Y_+, X_-]_{\mathfrak{m}} \in U.$$

Finally, it follows from (4.8) and (4.11) that $[X_+, Y_-]_{\mathfrak{m}} \in U$ for $X, Y \in U$.

Next, we consider $[X_-, Y_-]_{\mathfrak{m}}$. For $X, Y, Z \in U$, we have

$$\begin{split} \langle [X_{-}, Y_{-}]_{\mathfrak{m}}, IZ \rangle &= -\langle [X_{-}, IZ]_{\mathfrak{m}}, Y_{-} \rangle = \langle [X_{-}, JZ_{+} - JZ_{-}]_{\mathfrak{m}}, Y_{-} \rangle \\ &= -\langle J[X_{-}, Z_{+}]_{\mathfrak{m}}, Y_{-} \rangle + \langle J[X_{-}, Z_{-}]_{\mathfrak{m}}, Y_{-} \rangle \,. \end{split}$$

Since $\varphi J = J\varphi$ and $[X_-, Z_-]_{\mathfrak{m}} \in \mathfrak{m}(\varphi, 1)$, we obtain $J(\mathfrak{m}(\varphi, \pm 1)) = \mathfrak{m}(\varphi, \pm 1)$ and $\langle J[X_-, Z_-]_{\mathfrak{m}}, Y_- \rangle = 0$. Moreover, since $[X_-, Z_+]_{\mathfrak{m}} \in \mathfrak{m}(\varphi, -1)$, we obtain

$$\begin{split} -\langle J[X_{-},Z_{+}]_{\mathfrak{m}},Y_{-}\rangle + \langle J[X_{-},Z_{-}]_{\mathfrak{m}},Y_{-}\rangle &= -\langle J[X_{-},Z_{+}]_{\mathfrak{m}},Y_{-}\rangle \\ &= -\langle J[X_{-},Z_{+}]_{\mathfrak{m}},Y\rangle = \langle [X_{-},Z_{+}]_{\mathfrak{m}},JY\rangle \,. \end{split}$$

Therefore, by Lemma 4.2, we get

$$\begin{split} \langle [X_-,Y_-]_{\mathfrak{m}},IZ\rangle &= \langle [X_-,Z_+]_{\mathfrak{m}},JY\rangle = \langle [X_-,Z_+]_{\mathfrak{m}},-\varphi IY\rangle \\ &= \langle -\varphi([X_-,Z_+]_{\mathfrak{m}}),IY\rangle = \langle [X_-,Z_+]_{\mathfrak{m}},IY\rangle = 0\,, \end{split}$$

which implies that

$$[X_{-}, Y_{-}]_{\mathfrak{m}} \in U, \quad X, Y \in U.$$

From (4.6), (4.12) and Lemma 4.2, we obtain the following lemma.

LEMMA 4.3.
$$[U, U]_{\mathfrak{m}} \subset U$$
.

Put $\mathfrak{b} := U + [U, U]$ (= $U + [U, U]_{\mathfrak{h}}$). Since N is a totally geodesic submanifold of a naturally reductive homogeneous space $(G/H, \langle , \rangle)$, the subspace U is curvature invariant. Therefore, by Proposition 3.4 [Chapter X, 11], we have for $X, Y, Z \in U$

$$(4.13) \qquad \frac{1}{4}[X,[Y,Z]_{\mathfrak{m}}]_{\mathfrak{m}} - \frac{1}{4}[Y,[X,Z]_{\mathfrak{m}}]_{\mathfrak{m}} - \frac{1}{2}[[X,Y]_{\mathfrak{m}},Z]_{\mathfrak{m}} - [[X,Y]_{\mathfrak{h}},Z] \in U \, .$$

It follows from Lemma 4.3 and (4.13) that \mathfrak{b} is a Lie subalgebra of \mathfrak{g} . In particular, N is an orbit of a Lie subgroup with Lie algebra \mathfrak{b} of G.

Next, we consider $\varphi(U)$. By (4.6) we have

$$\varphi([X, Y]_{\mathfrak{m}}) = -[X_{+}, Y_{-}]_{\mathfrak{m}} - [X_{-}, Y_{+}]_{\mathfrak{m}} + [X_{-}, Y_{-}]_{\mathfrak{m}},$$

and hence by (4.12) and Lemma 4.2,

$$\varphi([U, U]_{\mathfrak{m}}) \subset U.$$

Since $\mathfrak{m} = U \oplus IU$, it follows that

$$[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}} = [U + IU, U + IU]_{\mathfrak{m}} = [U, U]_{\mathfrak{m}} + [IU, IU]_{\mathfrak{m}} + [IU, U]_{\mathfrak{m}}.$$

For $X, Y, Z \in U$, Lemma 4.3 implies that

$$\langle [IX, Y]_{\mathfrak{m}}, Z \rangle = \langle [Y, Z]_{\mathfrak{m}}, IX \rangle = 0$$

and hence

$$(4.15) [IU, U]_{\mathfrak{m}} \subset IU = U^{\perp}.$$

Moreover, by (4.7) and (4.14), we obtain

$$(4.16) [IX, IY]_{\mathfrak{m}} = -[\varphi(X), \varphi(Y)]_{\mathfrak{m}} = -\varphi([X, Y]_{\mathfrak{m}}) \in U, X, Y \in U.$$

Therefore we have a decomposition

$$[\mathfrak{m},\mathfrak{m}]_{\mathfrak{m}} = ([U,U]_{\mathfrak{m}} + [IU,IU]_{\mathfrak{m}}) \oplus [IU,U]_{\mathfrak{m}}.$$

LEMMA 4.4. $\mathfrak{m} = [\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}$.

PROOF. Let V be the orthogonal complement of $[m, m]_m$ in m. Since

$$\langle [\mathfrak{m}, V]_{\mathfrak{m}}, \mathfrak{m} \rangle = -\langle [\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}, V \rangle = \{0\},$$

we have

$$(4.18) V = \{X \in \mathfrak{m} ; [X, \mathfrak{m}]_{\mathfrak{m}} = \{0\}\}.$$

Then $V=(V\cap\mathfrak{m}(\varphi,1))\oplus(V\cap\mathfrak{m}(\varphi,-1))$, because $\varphi(V)=V$. By (4.18), a subspace $[V\cap\mathfrak{m}(\varphi,1),\mathfrak{m}(\varphi,-1)]$ is contained in \mathfrak{h} . However, $[V\cap\mathfrak{m}(\varphi,1),\mathfrak{m}(\varphi,-1)]$ is contained in the (-1)-eigenspace of φ , and so $[V\cap\mathfrak{m}(\varphi,1),\mathfrak{m}(\varphi,-1)]\subset\mathfrak{m}(\varphi,-1)\subset\mathfrak{m}$. Hence we have

$$(4.19) [V \cap \mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, -1)] = \{0\},\$$

and similarly

$$(4.20) [V \cap \mathfrak{m}(\varphi, -1), \mathfrak{m}(\varphi, 1)] = \{0\}.$$

Now, consider a canonical decomposition $\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}(\varphi,1))\oplus\mathfrak{m}(\varphi,-1)$ corresponding to an orthogonal symmetric Lie algebra (\mathfrak{g},φ) . Since \mathfrak{g} is simple and $\mathfrak{m}(\varphi,-1)\oplus[\mathfrak{m}(\varphi,-1),\mathfrak{m}(\varphi,-1)]$ is an ideal of \mathfrak{g} , we have

$$[\mathfrak{m}(\varphi, -1), \mathfrak{m}(\varphi, -1)] = \mathfrak{h} + \mathfrak{m}(\varphi, 1).$$

If $V \cap \mathfrak{m}(\varphi, 1) \neq \{0\}$, then it follows from (4.19) and (4.21) that $[V \cap \mathfrak{m}(\varphi, 1), \mathfrak{g}] = \{0\}$, which contradicts the fact that \mathfrak{g} is simple. Therefore we may suppose that $V \subset \mathfrak{m}(\varphi, -1)$. By (3.24) and (4.18) together with the Jacobi identity, we obtain

$$[\mathfrak{h}, V] \subset V.$$

Noting (4.22) together with (4.20), we obtain $[\mathfrak{h}+\mathfrak{m}(\varphi,1),V]\subset V$. Since $\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}(\varphi,1))\oplus \mathfrak{m}(\varphi,-1)$ is a canonical decomposition and the isotropy representation of an irreducible symmetric space is irreducible, we have $V=\{0\}$ or $\mathfrak{m}(\varphi,-1)$. If $V=\mathfrak{m}(\varphi,-1)$, then it follows from (4.20) and (4.21) that $[\mathfrak{m}(\varphi,-1),\mathfrak{m}(\varphi,1)]=\{0\}$ and $[\mathfrak{g},\mathfrak{m}(\varphi,1)]=\{0\}$, which means that $\mathfrak{m}(\varphi,1)=\{0\}$. However, in this case, a pair $(\mathfrak{g},\mathfrak{h})$ is symmetric corresponding to (\mathfrak{g},φ) because $\mathfrak{m}=\mathfrak{m}(\varphi,-1)$. Consequently, we have $V=\{0\}$, and hence $\mathfrak{m}=[\mathfrak{m},\mathfrak{m}]_{\mathfrak{m}}$.

Combining (4.15), (4.16), (4.17) and Lemma 4.3 together with Lemma 4.4, we obtain

$$U = [U, U]_{\mathfrak{m}} + [IU, IU]_{\mathfrak{m}}, \quad IU = [IU, U]_{\mathfrak{m}}.$$

Then it follows from Lemma 2.1, Proposition 3.3 and Lemma 4.3 that

$$\varphi([IU, IU]_{\mathfrak{m}}) = [I^2JU, I^2JU]_{\mathfrak{m}} = [JU, JU]_{\mathfrak{m}} = -[U, U]_{\mathfrak{m}} \subset U.$$

Therefore, by (4.14), we obtain

$$\varphi(U) = \varphi([U, U]_{\mathfrak{m}}) + \varphi([IU, IU]_{\mathfrak{m}}) \subset U.$$

PROPOSITION 4.5. Let I be a G-invariant complex structure of $(G/H, \langle , \rangle, \sigma)$ and N a half dimensional, totally real and totally geodesic submanifold of $(G/H, \langle , \rangle, \sigma)$ with respect to I. Then N is also totally real with respect to J.

PROOF. As before, we may assume that $o \in N$, and put $U = T_oN \subset \mathfrak{m}$. By the assumption, we have an orthogonal decomposition $\mathfrak{m} = U \oplus IU$. Then it follows from Proposition 3.3 and (4.23) that

$$JU = -I \circ \varphi(U) = IU.$$

Hence $\mathfrak{m}=U\oplus JU$ is an orthogonal decomposition of \mathfrak{m} . As stated under Lemma 4.3, N is an orbit of a Lie subgroup of G, and J is G-invariant. Hence we get an orthogonal decomposition

$$T_{x}(G/H) = T_{x}N \oplus J(T_{x}N), \quad x \in N$$

and the proposition is proved.

REMARK 4.6. According to [17], each Riemannian 3-symmetric space $(G/H, \langle , \rangle, \sigma)$ and its half dimensional, totally real and totally geodesic submanifold of $(G/H, \langle , \rangle, \sigma)$ with respect to J are equivalent to one of those constructed from graded Lie algebras of the second kind as follows: Let \mathfrak{g}^* be a noncompact simple Lie algebra over R and τ a Cartan involution of \mathfrak{g}^* . Then we have the Cartan decomposition $\mathfrak{g}^* = \mathfrak{k} + \mathfrak{p}$ as in Section 2.2. Take a graded triple $(\mathfrak{g}^*, Z, \tau)$ associated with a gradation

$$\mathfrak{g}^* = \mathfrak{g}_{-2}^* + \mathfrak{g}_{-1}^* + \mathfrak{g}_0^* + \mathfrak{g}_1^* + \mathfrak{g}_2^*, \quad \mathfrak{g}_1^* \neq \{0\}, \quad \mathfrak{g}_2^* \neq \{0\}$$

of the second kind on \mathfrak{g}^* . Define an inner automorphism σ of order 3 on the compact dual $\mathfrak{g} = \mathfrak{k} + \sqrt{-1}\mathfrak{p}$ of \mathfrak{g}^* by

$$\sigma = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}Z\right),\,$$

and put $\mathfrak{h} = \mathfrak{g}^{\sigma}$, the set of fixed points of σ . Let G be a compact connected simple Lie group with Lie algebra \mathfrak{g} . Let H and K be the analytic subgroups of G with Lie algebras \mathfrak{h} and \mathfrak{k} , respectively. Then the dimension of the center Z(H) of H is nonzero, and $N = K \cdot o$ is a half dimensional, totally real and totally geodesic submanifold of $(G/H, \langle , \rangle, \sigma)$ with respect to J. We call $((G/H, \langle , \rangle, \sigma), N)$ a TRG-pair corresponding to a graded triple $(\mathfrak{g}^*, Z, \tau)$.

5. Involutions and graded Lie algebras. In this section we shall investigate G-invariant complex structures and half dimensional, totally real and totally geodesic submanifolds of $(G/H, \langle , \rangle, \sigma)$ with respect to those complex structures by making use of some affine symmetric pairs associated with graded Lie algebras.

Let (\mathfrak{l}, θ) be a symmetric pair of type K_{ε} (see Oshima and Sekiguchi [14] for the definition of symmetric pairs of type K_{ε}). Then (\mathfrak{l}, θ) is either a *symmetric pair of type* K_{ε} I or a *symmetric pair of type* K_{ε} II, which were introduced by Kaneyuki [9]. More precisely, Kaneyuki [9] proved that for a symmetric pair (\mathfrak{l}, θ) of type K_{ε} there exists a graded Lie algebra:

$$\mathfrak{l}=\mathfrak{l}_{-\nu}+\cdots+\mathfrak{l}_{-1}+\mathfrak{l}_0+\mathfrak{l}_1+\cdots+\mathfrak{l}_\nu\,,\quad \mathfrak{l}_1\neq\{0\}\,,\quad \mathfrak{l}_\nu\neq\{0\}$$

of the ν -th kind, $\nu=1, 2$, with the characteristic element Z and a grade-reversing Cartan involution τ such that

(5.1)
$$\theta = \operatorname{Ad}(\exp \pi \sqrt{-1}Z)\tau,$$

which commutes with τ . A symmetric pair (\mathfrak{l}, θ) is called a symmetric pair of type $K_{\varepsilon}I$ if $\nu = 1$. Furthermore, (\mathfrak{l}, θ) is called a symmetric pair of type $K_{\varepsilon}II$ if $\nu = 2$ and (\mathfrak{l}, θ) is not isomorphic to a symmetric pair of type $K_{\varepsilon}I$ (see [9] for details).

Let $((G/H, \langle , \rangle, \sigma), N)$ be a TRG-pair corresponding to a graded triple $(\mathfrak{g}^*, Z, \tau)$ of the second kind. Let $\mathfrak{g}^* = \mathfrak{k} + \mathfrak{p}$ be the Cartan decomposition corresponding to τ , and $\mathfrak{g} = \mathfrak{k} + \sqrt{-1}\mathfrak{p}$ the compact dual of \mathfrak{g}^* . Then by Remark 4.6 we obtain

$$\sigma = \mathrm{Ad}\bigg(\exp\frac{2\pi}{3}\sqrt{-1}Z\bigg)\,,\quad \mathfrak{h} = \mathfrak{g}^\sigma\,,\quad N = K\cdot o\,.$$

Suppose that $(\mathfrak{g}^*, Z, \tau)$ is a graded triple associated with a gradation

$$\mathfrak{g}^* = \mathfrak{g}_{-2}^* + \mathfrak{g}_{-1}^* + \mathfrak{g}_0^* + \mathfrak{g}_1^* + \mathfrak{g}_2^* \,, \quad \mathfrak{g}_1^* \neq \{0\} \,, \quad \mathfrak{g}_2^* \neq \{0\}$$

of the second kind on a simple Lie algebra \mathfrak{g}^* . Since τ is a grade-reversing Cartan involution, we have

(5.2)
$$\mathfrak{g}_{p}^{*} + \mathfrak{g}_{-p}^{*} = \mathfrak{k} \cap (\mathfrak{g}_{p}^{*} + \mathfrak{g}_{-p}^{*}) \oplus \mathfrak{p} \cap (\mathfrak{g}_{p}^{*} + \mathfrak{g}_{-p}^{*}), \quad p = 0, 1, 2.$$

Let θ be an involution on \mathfrak{g}^* given by (5.1). It is easy to see that the set $\mathfrak{k}_{\varepsilon}$ of fixed points of θ is given by

(5.3)
$$\mathfrak{k}_{\varepsilon} = (\mathfrak{k} \cap (\mathfrak{g}_{-2}^* + \mathfrak{g}_0^* + \mathfrak{g}_2^*)) \oplus (\mathfrak{p} \cap (\mathfrak{g}_{-1}^* + \mathfrak{g}_1^*)),$$

and so \mathfrak{g}^* is decomposed into $\mathfrak{g}^* = \mathfrak{k}_{\varepsilon} + \mathfrak{p}_{\varepsilon}$. Here

$$\mathfrak{p}_{\varepsilon} = (\mathfrak{k} \cap (\mathfrak{g}_{-1}^* + \mathfrak{g}_1^*)) \oplus (\mathfrak{p} \cap (\mathfrak{g}_{-2}^* + \mathfrak{g}_0^* + \mathfrak{g}_2^*)).$$

Let $\theta^a := \theta \tau$ be the associated involution of θ (cf. Hilgert and Ólafsson [7], and [15]). Then we have

(5.5)
$$\theta^a = \operatorname{Ad}(\exp \pi \sqrt{-1}Z),$$

and an orthogonal decomposition $\mathfrak{g}^* = \mathfrak{k}_{\varepsilon}{}^a \oplus \mathfrak{p}_{\varepsilon}{}^a$ of \mathfrak{g}^* , where

$$\mathfrak{k}_{\varepsilon}{}^{a}:=\left(\mathfrak{g}^{*}\right)^{\theta^{a}}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}\,,\quad\mathfrak{p}_{\varepsilon}{}^{a}:=\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}\,.$$

Set

(5.6)
$$\mathfrak{k}^{\mathrm{ad}} := (\mathfrak{k} \cap \mathfrak{k}_{\varepsilon}^{a}) \oplus \sqrt{-1}(\mathfrak{p} \cap \mathfrak{k}_{\varepsilon}^{a}).$$

Since

(5.7)
$$\operatorname{Ad}(\exp t\sqrt{-1}Z)(X_p) = e^{t\sqrt{-1}p}X_p, \quad X_p \in \mathfrak{g}_p^*, \quad t \in \mathbf{R},$$

it follows that

$$\mathfrak{g}^{\theta^a} = \mathfrak{k}^{\mathrm{ad}},$$

so (g, \mathfrak{k}^{ad}) is a symmetric pair of compact type.

Let \mathfrak{t}^* be a Cartan subalgebra of \mathfrak{g}^* containing the maximal abelian subspace \mathfrak{a} of \mathfrak{p} . Denote the complexifications of \mathfrak{g}^* and \mathfrak{t}^* by \mathfrak{g}_c and \mathfrak{t}_c , respectively. Let $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$, Δ , $\Pi(\mathfrak{g}_c, \mathfrak{t}_c) = {\alpha_1, \ldots, \alpha_n}$, $\Pi = {\lambda_1, \ldots, \lambda_l}$ and H_i , $1 \le i \le n$, be as in Section 2. Suppose that $\Delta(\mathfrak{g}_c, \mathfrak{t}_c)$ and Δ have compatible orderings.

LEMMA 5.1. Let $\mathfrak{z}(\mathfrak{g}_0^*)$ be the center of \mathfrak{g}_0^* .

- (1) If $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = \{0\}$, then $\dim \mathfrak{z}(\mathfrak{g}_{0}^{*}) = \dim \mathfrak{z}(\mathfrak{h}) = 1$.
- (2) If $\dim \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = 1$, then $\dim \mathfrak{z}(\mathfrak{g}_{0}^{*}) = \dim \mathfrak{z}(\mathfrak{h}) = 2$, and $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) \subset \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$ or $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$.

PROOF. First of all, we note that (5.7) implies that

$$\mathfrak{h} = \mathfrak{k} \cap \mathfrak{g}_0^* \oplus \sqrt{-1}(\mathfrak{p} \cap \mathfrak{g}_0^*),$$

 $Z \in \mathfrak{z}(\mathfrak{g}_0^*)$ and $\sqrt{-1}Z \in \mathfrak{z}(\mathfrak{h})$. In particular, we have dim $\mathfrak{z}(\mathfrak{g}_0^*) = \dim \mathfrak{z}(\mathfrak{h})$.

From Theorem 3.2, Theorem 3.3 and Theorem 4.3 of [8], we see that

$$\dim \mathfrak{z}(\mathfrak{g}_0^*) - \dim \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = 1,$$

and $\dim \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a})=0$ or 1. Since $\mathfrak{k}_{\varepsilon}^{a}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}$ and τ is a grade-reversing Cartan involution, it follows that $\mathfrak{k}_{\varepsilon}^{a}$ is τ -stable, which implies that $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a})$ is also τ -stable. Hence, we obtain

$$\mathfrak{k}_{\varepsilon}^{\ a} = \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}^{\ a} + \mathfrak{p} \cap \mathfrak{k}_{\varepsilon}^{\ a} = \mathfrak{k} \cap \mathfrak{k}_{\varepsilon} + \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}, \quad \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{\ a}) = \mathfrak{k} \cap \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{\ a}) + \mathfrak{p} \cap \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{\ a}).$$

Therefore, if dim $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a})=1$, then it follows that $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a})\subset\mathfrak{k}\cap\mathfrak{k}_{\varepsilon}$ or $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a})\subset\mathfrak{p}\cap\mathfrak{p}_{\varepsilon}$.

LEMMA 5.2. Let φ be an involution on \mathfrak{g} such that $\varphi|_{\mathfrak{h}} = \mathrm{Id}_{\mathfrak{h}}$ and $\varphi \neq \mathrm{Id}$.

(1) If
$$\mathfrak{z}(\mathfrak{k}_{\varepsilon}^a) = \{0\}$$
, then $\varphi = \operatorname{Ad}(\exp \pi \sqrt{-1}Z)$.

(2) If $\dim \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = 1$ and $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) \subset \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$, then there exists $\sqrt{-1}Z_{0} \in \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$ such that $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = R\sqrt{-1}Z_{0}$ and that the mapping $\operatorname{ad}\sqrt{-1}Z_{0} : \mathfrak{p}_{\varepsilon}^{a} \to \mathfrak{p}_{\varepsilon}^{a}$ satisfies $\left(\operatorname{ad}\sqrt{-1}Z_{0}\right)^{2} = -\operatorname{Id}$. In this case, the involution φ coincides with either

$$\operatorname{Ad}(\exp\pi\sqrt{-1}Z) \quad or \quad \operatorname{Ad}\bigg(\exp\frac{\pi}{2}\sqrt{-1}(Z\pm Z_0)\bigg)\,.$$

(3) If $\dim \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = 1$ and $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$, then there exists $X^{0} \in \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ such that $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) = \mathbf{R}X^{0}$ and that the eigenvalues of $\operatorname{ad}X^{0} : \mathfrak{p}_{\varepsilon}^{a} \to \mathfrak{p}_{\varepsilon}^{a}$ are ± 1 . In this case, the involution φ coincides with either

$$\operatorname{Ad}(\exp \pi \sqrt{-1}Z)$$
 or $\operatorname{Ad}\left(\exp \frac{\pi}{2}\sqrt{-1}(Z\pm X^0)\right)$.

PROOF. Note that it follows from (2.5) that $\varphi_0 := \operatorname{Ad}(\exp \pi \sqrt{-1}Z)$ is an involution on \mathfrak{g} satisfying $\varphi_0|_{\mathfrak{h}} = \operatorname{Id}$ and $\varphi_0 \neq \operatorname{Id}$.

- (1) By Lemma 5.1, we have $\dim \mathfrak{z}(\mathfrak{g}_0^*) = \dim \mathfrak{z}(\mathfrak{h}) = 1$. Then (1) of the lemma follows from Corollary 3.4.
- (2) By Lemma 5.1, we have $\dim \mathfrak{z}(\mathfrak{h}) = 2$. Let \mathfrak{p}^{ad} denote the orthogonal complement of \mathfrak{k}^{ad} in \mathfrak{g} . Then it follows from (5.6) that

$$\mathfrak{p}^{\mathrm{ad}} = (\mathfrak{k} \cap \mathfrak{p}_{\varepsilon}{}^{a}) \oplus \sqrt{-1} (\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}{}^{a}) = (\mathfrak{k} \cap (\mathfrak{g}_{-1}^{*} + \mathfrak{g}_{1}^{*})) \oplus \sqrt{-1} (\mathfrak{p} \cap (\mathfrak{g}_{-1}^{*} + \mathfrak{g}_{1}^{*})) \,.$$

In this case, $\mathfrak{k}^{\mathrm{ad}}$ has 1-dimensional center $\mathfrak{z}(\mathfrak{k}^{\mathrm{ad}})$, and hence $(\mathfrak{g}, \mathfrak{k}^{\mathrm{ad}})$ is a Hermitian symmetric pair of compact type. Moreover, there exists $\sqrt{-1}Z_0 \in \mathfrak{k} \cap \mathfrak{k}^{\mathrm{ad}}$ such that $\mathfrak{z}(\mathfrak{k}^{\mathrm{ad}}) = R\sqrt{-1}Z_0$ and $\mathrm{ad}\sqrt{-1}Z_0 : \mathfrak{p}^{\mathrm{ad}} \to \mathfrak{p}^{\mathrm{ad}}$ satisfies $\left(\mathrm{ad}\sqrt{-1}Z_0\right)^2 = -\mathrm{Id}$ on $\mathfrak{p}^{\mathrm{ad}}$. Since

$$[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}, \quad [\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}, \quad [\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k},$$

it follows from (5.6) that

$$ad\sqrt{-1}Z_0(\mathfrak{k}\cap(\mathfrak{g}_1^*+\mathfrak{g}_{-1}^*))\subset\mathfrak{k}\cap(\mathfrak{g}_1^*+\mathfrak{g}_{-1}^*),$$

$$ad\sqrt{-1}Z_0(\mathfrak{p}\cap(\mathfrak{g}_1^*+\mathfrak{g}_{-1}^*))\subset\mathfrak{p}\cap(\mathfrak{g}_1^*+\mathfrak{g}_{-1}^*).$$

Therefore, $\operatorname{ad}\sqrt{-1}Z_0(\mathfrak{p}_{\varepsilon}^a)\subset \mathfrak{p}_{\varepsilon}^a$ and $(\operatorname{ad}\sqrt{-1}Z_0)^2=-\operatorname{Id}$ on $\mathfrak{p}_{\varepsilon}^a$, since $(\operatorname{ad}\sqrt{-1}Z_0)^2=-\operatorname{Id}$ on $\mathfrak{p}^{\operatorname{ad}}$. Then $\operatorname{Ad}(\exp\pi\sqrt{-1}Z_0)=-\operatorname{Id}$ on $\mathfrak{p}^{\operatorname{ad}}$, and the set of fixed points of $\operatorname{Ad}(\exp\pi\sqrt{-1}Z_0)$ in \mathfrak{g} coincides with $\mathfrak{k}^{\operatorname{ad}}$. Hence it follows from (5.5) and (5.8) that

(5.11)
$$\operatorname{Ad}(\exp \pi \sqrt{-1}Z) = \operatorname{Ad}(\exp \pi \sqrt{-1}Z_0).$$

From (5.11), the automorphisms

(5.12)
$$v_{\pm} := \mathrm{Ad} \left(\exp \frac{\pi}{2} \sqrt{-1} (Z \pm Z_0) \right)$$

of g are involutive and $\nu_{\pm}|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$. Moreover, since $\sqrt{-1}Z_0$ is in $\mathfrak{z}(\mathfrak{k}^{\operatorname{ad}})$ and Z is the characteristic element, it follows that $\operatorname{Ad}(\exp\{(\pi\sqrt{-1}/2)Z\})\neq\operatorname{Id}$ and $\operatorname{Ad}(\exp\{(\pi\sqrt{-1}/2)Z_0\})=\operatorname{Id}$ on $\mathfrak{k}^{\operatorname{ad}}$, and hence $\nu_{\pm}\neq\operatorname{Id}$. By Corollary 3.4, we can see that $\operatorname{Ad}(\exp\pi\sqrt{-1}Z)$ and ν_{\pm} are the only involutions satisfying the assumption.

(3) The same argument as above implies that there exists $\sqrt{-1}X^0 \in \sqrt{-1}\mathfrak{p} \cap \mathfrak{k}^{\mathrm{ad}}$ such that $\mathfrak{z}(\mathfrak{k}^{\mathrm{ad}}) = \mathbf{R}\sqrt{-1}X^0$ and the mapping $\mathrm{ad}\sqrt{-1}X^0: \mathfrak{p}^{\mathrm{ad}} \to \mathfrak{p}^{\mathrm{ad}}$ satisfies $(\mathrm{ad}\sqrt{-1}X^0)^2 = -\mathrm{Id}$. Therefore, it follows that $\mathfrak{z}(\mathfrak{k}_\varepsilon^a) = \mathbf{R}X^0$ and $(\mathrm{ad}X^0)^2 = \mathrm{Id}$ on $\mathfrak{p}_\varepsilon^a$, and thus the eigenvalues of $\mathrm{ad}X^0: \mathfrak{p}_\varepsilon^a \to \mathfrak{p}_\varepsilon^a$ are ± 1 . In this case, we have $\mathrm{Ad}(\exp\pi\sqrt{-1}X^0)|_{\mathfrak{p}^{\mathrm{ad}}} = -\mathrm{Id}_{\mathfrak{p}^{\mathrm{ad}}}$ and

$$Ad(\exp \pi \sqrt{-1}Z) = Ad(\exp \pi \sqrt{-1}X^0).$$

Therefore the automorphisms

(5.13)
$$\varphi_{\pm} := \operatorname{Ad}\left(\exp\frac{\pi}{2}\sqrt{-1}(Z \pm X^{0})\right)$$

satisfy $\varphi_{\pm}|_{\mathfrak{h}}=\mathrm{Id}_{\mathfrak{h}}$ and $\varphi_{\pm}\neq\mathrm{Id}$. It follows from Corollary 3.4 that φ is one of

Ad(
$$\exp \pi \sqrt{-1}Z$$
) and φ_+ ,

and so (3) is obtained.

Let φ_0 be the involution of g given by

$$\varphi_0 := \operatorname{Ad}(\exp \pi \sqrt{-1}Z),$$

and let ν_{\pm} and φ_{\pm} be as in (5.12) and (5.13), respectively.

LEMMA 5.3. We have

$$\varphi_0(\mathfrak{k}) = \mathfrak{k}, \quad \varphi_+(\mathfrak{k}) = \mathfrak{k}, \quad \nu_+(\mathfrak{k}) \neq \mathfrak{k}.$$

PROOF. Since $Z, X^0 \in \mathfrak{p}$, it follows that $\tau(Z) = -Z$ and $\tau(X^0) = -X^0$. Then

$$\tau \varphi_0 \tau^{-1} = \operatorname{Ad}(\exp \pi \sqrt{-1}\tau(Z)) = \operatorname{Ad}(\exp -\pi \sqrt{-1}Z) = \varphi_0^{-1} = \varphi_0,$$

which implies that $\tau \varphi_0 = \varphi_0 \tau$. Hence we have $\varphi_0(\mathfrak{k}) = \mathfrak{k}$, and similarly $\varphi_{\pm}(\mathfrak{k}) = \mathfrak{k}$. On the other hand, since $\sqrt{-1}Z_0 \in \mathfrak{k}$, it follows that

$$\tau \nu_+ \tau^{-1} = Ad \left(\exp \frac{\pi}{2} \sqrt{-1} (-Z + Z_0) \right) = \nu_-^{-1} = \nu_- ,$$

and hence $\tau \nu_{\pm} \neq \nu_{\pm} \tau$, which implies that $\nu_{\pm}(\mathfrak{k}) \neq \mathfrak{k}$.

As stated in Section 3, we assume that $(G/H, \langle , \rangle, \sigma)$ is a compact Riemannian 3-symmetric space of inner type such that G is simple, H is a centralizer of a toral subgroup of G and \langle , \rangle is induced from a biinvariant metric on G. Let $((G/H, \langle , \rangle, \sigma), I, N)$ denote a triplet of a Riemannian 3-symmetric space $(G/H, \langle , \rangle, \sigma)$, a G-invariant complex structure I of $(G/H, \langle , \rangle, \sigma)$ and a half dimensional, totally real and totally geodesic submanifold N with respect to I. We call $((G/H, \langle , \rangle, \sigma), I, N)$ a TRG-triple. Moreover, we call two TRG-triples $((G/H, \langle , \rangle, \sigma), I, N)$ and $((\bar{G}/\bar{H}, \langle , \rangle, \bar{\sigma}), \bar{I}, \bar{N})$ are equivalent if there exists an isometry $f: (G/H, \langle , \rangle) \to (\bar{G}/\bar{H}, \langle , \rangle)$ such that $f_* \circ I = \bar{I} \circ f_*$ and $f(N) = \bar{N}$.

REMARK 5.4. Let $(G/H, \langle , \rangle, \sigma)$ be a Riemannian 3-symmetric space such that dim Z(H)=2. Then we may assume that $\sigma=\operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_i+H_k)\})$ for some

 α_j , $\alpha_k \in \Pi(\mathfrak{g}_c, \mathfrak{t}_c)$ with $m_j = m_k = 1$. From Corollary 3.4, each *G*-invariant complex structure *I* corresponds to one of the following involutions:

$$\operatorname{Ad}(\exp \pi \sqrt{-1}(H_i + H_k))$$
, $\operatorname{Ad}(\exp \pi \sqrt{-1}H_i)$, $\operatorname{Ad}(\exp \pi \sqrt{-1}H_k)$.

Let I_j (resp. I_k) be the G-invariant complex structure corresponding to $\operatorname{Ad}(\exp \pi \sqrt{-1} H_j)$ (resp. $\operatorname{Ad}(\exp \pi \sqrt{-1} H_k)$). Let $((G/H, \langle \, , \, \rangle, \sigma), I_j, N)$ be a TRG-triple. Suppose that the TRG-pair $((G/H, \langle \, , \, \rangle, \sigma), N)$ corresponds to a graded triple $(\mathfrak{g}^*, Z = H_j + H_k, \tau)$ associated with a gradation of the second kind. Then it follows from Lemma 5.2 that I_j corresponds to one of φ_\pm and ν_\pm . Moreover, since $\nu_\pm|_{\mathfrak{h}} = \operatorname{Id}_{\mathfrak{h}}, \nu_\pm(\mathfrak{m}) = \mathfrak{m}, N = K \cdot o$ and N is totally real with respect to J, it follows from Lemma 5.3 that

$$\nu_{+} \circ J(T_{o}N) = \nu_{+} \circ J(\mathfrak{k} \cap \mathfrak{m}) = \nu_{+}(\sqrt{-1}\mathfrak{p} \cap \mathfrak{m}) \neq \sqrt{-1}\mathfrak{p} \cap \mathfrak{m} = (T_{o}N)^{\perp},$$

and hence I_i does not correspond to v_{\pm} .

Let \tilde{G} be the simply connected Lie group with Lie algebra \mathfrak{g}^* and $\mathfrak{g}^* = \mathfrak{k} + \mathfrak{p}$ a Cartan decomposition of \mathfrak{g}^* corresponding to a Cartan involution τ , as before. Let (\mathfrak{g}^*, μ) be a symmetric pair such that $\mu\tau = \tau\mu$ and $\mathfrak{g}^* = \mathfrak{g}^{*\mu} + \mathfrak{q}$ the μ -invariant decomposition of \mathfrak{g}^* . A symmetric pair (\mathfrak{g}^*, μ) is called a *noncompactly causal* if there exists a \tilde{G}^{μ} -invariant, regular, closed and convex cone C in \mathfrak{q} such that $C^o \cap \mathfrak{p} \neq \emptyset$ (see [7]). Here, C^o denotes the interior of C.

The following proposition explains a relation between TRG-triples and symmetric pairs of type K_{ε} .

PROPOSITION 5.5. Each TRG-triple is equivalent to $((G/H, \langle , \rangle, \sigma), I, N)$ such that $((G/H, \langle , \rangle, \sigma), N)$ is a TRG-pair corresponding to a graded triple $(\mathfrak{g}^*, Z, \tau)$ associated with a gradation

$$\mathfrak{g}^* = \mathfrak{g}_{-2}^* + \mathfrak{g}_{-1}^* + \mathfrak{g}_0^* + \mathfrak{g}_1^* + \mathfrak{g}_2^*$$

of the second kind, which is defined by a partition $\{\Pi_0, \Pi_1\}$ of Π . Moreover, the following holds.

- (1) If (g^*, θ) is of type $K_{\varepsilon}\Pi$, then I corresponds to the involution $\varphi_0 = \operatorname{Ad}(\exp \pi \sqrt{-1}Z)$.
- (2) If (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}I$, then I corresponds to one of the following involutions:

$$\varphi_0 = \operatorname{Ad}(\exp \pi \sqrt{-1}Z), \quad \varphi_{\pm} = \operatorname{Ad}\left(\exp \frac{\pi}{2}\sqrt{-1}(Z \pm X^0)\right),$$

where X^0 denotes the cone-generating element (in the sense of [7]) in $\mathfrak{p} \cap \mathfrak{p}_{\epsilon}$.

PROOF. First of all, we determine the possibilities of $(\mathfrak{g}^*, Z, \tau)$. From Proposition 4.5 and Remark 4.6, for any $((G/H, \langle , \rangle, \sigma), I, N)$ we may assume that the TRG-pair $((G/H, \langle , \rangle, \sigma), N)$ corresponds to a graded triple $(\mathfrak{g}^*, Z, \tau)$ associated with a simple graded Lie algebra $\mathfrak{g}^* = \sum_{p=-2}^2 \mathfrak{g}^*_p$. In particular,

(5.15)
$$\sigma = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}Z\right), \quad N = K \cdot o.$$

Since σ is of order 3, it follows from [18, Proposition 5.1] that there exists an element w in the Weyl group of $(\mathfrak{g}^*, \mathfrak{a})$ such that

$$\operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}w(Z)\right) = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}h\right),\,$$

where $h \in \mathfrak{a}$ has one of the following forms:

$$h_i (n_i = 1, 2, 3), \quad h_j + h_k (n_j = n_k = 1),$$

denoting by $\delta_{\mathfrak{a}} = \sum_{p} n_{p} \lambda_{p}$ the highest root of Δ defined in (2.8). However, if $h = h_{i}$, $n_{i} = 1$, then $(\mathfrak{g}, \mathfrak{h})$ is a symmetric pair, and if $h = h_{i}$, $n_{i} = 3$, then $\mathfrak{z}(\mathfrak{h}) = \{0\}$ (see [18, Lemma 5.3]), which contradict the assumption on $(G/H, \langle , \rangle, \sigma)$. Therefore, there exists an inner automorphism ν of \mathfrak{k} such that

(5.16)
$$v\sigma v^{-1} = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}h\right), \quad h = h_i \ (n_i = 2) \text{ or } h_j + h_k \ (n_j = n_k = 1).$$

Since $v \in \text{Int}(\mathfrak{k})$ and $N = K \cdot o$, we have v(N) = N. Hence $((G/H, \langle, \rangle, \sigma), I, N)$ is equivalent to $((G/\tilde{H}, \langle, \rangle, v\sigma v^{-1}), \tilde{I}, N)$, where $\tilde{H} := G^{v\sigma v^{-1}}$ and $\tilde{I} := vIv^{-1}$. Also, by (5.16) a TRG-pair $((G/\tilde{H}, \langle, \rangle, v\sigma v^{-1}), N)$ corresponds to a graded triple $(\mathfrak{g}^*, h, \tau)$, which is defined by a partition $\{\Pi_0, \Pi_1\}$ of Π such that

(5.17)
$$\Pi_1 = \{\lambda_i\} \text{ or } \{\lambda_i, \lambda_k\}, (n_i = 2, n_i = n_k = 1).$$

Therefore, we may suppose that $((G/H, \langle , \rangle, \sigma), I, N)$ is a TRG-triple such that the TRG-pair $((G/H, \langle , \rangle, \sigma), N)$ corresponds to a graded triple $(\mathfrak{g}^*, Z, \tau)$ associated with $\mathfrak{g}^* = \sum_{p=-2}^2 \mathfrak{g}^*_p$ such that

(5.18)
$$Z = h_i \text{ or } h_i + h_k, \quad n_i = 2, \quad n_i = n_k = 1$$

for some i, j, k. If $Z = h_i$ for some $i, 1 \le i \le l$, with $n_i = 2$, then for $X \in \mathfrak{z}(\mathfrak{k}_\varepsilon^a) \cap (\mathfrak{p} \cap \mathfrak{p}_\varepsilon)$, it is obvious that $X \in \mathfrak{a}$, since $\mathfrak{a} \subset \mathfrak{g}_0^* \subset \mathfrak{k}_\varepsilon^a$. Let X_λ be a vector in $\mathfrak{g}^{*\lambda}$, which denotes the root space for $\lambda \in \Delta$ of \mathfrak{g}^* . Then it follows from the definition (2.7) of $h_p \in \mathfrak{a}$ that $X_{\lambda_p} \in \mathfrak{g}_0^*$ for $p \ne i$ and so $\lambda_p(X) = 0$, $p \ne i$, which implies that $X = ch_i = cZ$ for some $c \in \mathbb{R}$. Moreover, since $[X, \mathfrak{g}_{+2}^*] = \{0\}$, it follows that c = 0. Thus we obtain

$$\mathfrak{z}(\mathfrak{t}_{\varepsilon}^{a}) \cap (\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}) = \{0\},\,$$

if $Z = h_i$ with $n_i = 2$.

Now, we prove (2) of the proposition. Suppose that (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}I$. Then there exists a graded triple $(\mathfrak{g}^*, Z', \tau)$ associated with a gradation of the first kind on \mathfrak{g}^* such that

$$\theta = \operatorname{Ad}(\exp \pi \sqrt{-1}Z')\tau ,$$

and hence (\mathfrak{g}^*, θ) is a noncompactly causal symmetric pair (see Theorem 3.1 of [9]. Also, see Proposition 3.2.1 and Theorem 3.2.4 of [7]). Therefore, since Z' is a cone-generating element, it follows from [7, Proposition 3.1.11] that

$$\mathfrak{z}(\mathfrak{k}_{\varepsilon}^{a}) \cap (\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}) = RZ'(\neq \{0\})$$

so by (5.19) there exist j, k, $1 \le j$, $k \le l$, with $n_j = n_k = 1$ such that $Z = h_j + h_k$. Conversely, we assume that $Z = h_j + h_k$ for some j, k with $n_j = n_k = 1$. Put $X^0 := h_j - h_k$. Since $\mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ and

$$\mathfrak{g}_{p}^{*} = \sum \{\mathfrak{g}^{*\lambda}; \ \lambda(h_{j}) + \lambda(h_{k}) = p, \quad \lambda \in \Delta\}, \ p = \pm 1, \pm 2,$$

$$[h_{i}, \mathfrak{g}_{0}^{*}] = [h_{k}, \mathfrak{g}_{0}^{*}] = \{0\},$$

it follows that

$$(5.20) X^0 \in \mathfrak{z}(\mathfrak{k}_{\varepsilon}^{\ a}) \cap (\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}) \,, \quad \operatorname{Spec}(\operatorname{ad} X^0 : \mathfrak{p}_{\varepsilon}^{\ a} \to \mathfrak{p}_{\varepsilon}^{\ a}) = \{\pm 1\} \,.$$

Hence X^0 is a cone-generating element of (\mathfrak{g}^*, θ) , and Lemma 5.1 implies that $\mathfrak{z}(\mathfrak{k}_{\varepsilon}^a) = \mathbf{R}X^0 \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ and

$$Ad(\exp \pi \sqrt{-1}Z) = Ad(\exp \pi \sqrt{-1}X^{0}),$$

since φ_{\pm} is an involution. Therefore, $\theta = \operatorname{Ad}(\exp \pi \sqrt{-1}X^0)\tau$ and thus (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}I$. In this case, it follows from Lemma 5.2 that I corresponds to one of automorphisms φ_0 and φ_{\pm} . Then by Lemma 5.3 and Proposition 3.3, we obtain $I(\mathfrak{k} \cap \mathfrak{m}) = -J(\mathfrak{k} \cap \mathfrak{m})$ and thus $N = K \cdot \rho$ is totally real with respect to each I.

Finally, we prove (1) of the proposition. Suppose that (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}II$. By the above argument it follows that $Z = h_i$ for some i with $n_i = 2$. In this case, it follows from (5.19), Lemma 5.2 and Remark 5.4 that I corresponds to φ_0 .

Finally, we prove the following theorem which classifies TRG-triples.

THEOREM 5.6. Under the same notation as in Proposition 5.5, each TRG-triple is equivalent to one of $((G/H, \langle , \rangle, \sigma), I, N = K \cdot o)$ listed in the following Table 1 and Table 2.

PROOF. Let $((G/H, \langle , \rangle, \sigma), I, N = K \cdot o)$ be a TRG-triple. As before, let \mathfrak{g} , \mathfrak{h} and \mathfrak{k} be the Lie algebras of G, H and K, respectively. Moreover, let K_0 be the Lie subgroup of K satisfying $N = K \cdot o = K/K_0$, and \mathfrak{k}_0 the Lie algebra of K_0 . Then it follows from (5.9) that $\mathfrak{k}_0 = \mathfrak{k} \cap \mathfrak{h} = \mathfrak{k} \cap \mathfrak{g}_0^*$, which is a maximal compact Lie subalgebra of \mathfrak{g}_0^* .

First of all, suppose that $g = e_6$. Then the possibilities of g^* are

$$\mathfrak{e}_{6(6)}$$
, $\mathfrak{e}_{6(2)}$, $\mathfrak{e}_{6(-14)}$ and $\mathfrak{e}_{6(-26)}$.

If $\mathfrak{g}^* = \mathfrak{e}_{6(2)}$, then $\mathfrak{k} = \mathfrak{su}(6) \oplus \mathfrak{su}(2)$, and the Satake diagram of \mathfrak{g}^* and the Dynkin diagram of Π are given in Figure 1, where

$$(5.21) \lambda_1 = \alpha_2|_{\mathfrak{a}}, \quad \lambda_2 = \alpha_4|_{\mathfrak{a}}, \quad \lambda_3 = \alpha_3|_{\mathfrak{a}} = \alpha_5|_{\mathfrak{a}}, \quad \lambda_4 = \alpha_1|_{\mathfrak{a}} = \alpha_6|_{\mathfrak{a}}.$$

It is known that the highest roots δ of $\Delta(\mathfrak{g}_c,\mathfrak{t}_c)$ and $\delta_{\mathfrak{a}}$ of Δ are given respectively by

$$\delta = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6, \quad \delta_{\alpha} = 2\lambda_1 + 3\lambda_2 + 4\lambda_3 + 2\lambda_4.$$

FIGURE 1. The Satake diagram of $\mathfrak{e}_{6(2)}$.

By the proof of Proposition 5.5, a symmetric pair (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}II$, and a partition $\{\Pi_0, \Pi_1\}$ of Π is given by $\Pi_1 = \{\lambda_1\}$ or $\{\lambda_4\}$. Then it follows from [8, Theorem 3.3] that

$$\mathfrak{g}_0^* \cong \begin{cases} \mathfrak{su}(3,3) \oplus \mathbf{R} & \text{if } \Pi_1 = \{\lambda_1\}, \\ \mathfrak{so}(5,3) \oplus \mathbf{R} \oplus \sqrt{-1}\mathbf{R} & \text{if } \Pi_1 = \{\lambda_4\}, \end{cases}$$

which implies that

$$\mathfrak{k}_0 \cong \begin{cases} \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(3)) & \text{if } \Pi_1 = \{\lambda_1\}, \\ \mathfrak{so}(5) \oplus \mathfrak{so}(3) \oplus \sqrt{-1} \mathbf{R} & \text{if } \Pi_1 = \{\lambda_4\}. \end{cases}$$

Moreover, it follows from (5.21) and Lemma 2.6 that $Z = h_1 = H_2$ or $Z = h_4 = H_1 + H_6$, and [6, Theorem 5.15] implies that \mathfrak{h} has the following form:

$$\mathfrak{h}\cong\begin{cases}\mathfrak{a}_5\oplus\textbf{\textit{R}}&\text{if }\sigma=\mathrm{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_2\})\,,\\\mathfrak{d}_4\oplus\textbf{\textit{R}}^2&\text{if }\sigma=\mathrm{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_1+H_6)\})\,.\end{cases}$$

Consequently, it follows from [5, Table V] and Proposition 5.5 that each TRG-triple is equivalent to one of the following:

$$\begin{aligned} & ((\{E_6/\mathbf{Z}_3\}/\{[(SU(6)/\mathbf{Z}_3)\times T^1]/\mathbf{Z}_2\},\ \langle\,,\,\rangle,\ \mathsf{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_2\})),\ I_0,\ K\cdot o)\,,\\ & ((\{E_6/\mathbf{Z}_3\}/\{(SO(8)\times SO(2)\times SO(2))/\mathbf{Z}_2\},\ \langle\,,\,\rangle,\\ & \mathsf{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_1+H_6)\})),\ I_0,\ K\cdot o)\,, \end{aligned}$$

where I_0 denotes the G-invariant complex structure on G/H corresponding to $\varphi_0 = \operatorname{Ad}(\exp \pi \sqrt{-1}Z)$, and K is the analytic subgroup of G with Lie algebra $\mathfrak{su}(6) \oplus \mathfrak{su}(2)$. In particular, it follows that

$$(\mathfrak{g},\,\mathfrak{h},\,\mathfrak{k},\,\mathfrak{k}_0) \cong \begin{cases} (\mathfrak{e}_6,\,\,\mathfrak{su}(6) \oplus \sqrt{-1}\textbf{\textit{R}},\,\,\mathfrak{su}(6) \oplus \mathfrak{su}(2),\,\,\mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(3))) & \text{if } \Pi_1 = \{\lambda_1\}\,, \\ (\mathfrak{e}_6,\,\,\mathfrak{so}(8) \oplus \mathfrak{so}(2) \oplus \mathfrak{so}(2),\,\,\mathfrak{su}(6) \oplus \mathfrak{su}(2)\,, \\ & \mathfrak{so}(5) \oplus \mathfrak{so}(3) \oplus \sqrt{-1}\textbf{\textit{R}}) & \text{if } \Pi_1 = \{\lambda_4\}\,. \end{cases}$$

If $\mathfrak{g}^* = \mathfrak{e}_{6(-14)}$, then $\mathfrak{k} = \mathfrak{so}(10) \oplus \sqrt{-1} \mathbf{R}$, and the Satake diagram of \mathfrak{g}^* and the Dynkin diagram of Π are given in Figure 2, where

$$\lambda_1 = \alpha_2|_{\mathfrak{a}}, \quad \lambda_2 = \alpha_1|_{\mathfrak{a}} = \alpha_6|_{\mathfrak{a}}.$$

The highest root $\delta_{\mathfrak{a}}$ of Δ is $\delta_{\mathfrak{a}} = 2\lambda_1 + 2\lambda_2$. Then a symmetric pair (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}\Pi$, and a partition $\{\Pi_0, \Pi_1\}$ of Π is given by $\Pi_1 = \{\lambda_1\}$ or $\{\lambda_2\}$. As above, it follows from [8, Theorem 3.3] that

$$\mathfrak{k}_0 \cong \begin{cases} \mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) & \text{if } \Pi_1 = \{\lambda_1\}, \\ \mathfrak{so}(7) \oplus \sqrt{-1} \mathbf{R} & \text{if } \Pi_1 = \{\lambda_2\}. \end{cases}$$

FIGURE 2. The Satake diagram of $\mathfrak{e}_{6(-14)}$.

Moreover, it follows from Lemma 2.6 that $Z = h_1 = H_2$ or $Z = h_2 = H_1 + H_6$, and as in the above case we have

$$\mathfrak{h} \cong \begin{cases} \mathfrak{a}_5 \oplus \mathbf{\textit{R}} & \text{if } \sigma = \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_2\}), \\ \mathfrak{d}_4 \oplus \mathbf{\textit{R}}^2 & \text{if } \sigma = \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_1 + H_6)\}). \end{cases}$$

Hence, by [5, Table V] and Proposition 5.5, each TRG-triple is equivalent to one of the following:

$$\begin{split} ((\{E_6/\mathbf{Z}_3\}/\{[(SU(6)/\mathbf{Z}_3)\times T^1]/\mathbf{Z}_2\},\ \langle\,,\,\rangle,\ &\mathrm{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_2\})),\ I_0,\ K\cdot o)\,,\\ ((\{E_6/\mathbf{Z}_3\}/\{(SO(8)\times SO(2)\times SO(2))/\mathbf{Z}_2\},\ \langle\,,\,\rangle,\\ &\mathrm{Ad}(\exp\{(2\pi\sqrt{-1}/3)(H_1+H_6)\})),\ I_0,\ K\cdot o)\,, \end{split}$$

where K is the analytic subgroup of G with Lie algebra $\mathfrak{so}(10) \oplus \sqrt{-1}R$. In particular, we obtain

$$(\mathfrak{g},\,\mathfrak{h},\,\mathfrak{k},\,\mathfrak{k}_0)\cong \begin{cases} (\mathfrak{e}_6,\,\,\mathfrak{su}(6)\oplus\sqrt{-1}\textbf{\textit{R}},\,\,\mathfrak{so}(10)\oplus\sqrt{-1}\textbf{\textit{R}},\,\mathfrak{s}(\mathfrak{u}(5)\oplus\mathfrak{u}(1))) \\ &\text{if }\,\,\Pi_1=\{\lambda_1\}\,,\\ (\mathfrak{e}_6,\,\,\mathfrak{so}(8)\oplus\mathfrak{so}(2)\oplus\mathfrak{so}(2),\,\,\mathfrak{so}(10)\oplus\sqrt{-1}\textbf{\textit{R}},\,\mathfrak{so}(7)\oplus\sqrt{-1}\textbf{\textit{R}}) \\ &\text{if }\,\,\Pi_1=\{\lambda_2\}\,. \end{cases}$$

If $\mathfrak{g}^* = \mathfrak{e}_{6(-26)}$, then $\mathfrak{k} = \mathfrak{f}_4$, and the Satake diagram of \mathfrak{g}^* and the Dynkin diagram of Π are given in Figure 3, where

$$\lambda_1 = \alpha_1|_{\mathfrak{a}}, \quad \lambda_2 = \alpha_6|_{\mathfrak{a}}.$$

FIGURE 3. The Satake diagram of $\mathfrak{e}_{6(-26)}$.

The highest root $\delta_{\mathfrak{a}}$ of Δ is $\delta_{\mathfrak{a}} = \lambda_1 + \lambda_2$. Therefore a symmetric pair (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}I$, and a partition $\{\Pi_0, \Pi_1\}$ of Π is given by $\Pi_1 = \{\lambda_1, \lambda_2\}$. Then, it follows from [8, Theorem 3.3] that $\mathfrak{k}_0 \cong \mathfrak{so}(8)$. Moreover, it follows from Lemma 2.6 that $Z = H_1 + H_6$ and thus we have

$$\sigma = \operatorname{Ad}\left(\exp\frac{2\pi}{3}\sqrt{-1}(H_1 + H_6)\right), \quad \mathfrak{h} \cong \mathfrak{d}_4 \oplus \mathbf{R}^2.$$

Consequently, by [5, Table V] and Proposition 5.5, each TRG-triple is equivalent to

$$((\{E_6/\mathbf{Z}_3\}/\{(SO(8)\times SO(2)\times SO(2))/\mathbf{Z}_2\}, \langle,\rangle,$$

 $Ad(\exp\{(2\pi\sqrt{-1}/3)(H_1+H_6)\})), I, K\cdot o),$

where K is the analytic subgroup of G with Lie algebra \mathfrak{f}_4 , and I corresponds to one of the following involutions:

$$\varphi_0 = \operatorname{Ad}(\exp \pi \sqrt{-1}(H_1 + H_6)), \quad \varphi_+ = \operatorname{Ad}(\exp \pi \sqrt{-1}H_1),$$
$$\varphi_- = \operatorname{Ad}(\exp \pi \sqrt{-1}H_6).$$

In particular, we have

$$(\mathfrak{g},\ \mathfrak{h},\ \mathfrak{k},\ \mathfrak{k}_0)\cong (\mathfrak{e}_6,\ \mathfrak{so}(8)\oplus\mathfrak{so}(2)\oplus\mathfrak{so}(2),\ \mathfrak{f}_4,\ \mathfrak{so}(8))$$
 .

Finally, we suppose that $\mathfrak{g}^* = \mathfrak{e}_{6(6)}$. Then $\mathfrak{k} = \mathfrak{sp}(4)$ and the Dynkin diagram of Π coincides with the Satake diagram of \mathfrak{g}^* . Thus $\alpha_i = \lambda_i$, $i = 1, \ldots, 6$, and

$$\delta = \delta_{\alpha} = \lambda_1 + 2\lambda_2 + 2\lambda_3 + 3\lambda_4 + 2\lambda_5 + \lambda_6.$$

By virtue of the proof of Proposition 5.5, if (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}II$, then $\Pi_1 = \{\lambda_i\}$, i = 2, 3 or 5. Similarly, if (\mathfrak{g}^*, θ) is of type $K_{\varepsilon}I$, then $\Pi_1 = \{\lambda_1, \lambda_6\}$. Noting that $Ad(\exp\{(2\pi\sqrt{-1}/3)H_3\})$ and $Ad(\exp\{(2\pi\sqrt{-1}/3)H_5\})$ are conjugate under $Aut(\mathfrak{e}_6)$, we see from a similar argument as above that

$$\mathfrak{k}_0 \cong \begin{cases} \mathfrak{so}(6) & \text{if } \Pi_1 = \{\lambda_2\},\\ \mathfrak{so}(5) \oplus \mathfrak{so}(2) & \text{if } \Pi_1 = \{\lambda_3\},\\ \mathfrak{so}(4) \oplus \mathfrak{so}(4) & \text{if } \Pi_1 = \{\lambda_1, \lambda_6\}. \end{cases}$$

and each TRG-triple is equivalent to one of

$$((\{E_6/\mathbf{Z}_3\}/\{[(SU(6)/\mathbf{Z}_3) \times T^1]/\mathbf{Z}_2\}, \langle,\rangle, \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_2\})), I_0, K \cdot o),$$

$$((\{E_6/\mathbf{Z}_3\}/\{[S(U(5) \times U(1)) \times SU(2)]/\mathbf{Z}_2\}, \langle,\rangle,$$

$$\operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)H_3\})), I_0, K \cdot o),$$

$$((\{E_6/\mathbf{Z}_3\}/\{(SO(8) \times SO(2) \times SO(2))/\mathbf{Z}_2\}, \langle,\rangle,$$

$$Ad(\exp\{(2\pi\sqrt{-1}/3)(H_1 + H_6)\})), I, K \cdot o),$$

where K is the analytic subgroup of G with Lie algebra $\mathfrak{sp}(4)$, and I corresponds to one of the following involutions:

$$\varphi_0 = \operatorname{Ad}(\exp \pi \sqrt{-1}(H_1 + H_6)), \quad \varphi_+ = \operatorname{Ad}(\exp \pi \sqrt{-1}H_1),$$
$$\varphi_- = \operatorname{Ad}(\exp \pi \sqrt{-1}H_6).$$

In particular, we obtain

$$(\mathfrak{g},\mathfrak{h},\mathfrak{k},\mathfrak{k}_0) \cong \begin{cases} (\mathfrak{e}_6,\ \mathfrak{su}(6) \oplus \sqrt{-1}\textbf{\textit{R}},\ \mathfrak{sp}(4),\ \mathfrak{so}(6)) & \text{if}\ \Pi_1 = \{\lambda_2\}\,, \\ (\mathfrak{e}_6,\ \mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) \oplus \mathfrak{su}(2),\ \mathfrak{sp}(4),\ \mathfrak{so}(5) \oplus \mathfrak{so}(2)) & \text{if}\ \Pi_1 = \{\lambda_3\}\,, \\ (\mathfrak{e}_6,\ \mathfrak{so}(8) \oplus \mathfrak{so}(2) \oplus \mathfrak{so}(2),\ \mathfrak{sp}(4),\ \mathfrak{so}(4) \oplus \mathfrak{so}(4)) & \text{if}\ \Pi_1 = \{\lambda_1,\lambda_6\}\,. \end{cases}$$

For other cases, we can classify TRG-triples analogously.

REMARK 5.7. For the case where (\mathfrak{g}^*,θ) is of type $K_{\mathcal{E}}I$, we can obtain a graded triple (\mathfrak{g}^*,Z,τ) associated with a gradation of the first kind defined by a partition of Π such that (\mathfrak{g}^*,θ) corresponds to (\mathfrak{g}^*,Z,τ) by the following way: Suppose that $((G/H,\langle\,,\,\rangle,\sigma),I,N)$ is a TRG-triple such that (\mathfrak{g}^*,θ) is of type $K_{\mathcal{E}}I$. Then as in the proof of Proposition 5.5 there exists a partition $\{\Pi_0,\Pi_1\}$ of Π with $\Pi_1=\{\lambda_j,\lambda_k\},\,n_j=n_k=1$ such that (\mathfrak{g}^*,θ) corresponds to a graded Lie algebra defined by $\{\Pi_0,\Pi_1\}$. Put $\lambda_0:=-\delta_{\mathfrak{q}}$ and let $t_p,\,0\leq p\leq l,\,p\neq k$, be an element of \mathfrak{q} given by $\lambda_q(t_p)=\delta_{pq},\,0\leq q\leq l,\,q\neq k$. Then, since $n_j=n_k=1$, it is easy to see that

$$(5.22) t_0 = -h_k, t_p = h_p - n_p h_k, p \neq 0.$$

Set $\hat{\Pi} := \{\lambda_p \; ; \; 0 \leq p \leq l, \; p \neq k\}$, which is a fundamental root system of \mathfrak{g}^* with respect to \mathfrak{a} . Moreover, the Dynkin diagram of $\hat{\Pi}$ is the subdiagram of the extended Dynkin diagram of Π consisting of $\hat{\Pi}$. Then by (5.22) we have

$$\operatorname{Ad}(\exp \pi \sqrt{-1}t_{j}) = \operatorname{Ad}(\exp \pi \sqrt{-1}(h_{j} - h_{k})) = \operatorname{Ad}(\exp \pi \sqrt{-1}(h_{j} + h_{k})),$$

and hence a symmetric pair (\mathfrak{g}^*, θ) corresponds to a gradation of the first kind defined by a partition $\{\hat{\Pi}_0, \hat{\Pi}_1\}$ of $\hat{\Pi}$ given by $\hat{\Pi}_1 = \{\lambda_i\}$.

For example, if $\mathfrak{g}^* = \mathfrak{e}_{6(6)}$ and $\Pi_1 = \{\lambda_1, \lambda_6\}$, then the Dynkin diagram of $\hat{\Pi} := \{\lambda_0, \lambda_1, \dots, \lambda_5\}$ is given in Figure 4.

FIGURE 4. The Dynkin diagram of $e_{6(6)}$.

Therefore, the gradation defined by a partition $\{\hat{\Pi}_0, \hat{\Pi}_1 = \{\lambda_1\}\}\$ of $\hat{\Pi}$ is isomorphic to that defined by a partition $\{\Pi_0, \Pi_1 = \{\lambda_1\}\}\$ of Π , and it follows from [9] that $(\mathfrak{g}^*, \mathfrak{k}_{\varepsilon}) \cong (\mathfrak{e}_{6(6)}, \mathfrak{sp}(2, 2))$ with the numbering I 15.

REMARK 5.8. In Tables 1 and 2, we adopt the numbering of fundamental roots in Bourbaki [3]. Moreover, the numbering of symmetric pairs (\mathfrak{g}^*, θ) is due to Kaneyuki [9].

TABLE 1. TRG-triples with dim Z(H) = 1.

TRG-triple $((G/H, \langle , \rangle, \sigma), I, N = K \cdot o = K/K_0).$

 \mathfrak{g} , \mathfrak{h} , \mathfrak{k} and \mathfrak{k}_0 are Lie algebras of G, H, K and K_0 , respectively.

 $\sigma = \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)Z\}), \ \ I = -\varphi_0 \circ J.$

 (\mathfrak{g}^*,θ) is of type K_{ε} II corresponding to a GLA defined by a partition $\{\Pi_0,\Pi_1\}$ of Π .

g	h	Z	$(\mathfrak{g}^*, \mathfrak{k}, \mathfrak{k}_0)$	(Π, Π_1)	(\mathfrak{g}^*, θ)
$\mathfrak{so}(2n+1)$ $(n \ge 2)$	$\mathfrak{u}(i) \oplus \mathfrak{so}(2n - 2i + 1)$ $(2 \le i \le n)$	H_i	$(\mathfrak{so}(l,m),\mathfrak{so}(l)\oplus\mathfrak{so}(m),\ \mathfrak{so}(i)\oplus\mathfrak{so}(l-i)\oplus\mathfrak{so}(m-i))$ $(i\leq l\leq n,\ m=2n+1-l)$	$(\mathfrak{b}_l, \{\lambda_i\})$	II 12
$\mathfrak{sp}(n)$ $(n \ge 3)$	$\mathfrak{u}(i) \oplus \mathfrak{sp}(n-i)$ $(1 \le i \le n-1)$	H_i	$(\mathfrak{sp}(n, \mathbf{R}), \mathfrak{u}(n), \mathfrak{so}(i) \oplus \mathfrak{u}(n-i))$	$(\mathfrak{c}_n, \{\lambda_i\})$	II 13
	$\mathfrak{u}(2i) \oplus \mathfrak{sp}(n-2i)$ $(2 \le 2i \le n-1)$	H_{2i}	$(\mathfrak{sp}(l,n-l),\ \mathfrak{sp}(l)\oplus\mathfrak{sp}(n-l),\ \mathfrak{sp}(i)\oplus\mathfrak{sp}(l-i)\oplus\mathfrak{sp}(n-l-i))$ $(2i\leq 2l\leq n-1)$	$(\mathfrak{bc}_l, \{\lambda_i\})$	II 14
			$(\mathfrak{sp}(l,l),\ \mathfrak{sp}(l)\oplus\mathfrak{sp}(l),\ \mathfrak{sp}(i)\oplus\mathfrak{sp}(l-i)\oplus\mathfrak{sp}(l-i))$ $(n=2l)$	$(\mathfrak{c}_l, \{\lambda_i\})$	II 14
$\mathfrak{so}(2n)$ $(n \ge 4)$	$\mathfrak{u}(i) \oplus \mathfrak{so}(2n-2i)$ $(2 \le i \le n-2)$	H_i	$(\mathfrak{so}(n,n),\mathfrak{so}(n)\oplus\mathfrak{so}(n),\ \mathfrak{so}(i)\oplus\mathfrak{so}(n-i)\oplus\mathfrak{so}(n-i))$	$(\mathfrak{d}_n, \{\lambda_i\})$	II 12
			$(\mathfrak{so}(2n-l,l),\ \mathfrak{so}(2n-l)\oplus\mathfrak{so}(l),\ \mathfrak{so}(i)\oplus\mathfrak{so}(2n-l-i)\oplus\mathfrak{so}(l-i))$ $(i\leq l\leq n-1)$	$(\mathfrak{b}_l, \{\lambda_i\})$	II 12
	$\mathfrak{u}(2i) \oplus \mathfrak{so}(2n-4i)$ $\left(1 \le i < \left[\frac{n}{2}\right]\right)$	H_{2i}	$(\mathfrak{so}^*(4l), \ \mathfrak{u}(2l), \ \mathfrak{sp}(i) \oplus \mathfrak{u}(n-2i))$ $(n=2l)$	$(\mathfrak{c}_l, \{\lambda_i\})$	II 15
			$(\mathfrak{so}^*(4l+2), \mathfrak{u}(2l+1), \mathfrak{sp}(i) \oplus \mathfrak{u}(n-2i))$ $(n=2l+1, 1 \le i \le l)$	$(\mathfrak{bc}_l, \{\lambda_i\})$	II 15

TABLE 1-continued. TRG-triples with dim Z(H) = 1.

	(0 - /TD	1	(0) - (0) - (0)		77.45
e ₆	$\mathfrak{su}(6) \oplus \sqrt{-1}\mathbf{R}$	H_2	$(\mathfrak{e}_{6(2)}, \ \mathfrak{su}(6) \oplus \mathfrak{su}(2), \ \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(3)))$	$(\mathfrak{f}_4, \{\lambda_1\})$	II 17
			$(\mathfrak{e}_{6(-14)},\mathfrak{so}(10)\oplus\sqrt{-1}\mathbf{R},\ \mathfrak{s}(\mathfrak{u}(5)\oplus\mathfrak{u}(1)))$	$(\mathfrak{bc}_2, \{\lambda_1\})$	II 19
			$(\mathfrak{e}_{6(6)}, \mathfrak{sp}(4), \mathfrak{so}(6))$	$(\mathfrak{e}_6,\{\lambda_2\})$	II 16
\mathfrak{e}_6	$\mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) \oplus \mathfrak{su}(2)$	H_3	$(\mathfrak{e}_{6(6)}, \mathfrak{sp}(4), \mathfrak{so}(5) \oplus \mathfrak{so}(2))$	$(\mathfrak{e}_6,\{\lambda_3\})$	II 16
e ₇	$\mathfrak{so}(12) \oplus \mathfrak{so}(2)$	H_1	$(\mathfrak{e}_{7(7)}, \mathfrak{su}(8), \mathfrak{so}(6) \oplus \mathfrak{so}(6))$	$(\mathfrak{e}_7,\{\lambda_1\})$	II 21
			$(\mathfrak{e}_{7(-5)},\ \mathfrak{so}(12)\oplus\mathfrak{su}(2),\ \mathfrak{u}(6))$	$(\mathfrak{f}_4,\{\lambda_1\})$	II 23
			$(\mathfrak{e}_{7(-25)},\ \mathfrak{e}_6\oplus\sqrt{-1}\mathbf{R},\ \mathfrak{so}(10)\oplus\mathfrak{so}(2))$	$(\mathfrak{c}_3,\{\lambda_1\})$	II 25
e ₇	$\mathfrak{s}(\mathfrak{u}(7) \oplus \mathfrak{u}(1))$	H_2	$(\mathfrak{e}_{7(7)}, \mathfrak{su}(8), \mathfrak{so}(7))$	$(\mathfrak{e}_7, \{\lambda_2\})$	II 22
e ₇	$\mathfrak{su}(2) \oplus \mathfrak{so}(10) \oplus \mathfrak{so}(2)$	H_6	$(\mathfrak{e}_{7(7)}, \mathfrak{su}(8), \mathfrak{so}(5) \oplus \mathfrak{so}(5) \oplus \mathfrak{so}(2))$	$(e_7, \{\lambda_6\})$	II 21
			$(\mathfrak{e}_{7(-5)},\mathfrak{so}(12)\oplus\mathfrak{su}(2),\ \mathfrak{so}(3)\oplus\mathfrak{so}(7)\oplus\mathfrak{su}(2))$	$(\mathfrak{f}_4,\{\lambda_4\})$	II 24
			$(\mathfrak{e}_{7(-25)},\ \mathfrak{e}_6\oplus\sqrt{-1}\mathbf{\textit{R}},\ \mathfrak{so}(9)\oplus\mathfrak{so}(2))$	$(\mathfrak{c}_3, \{\lambda_2\})$	II 25
e ₈	$\mathfrak{so}(14) \oplus \mathfrak{so}(2)$	H_1	$(\mathfrak{e}_{8(8)}, \mathfrak{so}(16), \mathfrak{so}(7) \oplus \mathfrak{so}(7))$	$(\mathfrak{e}_8,\{\lambda_1\})$	II 26
			$(\mathfrak{e}_{8(-24)},\ \mathfrak{e}_7\oplus\mathfrak{su}(2),\ \mathfrak{so}(3)\oplus\mathfrak{so}(11))$	$(\mathfrak{f}_4,\{\lambda_4\})$	II 29
e ₈	$\epsilon_7 \oplus \sqrt{-1}R$	H ₈	$(\varepsilon_{8(8)}, \mathfrak{so}(16), \mathfrak{su}(8))$	$(e_8, \{\lambda_8\})$	II 27
			$(\mathfrak{e}_{8(-24)},\ \mathfrak{e}_7\oplus\mathfrak{su}(2),\ \mathfrak{e}_6\oplus\sqrt{-1}\mathbf{\textit{R}})$	$(\mathfrak{f}_4,\{\lambda_1\})$	II 28
f ₄	$\mathfrak{sp}(3) \oplus \sqrt{-1}\mathbf{R}$	H_1	$(\mathfrak{f}_{4(4)}, \mathfrak{sp}(3) \oplus \mathfrak{su}(2), \mathfrak{u}(3))$	$(\mathfrak{f}_4,\{\lambda_1\})$	II 30
f ₄	$\mathfrak{so}(7) \oplus \sqrt{-1}\mathbf{R}$	H_4	$(\mathfrak{f}_{4(4)},\mathfrak{sp}(3)\oplus\mathfrak{su}(2),\mathfrak{so}(3)\oplus\mathfrak{so}(4))$	$(\mathfrak{f}_4,\{\lambda_4\})$	II 31
			$(\mathfrak{f}_{4(-20)}, \mathfrak{so}(9), \mathfrak{so}(7))$	$(\mathfrak{bc}_1,\{\lambda_1\})$	II 32
\mathfrak{g}_2	u(2)	H_2	$(\mathfrak{g}_{2(2)},\ \mathfrak{su}(2)\oplus\mathfrak{su}(2),\ \mathfrak{so}(2))$	$(\mathfrak{g}_2, \{\lambda_2\})$	II 33

TABLE 2. TRG-triples with dim Z(H) = 2.

TRG-triple $((G/H, \langle , \rangle, \sigma), I, N = K \cdot o = K/K_0).$

 \mathfrak{g} , \mathfrak{h} , \mathfrak{k} and \mathfrak{k}_0 are Lie algebras of G, H, K and K_0 , respectively.

 $\sigma = \operatorname{Ad}(\exp\{(2\pi\sqrt{-1}/3)Z\}), \ \ I = -\varphi \circ J.$

 (\mathfrak{g}^*,θ) corresponds to a GLA defined by a partition $\{\Pi_0,\Pi_1\}$ of $\Pi.$

g	ħ	Z	φ	$(\mathfrak{g}^*, \mathfrak{k}, \mathfrak{k}_0)$	(Π, Π_1)	(\mathfrak{g}^*, θ)
$\mathfrak{su}(n)$ $(n \ge 3)$	$\mathfrak{s}(\mathfrak{u}(i) \oplus \mathfrak{u}(j-i)$ $\oplus \mathfrak{u}(n-j))$ $\left(1 \le i \le \left[\frac{n-1}{2}\right],$ $i < j \le n-1\right)$	$H_i + H_j$	$arphi_0$	$(\mathfrak{sl}(n,\textbf{\textit{R}}),\ \mathfrak{so}(n),\ \mathfrak{so}(i)\oplus\mathfrak{so}(j-i)\oplus\mathfrak{so}(n-j))$	$(\mathfrak{a}_{n-1}, \{\lambda_i, \lambda_j\})$	I 7
			$arphi_\pm$	$(\mathfrak{sl}(n,\mathbf{R}),\ \mathfrak{so}(n),\ \mathfrak{so}(i)\oplus\mathfrak{so}(j-i)\oplus\mathfrak{so}(n-j))$	$(\mathfrak{a}_{n-1}, \{\lambda_i, \lambda_j\})$	I 7
		$H_i + H_{n-i}$ $(j = n - i)$	$arphi_0$	$(\mathfrak{su}(l, n - l), \ \mathfrak{s}(\mathfrak{u}(l) \oplus \mathfrak{u}(n - l)),$ $\mathfrak{su}(i) \oplus \mathfrak{s}(\mathfrak{u}(l - i) \oplus \mathfrak{u}(n - l - i)) \oplus \sqrt{-1}\mathbf{R})$ $\left(i \le l \le \left[\frac{n - 1}{2}\right]\right)$	$(\mathfrak{bc}_l, \{\lambda_i\})$	II 11
				$(\mathfrak{su}(l,l),\mathfrak{s}(\mathfrak{u}(l)\oplus\mathfrak{u}(l)),$ $\mathfrak{su}(i)\oplus\mathfrak{s}(\mathfrak{u}(l-i)\oplus\mathfrak{u}(l-i))\oplus\sqrt{-1}\mathbf{R})$ $(n=2l)$	$(c_l, \{\lambda_i\})$	II 11
	$\mathfrak{s}(\mathfrak{u}(2i) \oplus \mathfrak{u}(2j-2i)$ $\oplus \mathfrak{u}(n-2j))$ $(1 \le i < j \le l,$ $n = 2l + 2)$	$H_{2i} + H_{2j}$	$arphi_0$	$(\mathfrak{su}^*(n), \mathfrak{sp}(l+1), \mathfrak{sp}(i) \oplus \mathfrak{sp}(j-i) \oplus \mathfrak{sp}(n-j))$	$(\mathfrak{a}_l, \{\lambda_i, \lambda_j\})$	19
			$arphi\pm$	$(\mathfrak{su}^*(n), \mathfrak{sp}(l+1), \mathfrak{sp}(i) \oplus \mathfrak{sp}(j-i) \oplus \mathfrak{sp}(n-j))$	$(\mathfrak{a}_l, \{\lambda_i, \lambda_j\})$	I 9

TABLE	2-continued.	TRG-triples	with	$\dim Z$	H	1 = 2

$\mathfrak{so}(2n)$ $(n \ge 4)$	$\mathfrak{u}(n-1)\oplus\mathfrak{so}(2)$	$H_{n-1} + H_n$	φ_0	$(\mathfrak{so}(n,n),\ \mathfrak{so}(n)\oplus\mathfrak{so}(n),\ \mathfrak{so}(n-1))$	$(\mathfrak{d}_n, \{\lambda_{n-1}, \lambda_n\})$	I 10
				$(\mathfrak{so}(n+1,n-1),\ \mathfrak{so}(n+1)\oplus\mathfrak{so}(n-1),\\ \mathfrak{so}(n-1)\oplus\mathfrak{so}(2))$	$(\mathfrak{b}_{n-1}, \{\lambda_{n-1}\})$	II 12
				$(\mathfrak{so}^*(4l+2), \ \mathfrak{u}(2l+1), \ \mathfrak{sp}(l) \oplus \mathfrak{u}(1))$ (n=2l+1)	$(\mathfrak{bc}_l,\{\lambda_l\})$	II 15
			$arphi\pm$	$(\mathfrak{so}(n,n),\ \mathfrak{so}(n)\oplus\mathfrak{so}(n),\ \mathfrak{so}(n-1))$	$(\mathfrak{d}_n, \{\lambda_{n-1}, \lambda_n\})$	I 10
e ₆	$\mathfrak{so}(8) \oplus \mathfrak{so}(2) \oplus \mathfrak{so}(2)$	$H_1 + H_6$	φ_0	$(\mathfrak{e}_{6(6)}, \mathfrak{sp}(4), \mathfrak{so}(4) \oplus \mathfrak{so}(4))$	$(\mathfrak{e}_6, \{\lambda_1, \lambda_6\})$	I 15
				$(\mathfrak{e}_{6(2)}, \mathfrak{su}(6) \oplus \mathfrak{su}(2), \mathfrak{so}(5) \oplus \mathfrak{so}(3) \oplus \sqrt{-1}\mathbf{R})$	$(\mathfrak{f}_4,\{\lambda_4\})$	П 18
				$(\mathfrak{e}_{6(-14)},\ \mathfrak{so}(10)\oplus\sqrt{-1}\mathbf{\textit{R}},\ \mathfrak{so}(7)\oplus\sqrt{-1}\mathbf{\textit{R}})$	$(\mathfrak{bc}_2, \{\lambda_2\})$	II 20
				$(\mathfrak{e}_{6(-26)},\ \mathfrak{f}_4,\ \mathfrak{so}(8))$	$(\mathfrak{a}_2,\{\lambda_1,\lambda_2\})$	I 16
			$arphi_\pm$	$(\mathfrak{e}_{6(6)}, \mathfrak{sp}(4), \mathfrak{so}(4) \oplus \mathfrak{so}(4))$	$(\mathfrak{e}_6,\{\lambda_1,\lambda_6\})$	I 15
				$(\mathfrak{e}_{6(-26)},\ \mathfrak{f}_4,\ \mathfrak{so}(8))$	$(\mathfrak{a}_2, \{\lambda_1, \lambda_2\})$	I 16

580 K. TOJO

REFERENCES

- S. ARAKI, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34.
- [2] A. BOREL AND F. HIRZEBRUCH, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458–538
- [3] N. BOURBAKI, Groupes et Algèbres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981.
- [4] J. FARAUT, S. KANEYUKI, A. KORÁNYI, Q. LU AND G. ROOS, Analysis and geometry on complex homogeneous domains, Progr. Math. 185, Birkhäuser, Boston, MI, 2000.
- [5] A. GRAY, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343–369.
- [6] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York-London, 1978
- [7] J. HILGERT AND G. ÓLAFSSON, Causal symmetric spaces: Geometry and harmonic analysis, Academic Press, San Diego, 1997.
- [8] S. KANEYUKI, On the subalgebras \mathfrak{g}_0 and \mathfrak{g}_{ev} of semisimple graded Lie algebras, J. Math. Soc. Japan 45 (1993), 1–19.
- [9] S. KANEYUKI, Signatures of roots and a new characterization of causal symmetric spaces, Progr. Nonlinear Differential Equations Appl. 20, 213–230, Birkhäuser Boston, Boston, MA, 1996.
- [10] S. KANEYUKI AND H. ASANO, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. 112 (1988), 81–115.
- [11] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry Vol. II, Interscience Tracts in Pure and Applied Mathematics No.15, Interscience Publishers John Wiley & Sons, Inc., New York, 1969.
- [12] M. NISHIYAMA, Classification of invariant complex structures on irreducible compact simply connected coset spaces, Osaka J. Math. 21 (1984), 39–58.
- [13] K. NOMIZU, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33–65.
- [14] T. OSHIMA AND J. SEKIGUCHI, Eigenspaces of invariant differential operators on an affine symmetric spaces, Invent. Math. 57 (1980), 1–81.
- [15] T. OSHIMA AND J. SEKIGUCHI, The restricted root system of a semisimple symmetric pair, Adv. Stud. Pure Math. 4 (1984), 433–497.
- [16] M. TAKEUCHI, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J. 36 (1984), 293–314.
- [17] K. ToJo, Totally real totally geodesic submanifolds of compact 3-symmetric spaces, Tôhoku Math. J. 53 (2001), 131–143.
- [18] K. Tojo, Classification of totally real and totally geodesic submanifolds of compact 3-symmetric spaces, J. Math. Soc. Japan 58 (2006), 17–53.
- [19] H. C. WANG, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32.
- [20] A. WOLF AND A. GRAY, Homogeneous spaces defined by Lie group automorphisms I, II, J. Differential Geom. 2 (1968), 77–114, 115–159.

DEPARTMENT OF MATHEMATICS CHIBA INSTITUTE OF TECHNOLOGY SHIBAZONO, NARASHINO CHIBA 275–0023 JAPAN

E-mail address: tojo.koji@it-chiba.ac.jp