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1. Introduction.
Let w(3) be meromorphic for || < « and
T(={ 27 ar,
where

I N o e A A 50 | I
S(r)=— Su So <-17W5)]T>tdtd0 (1)

be its Nevanlinna’s characteristic function and
lim log T (r)/log r = p (2)
be its order. If p < «, then by Borel’s theorem, for any & > 0,

};1/1%, (a)]pte < oo
for any ¢ and if 0 < p € 0,

gl/lz,(a)!"“%w

for any a4, with two possible exceptions, where g, (s) are zero points of
w(g)— a

Varilon® proved that there exists a direction J, which is called a Borel’s
direction, such that

51/ 1z (@A)t = oo,

*) Received October 1, 1949.
1) G. Valiron: Recherches sur le théordme de M. Borel dans la théorie des fonctions
méromorphes, Acta Math. 52 (1928).
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for any 4, with two possible exceptions, where A is any angular domain, which
contains ] and g, (4, A) are zero points of »(g) - a in A.

In §3, we will prove this Valiron’s theorem simply by means of Theorem2
of §2. In §5, we consider meromorphic functions in a half-plane Rg =0
and establish theorems, which are analogous to Nevanlinna's fundamental
theorems for meromorphic functions for [g|< R (<) and by means of
which we prove theorems of Valiron and Nevanlinna in § 6.

2. Main theorems.

Tueorem 1. Let w =w(3) be meromorphic in || <1 and the number of gero
points of (w(Q)— @) (w(g)— a) (w(R)—a) in |3|<1 be<n, where maultiple
Reros are counted only once, then

Srsn+ A/Q1—17), (0=r<),

where A is a constant, which depends on ay, as, a; only.

Proor. Let g, -, g, (v<=#) be zero points of .13_11(21/ () —a) in |g| <1 and
ft these points from |g| <1 and D, be “the remaining domain and
the part of D,, which lies in || <r (<1). Let F, be the Riemann
read upon the w-sphere, which is generated by w=w(g), when g
D,(7), then F,is a covering surface of the basic domain F,, which is
from the w-sphere by taking off three points a,, a,, @;. Let p(r) be
s characteristic of F,, then by Ahlfors’ fundamental theorem on
surfaces,?

p(r)= S (1) — KL (1), p(r) =Max. (p(r), 0), (1)

1 ()]
L(’)‘SO T+ (e’

r do (2)

L constant, which depends on a4, 4, @; only.
hwarz’s inequality, we have

(L) <2727 95 (’) (3)

the hypothesis, ; (r) < n, we have by (1),

S(—n=AL(),  (O=r<). (4)
nce if S(r)~ﬂ»O for all # (r<r <1), then by (3), (4),1 —- r<5 —fdrl
92 hﬂ _______________ dS(rys2z* k(S (r)—n), or

(S(r) n)°

) L. Ahlfors: Zur Theorie der Uberlagelungsﬂ:ichen, Acta Math., 65 (1935).
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S(r)Zn+ 222021 - 7). (5)

If S(#)—-n=<0 for some r (r<r <1), then S(r)=S(r)<n, so that (5)
holds. Hence (5) holds for 0 < r <1, which proves the theorem.
Let w(3) be meromorphic in an angular domain A: [arg | <« and put

stra)=— (|, <rl%f%ag;—,) tdtds,

T(r;A)=§:J-(’.;ALdA

N(r, a; A):SZ”_(".’;‘_?ALd;, (1)
where #(r,a; A) is the number of zero points of w(z)--« in a sector:

larg | < a, 0 < |g| < r, where multiple zeros are counted only once.

TuroreM 2. Let w(3) be meromorphic in an angalar domain A, |argg| =< o
and A:\argg| S a < ay be an angalar domain contained in Dy Then for any
A>1

3

T(r,A)<3 N()w,a, A))+ A(logs,

where A is a constant, which depends on a\, ay, a3, A, oy, N only.
Proor, We put &= A" >1 and for r>1, let |
N = [log r/log £], RN < r < BNTL, (2)
so that
£V = ARV < Az (3)

Let 0 O, be curvilinear quadrilaterals :

O lagzlsa, k2SIl SR,

0O, laggl <a, k1< |3l <k, (1)
1 W (169) e
==l J(m) tdtdo

and #° be the number of zero points of H(w (x) — @) in 0° If we map QP
on |¢| <1 conformally, such that the center of (° becomes ¢ =0, then O, is
mapped on a domain, which lies in [{] <p < 1.

Since (0 is similar to 09, we have by Theorem 1,

S‘lé”:"' A’ (5)
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where A is a constant, which depends on 4,, @, a;, a, a,, A only.

In the following, we denote such constants by the same letter 4.
We put

3
n(rs Bo) = 2, a5 A). (6)
Since ¢ overlap only twice,
" __:T_(l;}_Alég(/ev; A) logk= (S, + =+ 5) logk

,kv—l

S+ -+ ) logk+ Av <3n(k+Y; Ay) log k+ A,

so that
. N+1 . N41 g .
(' Mg’jé Sk _S_(j_’_.A__)_ dt = Z Sk __S_(f:A) dr
st / 1 ¢ v=1 Jp-1 z.
<3 (n(k5 A+ - + n(kN12 A,) log b+ AN- (7)
Since

B+l

|

”—"";—-A-ﬂ’ dt = n (ks A) log &,
kV

we have from (7), (3),

’ . BV+3 .
T(rsa)=  SEA) g <a(" 28 gy 4Ny
1

. . 3
<3 \i' M dt+ A(logr)r=3 21 N, ai; Ao) + A(log 7).
W 1=
3. Existence of Borel’s directions.

1. Now we will prove Valiron’s theorem :

Tueorem 3. Let w(g) be a meromorphic function of finite order p > 0, then
there exists a direction J: arg g = «a, sach that for any € > 0.

) 31/ Iz, (@A)t = oo
for any a, with two possible exceptions, and if

> T (r

" T dr= o

then
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(ii) ;1/lzu(a’A)l"=°°,

Jor any a, with two ﬁossible exceptions, where A is any angalar domain, which
contains [, and 3, (a, D) are gero points of w(x) —a in A, maltiple zeros heing
counted only once.

Proor. Suppose that for some £ > 0,

= T (r
S kg-l) dr= (1)
Then dividing (0,27) into 2# equal parts, we see that. there exists an angular
domain A, of magnitude _27:/2", such that A, D A; D - DAy -,
* T(rA
S _—thTlL) dr = o, (n=1, 2,--). (2)
Let A converge to a direction J: arg ¢ = «, then for any angular domain A:
largy — a| = 8, which contains J, A» < A for # = #,, so that
Sm T(f”)A) df”""w (3)

rkLI

Let A): |argy — a] = 28, then by Theorem 2,

S, T(T,A) o <3ZS N(x:,aﬁ, ) 4y +0() (=),

1 k+1

so that from (3),

| GER =, o Slin @80l =

for any g, with two possible exceptions.

Since Sw T (n —dr= o, if we take k= p—¢, then we have (i) and for

yP— BJ—l

k= p, we have (ii). q. e. d.

2. Theorem 3 can be extended as follows.

Tueorem 4. Ler C: gz = z(t) (0=7<®) F0)=0, z(0) =) be a simple
curve, which connects 3 =0 to g =0 and for any 8 >0, let AB) be the set of
points, which is covered by all dises: 13—z =12 (#)] 8 (0=# < ®) and Do (5)
be the set obtained from A(8) by rotating am angle 6. Let w=w(3) be a me-
romorphic function of finite order p >0 for |g| < . Then there exists a certain
Oy, such that for any >0, € >0, .
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(i) 2z, (a5 e, (3)) o= = 0, for any a, with two possible exceptions and
if w(g) is of order p of divergence type, then

(ii) > /1%y (@5 D6, (8)) | = 0, for any a, with two possible exceptions, where

R (@3 Do (3)) ave gero points of w(3) — a in Do {d).
First we prove a lemma.

« Lemma. Let E be a closed set contained in |3| <1 and 0 < p < 1. Then we
can cover E by N circles Ci (i =1, 2,+, N) of radius p with its center (3, € E),
such that N=16z/(v3 p°) and circles C? (i=1, 2,-,N) of radius 2p with
center g; overlap at most 54-times.

Proor. We cover the g-plane by a net of regular triangles, whose vertices
are gum=mpe“B+ np (m, n=0, £ 1, =2, ...). Let A;, As, -+, Av be the
triangles, which contain points of E, then since A; is contained in [g| <14 p
and the area of A;is /3 p*4 and 0 < p < 1,

Nz wls ot/ V30 <t (1 1 < b (L 1) =

V3 V'3 ) T V3e"
We take a point g, (¢ E) in A; and draw a circle Ci of radius p with g; as its
center, then Ci contains A;, so that Ci, -, Cn cover E. Let C} be a circle

of radius 2p with g, as its center, then it is easily seen that C? overlap at
most 5§4-times.

Proor or Turorem 4. Let &> 1 and A, (8) be the part of A(5) contained
in k1< |z £k (r=0,1,2,) and A?(35) be the part of A(38) contained in
k-2 < |g| < k¥H, so that A, (§)A?(38). By transforming A, (8) into a closed
setin |¢| <1 by ¢ = 3:; and applying the lemma, with p = 2, we see easily that
Ay (8) can be covered by N circles C¢¥ (i =1, 2, -+, N) of radius &-1 & and
center {9 (eA, (8)), such that

and circles Cgii) of radius ?k’-18 with center zgﬁ- ovetlap at most 54-times.
Let 4, a5, a3 be any three values and Sy, S¢% be the area on the w-sphere
generated by »=w(g), when g varies in A, (8), C and 7, n%» be the
number of zero points of H(w (%) — @) in A, (38), C%% respectively, then by
Theorem 1,
SO =D+ A4,
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where 4 depends on a4y, a,, a5, k£, & only.
Since (%% is contained in A, (38) and overlap at most 54-times and
N

S =2 S\%, we have
im1
Sy =54n° + NA.

From this we have the similar theorem as Theorem 2, where A = A(S),
A, = A(30) and from this we can prove Therem 4 as Theorem 3.

Remark. From (3) in the proof of Theorem 3, we see that there exists

11 < 7y < - < rn— 0, such that

1im 5 (7’n; A)/log rn = 00. (4)

n— o

Let
N=[logr/logk], £&N=<r< k¥,

then from (4), there exists a certain curvilinear quadrilateral U»|argg — a| <38,
k1< |g] < kn(va =< N), such that

1 [ (#6%)] 2
Sn=— ‘SSQn <'1+’[zi’(¢ei3)|5> td1d6 —~» (n—>x).

Let C0: Jargy — a] =28, kn2< 3] < kntl. We map (0 conformally on
[&] <1 by w=w((), such that the center of (. becomes ¢ =0, then the
image of O lies in [{] < <1, where 7 depends on 4, § only. We put
w(3) =v(¢) and put

= L (e Ay L)y
5(7’)———7[ So,(o ( ].—I—[v(z‘ei9)]‘~’> +d4do O=r=1)

o |0 (re®)]

L= T o e O
then §» < 5 (1) and
0 . dS{r)
| (L (r)* =2n r—
Suppose that
L(r)= (S (r)+ for n<r=<1,

then
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(5 ()< 2mer S,

1 dr _, .t dS(r), Am?
__§27l' S'II —(‘:S,—(Wé 5(77)1/2 s, OT

472 \2
&.gS(n)g(l—_ﬁ-).
Hence if S, > <—14~f—277~>2, then there exists a certain 74 (p < <1), such that
L (rs) < (S (rn))3*, or
L(rs)/S(ra) <1/ S (ra)t ¢ =1/ 514> 0 (#—> ).

From this we conclude by Ahlfors’ theorem on covering surfaces, the
following theorem:

Let J: arg g =« be a Borel’s direction, then for any 8>0, the image of
Aslarg g —al =8 by w=wl(g) on the w-shere covers schlicht infinitely often
one of any five disjoint simply connected domains on the w-sphere.

4. Borel’s directions of meromorphic functions of zero order.
We consider meromorphic functions of zero order, such that

lim log T (r) /log r = 0, lim T (r)/ (logr)® = .

r>©

First we will prove a lemma.
Lemua. Lez T (r) > 0 be an increasing fanction, such that

lim log T (r)/log =0,  lim T (r)/(logr)®= =,

o

then for any N> 1, k> 1, there exists ry < ry- < ra—>®, such that
Lifr; T (1) / (log ra)® =0, T (Ar,) = £T(rs) (n=1,2, --).

Proor. First we will prove that for any M >0, there exists v; < v, < -

< vp—> 0, such that
T (W) = M (log \v)? (1)

holds for v = vn (# =1,2,.....).

For, if for v =w, T (W) < M(loga¥)?, then for W =r<n\+, T(r)=
T (W) < M (logaw+) = M((v + 1) /v)2 (log A*)2 < M ((» + 1) /»)? (log 7)?, so that

lim T (r)/ (logr)* = M < <,

>
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which contradicts the hypothesis, hence (1) holds for an infinite number of ».
Next we will prove that there exists an infinite number of », for which
(1) and
| T (W) = &T (W) (2)

hold simultaneously.
For, suppose that for all » > »,, for which (1) holds,

T (W+1) > &T (W), (3)
then since &> 1,
T (v+1) > & T () = & M (log M%) = & M (v/(w + 1)) (log xr+1)2

= M (log »+1)2, zlUWVE-1)

so that A»*1 satisfies (1), hence by the hypothesis,
T (W+2) > BT (W),

Hence (3) holds for all sufficiently large », so that

[im log T (r)/log r = log &/log A > 0,

7@

which contradicts the hypothesis, hence there exists an infinite number of »,
which satisfy (1) and (2) simultaneously. If we take M; < M, < -+ < Mn —
for M, then we have the lemma. :

Tueorem 59. Lez w(g) be a meromorphic funciion of order gero, such that
lim T (r)/[(logr)* = eo,

7r>®

then there exists a direction J: arg g = a, such that for any angular domain
A |arg g — a| =8, which contains ],

Gm N (7s, a3 A)/T (+n) = |A| (727), (1a] = 25)

n—> o

Sfor any a, with two possible exceptions, where the sequence (rn} is independent of a
and A, such that

Lim T (ra)/(log ra)* = .

Proor. By the lemma, for any A > 1, £ > 1, there exists {r,}, such that
lim T (rs),(log )2 =, TAm) = &T (rs), (= 1,2, ---). (1)
">

3) G. Valiron: Sur les directions'de Borel des fonctions, méromorphes d’ordre nul,
Bul. Sci. Math, 39 (1935).
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By dividing (0, 27) into 2 equal parts, we see that there exists an angular
domain A, of magnitude 2z/2m, such that A; D A; D - D Ap D -,

T (7’»3 Am) =T (Tn),/z"‘ ’ (2)

holds for an infinite number of #.

Let A, converge to a direction J: argy = a and A: Jargy — a| <8(1 — ¢)
(¢ > 0) be any angular domain, which contains J.

Let » be such that 27/2m < §(1 — €) < 27/2#-1, then A D Ap, so that by

@5 (),
T(f’n A, T(”n,Am)>2 mT(f’n)>k 12- mT()\Jn) (3)

holds for an infinite number of z.
Let Ay [argg — a] <38, then

[Ay] = 28 < 8/(2m (1 — €)). (4)
We apply Theorem 2 for A,, A and rn, then
T () k2m < T (rw; A) < 32 N7, a;3 A) + A (log ra)e,

hence by (1), (4),
A (1 — &V/(24kn) < d llm N(r, a3 A) T (Arw).
If we make e >0, &1, we have
[A/(247) = é im NQvy a5 80) T (V)
Hence .
};i?; N(Arny a3 AT Niw) = | Bo] (727),

with two possible exceptions. If we write rs, A instead of Ars, A, then we
have the theorem. )

5. Meromorphic functions in a half-plane.
1. F1RST FUNDAMENTAL THEOREM.
Let w(g) be meromorphic in Rg =0 and let g = pe® (6] < 7/2),

§=—-1/:z=0'+it, (1)
o =—cosf/p, ¢t=-sinb/p,

then the niveau curve R (1/g) = const. = 1/r, or .
c=const.=—1/r (r>0) (2)

is a circle: » cos @ = p, whose diameter is » and which touches the imaginary
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axis at the origin and the niveau curve
# = const. = 1/#, (3)

is a circle, whose diameter is [#,] and which touches the real axis at the
origin. Hence to a rectangle Q. on the ¢-plane, which is bounded by four
lines: f=+n o=oy=—1/ry, o=—1/r(r>r,), there corresponds on the

z-plane a domain A,, which is bounded by four circles.
We put w(z)=mw(¢) and let n(o, ) be the number of zero points of
w(f) — « in O and ’
1

_ 1 1
moya) = g {7 low ot (4)
R, a)= | o a)do, (5)
where
4,61 = la = bI/L(L+ [al?) (L+ [°])]% (6)

Since w (g) is meromorphic on three circles, which correspond to three lines;
o = oy, t =+ =, we have by the argument princ ple, if w({)+a4,+4b on R

=a"

m“l’ldt

m-—a|

om(a,a) _ om(a,b) _ig 2 1og
oo Jo T 27 )-= oo

_ _;_S:darg(ﬂ_—_b> =1n(o, b) — nls,a)+ O(1),

w—a
so that \ |
m (o, a) + R (o, a) =m (o, b)+ R (o, b)+ O(!). (7)
Returning to the g-plane, if we write
m(o,a) = m(r,a), n(o,a)=n(r,a), R(o,a)=N(r,a),

then we have easily

m(ra)= o {7 tog (1w (), alsecto o, (8)
N(r,a)=S:o ”(:;a) dr, (9)

where the right hand side of (8) is integrated on a circle ®(1/3)=1/r and
#n(r, a) is the number of zero points of w(z) — @ in A,. If we put

T(r,a)=m(r,a)+ N(f’a)’ (10)
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then (7) becomes
T(r,a)=T(r,b)+ O(1). (11)
From this we have easily the following
Tueorem 6. (First fundam:ntal theorem).
T(r,a)=T(r)+ O(Q1),

where
_(r S(r)
Tin= Sru Tdr’
1 [ (0] Y
S(f') - TSA S<1 —[—'w(peio)[?) ‘odpda'
Hence T (r) is an increasing convex function of o =—1/r. We call T (r) the

characteristic function of w (g) for Ry = 0.

2. It can easily be proved:

THEOREM 7. .Sm _Zl_(ﬁ).dr andr ‘ifg— dr (N> 0) comverge simultancously and

R [ ERE e Smum@re 000

converge simultaneonly, where v (a) are gero points of w(g) — a.
TueoREM 8. Let w(3) be regular for Ry = 0 and A: |argg| < a < 7/2,
M(r; &) = M [ (re¥)],

then
10g M (rs &) < Ar (T () + O (1),
where
A=2(1+ sina)/{cos a (1 + sin a)}, A = 2/cos at.
Proor. Let M/(r, A) =‘%(Isa}ix. |w (re%)] be attained at g, = re*0 (]6,] < a),

which lies in a circle |z — p[ = p sina (p = r/cos a), which touches two lines
arg gy =+ a, so that

Qo= re% = p + £e"0, 4] = psina.

Since lgg |w (g)] is subharmonic, we have by means of -Poisson integral on
IZ -pl=0
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»

logr M (r; &) = log* [w (o)l = -8Rl L {* logr 1w (o + i) do

I\

14 sina 1 L ¥%
T e T ) o1+ w ot ee) o

=Eana ~ (7 log[1/w (e + pe), 1] do

1+ singa 1+ sina
T -sina 20(m(2p, ©») +0()) = _WZP (T (20, )+ 0(1))

A

SL*‘__SIMZ;J(T (2p) + O’l))— Ar(T (\r) + O(l))’

= 1l-sina
where
A=2(1+ sina)/{cosa (1 — sin a)}, A = 2/cos a.
TueoreM 9. Let w(3) be meromorphic in R(z) =0 and T (r)=O0(1), then

w(x) = gR)hiz), where g(g), h(g) are regular and g =1, AR =1 for
R(z) > 0.

Proor. By x=(x—-1)/(x+1), we niap R(z)=0 on [x] <1 and put
»(3) = »1(x) and T, (o) be the Nevanlinna’s characteriatic function of  (x)
in|x] <1,

Ti(p) =’ 51"” do (0=p<1),

_ p (27 |y (I‘eie)l ®
S, (P) = T SO SO <ﬁ[ o (f€i9)T2> rdrdé.

Since the circle R(1/g) =1/ (r > 1) is mapped on a aircle, which contains a
circle [x| =(r - 1)/(r+ 1) =p,

Si(e)=S5(N+0(@1 = (r=1/[r+1),
and since dp'p =2/(r> — 1) dr <4/r?dr r =/ 2), we have

1.5, (o) * S(r) =
Sz SPer o0-on

Hence T, (p) = O(l), so that by Nevanlinna’s theorem, w,(x)= g (x)/A (x),
where g,(x), k(x) are regular and [g(x)] =1, [Ih(x)| <1 in |x| <1
Returning to the g-plane, we have the theorem.

3. SECOND FUNDAMENTAL THEOREM,

In Ahlfors’ proof of Nevanlinna’s second fundamental theorem,» if we

4) L. Ablfors: Uber eine Methode in der Theorie der meromorphen Funktionen, Soc.
Sci, Fenn, Comment, Phys-Math. 8, No. 10 (1932).
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replace logg = logr+ i6 by { =— 1/z = o + i#, we have the following

Tureorem 10. (Second fundamental theorem).
q
(g-2)T(r) = Zl N(r, ;) — Ny (r) + O (log r + log T(r)),
ontside certain intervals {]u}, such that

Zﬁhrk—l dr < o (0=x<1),

Vo

where Ny (r) is formed similarly ac N(r,a) with respect to all multiple values,
aeple value being counted (a — 1)-times.
Especially if we take g=3,1=0,

3
T = Zl N(r, a;) + O(log + -+ log T (r)), (1)
outside intervals {J,}, such that

Zghdlogr<oo. | (2)

v

From this we have

Teeorem 11, If im T (r)/logr=o, then w(g) takes anmy value infinitely
often with two possible exceptions.

6. Theorems of Valiron and Nevanlinna.

As an application of the theorems proved in § 5, we will prove theorems
of Valiron and Nevanlinna as follows. '

Tueorem 12 (VALIRON)D. Lez w (3) be meromorphic in Dy |argg| = ao (Al
=2a,) and A: |argg| < a < ao, be an angular domain contained in Do If for a
certain value a and p > m/| D],

=11z (0, A)] = =,
then
2 iz (@A)l =2

5) G. Valiron : Sur les directions de Borel des fonctions méromorphes d'ordre fini,
Journ, de Math, 9 séries 10 (1931).
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Sor any a, with two possible exceptions and Ay contains a Borel's dicection of order
p of divergence type.

Proor. We choose
Ay |argg| = ay (a < ar < ay)y
such that p > &, = /| A,].
By M = x, we map A, on R(x) =0, then A is mapped on o: |argx| <8
< m/2. We put w (R) =w(x), [g] =7 [x] =R (=r?),

(v (@ A) = x (4, ®) = Rueiov, (levl =8)s
so that

R (1/xv (2,0)} = cos @,/Rv = cos B/Ry = cos B/ |z (a, A)| .

Hence >, (% (1/5v (a, ®)))? 72 = 0, a fortiori, > (R (1/xv (a)))» k1= o, where x:(a)
are zero points of »,(g) — ¢ in R(x) > 0.

Let T, (R), Ni (R, a) be the functions defined in § 5 for », (x), then since
o'k > 1, we have by Theorem 7,

(5B 1)

If S(r, A) is defined as in §2, then §; (R)< S (r, A,) (R = r#), so that from
(),

S” S A)

rP’H --dr: 0,

Since T (7, A) = S (r, A)) log2, we have

© y A
[P Loty (*)
Hence by Theorem 2,
S:o N(f';p__al_i An) drzw’ Or;lzu (a, AB)I_P=CO,

with two possible exceptions. From (2) we conclude as Theorem 3 that A,
connains a Bortel’s direction of order p of divergence type.

TueoreM 13 (NEVANLINNA-VALIRON). Lot w (%) he regular in Bo: |atgg] < oo
and A: |argg| S a < ay be an angular domain contained in D, If for‘.rome
o> z/léol (=1/2)
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= logt M(r, A
[ AR -,

then
21 lzs  Ag)lr =0

for any a, with two possible exceptions® and A, contains a- Borcl's direction of
order p of divergence type™. ‘

Proor. Let A,:|argg] <a;la < oy < ay) be so chosen that p > & = 7/| A
and by ¢ = x, we map A; on Rx =0, then A is mapped on :|argx| =B
< mf2. We put w(g) = », (x), then .

Mi(R, o) =Max |51 (Re’)| = M(r, ) (R = r4),
0=
so that
® ] M, (R, ® + ’ ‘ .
[rlogdhRe) g o g, [ LML) oo (1)

Let T,(R) be the characteristic function of w,(x) defined in §5, then by
Theorem 8

logt M, (R, ) < AR (T, (AR) + O(1)), (A > 1),
so that from (1),

Sw Iﬁ%ﬁ—)— dR = 0, hence Sw Si(R) dR = .

Re A+t

From this we proceed similatly as Thorem 12 and have the theotem.
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