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1. Let {Ax} be a positive and increasing sequence, and let
1.1) R(w) = 0= > (© — An)an

Ap<w

be the (R, As, 1)-mean of the series Sa,. 1f R(w) is of bounded variation
in the interval (A, o), that is

A

1 A1
then 3 a, is said to be absolutely (R, An,1)-summable, or simply |R,\x,1]-
summable,
Let f(¢) be an L-integrable function in the interval (0, 2z), and its
Fourier series be

2 Anln

Ap <o

dw < o,

ft) ~ —; a, + 2 (an cos nt + by sin nt).

m=1
For the absolute summability of the Fourier series, following theore-
ms are known:

THEOREM A.[1] If for any 3 >0
P(t)(logt-HF = 0O(1) (t—>0),
then the Fourier servier of f(t) is summable |R, logn, 1| at t = x, where

Pty = 2 {f Gt 1)+ (= 1) =27 (D)).

THEOREM B.[2] If ® (&) is of bounded variation in (0, =), then the
Fourier series of f(t) is summable |R, n, Elat t = x, where & > 0,

THEOREM C.[3] If ®(t)log 1/t is of bouuded variation in (0, =) then
the Fourier series of f(t) is summable |R, exp (n®), 1| at t = x, where 0 < «
<1,

In this paper we consider the summability |R,exp ((logn)*), 1|, where
a >0, and prove the following theorems: ’

THEOREM 1. If #(£)(logl/t) = O(1), then the Fourier series of f(t)
is summable |R, \n, 1| at t = x, where
A =exp((logn)®), 0<a<Band a<l,

THEOREM 2. If @ (t) (loglog1/t)® = O (1), then the Fourier series of
f(t) is summable |R,logn, 1|, where B > 1.
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THEOREM 3. Ifo(t) (log 1/8)*"! is of bounlel variation in (0,x), then
the Fourier series of f(t) is summable |R, na, 1| at t =2x, where An = exp
((log m)*),a > 1.

We can suppose 0 < 8 < 1, in Theorem 1 and 1 < @ < 2 in Theorem 3,
Furthermore we can suppose that

) = —1), ff(t)dt =0
0

o

and x = 0; consequently it leads to consider the series zan.

n=1
2. PROOF OF THEOREM 1. Let

An = exp ((log n)?®) (n=2,3 )

and let w > 0. There is an m such that
An =S © < Al
Now,
m=1
R(w) = o~ Z (@ —An) @n = — ©~1 > SpAhn + Su(® — Au)
n=1 n=1

Il

m-—2
_1‘[ 2 nO'nAZXM + (m - 1)0'm—1AXm-1 - sm(w - )Vm) l‘)
n=1
where
Se=a+a,+ - +an, and on =n"1(S1 + Sy + -+ + Sn).
Hence
Am+1

f |dR(w)] = 2 |dR(w)|
!

m=1
Am

it Am1
Zf N
1

o

m=
Thus, it is sufficient to prove the convergence of the last series for which
we have

li

<A Z(xmxml) IAM.

m=1

2 AnGn

>R — RO |

m=1
= m-—2 m-1

= 2 , )\,,;,1 2 Nnoal*An — 7\‘;&_1 2 nO'nAZRn
m=1 n=1 n=1

£

=0L+1,

L (M — 1om-1AAm-1 — Apk M0 AN
say. Then from Lemma 1 of [17

ns>

m=1

AQ\,,,,, ) 2 no'ﬂAzhﬂ + 2 , R'H-L+l(m - l)a'm—lA Am—-1 ]
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2 (logn)3 n: (log n)*-1

m=1 m Am
| m 1
* mz=1 A (log m)B~ m‘ (logm)*~* | = Iy + Iy,
say. Then
2.1 Iy = > 1/m (logm)*+®-® < oo,
m=1
and
m-2
@-1
2 (loigz) > an/n (log n)i+B-o
m n=1
’ 1
<Z n(log n)“'(’3 2 % MAm (log m)L-*
_ L An 1
(2.2) T A& Ta(logmyFE 6, <
From (2.1) and (2.2), we obtain I; = O(1). We shall next consider /..
. - (m — 1)0-m—1A7\4m—-] _ mo—mAXm
12 - mzl Xm )\»m+1 1
(m — 1)0-m IA)\am 1 {(m - 1)0'm,—1 + Sm}A)\.m
m= )\.m xm+1
S | Sudn -
§ ’ nAN + 2 <A7&m )(m‘“l)a'm—l = Iy + I,
=1 A1 m=1 m
say.
Then, by the Holder inequality,
o 1 e Lp , e 1q
- - -a(1-a)
23 Ins gzl S| m(logm)i-% = (2 'l S,,,I”) <E‘m '(log m)y=1ct=# >

where
pl+git=1and a < pl<pB.

Since (1 —a)q = (1 —a)p/(p —1) >1, the second factor of the right-
hand side of (2.3) converges. After Hardy and Littewood, [4]

é 1Sul2/m) " < K (f ﬂ|f(t)|vt—1df>”p
0

m=2

(T dt _
sK([ Tagim) = 0.
0
Hence
2.4) I; = O(1).
We have

(2.5) Iy, = mZﬂ (logim)ﬁ { |A2;:_1[ + 1A {A< )}:)U
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> T - “-e = —2(l-a)l —
= gzm{m 2(logm)~ - + m~2(logm) =2 )} = 0(D).

From (2.4) and (2.5),I; = O(1). Thus the theorem is proved.
The proof of Theorem 2 runs similarly as that of Theorem 1.

3. PROOF OF THEOREM 3.

an = —i—ff(t) cosntdt = %—f(n')(logfr‘*)ﬁf (log 1/t)~F cos nt dt
0 \

T t
—_ %f d(f(t)(log l/t)ﬁ)f (log1/u)-8 cos nu du,
0

where 0 < B8 < 1.
Let

(log l/t)‘ﬂ~2 an cos nt,
then

Ay = ifcosm(logl/t)"ﬂdt,

and 3 a, converges absolutely. Hence

2 An@n d(l)

f |dR(w)| = f ™2
An<w

=~ f w % (m)(logl/7)®

dw

> Aln

Ap<w

—f w~?dw anf d(f(t)(logl/t)s)f (log1/u)~#cos nudu‘
A *nse

-£| > Aacos nu‘du.

Ap <o

3.1 *O(DJF’“'f |d(f(t)(log1/t)5)lf fdw[f (log 1/u)
0 Al

If we put l

Ap<w

t
I(a),t)-—_:f(log 1/u)-fdu 2 An COS 7,
0

then we have

t m
I(w,t) sf (log1/u)-# (2 An COS nu) du
n=1
1

= [ flog 1/14) B du{ Dn(u)Axn + Am m(u)}du'

n=
0
m-1

t
(3.2) (w0, )] gf(loguurﬁ{ZnW + mkn} du
0

n=1
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m-=1

< i(log1/t)~# {mxm + > an(log m)*-1}.
n=1
Now
m-1 m
A(logn)*—1 < f (log x)*-exp ((log x)*) dx
n=1
1

log m logm

= f to-lg+t" qt gmf to-1¢" dt = O (M.
0

From (3.2) and the above estimations,
| I(w, )] < At(log 1/t) " Pmrm
< Ai(log1/t) Pw exp ((log w)'/*).
Now

oo

< . ¢ ! er\'p(loglltJm
f w“’dw]f(logl/u)"3<2>»n008nu>dui =f + f =L+ I,
0

Ap <@ .
Ay N exp(log !/t @

say. Then

exp(logl/t)® expclogl [t)®
I, = fw'ZII(w, H]dw = ft(log 1/t)Bw~! exp (log @)!/* dw
A
Qlog 1/6y®
= t(log 1/t)"f’f e*dx < O(1(log 1/t)-#t-'(log 1/t)*-1)
1
= O((log 1/t)(06——-1)—'3)_
On the other hand

I, = o [ (o, t) | do

exp(log 1/t)®

/\1 1

co oo T
gf @02 | [(w, )] do + f w0 *dw r f(log l/u)'ﬁz An COS nu du
exp(log 1/1)% exp(log 1/t)@ t An<w

If we put

J(w,t) Ef (log l/u)‘ﬂ( > Ancos nu\/ du,
\)\n<w
t
then by the similar estimation as I(w,t), we have
| J(o,H)] =t7'(log1/t)Pw exp ( — (log ®)!*).

We have also

o ?| I (0, 7)|dw < oo.

expllog 1/t)®
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Hence

oo

f 0= J(w, )] do

exp(log 1/tH)®

=¢-1(log 1/t)~# exp( — (log ®)*)w ! dew

exp(log 1/t)®

= t-1(log 1/z>-ﬂf e=='® dx = O(t-'(log 1/6)-5¢ (log 1/6y*~1)
(log 1/t)®
= 0((log 1/¢)@-1-8),
Lastly we have

f |dR@)] =0 f |d (ft)log 1/1)F| (log 1/1xe->-8).
)\1 0
Hence if B = a — 1, then by the hypothesis
| f |dR(@)| = OCD).
. M
Thus the theorem is proved.
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