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1. A metrie in a eircle. First we will introduce a metric in || S R
as follows. We define the distance (w,0) of a point w (|w| < R) from
w =0 by

_ _2R|w| -
(1) (w,0) = R+ [w|* O=w,0)=1).
Let
(2) Us(w) = B0 =4 15 - gy

R* — aw
be a linear transformation, which transforms |w| < R into itself, such
that Ufa) = 0. We define the distance (@, b) of any two points @, & in
|w| < R by

_ _2RIULD)]

( 3 / (a7 b) - (Ua(b), 0) - RZ + an(b)ll
b—a
2R V-
B T =1 L_q_ :
1+R | o

so that
(4) (a, b) = (b, a).

It is easily seen that for any linear transformation U(w), which transforms
|w| < R into itself,
(5) (U(a), UM)) = (a,b)
and a circle (w, @) = p in our metric is an ordinary circle and the locus of
points, which are equidistant from two given points is a circle, which cuts
|wi = R orthogonally.

In our metric, the triange inequality
(6) (a, ¢) < (a, b)+ (b, ¢
holds.

PROOF. We may assume that R=1 and a=0, 0<b<1 by (5), so
that it suffices to prove:

b—c
el b 1—bc ‘
e TH (el ST+ "7 (h=c
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el 18]
ERrE = 1+ |3 for {c| =16], (7) holds for |c|] =<b. Hence

we assume that 0< b < [¢] < 1. [f ¢ moves on a circle |[¢| = const., then
i b—c
! 1—bc
F(t) = t/(1+¢) is an increasing function of ¢ for 0 <¢=<1, the second
term of ths right-hand side of (7) becomes minimum, when ¢ lies on the

positive real axis. Hence to prove (7), it suffices to prove the following
inequality for 0 < b<c< 1:

Since

becomes minimum, when ¢ lies on the positive real axis and since

c—b
c b 1—bc  _ b L (=5 A—bo)
14 ¢ 1-+b* 14 ’ C—-b>2 T 1400 (14651 + c¢®) — 4hc’
kl——bc

which holds evidently. Hence (6) holds in general, q.e.d.
The most important porperty of our metric is the following one. Since

1 R+ |Uw|* (R— |Us(w)])?
w, & = BR[O 1T T 2R[Uuwy =1
and [Uw)| = R on jw| = R, log Zwl %) and its normal .derivative vanish
on |w| = R and if w = w(2) is a regular function of z, then
1 , U )| w'(2)]?
log ——~—— = 4R? 2 =>
&) Alog ey @ = Y < man =

where A is the Laplacian, s that 1b>g (w(z), @)~! is a subharmonic func-
tion of z.

2. Some notations. Let K be thz Riemann sphere of diameter 1, which
touches the w-plane at w = 0 and
|a —b|

9 N S D =S
be the spherical distance of a, b.

Let A b2 an infinite d>main on the z-plans, whose boundary I" consists
of at most a countable numbar of analytic curves. Let w = w (z) be one-
valuel and moaromborphic in A and on I, such that the value w(2) in A
belongs to a certain sphzrical disc [w, w,] < § and thz value w(z) on I'
belongs to (w, w,] = §, so that the inverse function z= z (w) of w = w (z)
is defined on a Riemann surface F, spread over [w, wy]< 8. If z= z(w)
has a transceadeatal singularity « in [w, w,] < §, then w teads to a along
a certain curve y,when z tends to infinity along a certain curve I. In this
case, thz bzhaviour of w (z) in A was first treated by K. Noshiro by app-
lying Ahliyrs’ th2ory of covaring surfaces. His research was followed
by K. Kunuguai, Y. Tumura and ths preseat author?®. In this papar, I will

1) K.Nosuiro, On the singularities of analytic functions. Jap. Jour. Math. 17(1942).
K. Ku~xvaur, Sar l'allure d'nne faaction analytiqus uniforme au voisinaze d'un
point frontiere de son dhmain de déinition, Jan. Joar. Math. 18 (1943). Sar la
théorie des fonstions m3cromnorphes et unifrrmes. Jap. Jour. Math. 18 (1643).
Y.Tumura, Recherches sur la distribution des valeurs des fonstions analytiques.
Jap. Jour. Math. 18 (1943).
M.Tsuj1, Nevan'inna's funlamental the>rems anl Ahliors’ th2)rem on the nam-
ber of asymptotic values. Jap. Jour. Math. 18 (1943).
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prove the theorems obtained by these authors simply by means of the metric
introduced in §1.

First we will introduce some notations.

Let A, be the part of A, which lies in |z] <7 and F, be its image on
K and @, be the part of |z] = 7 contained in A and L(7) be the length of
its image on K:

_ __ (el

(10) L(r) = T [w(re®)[® rdg,
o

A(r) be the area of F,: _

_ [w'(re®)]|*
an Ar) = ff(1+ ) s rdrde,
(12) S(r) = A(r)/;rB- (mean number of sheets of F,),
where #8* is the area of [w, w,]=<§, )
(13) T(ry = f 5 4
A(r) be the number of holes in A, and
(14) A= [2ar, @0,

o
We will prove

LEMMA 1.» 1If z= z(w) has a transcendental singularity in [w, wy] < 8,
then
T(r)

lim §(r) = oo, 17152 logr

PROOF. Let «a be a transcendental singularity of z=z(w) in [w, w,]<8,
then w tends to « along a certain curve y, when z tends to infinity along
a certain curve [, so that |z|] = 7. meets [ at a point 2,. If ‘the boundary
I' of A contains a curve extending to infinity, then [z2| = 7» meets I' for
v =7, so that the image of §. on K contains an arc, which connects a
point w,= w(z) on v to a point on [w, w,|= 26, so that L(r)=%>0
(r = ry). Since
dA(r)

dr "’

|’ (re®)]*
(1 + |w(re?)|?)?

o
n*log (r/7)) < 27 (A(r) — A(7y)),

so that 11m A (r) = oo, hence lim S (7) = oo, hm T(r)]logr =co. If1T
7Sco

does not contam a curve extending to infinity, then I" consists of infinitely
many closed curves and so lim A\ (7) = oo. By Ahlfors’ first covering
r>co

rdf = 277

7 < L(r)* < 2x7

2) K. NosHIRO, l.c.1).
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theorom,” we have

(15) A7) < S(r) + R L(7),
where /» is a constant and it is easily proved that
L(r) < S(r)iiz+e (& >0),

except certain intervals 7,, such that 2 f d log r < oo. Hence we have
n

IN
lim S(7) = co.
r—yco

LEMMA 2, f £(:—)dr =0/1r) log7) for all 7,

= O/ 1(r)log T(r)),

except crtain intervals In, such that 2 d log log 7 < oo.

n
IN

PROOF. From L(7)* <2z7dA (r)/dr, we have

" Lr) T T Lo
j =dr < \/log :;f Lo 4y < \/27{ log - CA(r) — A(r)).

7o 70

Since T2r) = f 531) dr =10g2 S (),

we have

f LD 4y = 00w T 2y 108,
To
The second part is proved by Dinghas. ®
From (15), we have

LEMMA 3. A =T+ 0 f ’;;er) .
To

3. Main theorems. Under the same assumption as §2, we may assu-
me that w, = 0 by a suitable rotation of K, so that w(z) is regular in A
and on I', such that |w(z)| < R in A and |w(z)| = R on I" for some R. We
assume, for the sake of simplicity, that z = 0 belongs to A.

Since |w| < R is projected on a disc {w, 01=<8 (8= R/A/1+K*) on K
and 78 = 7#R*/(1 + R*) is its area, we have

2 TCarpi0Y] 2
(16) s = 11K ff(l lw el arag.
Ay

+ |w(re?)[?)*

3) L.Amrroxns, Zur Theorie der Uberlagerungsflichen. Acta Math. 65 (1935).
4) A.Dixcuas, Eine Bemerkung zur Ahlforsschen Theorie der Uberlagerungsflichen.
Math. Zeits. 44 (1936).
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Let # (7,a) be the number of zero points of w(2) —a(|e|] < R) in A, and

an Nera = [P 200D 4y 1 00,0 10w,
0
_ 1 1
18) m(r,a) = 5 flog wre® @ de,
oy
where (w,a) is the metric of § 1 and |
19 T(r,a) =m(r, a) + N (r, a).

Then we will prove the following thesrems, which are analogues of Nevan-
linna’s fundamental the>rems for meromorphic functions for [z| < oo.

THEOREM 1. Let w (z) be regilar in an infinite domain A and on its
boundary I', such that (w(z)| < R in A and |(w(z)| =R on I'. Then T(r,a)
1S an increasing convex function of log », such that

T(r,a) = f S(:’a)» dr + const. = T(r) + O(f £’(:—)a’r>,

re

where

S(r, a) = ff 5 J'F”I'vl) rdrdd, (v=Us(w)/R),

T(r) = f&dr

- 1+ R |w' (re’®)|*
S(r = Str, ay = 15 ff<1+ O a5 7drde,

S(r) being thz wmean numder of sheets of the Riemann surface generated
by w = w(z) on the w-sphere.

j L) dr = O(s/ 1(2r) logr) for all r,
7o

= O/ 1(r) log T(r)),

except certain intervvals [n, such that Zfd log log r < oo,

THEOREM 2.
q r
(¢ = DT = N an+ 40 +0( [ EDu), @z,

i=1
o

where

5) K.Nosuiro, K. Kuxvar. Le. D.
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AN =T@) +0 (f Lr) ar),

"0
We call 7(r) = T(r, A) the chracteristic function of w(z) in A and
logT(r) _

Iim
r>o0 log 7

its order.

REMARK. Since log[w(7e®), al-!= log (w(re®),a)-* 4+ O(1),
Theorem 1 becomes

1 (log 1 _ " L(r)
o flog CrGran a1 40+ Nor, @) = T + o(f -r—dr)
0, 0
In this form, Theorem 1 was proved by Tumura and the present author
previously. ©

4. Proof of Theorem 1. Let @ be any point in |w| < R and

_ 1 1
m(r, @)= %—flog w(re®), a) a6

(wl-——) vanishes at the end points of 4,

rm'(r, a) = gl—fzo—log
o

Let I'. be the part of,I' contained in |[z]| <7 and » be its outer normal

and ds its line element and z;,, ----, z» be zero points of w (z) —a in A,.

We assume that z; does not lie on §,, We enclose z; by a small circle y;

and we take off the inside of {v:} from A, and A! be the remaining domain.
Then applying Green’s formula for AY, we have

o 1 1
fﬁﬁ’l (w, a) ds +f—c;10g (w, a)ds+zfou log (w, a)d

6,
f f A log rdrde

Since as remarked in §1, the normal derivative of 10g~1—vanishes on

then since log

rdg.

(w, a)

Iy, we have (@)
2arm'(v,a) + Zf— log (w ) ds = ffAlog rdrd&
If we make the radius of v: tend to zero, we have from (8),
2mrm’(r,a) + 2nn(r, a) = ffA log (w,la) rdrd@

6) Tumura, Tsuvi, l.c.1).
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. | U (w)|? ,Ql -
= 4R [f(R~+IU |0 s raras.

Hence if we put

_2R [ [ U]

(20) S, a) = f (R* RN ACHIBE rdrdd,

then

20) m (r,a) + n(r,a)/r = S(r,a)|r,

so that

22) T(r,a) =m(r,a) + N(r,a) = f‘s—(;’—a)dr + const.

0
Hence T (7, @) is an imcreasing convex function of log#z. S (7, a) has the
following geometrical meaning.

If we put
23 v (2) = Uds(w (2))/R,
then |v(2)| < 1 and S(7,ae) becomes
2 [v|®
24 St @ = f e rarde.

Since |v| <1 is projected on the Iower half of the v-sphere and /2 is its
area, S(r, a) is the mean number of sheets of the Riemann surface
generated by v = v (z) on the v-sphere.
Next we will prove
(25) S(r, a) — S(r, 0) = OC(L(7)).
Since by (21),
1 (2 1
27 | o 1% w0y
0
12 e 1
2z | or '8 (w, a)
0

———7rdf + n(r, 0) = S(r, 0),

rdf + n(r, a) = S, a),

we have

1 (2 ., wa

27 | or log (w,0)
0

It is easily seen that

(26)

rdf =S(r, 0) — S(7, a) + n(r, a) —n(r, 0).

w.a) _ o lw — al Clw]
S 20y T o 8 T + (1 |w|2>’
so that
1 0 Jog (W, @ 1 (2o l
2_[ g8, g = f log 0= , a9+ cOCLrY)
67‘
1 f darg L =% 4 OL(r)),
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hence by (26),
uli—q— = S(r,0) — S(r,a) + n(r,a) —n(r,0) + O(L(7)).

—L”fdargw
o

+ 8(r,0) — S(r,a) + n(r,a) —n(r,0) + OCL(7)),

1
;);* d arg

o
By the argument principle,

n(r,a) —n(r,0) = 1 fdarg w

fd arg

27) S(r,a) — S(r,0) = 5— fd arg

so that

+ OCL(7)).

We will prove

(28) f darg ¥

= O(L()).

Now I'. consists of a finite number of separate curves I'; = >y® + 2D,
- .

where ¢ is a closed curve, which is the boundary of a hole in A, and AP
is a curve, which meets §,. Since ¢? is mapped on |w| = R, we have

fdargw

¥

—2 .

Consider one A\{> and let 8¢ be the part of §,, which meets A$® and L:(»)
be the length of the image of ¢ on K, ‘then since, if w makes one turn

on jw| = R, fdarg

=0, it is easily seen that

d arg __wu—} 2 = OCLi(r)).
A

Hence

fd arg w—
T,

—Zfdarg +2fdargw
N NG
r

= ZO(LM)) = O(L(r)),

which proves (28), so that by (27), we have (25). Hence from (22), (25),
we have

T(r, a) = T(r, 0) + o(f L—(:)—dr),
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so that for any two points «, b in [w| < R,

(29) TCr.a) = TCr.b) + 0([ i‘(r—”-dr}

From the proof, we see that if g, b lies in [w, 01 < §, < §, then
"L "L
0 (f T ar) ga(&)f @ g,

v

where « (&) depends on § only. Let dw(d) be the surface element of K
at b, then multiplying dw (b) on the both sides of (29) and taking the
integral mean over [w, 0] < §), we have from (22),

TCr, @)= —= j f TCr, b)dars) + O f Lo ar)

(,03=8 7o

_ [ S "Lir)
_Jf T gy + 0(] ! dr>,
0 To
where Sy(7) = A¢(7)/(783) is the mean number of sheets of the part of F,,
which lies above [w, 0] =< &.
Since by Ahlfors’ first covering theorem?

Str) —Syr) = O(L(N),

we have

('St ML)
T(r,a)—f po dr+0<j = dr>.
0

L)

Hence Theorem 1 is proved.

5. Proof of Theorem 2. Let F be the Riemann surface generated
by w = w(z) over [w, 0] < & and F, be the part of £, which corresponds
to Ar. Let a1,----, a;(¢q=2) be q points in [w, 0J< 8. We take off
these ¢ points from [w, 01 < § and F° be the remaining domain and we
take off from F, points, which lie above @, ----, a; and F? be the remai-
ning surface. Then F! is a covering surface of the basic domain F°. By
Ahlfors’ fundamental theorem on covering surfaces,®:

p*(FY) = p(F*)S(r) — hL(7),
where p is the Euler’s characteristic and p* = Max (p, 0) and & is a cons-
tant depending on FV only.

Since p(F?) =g — 1, we have

p*(FH =(q—1)S(r) — hL(r).
Since
q

ot (FO) < D m(r, @) + \7),

i=1

we have

q
(gq—1S(r) anw, a;) + N7) + hL(r),

i=1
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so that

q 7
L N
@ - DT =D Nz, a) + Ar) + 0 (f ),
i=1

70

Hence Theorem 2is proved.

REMARK. If the inverse function z = z(w) of w = wiz) has a transcen-
dental singularity in [w, 0] < §, then by Lemma 1,
(30) }im Tr)/logr = oo,

Suppose that A is simply connected, then A (#) =0, so that if we take
¢ =2 in Theorem 2,

2 7
T(r) §2Nu’, a) + 0 (f L(rr)dr).
i=1

If w (2) takes ai(i = 1,2) only finite times inoA, then N(r, @) = O (log7r)
(1 =1,2), so that

Tr>=<0 (logr) + O (f L—;,r)ﬂh’),

which contradicts Lemma 2 in virtue of (36).

Hence w(z) takes any value in [w, 0] < § infinitely often, with one
possible exception. This is due to K. Noshiro. D

If A is not simply connected, we take g =3 and taking account of
Lemma 2, we have

3 7 N
Tr) =< EN(r,a) + 0 (f L(—:)dr>.
i=1 ’

7
From this we see as above, that w(z) takes any value in [w, 0] < & infini-
tely often, with two possible exceptions. This is due to K. Kunugui. ?

6. Extension of Ahlfors’ theorem. Let w = w(z) be a transcendental
meromorphic function for |z| < oo and w, be a direct transcendental
singularity of the inverse function z = z2(w) of w = w(z), such that [w, w,]
< & is mapped on a domain A on the z-plane, where w(z) = w, in A. Let
Ay be the smallest simply connected domain, which contains A and @, be
the part of |z| = r contained in A,, which separates a point 2y of A from
2 = oo and 70(7) be its length.

Then Ahlfors® proved that

" dr
31 log T27) ;”f o

— const.,

To
where 7(r) is the Nevanlinna’'s characteristic function of w(z). From
this follows easily the well known theorem on the number of direct
transcendental singularities of the inverse function of a meromorphic

5) L. AmLrors, Uber die asymptotischen Werte der meromorphen Funktionen
endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6 Nr.9(1932).
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function of finite order. We will prove an extension of this theorem by
means of Theorem 1. By a suitable rotation of the Riemann sphere K,
we may assume that wy = oo, so that w (2) is regular in an infinile domain
A, such that |w(2)| > R in A and |w(z)|] = R on its boundary I Then
v(z) = 1/w(z) is regular in A, such that |v(z)| < 1/R in A and |v(2)| =1/R
on I Since v(z) =0, N(r, 0) =0, hence if we apply Theorem 1 on v(z),
we have

(32) T(r, 0) =m(r,0) =f “‘S—(—i;j&dr -+ const.

_ ('S "L(r) , N\

_f——-r dr—i—O( r dr’/,,

)
where
33) iz, 0) = flog o Z”flog RZEIM)I a6,
_ 2R [v] 2R? |w'|?

34)  S(r, 0) = ffu?*“-l 52 7drde = ff(R“r LT 7drds,
(35)  S(r) = 1+Rl_i ff(l J{—v[lv! Ty 7drdd = 1+R‘ff<1 -!-uizlulzr rdrd§,

S(r) being the mean number of sheets of the Riemann surface generated by
w = w(2) on the w-sphere.
Since for |w! = R,

2
T?F A+ |w|H =R+ |w|*=1+ |w|?, if R=1,
o P2
1+ |w]*= R+ |wizgfi~fR2 1+ |w|®, if R<1,
if we put
'36) aR) = 2R g1, = 1FF p_qy

1+ R 2RT

then we have from (34), (35,,
a(R) Sr) =Swr, 0) S a(R)S(r),
so that from (32), (33),

T(7r) + const. < 2—1flog R+ |1U * do < a(R)T(r) + const.

(37) IR|w

1
a(R)

If we put M(7») = Max lw(2)], then

< log MI(;) on @,

so that from (37),

(38) T(r) + const. <log —— M(r)

1
e
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Let z (|z| = ) be any point of A. Let U (2) be a harmonic function in

{z] < kr (k£ >1), with the boundary value U(z) = log %L]QL on Gur

and U(z) =0 on the complementary arcs of @ on |z| = kr. Then since

log Ré;] [Zfl is subharmonic and vanishes on T,
Jw]| 1 2+ |w]? .
(39) log R -+ log 5 =< log —72R|wl <U(2) in A

Since U(z) > 0 in |z| < kr, we have for [z| <7, by (37),
Uiz) <- k+1 1[ Ukrei® dg

= k1 R+ lwl E+1
T k—1 27 fl 2R|w d) = -7 ®(R) T(kr) + const,
Orr
so that from (39),
' Mr) _K+1 .
(40) log R éK —) «(R) T (kr) + const.

From (38), (40), we have

1 M) E+1
41 AR T(r) + const < log ) <a(R) =1 T(kr) + const., (2 > 1).
Hence .
. 7— log log M(7) _ 13— log T(r)
42> hj& log 7 - TEE logr °

Now A, consists of a finite number of connected domains. Let AY be the
connected one, which contains z = 0.

We define §(») as follows. If the circle |z] =7 meets I', then the
part of |z] =7, which belongs to the boundary of A’ consists of a finite
number of arcs {¢{®} on |z| =7». Let r§¥(r) be the length of §». Then
we put 4(r) = sup 9D (7).

If |z] =7 does not meet I' and is contained entirely in A, then we
put 4(7) = co. Then I have proved® that

3r
log log MRﬂ = zf ;;;’;—) — const. V< B<D,
0

where (3 is any positive number less than 1.

B

Hence if we put a = 5 (0 < @ < 1),then we have from (41),

xr
log T'(r) = 7rf ilar —const. (0 < a < 1).
r0(r)
0

Hence we have

6) M. Tsuar, A theorem on the majoration of harmonic measure and its applica-
tions (which will appear in this Journal).
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THEOREM. 3. Let w(z) be one-valued and regular in an infinite
domain A and on its boundary 1", such thet |w(z)| > R in A and jw(2)|
=Ron T and M(r) = l\gax lw@],

dr, (Str)=S(r, A)).

Tr) =T(r,A) =f S(:)

Then

s loglog M(r) _ w— log T(r)
1}9,‘, log7 = lm s

M(r) kE+1

1 T(r) + const. < log — R <a(R)

a(R)

T(kr) + const. (k>1),

ar
log T(r) = nf LA const. (0<a<)
70(7r)

0
where
2R 1+ R

a(R) =
7. Extension of Theorem 1 and 2. In §1, we introduced a metric
in jw| <1 by
' (w, 0) =2{w] /A + [w].
Now
gw, 0) = log (1/|w]), |w]| = e~9®»
is the Greens function of |w| <1, with w = 0 as its pole, so that
(w, 0) = 2e-9@0 /(1 + e~ 20.0),
Suggested by this form, we will introduce a metric in a domain D on the
Riemann sphere K, which is bounded by p analytic Jordan curves C, ----,C,.
Let g(w, a) be the Green’s function of D, with ¢ as its pole. We define
the distance (a, b) of any two points @, b of D by
(43) (a, b) =2e-9@0 /(] + g~ 2@®) (0= (a, b) < 1).
Since g(a, b) = g(b, a),
(a, b) = (b, a).

Similarly as §1, we see that

log (1/(w, @)) = log ((1 + e %D [2¢-9(w,2)) > ()
and its normal derivatives vanish on C; and if w = w(2) is a regular function
of z, then

1 _ 4e20 - o
44) Alog— Wz, @ = 1+t +DCg]=0, (9=9w, @),
where
= (29} (?i : _ .
DEg]—<ax> + ay>’ (2 =x+ ).

Hence log (1/(w(2), @)) =0 is a subharmonic function of z. Let A be an
infinite domain on the z-plane and w(z) be one-valued and meromorphic
in A and on its boundary I', such that the value w(z) in A belongs to a
domain D on the w-sphere, bounded by p analytic Jordan curves C, ----, Cp
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and the value w (z) on I belongs to one of C,. We define O, Ar, L(1),
A7) as §2 and let

(45) = __|wre®|r
‘ S(r) l(D) ff A+ [wire®) |57 74740

pe the mean number of sheets of the Riemann surface generated by w=w(2)
on the w-sphere, where I(D) is the area of D.
We put for any e in D,

1 1
mir, & = o [ Vo8 do
0
T(r, @) =m(r, a) + N(r, a),
where (w, @) is the metric in D. Then as §3, we have

(46) m(r, a)+ 20D _ f f A Iog~~—1~a rdrdg

7 2w

nr ff a—+ e‘ﬂ)z DlgJrdrds, (9= glw, @)).

Hence if we put

47) Str,a)= 2 f j . f‘:zg)z DLy rdrde,
then A
w(r,a) + n(r;’a) - S(i;i a) ,
(48) T(r,a) =m(r,a)+ N(r, a) = frif;ji)dr + const.

Hence T(r, @) is an increasing convex function of logr. S(7, @) has the
following geometrical meaning. Let h(w, @) be the conjugate harmonic
function of g(w, @), then

(49 v(z) = e~ WHM), (9=g(w, @), h= kw, a)

is a regular function of z, which is many-valued in general. By a suitable
corss cuts, we change A, into a simply connected domain AY.  Since |v(2)]
<1, A, is mapped by v = w(2) on the lower half of the v-sphere, whose
area is 7/2. Since

o= 2 ([ 1
S(r,a) = ﬂffl"*l BE v dr dé,
Ap

S(r, @) is the mean number of sheets of the Riemann surface generated
by v = v(2) on the v-sphere.
Similarly as Theorem 1 and 2, we can prove the following theorems.

THEOREM 4. Let w (z) be one-valued and meromorphic in an infinite
domain A and on its boundary T, such that the value w(z) in A belongs to
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a domain D on the w-sphere, which is bounded by p analytic Jordan curves,
Ci, -, Cp and the value w (z) on I'" belongs to one of C;. Then T(r, a)
is an increasing convex function of logr, such that

T(r, @) = fM dr + const. = T(r)+ O (f L(r) dr),
7 7
0 To

where S(r, a) is the mean number of sheets of the Riemann surface genera-
ted by v = e 9™ opn the v-sphere and

1LT(r) =f S(r) dr,
0

7

where S(r) is the mean number of sheets of the Riemann surface generated
by w = w(z) on the w-sphere.

THEOREM 5,7
q 7
(p+q—2)T(r)§2N(r, aD—FA(r)-}-O( L(:) dr).

=1

I "
REMARK., We see easily
log (1/[w(re®),a]) = log (1/(w(re®),a)) + O(1),
so that Theorem 4 becomes
1 1 . "Lir)
%-flog mdﬂ + N(?’,d) = T(?’) =+ O(f r‘d?’)
[ 7o

In this form, Theorem 4 was proved by Y. Tumura.®

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

7) Y. Tumura, l.c.D.





