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1. Introduction. Let the Rademacher functions be defined by

(L1 Pp(x) =10 <2< 1/2), Pyx) = —1(1/2=<x< 1),

t Po(x + 1) = Pu(x), Pu(x) = Py(2"x) (n=1,2 -.--).
Then the Walsh functions are given by
(1.2 \[/‘o(.x,) = 1, \I"n(x,) = ‘/’n,('x)wng('x) . -9%,(:6)

for n = 2" 4 27 4 .. 4 2% where the integers #; are uniquely determined
by #is1 < m:. As is well known, {yr,(x)} form a complete orthonormal set,
and every periodic function f (x) which is integrable on (0, 1) can be
expanded into a Walsh-Fourier series

(1.3) f(x)~ ¢+ Cﬂll‘l('x) -+ cz'\[fzv(x) + e,

where the coefficients are given by

1
(1.4) Cn = f Y () f(%)dx (n=0,1,2---.).
0

Recently N.J.Fine [1] has introduced the notion of “dyadic group” and
shown that the Walsh functions {Y»(x)} reduce to the character group of
this group. Basing on this fact, he has succeeded in developing the theory
of Walsh-Fourier series analogously to that of trigonometric-Fourier series.
In the present paper we shall deal with the certain theorems on WFS®,
concerning the Cesaro summability, convergency, special series and the
convergence factors. The results obtained here are completely analogous
to those in the case of TFS.

Our proofs mostly depend on the fundamental results obtained by N. J.
Fine [1], so we shall set up his results which are needed in the sequel.

1°. The “dyadic group”’. The dyadic group G may be defined as the
denumerable direct product of the group with elements 0 and 1, in which
the group operation is addition modulo 2. Thus the dyadic group G is the
set of all 0,1 <equences in which the group operation, which we shall
denote by 4-, is addition modulo 2 for each element.

Let x be an element of G, x = {x,, 4, ----}, %, =0,1. We define the
function.-
(1.5) AMx) = 227",

n=1

‘The function A, which maps G on to the closed interval [0, 1], does not

1> In what follows, the periodicity with period 1 is assumed for any function.
2) we shall abbreviate “Walgh-Fourier series” as WFS and “trigonometric Fourier
series” as TFS.
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have a single-valued inverse on _the dyadic rationals; we shall agree to
take the finite expansion in that case. Thus for all real x, if we write the
inverse as u,

(1.6) Mp(x) =x —[x].
If x = {%} and y = {9,} are the elements of G, we have
a7 249 = {| % — yul ).

We shall abbreviate A (p(x)fp(¥)) as x{y for any real x and y. Then

if x= 22"”%, y = 22"’%, %, and v, = 0,1, we have by (1.6) and (1.7)

n=1 n=1

(18) x~i—y = Zz—nlxn‘—ynl-
n=1

If0<x<1,0=<h<1, then we have

(1.9) [(x L h)— x| < B

2°. For each fixed x and for all y outside a certain denumerable set,
the equation
(1.10> '\l"n(x—;—y) = ‘I”oa(x)‘lfn(y)

is valid.
3°. Let x be a fixed real number and let ¥y belong to a measurable set

A lying in the unit interval. By T.(A) we shall mean the set x { y,yc A.
Then T, is a measure preserving transformation, that is |7T,(A)| = |A4].
Therefore, if f(x) is integrable then for every fixed x

1 1
(1.11; ff(x-}-y)dysz(y)dy.
0 0

From this it follows that, for f(x) ~ 2 (%),
n=0

oo

(1,12, (x4 ) ~ 2 catraCh)Ya().

n=0
4°.  Partial sums and Dirichlet kernel. If f(x) has (1.3) as its WFS,

we shall set
n-1

1.13) sn(x) =su(x; ) = ZCk\lr,;(x). . (n=1,2,....).
k=0

The “Dirichlet kernel” of WFS is defined by
1.14) Dy(x) = Yo (x) + (%) + -+ + P (X),
then s,(x) can be writen as

1
(1 15) Sn(x) = f f(x -].— t)Dn(t)dt.
0

The size of D,(x) is given by
(1.16) | Da(%)| < 2/x (0< x< 1>,
The “Lebesgue constant”
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1
1.17) Ln=f |Da(t)| dt
3]
satisfies the relation
(1.18) L, = 0(log n).
If we write z in the from n = p-2* + g, 0 < g < 2% then we have for any x
(1.19) D, (x) = Da(2) Dp(2°%) + rp(2¥%) Do(%).

5°. “Fejér kernel’. The kernel for (C,1) summability (Fejér kernel)
is defined by

(1.20) K@) = = 3 Dy
k=1
For this kernel the following relations hold :
(1.21) Kunx)=0 (=012 ----,0=52<1).
(1.22) 201 K1 (%) = (1 4+ (X2 Kn(%) + 2" Dyn (x).
Let n=204 22+ .... +2% 9, >0, >---->n.20, and # =n—2™M,
D = pli-D 2% §=2 .... r. Then
(1.23) nKu (%) = 2 2"Wnoncty (D (5) + 2, #ODy (%),

i=1 i=1
For any non-negative integer » and any real a ( > —1) we shall define

(1.24) A® = (a + D(a +n2')----(a+n) CA® -1,

Then the kernel for (C,a) summability is defined by
1 n-1

(1.25) K (x) = A, 2 A®D, (%), n=12 )
n-1 %20

2. (lesaro summability of negative order. In a preceding paper [8]
we have proved that {n-*}, 0<a <1, is a (C, — a) summability factor
for the TFS of the integrable functions. In this section we shall prove that

the same holds for the WFS of the integrable functions.

THEOREM 1. Let f(x) be integrable and its WFS be

2.1) fix) ~ 2 cnrn(%).
n=0
Then the series
2.2) Do/ +1)>  O<a<l)
n=0

is summable (C, — &) almost everywhere.

The proof based on the following lemmas.
n-1

LemMa 1. Let H®(x) = > Yux)/(k+ 1% 0L a < 1. Then

k=0
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2.3) |H® (0)] < Agar-! (0 < x< 1),

Proor. The proof is quite analogous to that in the case of TFS (see
Salem and Zygmund [5]). For x <1/sn, we have

n-1

2.4) [H2(0)] < D21/(k + 1)% = O(n*~%) = O(x*~1).
k=0
In case n >1/x,
(1/z) n-1
(2.5)  H®(x) = 2 V(D[ + 10+ X Y@k +1)* =S+ S,
kE=(1/z)+1

say. From the fact above proved, we have S, = O(x*~!). By Abel’s trans-

formation,
n-—2

1 1
L = — . __NT,, ,
(2.6) S, (1§1[ CE L (k+2)a]T,c (%) + @ Tn ()
k-1
where Ty(x) = Z Yr;(x). Since Ti(x) = O(1/x) by (1.19), we have
J=Qz)+1
@.7 IS:| = = O(x*"1).

From (2.4), (2.5), (2.6), and (2. 7_) we have the lemma.
LEMMmA 2. For 0<a<1and 0< m=<mn,

2.8

2 ALY ‘l’z(x)l < Agxe! (< x<1).

k=n-m

Proor. For x<1/m,

n-1 n—-1 m
2.9 2 AL® 111rk(x)i AflzﬁllgAMZI/(k + 1)< Agm =< Aux®1
k=n-m k=n—m k=0
In case 1/m < x,
n-1 n-(1/x)-1
(2100 3 ACD Yo = >+ Z]Ag. ~9) (%) = Ur + U,
k=R-m k=n-m E=n-(1/x)
say. By Abel’s transformation and (1.19)
n—(1/x)-2
IUII = 2 IA( %- DD]+1(JC)|+ A(llmJIDn—tllx)(.x)l + Av(n_MIDn—m(x-)l
k=n—m
2 n—(1/x)-2 2
(2.1D s 2 lACEpl + - AGY + Af,. “
kE=n—-m
m—1 -
Aa -1 Aa, -
<4 -1 T m*
= x k%m k* x [x] x
< Agx*L.

On the other hand

3) Aa, ba, . denote the constants depending only on a.
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n—-1 a/x)

1
2.12) U< > Afo. < < Al
’ k=n-(1%) Ll 2‘ (k+1)“ *

Combining these results we have the lemma
We shall denote the (C, — «) means of the series (2.2) by N (x; 7).
Then

N@®(x;f) = ( = 2 AG® (k + D% (%)

ll

S A k4 D) f Vi ft) dt

n-=1 k=0

1 n-1 ) .
= AC® AR (k1) f Viu(x - 2 () at
- k=0

Il

f fx+ g ZA; )k + D=, (D).

Thus
1 .
2.13) N xs /) = f fx & HNWDAL,
where we set
1 S
2.1 N (8) = Zar DAGD (k4 1D (D).
- k=0
Then we have
Lemma 3. For 0< a <1,
(2.15) N®() < Aut®t - (0< < 1),
Proor. We write
1 (n/2)-1 n-1
NE(H) = g | 2+ 2 | A+ vewcy
(2.16) -1 k=(n/2)
= Pﬂ + Qﬂ)
say. By Abel’s transformation
n/2)=2
Pa = 5;__';) { 2 H(a)(t)lA" k- 1 I+ H%le(t)A(-—(nlzJ} *

Therefore we have by Lemma 1
-2

|l < e {Aate > ACEY] + At AL, |

.17 < A note- 'yl Z — + n-w}
{1 Z(niz) kw 2

< Aol
On the other hand using Abel’s transformation again, we have
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n—-2

Qn—A(lu) 2 {(k‘i'l)_ —(k+2)= } 2 ACD b st)+ x=ar A‘ ~a) 2 AL (D),
=1 k=(nizj J=(nj2) "=l k=(n2)
therefore
A n-1 k
[l = % { = k=t me) max | > AL A
@.18) T s e
éAmm/r?éak)in ;%)JA( 7 I\If’(t)'

Thus by Lemma 2 we have
(2.19) | Qn] < Aut*'.
From (2,16), (2.17) and (2.19) we get the lemma,
Let us now proceed to the proof of Theorem. By (2.13) and (2.14),

1
IN®Cx; )] < f x4 1IN dt,

and by virtue of Lemma 3; we have
1

(2. 20) sup| (Ng»x; 1) < As f f(x 4 t) t*-'dt.
0
Integrating both sides of this inequality with respect to x, we get

1 1 1
fsup|Ngg>(x.-f,>| dng.,[dx Ifx 4 t)[t2-1dt
0 0

1 1
@.21) =A¢ft“"1dtfﬂx-{'- £) dx
0 0

1
gA,f |£(x)|dx.

From this inequality (2. 21) we can easily deduce the conclusion of
Theorem 1. For example, we may argue as follows, Let us write
S (x) = g(x) + h(x), where g(x) is a polynomial formed by Walsh®functions

1

and % (x) satisfies the inequality f |r(x)]|dx< E[/As, & being a given

0
positive number and A, being the constant which appears in the right
hand side of the inequality (2.21). We shall denote the sum of the series

Zc,. 7%+ 1)~%J,(x) (which converges almost everywhere) by f*(x). Then

2.22) B = gR) + BKR),
where ¢g*(x) and A*(x) are defined by g and % in the same way as f* is defin-
ed by /. By (2.21)
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1 1
(2.23) fSl;!LP | N®(x5 b | dxéA,,f [h(x)1dx < &,
0
and so
1
@.20 f [ (o) | dx < &,

0
Therefore the measure of the set E(€) of points x on which sup| N@Xx : )}
n

>/ € or |[B(x)| >a/ €& is <2,/¢&. Since
(2.25)  N@®(x;f) —f¥x) = N (x:g9) ~g¥®) + N&(x; h) — (%),
we have outside E (&)
(2.26) lin}Hsmup IN® @) = @] = sup INP(xs D] + | F0D)] <2/
Since |E(&)] >0 as €->0, Theorem 1 is proved.

Theorem 1 holds in the case of multiple WFS,

THEOREM 2. Let f(x,, X4, - -, %) be integrable on the unit cube of k-dimensional’
Euclidean space and its WFS be

(2 27) f(xl, Kyy =y X)) ~ 2 Criymgy * """, '“k"l’nl (x)1p‘n2(x) te ‘l"ﬂk(x,h)

n1,n02, 0, Mg =0

Then the series

(2.28) Zcm; way s np A 1) 7003 4+ D)7 (1 4 1%y, (0 )rna( 2, ) - Yo, (%)

ny e - Np=0
is summable (C, — &, — a,, -+--, — O&) almost everywhere for 0 < a;, o,
Y a;, < 1.

3. Cesaro summabilityiof positive order. Walsh [6] proved the follow-
ing theorem :

THEOREM 3. If f(x) is integrable and if lim f(x) = s exists, then

T>Trq

@D O'anO;f) ->S.

In this section, we shall give an alternative proof of this theorem.

LEMMA 4. For n= 2, we may write
K;m(t) = (2n+ 1)/2 (0§t< 2—”'),

= on-2 (2—n =< < 2—n+1)
(3‘ 2) f— 2:1.——&—2 (2—n+i § t < 2—71.+i + 2-—15)’
=0 (2—n+i+2—n§t<2—n+i+l’ 7= 1,..-.’«”_1)‘

This is known (see Yano [8]).
LeMMA 5. Under the condition of theorem 3, we have
(3.3) . (X ) > s.

Proor. We may write

1
(3 4) 0‘21»(% :f) = ff(xU —;— t)Kgn(t) dt
0
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Thus by Lemma 4,
. on 41 = n-1 g—liyn—1
(3.5 Uzlb(xo;f): —_z_—ff(xo-f- t)dt+22‘”‘ f('r0+t)dt
0 —L
For given & >0, there exists an s, such that |[f (x[,-i- t) —s| <€ for
0 < |t] < 2-%. Therefore

n-1 2= +9-n

+1

lowm (% :f) — 5| < <ﬁ,,,_, lf(xa+t) —s|dt+ 222 |f<xo+t)—s|dt
i=0
o 9—iq —N
(3.6) <e<2 1. 2 gr-is) 2o +22 x4 2) — s|dt

i=ng+1
0
Sl

=&+ o).
Thus the lemma is proved.
Proor orF THEOREM 3. By virtue of (1.23), we may write

O'n(xg f) — S = ]7:‘ 22"’1 [f(xg+ 1) — S_j‘pu n(L)(t)Kzni(t)dt

i=1

1

3.7 1 2%‘>f"f(xo+t)~—s]Dzn ) at

i=1
0

= In+]n

say, It is obvious that
1 2-k
f [f(% 4 ¢) — sIDx(t)dt =2¢ f[f(xo 4+ t) — sldt = o(1)

as k > oo, Therefore J, is a weighted mean of a null-sequence, and it
is easy to see that the weights are distributed in such a manner as to
make the averages converge to zero with increasing #, that is
(3.8 Jn = 0(1).

On the other hand it was proved in the proof of above lemma that

1
GX)) f [f(%48) — s|Ku(t)dt = 0o(1)  as k> oo,

Therefore I, is also a weighted average of a null-sequence and by the
same reason as above it follows that
(3.10) 1, = o(1).

(3.8) and (3.10) prove the theorem.

ReMARk. 1°, In Theorem 3, if x, is a dyadic rational and 7(x, + 0)
exists, then it holds that
(3.11) an(X: ) DS+ 0
in fact if &, is a dyadic rational then %, -} ¢ lies in the right hand side of
xp for sufficiently small #, therefore the above proof shows (3,11). 2°. If
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f(x) is continuous in the interval (a,b), then the summability in Theorem
3 is uniform in the interval (¢ + &b — &) for any & >0. 3°. In the above
proof it was proved that

1
(3.12) [ [ (FCxo 1 ) — $)Kn(t)|dt = o(1).

More generally than Theorem 3 we shall prove following theorem.
THEOREM 4. Under the same conditions as in Theorem 3, we have for
a>0
(3.13) a® Xy f) >s.

Proor. We may assume that 0 < « < 1. The kernel K*(¢) of (C,a)

summability may be written as (cf, Yano [9; proof of Theorem 2]\

M3

K(d)(t) = A(W) Z Yrn®-q () { ZkA%L);)k”KA:H(t) + (2" —2)e

Af;é_llg K;" l(t) + A((, U_y an(t)[

Thefefore

r 23

: 1
lo$a5) — 51 < g = {2 wags | [ G0 =9 Keoldt
o
1
(3.14) gmAq D lf 1%+ ) — s)Kom,—1(E) | dit
Aa) n_ flf('fo-[—t) -—S|Dzn(t)dt }

By (3.12) and the relation [ 1f (% J- ) — s| Du(t)dt = o(1), the right hand

side of (3.14) is a weighted average of a null-sequence and it is easy to
see that the weights are distributed in such a manner as to wake the-
average converge to zero with increasing # (cf. Yano [9; proof of Theorem
3]). and the theorem is proved.

4. Convergence. In this section we shall prove two analogues of
Marcinkiewicz' theorem in case of TFS. (see Marcinkiewicz [2] and [3].)
THEOREM 5. Let f(x) be integrable. If f(x) satisfies
T
A1 A [ e+ w) — o | due = OCL/og 1/ 121
0 .
for every point x belonging to a set E of positive measure, then the WFES.
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[N
w
o

of f(x) converges for almost every point of E.

LEMMA 6. Under the hypothesis of Theorem 5, we can write

(4.2) (%) = g(x) + k%),
where 9(x) satisfies
(4.3) g(x+2) — g(x) = O(1/log 1/|%|)

uniformly in 0 <x <1, and h(x) vanishes on a perfect subset P of E and
satisfies

1
4.4 f M{—D'—dt
0

Jor almost every point of P.

This is due to Marcinkiewicz [2: Lemma 1 and 27].

LemMa 7. ZLet g(x) be of L* and its WFS be g(x) ~ > dn ¥u(x). If

n=0

(4.5) D dilogn <
n=3

o

then 2 d (%) converges almost everywhere.
ne()

This is due to Paley [4]. (The alternative proof will be given in §6,
Theorem 9).

LeEMMA 8. Under the notation of Lemma 7, (4.5) is equivalent to the
following inequality :

1 1 - 1’
(4.6) fdx [9<"+’f.)t—9(x.)]f dt < .

0 0

Proor. By (1.12)

(4.7) g(x 1) — g(x) ~ 2 [Yult) — 11daPra(x).
n=0
“Therefore by Parseval’s theorem
1 o
(4.8) f Loz 4 1) — gC0Tdx = 3 [1 — Ya(D Td2.
n=0
0

If we write n=2"+Fk, 0k < 2%, since ¥,(¢) is equals to 1 in the
-interval 0 <t < 27%-!, we have

1 2 1 .

e

2—k-l
Tt is easily verified that there exist two constants A, B (0< A < B) such
+that
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-1 "Ey2
(4.10) Alogn<f—[1—~_—¥’”’1@dt< B logn.
0

Therefore we have

11 - 12 ot 1 2
(4.11) f [ [ﬁﬁ_j)t :(1«(_36);7 dx dit :2 d'ff g":..\_f‘l‘.(_t)_] dt
13

n=9

0 0

provided that either side of (4.11) exists.

(4.11) and (4.10) prove the lemma.

Now the proof of Theorem 5 is immediate in fact, by Lemma 6,
f(x) = g(x) + h(x) and g, h satisfy (4.3) and (4.4). It is easy to see that
g(x) satisfies (4.6), and so the WFS of g(x) converges almost everywhere
by Lemma 7 and 8. On the other hand i(x) satisfies the Dini’s condition at
almost every point of P, and so the WFS of &(x) converges at almost
everypoint of P (See Fine [1; Theorem XII]). Therefore the WFS of
f(x) = g(x) + h(x) converges at almost every point of P, and the proof of
theorem is completed.

THEOREM 6. If f(x) satisfies

1 1 -
(4.12) ff'ﬁﬁf)—ftf(x O gyat< oo @z=p=1),

0 0
ithen the WFS of f(x) converges almost everywhere.

Proor. The proof of this theorem is almost identical to that of
Marcinkiewicz [3], but for the completeness we shall repeat it.

If f(x) satisfies (4.12), we shall say that f(x) satisfies the condition
LA=sp=2).

First, we shall prove that if f(x) satisfies the condition I,(1<p <2)
then

11 . 11 )
ff_l[(x+ ti‘ —f(x]* dxdt éf_[ 1A% + t_;—f(x)l’ dt dx
(4.13) 0 0 0 0

11
+ff If(x—t)t—-f('x)l" dt dx,
00

holds true.
In fact, by (1.8)
O=<x—t=<x-it¢ for0st=<x<1

and
0<t—x=<xtt for0<x<it<1.

1 .1 . 1 z
0 0 0 0

“Fherefore

x4t
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fflf(t) (x)l"

1 &
(4.14) §fdxfm>{__§ﬂtdt+fdxf lf(t)t:j;gx)lp o
0 0 z

1 x 1 1-r
zfdxf lf(x—t>t—f(x)l1 dt+fdxf If(x+t)t—f(x_>l” dt
0 0

0 0
1 pl . ’
éf mx_t)t—foolp dxdt+ff |f(x+t)t_f(x)|2 dx dt,

and this proves (4.13).
If f(x) satisfies the condition 7, then, since it is obvious that

1 .1
it follows that
1 L1
(4.16) ff If(xit)t—f(xﬂl dt dx < oo.

00
We shall say that f(x) satisfies the condition i,, if f(x) satisfies (4.16).

Now, if f(x) satisfies L or I;, then Dini’s test or Lemma 7, 8 shows
that the WFS of f(x) converges almost everywhere.

For p, 1< p< 2, following to Marcinkiewicz, we shall argue as
follows. We can assume without any loss of generality that f(x) is non-
negative. Let us set .

417 An_{x fx)=n}, By={x;n< f(x) <n+1}, C,={x;/(x) >n+1},
- {t x+ te Cn}
We may suppose |A.] > 0.

Moreover let us set

(4.18) fl(x) =fx) (xe& AnUBn) ,f1(x) =n+1 (x gAﬂ U Ba),
' 7ix) = £x) = i),
If f(x) satisfies the condition 7,, then for almost every x

(4.19) f IREFD RO 34 ¢ o,

and for almost every x of A,

(4.20) flf(x—{-i)t" SOOI 0t < oo,

Since [f(x4-t) —f(x)| =1 for x& A,, t <€ C,, we have for almost every
x of A,
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(4.21) f .Jf_<x.££t2,_:£@2_l,, dt < o
Cx

On the other hand, since ‘for every ¥, x
(4.22) IAx) — 0] = /200D — fLL0)],
we have by (4,21)

flfz(x-i- ) —fAD gy _ f [ZEER| P
¢ t
Cr

0
for almost every x € A,. Therefore the WFS of f,(x) converges @at almost
every point of A, by Dini’s test.
Since (4.22) holds for f, instead of f, fi(x) satisfies the condition jp
and is bounded. Hence fi(x) satisfies the condition 7, and so the WFS of
f1(x) converges almost everywhere by Lemma 7 and 8.

It is proved that the WFS of f(x) converges at almost every point of
A,. Since |A,| >1 as n > o, the proof of the theorem is completed.

5. Special series. In this section, we shall study the property of a
special series 2 c¥ra(x), where {c,} is a given sequence which satisfies
n=0
suitable conditions. The results obtained here are quite analogous to these
in the case of TFS.

THEOERM 7. If ¢, >0 and {c.} is quasi-convex, the series

(5.1 Z c¥rn(x)

n=0
converges, save for x =0, to an integrable function f(x), and is the WFS of
f(x).

For the proof, we need the following two lemmas,

LemMA 9. If K, (x) is the “Fejer kernel” defined by (1.23), then

1
(5.2) f [Kn(x) |dx < 2.
0

Proor. Using the notations in (1.23)-(1.26), we have

1 r 1 ” 1
/5.3) n f [ Kn(0)|dx < >, 2 [ Ko, (%) dx + > 0D | Dy(x)dx.
0 =t 0 =t 0
Therefore the equalities

1 1
szn‘(x)dx = 1, szni(x>dx = 1
0
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prove the lemma.

LeEMMA 10.  If ¢y = Cusr > 0 and the series 2 oV n(X) converges, save

n=0
Sfor x =0, to an integrable function f(x), then the series 2 cra(x) is the

n=0

Fourier series of A(x).

Proor. For any fix m, the series > c,¥, (%) (1 —¥,u(x)) converges

n=0
uniformly to f(x)1 — V¥.(x)), in fact by an argument as above we have

q q
l (1 - "l/‘m(x)) Z c,,,\[fn(x,) \ ét 1 - "l"m(x) 2 Aan'n+l(x)
n=p n=p

+ NeDgs1(%) — Aphp(2) |
é ll - '\P‘m(x) |4Cp/x.

Therefore it follows that

1 1
f S(x)dx — f T m(x)d% = Co—Cim.
0 0

Since ¢,, >0 as m -> o, we have

1
ff(x)dx = €,
0

and then

1
[ FEn()dE = Co.
0

This proves the lemma.
We shall prove the theorem. Applying Abel’s transformation twice
we obtain
n-3

(5.4)  su(x) = 2 (B+ DA% Ko s(%)+(B—DACH K 1(%)+Cn1 D (%).
k=0

Since |Dn(%)] < 2/x and |K,.(x)]| < 2/x (0< x< 1), the last two terms on

the right tend toQwith 1/# for x=0, and therefore s,(x)>f(x) = 2 (k+1)

k=0

A%, K, (x). Since
| = 2 (k + 1DA%| Kiar(x) |

k=0

and the last series integrated over (0,1) gives the finite value 2 2+ 1D

k=0
Azc, f(x) is integrable.
The remaining part of the theorem is immediate by Lemma 10,
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In particular, the series

(). SRAcl
(5.5) EE (@ >0), 2 logn @ €t

are the Fourier series of integrable functions.

THEOREM 8. If ¢c(x), x =0, is positive and convex function, c(x) >0 as

x> + oo, and if for ¢. = c(k), k(. — Ci+1) IS MON-increasing and 2 Cp = 00,

n=0
then
1/x
(5.6) S ~f trc(t) c(t + 1)1dt ~f tlc()|adt (x> +0),
where
f(x) = 2 Cn\l'n(x).
n=0
Proor. Let us put x, = 1/2?. We have obviously
2P 2P+1_q
(%) = 2(5#& (xp) + 2 e (xp) + -
k= 2
201 2Pl
(5.7) = 2 (e — CoPg—1) + 2 (Copar — Cop+1gy) + -+ -
k=0 k=0
WP=1 o1y
= > (k+ 1A + > kDAt
k=0 k=0
From the assumptions on the sequence {c¢,}, it follows that
w 9P-1_ WP-1_;
(5.8) > ke DAGar s <SS ) <2 2 (k4 DAG.
r=0 k=0 k=0
Let x, be 2= < x, < 272+1, Then, since Y¥:.(%,) = Y(xp) (0 <k < 27),
PLESY
flxp) = :E:Clvyl(ﬁb) + :EE Y %p)
k<0 k= 31’
(5.9) 2P-1
= ZCI‘I’L/xp) + 2 V(X)) .
k=2l
Remembering that D,»(x,) = 0, we have
2 (%) = 2 Diar( % )AC; — Dop(%))c,2
k=P k=3P
(5.10)

= 2 DL;+ l(x;))AcL .

k=2
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If we write k=720 +5, 0<s<2’, r=1,2 ~---.. then by virtue of
(1.22) and the fact Dp(x,) =0, we obtain

o 2P-1

2 Disi(xp)Ac, = 2 2 {Don(5,)D (2 %))
. k=2 r=1s=0
(5.11) . - aPey
-+ ‘lfr(sz;;)Ds.p1(%)}Acr.zp+s = 2‘ 2 \l’r(sz;)D.xw1(x1/p)ACr-2"+s.
r=1 s=0
Thus we have
2P

! > Dini(%y) Acy

-
=2
x=2" r=1

(5.12) -

=2

r=1

2 ACragp4sDss 1(x1;)
$=0

2P—1

2 Cr-zl’-!-s‘l’.\'( x;o)

$=0

By a same consideration as in the calculation of (5.7), it follows that

2Py

2 cr.sz\Ifs(x,;) = 2 (s + 1) ACrup4s.

§$=0 $=0

Therefore, by (5.8), (5.9) and (5.13) we have for 2?7 < x < 277+!

PLES

(5.13)

2P-1 al-y

(5.14) g Skt DAGSAD S22 (k4 DAG.
k=0

k=0
The relation (5.6) can be deduced from (5.14) and the assumption on
<(x) as in Zygmund [10; p. 1557, and the proof of Theorem 8 is completed.

From this theorem we have, in particular, >, ¥(x)/n* ~x%-1 as
n=1

x>+ 0for0<a<1, and

(5.15) 2 Y(x)/log k ~ 1/ x logx

k=3

as x> + 0.

6. Convergence factor. It was proved by Paley [4] that {1/log"?(n+2)}
(1 <p =<2)isthe convergence facter for the WFS of functions of L? class.

In this section, we shall prove that {1/log'2(k + 2)} and {1/log (k& + 2)}
are the convergence factors for the WFS of squarely integrable functions
and integrable functions respectively. The proofs are quite analogous to
those in the case of TES. (See Yano [7].)

Let f{x) be an integrable function and its WFS be

(6.1) (%) ~ 2 cara(x).
n=0

Lut us put
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(6.2 si(x) = —_ % ,
) =2 fog (b 72y Y%
n-1
(6.3) sn(x) _2 logl“(k+?) i X).

Then we can prove following theorem.

THEOREM 9. 1°. If f(x) € L%, then
(6.4) f sup|s;(%)|dx < A f /0l 2dx,

where A is an absolute constant.

2°. If f(x)log(1l +f*(x)) € L, then

1 1
(6.5) [ sup1sicmlar < A [ xollogl + Aexsax + B,
) 0 0

where A and B are absolute constants.

3°. If (x)& L then

1 1
(6.6) {fsgp[s;(x)vdx}urgA, KDldx  (0<7r<1),
0

0
where A is a constant depending only on 7.

LemMA 11.  Let g(x) be an integrable function and g*(x) be defined by

h
6.7 g*(x) = sup ?%if lg(x + t)]dt,
0<h<1
—n
then we have
13
(6.8) sup 1 lgCx 4 )| dt < 29%(x).
o<ny B
0

Proor. Let us denote the characteristic function of the interval
0 <t =<h by p(t), then

] 1 1
(6.9) fIg(x-f-‘t)ldt=fph(t)|g(x-f-l)ldf=fp(x—f-‘t)|g(t)|df.

0 0
The functlon pu(x4t) is equal to 1 only for the value of ¢ for which

0=<x- ¢t <h and vanishes elsewhere. Let x = 2 X,/2" and t = 2 tn/2" be

n=1 n=1
the dyadic expansions of x and ¢ respectively, then by virtue of (1.8)

x4t =2 | %0 — ta] /27

n=1

Therefore, if ¢ satisfies the inequality 0 < x - ¢ <%, then
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n=1 2

From this it follows
x—h<t=<x+h

From these considerations, we have
1 r+h

(6.10) f oz L Dlg(t)ldt = f |Ct)|dt < 2o x).
0 BN

This proves the lemma.

LEMMA 12. If X.(t), 0<t <1, n=0, 1,2,----, are periodic functions
with period 1 and absolutely continuous and satisfy the inequalities

1 1
(6.11) a) f|xn(t)|dt§1<l, b) ft 4 xo|a sk,
0 0

K, and K, being independent of n. Then

1
(6.12) sup | f oCx -t | dt = Agi(o),
0

where A is independent of g.

Proor. Using Lemma 11, the proof is quite same as in Zygmund's
book [10; pp.246-247].

LeEmma 13. Let

n-1
. e Yo ()
(6.1 Hit = 2 Toate + 25
then
(6.14) |Ho(B)| < Xatt)  (0<2<1:;72=012---,)
where X,(t), n=0,1, ----, satisfy the conditions in the preceding lemma.

Proor. Using the relation (5.15), the proof is quite same as that in
Yano [7; Lemma 17.

LEmMA 14. If g(x)EL, then

1
(6.15) Sup\fg('t)Hn(x-i— tdt | < Ag*(x),
0

where H,(t) is defined by (6.13) and A is independent of g(x).

This is obvious by Lemma 12 and 13.

Proor oF THEOREM 9.1°. Let n(x), 0 < x < 1, be a measurable function
taking non-negative integral values less than ». We have to prove that for
any g(x) € L? it holds that
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B} -1 1 1/2 1 1/2
0

k=0
0

We may Wr1te

) (%)
6.17) J= f (x)Z pk(x>71—0‘g"—’§,§—+3dx,
where p.(x) (k=0,1,2,----, n—1) are the characteristic functions of the

suitable sets
O1DD=E,2E> - DE,,.

Then

g _ Yt
J= f @) dt f (/<x>2p‘<x) Ties i @

(6.18) n-1 iz 1 £) 2 12
= f‘(l‘)dt fdt f (%) X )——5————~—:dx .
f [ ngW Vog (& + 2) D
1
Since f V(X Py ) dE = V(B V() f VOV dt,
0 0

the square of the last factor of (6.18) is equal to

1 1nrn-1

p)
9P Dby -FEEFI) ga
ffzﬂ BEERY Jog (k + 2) MY
n-2 1 1
(6.19) =Zff.f/(x)!J(yvA('i’h(x)pk(y))Hk”(x_i_y) dxdy

1 1
+ f f ICOG DX s (DI H( % 1 ) ddy

=1+ L.
Now
ffq(xw(y)m(y)Am<x>Hm(x+y>dxdy
(6.20) 2
+ Zffg(x)!)(}’.)ﬁm1('x)Apzc(-y)Hk+1(x"i‘y)dxdy
=I+1I.
By Lemma 14, we get
n—9
(6.21) A E o(x)Apk( x)dx f 9D (3) Hygr (% - 3)dy

0



9249 S. YANO

n-z

<A | e Ap(0g*(x)dx

k=0
0

1 1
<A f g0 gF(x)dx < A f G Cx)dx.
0 0

Similarly we have

1 1
(6.22) (/] <A f gmdx, L] <A f g (2)dx.
0 0

From (6.18), (6.19), (6.20), (6.21) and (6.22), we have (6.16) and

Theorem 9, 1° is proved.
The remaining parts of the theorem can be shown by Lemma 13 and

the maximal theorem of Hardy and Littlewood.

By (6.4) and (6.6), we deduce that {1/4/log(z + 2)} and {1/log(% + 2)}
are the convergence factors for the WFS of squarely integrable func-
tions and integrable functions respectively.

The failure of the inequality

1
(6.23) f supjsi (D) |dx < A f (x| dx

0
can be seen by the example

o . Ya(x)
/(%) ~n2=3 log log n

The corresponding example for TFS was given by Zygmund {10].
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