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1. Introduction. Let the Rademacher functions be defined by

(Λ n 9V*) = l ( 0 ^ * < l / 2 . ) , W * ) - -Kl/2 Sx< 1),
U * 1- ; 9V* + 1.) = ^oW, ?>nOO = <Po(2ux) C« = 1,2, . .).
Then the Walsh functions are given by
(1. 2) ψy,00 = 1, ψn(ΛΓ; = Ψnι(x)Ψn£x) ' ' ><P»r(X)
for w - 2m + 2m 4- -f- 2% where the integers M* are uniquely determined
by ni+i< n>. As is well known, {ψv»(#)} form a complete orthonormal set,
and every periodic function fix) which is integrable on CO, 1) can be
expanded into a Walsh-Fourier series
(1. 3) Ax) ~ Co 4- CiΨiOO 4- caψ*(x) +
where the coefficients are given by

C1.4) cn = f ψ Λ (x)f(x)dx (» = 0,1,2 - O.

o
Recently N.J. Fine [1] has introduced the notion of "dyadic group" and

shown that the Walsh functions {ψn(x)} reduce to the character group of
this group. Basing on this fact, he has succeeded in developing the theory
of Walsh-Fourier series analogously to that of trigonometric-Fourier series.
In the present paper we shall deal with the certain theorems on WFS^,
•concerning the Cesaro summability, convergency, special series and the
convergence factors. The results obtained here are completely analogous
to those in the case of TFS.

Our proofs mostly depend on the fundamental results obtained by N. J.
Fine PQ so we shall set up his results which are needed in the sequel.

1°. The "dyadic group". The dyadic group G may be defined as the
^enumerable direct product of the group with elements 0 and 1, in which
the group operation is addition modulo 2. Thus the dyadic group G is the
set of all 0, 1 sequences in which the group operation, which we shall
denote by 4-? i s addition modulo 2 for each element.

Let Ίc be an element of G, x~~ {#,, x->, ••••}, xn — 0,1. We define the
function-

(1.5; 2
TO = 1

The function λ, which maps G on to the closed interval [0, 13, does not

1) In what follows, the periodicity with period 1 is assumed for any function.
2) we shall abbreviate "Walsh-Fourier series" as WFS and "trigonometric Fourier

series" as TFS.
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have a single-valued inverse on the dyadic rationale; we shall agree to
take the finite expansion in that case. Thus for all real x, if we write the
inverse as μ,

(1.6) X(μ(x)) = * - M .
If x = {xn} and ~y = {yn} are the elements of G, we have

Ci.7) ϊ+y = ί\χn-yn\}.

We shall abbreviate \(μ(x)-]-μ(y)ϊ as Λr-f-J' f ° r a n v r e a * # and y. Then

if x = 2 2 ~ ^ , ^ = 2 2~^>, #n and ̂  = 0,1, we have by C1.6; and cl. 7)
n=ι n=i

CO

(1.8; χ+y = ̂ Σ2-»\xn-yn\.

If 0 ̂  x < 1,0 ̂  h < 1, then we have
α.9) \(x+h)-x\Sh.

2°. For each fixed x and for all j> outside a certain denumerable set,
the equation

(I. 10 i ψn{X + JV) = ΨnWψn(y)
is valid.

3°. Let ΛΓ be a fixed real number and let y belong to a measurable set
A lying in the unit interval. By TX(A) we shall mean the set x +y,
Then Tx is a measure preserving transformation, that is |Ta;(A)| —
Therefore, if f(x) is integrable then for every fixed x

( 1 . 1 1 ; ί f(x + y)dy - Γ f(y)dy.
o o

From this it follows that, for f(x) ~ 2 cnψn(x),
n = 0

oo

CL 12 > /CΛΓ + h) - 2 Cnψn(h)ψnCx)

4°. Partial sums and Dirichlet kernel. If /GO has (1.3) as its WFS,
we shall set

n-i

(1.13) SW(Λ;; = sn(x ; / ) Ξ 2 ckψk(x). (n = 1,2, . . . . ; . .
fc=0

The "Dirichlet kernel" of WFS is denned by

(1.14; A.0O = ψoU) + -ΨΊCΛ:) + + ψn-ι(x)>
then Sn(x) can be writen as

(1.15) snίx) = ί f(x-i-t)Dn(t)dt.

0

The size of DnC
χ) is given by

(1.16) |Aa(#)| < 2/ΛΓ CO
The "Lebesgue constant"
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(1.17) Ln= \Dn(t)\dt* = f \Dn(
θ

satisfies the relation
(1.18) Ln = O(log n).
If we write n in the from n = £ 2fc + q, 0 < # <! 2fc, then we have for any x
(1.19) Λ»00 = D2k(x)Dp(2kx) + ψj(2lΰx)D£x').

5°. "Fejer kernel'. The kernel for (C,l) summability CFejer kernel)
is defined by

(1.20) ΐrn W = — "Σ DJCCX) .

For this kernel the following relations hold:
(1.21) K*>(x)>0 (n = 0,1,2, ••••)0$K 1).
(1.22) 2u+1K2n+ι(x) = (1 + ψw(x))2nK2n(x) + 2nA" 00-
L e t n = 2 W 1 -f 2 W 2 + . . . - + 2W» , n τ > n 2 > > nr ^ 0, and nf ^ n — 2n\

nco == Λ(ί-i) _ 2»«, / = 2, , r. Then

(1.23) nKn(x) - 2 2niΨn-nίi-) (x^niCx) + 2

For any non-negative integer w and any real <x C > — 1) we shall define

Cl.24) ϋc,-) = Cg + DCg+ff .fα + iQ , AC.) = j .

Then the kernel for (C,^) summability is defined by

(1.25) K^Kx) = "^.T- 2 ^ Λ - i ^ ( ^ ) . (» = 1,2, - )
w- 1

2. Cesaro sumniability of negative order. In a preceding paper [83
we have proved that {n'Λ}7 0 < a < 1, is a (C, — α) summability factor

for the TFS of the integrable functions. In this section we shall prove that

the same holds for the WFS of the integrable functions.

THEOREM 1. Let fix) be integrable and its WFS be

(2.1) AX) ^^?Cnψn(X).
n = Q

Then the series

,2.2) 2 cnψndx)I(n + 1 )• CO < a < 1)

zs summable (C, —α) almost everywhere.

The proof based on the following lemmas.

LEMMA 1. £*f H^(x) - 2 Ψic(x)/(k + 1)*, 0 < α < 1.
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(2.3) \

PROOF. The proof is quite analogous to that in the case of TFS (see
Salem and Zygmund [5]). For x<^l/n, we have

(2.4) Ifl

In case ^ >l/x,

(2.5)

say. From the fact above proved, we have Si = Oζx*'1). By Abel's trans-
formation,

fc-1

where Tfc(Λr) = 2 Ψ J ( 4 Since Tfcrt) = O(1/Λ:) by (1.19), we have

(2.7) |S 2 |

From (2.4), C2.5), (2.6), and (2.7.) we have the lemma.

LEMMA 2. For 0< a < 1 and 0< ni^n,

(2.8)

PROOF. For

(2.9)

x< 1).

2 ^rX^ +
Jc=n-m

In case 1/m < x,
n-l n-j x/x)-!

(2.10) > A^"^ ylrι(χ) = >

say. By AbeΓs transformation and (1.19)

w-Cl/aj)-2

1*^11 ^ / . \ SLrt_Jc_1U7t:+ϊ{X )\ -f Λ(;i/a;5ljL'w-Cl/*Λ ^ ' m ' »-»

(2.11) ί n-fc-1 I + .̂ -^α/*) ~̂" r w

m~

On the other hand

3) v4Λ, jβα, ... denote the constants depending only on a.
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Combining these results we have the lemma.

We shall denote the (C, — a) means of the series (2.2) by N£Kx 0

Then

N^^ (x' f) ~ —yΓΓz—T~ ^^] ̂ 4^~Λ^ Γ^ -}- ~L)~ac MrΊcζx)

fc = 0

n ' 11 Γ

0

J n~1

Thus

(2.13)

where we set

(2.14)

Then we have

LEMMA 3. For 0 < a < 1,

(2.15) iVg°W ^ A***"1 (0 < t < 1).

PROOF. We write

1_

C2.16) " " Λ»~-"ι

say. By AbeΓs transformation

Σ HΆ\\
fc=0

Therefore we have by Lemma 1

Σ Afc-L/

(2.17) ^ Λ w / "1 { Σ -^ΓΓ + ^"Λ|

On the other hand using Abel's transformation again, we have
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in=Aτψ 2 {(*+irβ-(*+2)-«} 2 Attu
fc«Cn/s)

therefore

(2.18)
^ Γ { 2 &-*-1 + W max 2 K'-V-

max

Thus by Lemma 2 v̂e have
(2.19) |QB | ^AΛP-\

From (2.16), (2.17) and (2.19) we get the lemma.
Let us now proceed to the proof of Theorem. By (2.13) and (2.14)3

and by virtue of Lemma 3; we have

(2.20) s u p | ( Λ £ >ΛΓ f ) \ a ff(x4- O f*-W.

o

Integrating both sides of this inequality with respect to x, we get

ίsupl M«Xx:f)\ dx^ΛΛίdxί [fix+tϊ^^dt

o o o

= AΛ ί t«-1 dt ί fix-j-t)dx(2.21)

\f(x)\dx.

From this inequality (2. 21.) we can easily deduce the conclusion ot
Theorem 1. For example, we may argue as follows. Let us write
fix) = g(x) + h(x), where #00 is a polynomial formed by Walsh*functions

and h(x) satisfies the inequality I \h(x)\dx< £/AΛ, 8 being a given

o
positive number and AΛ being the constant which appears in the right

hand side of the inequality (2.21). We shall denote the sum of the series

2 ^ ( » + l)-*ψn(x) (which converges almost everywhere) by/*(#). Then

(2.22) /*00 = g*tx) + h*(x),
where g*(x) and h*(x) are denned by g and h in the same way as /* is defin-
ed by fm By (2.21)
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(2.23) ί sup I N&Xx,- h) \ dx S Aa ί \h(x) \dx<βJ

0 0

and so

(2.24) ϊ\h*(xΆdx<£.

o

Therefore the measure of the set E(£) of points x on which &\xp\N%\x; h)\>
n

>^/T or \h*(x)\ >+/6 is <2 v

/ f . Since
C2.25) N^(x f) -/*(*) = W*Kx:g) - g*(x) + N^Xx
we have outside #C£)
(2.26) lim sup |iVg ̂ ^ ; /) _ f*(x) | ^ sup | Wn*\x h) \

M->oo W V

Since 1^(5)1 ->0 as £->0, Theorem 1 is proved.
Theorem 1 holds in the case of multiple WFS.
THEOREM 2. Letf{xlfx2} -',XJC) be integrable on the unit cube of k-dimensional*

Euclidean space and its WFS be

(2. 27) /(tfi, #2, , #*) ~ 2 Cwi' W2' y »*^»

T/Ϊ^W f/ẑ  series
oo

("2.28.) 2 c «i ,«„ -,nk(n + l r β l ( w + l)-α52 (w + l /

is summable (C, — ̂ i, — ̂ i», •• , — #&) almost everywhere for 0 < cί1} a2f

••••, α f c< 1.
S. Cesaro summabilityjof positive order. Walsh [6] proved the follow-

ing theorem:

THEOREM 3. if fix) is integrable and if lim f(x) = 5 exists, then

C3.D σ n<>6 ;/)-»*

In this section, we shall give an alternative proof of this theorem.

LEMMA 4. For n^2, we may write
K2Λt) - (2n + l)/2 ( O S K 2-w),

_ 2»-a (2-w S * < 2"w+1)
(3.2) = 2»-i-z (2-n+* <Ξ t < 2~n+i + 2~n),

= 0 C2-w+ί + 2-Ji ̂  ί < 2- n + f + 1 , 1 = 1, , Λ — IX
This is known (see Yano C8]).
LEMMA 5. Under the condition of theorem 3, we have

(3.3) ov(*b;/)->s.

PROOF. We may write

(3. 4) eX3»(tf0 f) = ί /(ΛΓo + t)K2n(t) dt.
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Thus by Lemma 4,
,2-n

(3. 5) σ2n (Xo f) = 2 / /('*o + ^)Λ + 2 2 ί " 2 / /(ΛΓo 4- O ^
o 2-ι

For given £ > 0, there exists an ^ 0 such that 1/(#Θ4- t) — s| < £ for
0 < |f| < 2"Mo. Therefore

(3.6) < £ l ^ — + 2 2'"ί+2) 2-» + 2 2 -2 / I/Ĉo + ί) -

SHo(l).
Thus the lemma is proved.

PROOF OF THEOREM 3. By virtue of (1.23), we may write

(3.7)

say. It

<r,(*b, / )

is obvious

r

Ξ /» + /„

that

-70
/
0

4- ί) -

I C/(Λb 4- ί ) - 5] A M * ) <if - 2* / C/CΛΓO + ί ) - si dt = 0(1)

o o

as & -> oo. Therefore /w is a weighted mean of a null-sequence, and it
is easy to see that the weights are distributed in such a manner as to
make the averages converge to zero with increasing n, that is

(3.8) Λ = o(D.
On the other hand it was proved in the proof of above lemma that

(3.9) j \f(xo 4-1) - s\K&(tϊdt = 0CD as k -» oo.

o
Therefore 7W is also a weighted average of a null-sequence and by the
same reason as above it follows that
(3.10) In = <K1).

(3.8) and (3.10) prove the theorem.
REMARK. 1°. In Theorem 3, if x0 is a dyadic rational and/(^04-0)

exists, then it holds that
(3.11) σn(xQ -J) ->/(#0 + 0)
in fact if x0 is a dyadic rational then x0 4-1 lies in the right hand side of
Xo for sufficiently small t, therefore the above proof shows (3.11). 2°. If
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f{x) is continuous in the interval (a,b), then the summability in Theorem
3 is uniform in the interval (« + £, b — β) for any £ > 0. 3°. In the above
proof it was proved that

(3.12) I I (fίχ0 + t) - s)Kn(t)\dt =

b
More generally than Theorem 3 we shall prove following theorem.

THEOREM 4. Under the same conditions as in Theorem 3, we have for
a > 0
(3.13) <r

PROOF. We may assume that 0 < α < 1. The kernel Ki"\t) of
summability may be written as (cf. Yano [9; proof of Theorem 2~D

^+ l/iΓ,+ 1(^ + (2»« - 2).

+ A^-υ^D^Cί)}.

Therefore

0

(3.14) + 2"<A%r-\}_.J l/(*ό + O - s)«p.-iCO I
0

\/(x0 + ί)~s\ D

By C3.123 and the relation / |/(*b-ί- O - s ID^CO* = ^d^. the right hand
ό

side of C3.14J) is a weighted average of a null-sequence and it is easy to
see that the weights are distributed in such a manner as to wake the
average converge to zero with increasing n ("cf. Yano [9; proof of Theorem
31), and the theorem is proved.

4. Convergence. In this section we shall prove two analogues of
Marcinkiewicz' theorem in case of TFS. (see Marcinkiewicz [2] and H3H.)

THEOREM 5. Let f(x) be integrable. Iff(x) satisfies

C4.1) - ~ I \Kx + u) -fix) I du = OCl/log 1/1 ίD

o
for every point x belonging to a set E of positive measure, then the WFS-
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-off(x) converges for almost every point of E.

LEMMA 6. Under the hypothesis of Theorem 5, we can write
(4.2.) Kx) = 9Cx) + h(x),
where <7(X) satisfies
(4.3.) 9(x+O-g(x) = O(l/logl/|ίD
uniformly in 0 <Ξ x <Ξ 1, and h (x) vanishes on a perfect subset P of E and
satisfies

•C4.4)

0

for almost every point of P.

This is due to Marcinkiewicz [2: Lemma 1 and 2].

oo

LEMMA 7. Ze* #(*) ^ of LΔ and its WFS be g(x) — 2 »̂ ΨΛOO.

(4.5.) 2

dnψn(x) converges almost everywhere.
•ft«=0

This is due to Paley £4]. (The alternative proof will be given in § 6,
Theorem 9).

LEMMA 8. Under the notation of Lemma 7, (4.5) is equivalent to the
following inequality:

C4.6.)

0 0

PROOF. By (L 12)

• (4.7) g(x+t)-

'Therefore by ParsevaΓs theorem

•C4.8)

1 oo

f ίg(x + t)- g(x)Jdx = 2 D - ΨMJdξ.
J w=0
0

If we write n = 2fc + k', Q^k' < 2fc, since ψn(t) is equals to 1 in the
interval 0 <Ξ t < 2~fc~1, we have

dt, fυo 2-fc-ι

It is easily verified that there exist two constants A, B (0< A< B) such
that
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n< /"J2: Ψnίtfl*(4.10) A log j

Therefore we have

(4.11) f f ϊ*±±^±^yy±LL- dxdt =

provided that either side of ('4.11) exists.
(4.11) and C4.10) prove the lemma.
Now the proof of Theorem 5 is immediate in fact, by Lemma 6,

f(x) = g(x) H- h(x) and g, h satisfy (4. 3) and (4. 4). It is easy to see that
g(x) satisfies (4.6), and so the WFS of g(x) converges almost everywhere
by Lemma 7 and 8. On the other hand h(x) satisfies the Dini's condition at
almost every point of P, and so the WFS of h(x) converges at almost
everypoint of P CSee Fine [1; Theorem XII]). Therefore the WFS of
f(x) = g(χ) -f h(x) converges at almost every point of P, and the proof of
theorem is completed.

THEOREM 6. Iff(x) satisfies

.12) jym*±tl=£x=t2£_ dχdt <oo

0 0

then the WFS off(x) converges almost everywhere.

PROOF. The proof of this theorem is almost identical to that of
Marcinkiewicz C3], but for the completeness we shall repeat it.

If /O) satisfies (4.12), we shall say that f(x) satisfies the condition

First, we shall prove that if f(x) satisfies the condition
then

dxdt^j\κχ+»-Wdtdx

<4.13) oo oo
1 1

0 0

liolds true.
In fact, by (1.8)

0<:χ — t<Lx+t for 0 <;
and

0< t-
Therefore

dxdt ^J^j l/r«WC*)l» dt

0 0 0 0
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+f"f
0 x

C4.14) <; f*fm) -_*?*'• *
0 0 0 25

t
0 0 0 0

and this proves (4.13).
If f(x) satisfies the condition IP, then, since it is obvious that

C4.15)

o o
it follows that

C4.16)

0 °
We shall say that fix) satisfies the condition IP if f(x) satisfies (4.16).•

Now, if /OO satisfies Iλ or I2, then DinΓs test or Lemma 7, 8 shows.
that the WFS of f(x) converges almost everywhere.

For p, 1 < p < 2, following to Marcinkiewicz, we shall argue as
follows. We can assume without any loss of generality that f(x) is non-
negative. Let us set .
C 4 < I / ) G, = {*;* + * € C»}.
We may suppose \An\ > 0.

Moreover let us set

If f(x) satisfies the condition lp, then for almost every x

C4.19)
0

and for almost every ΛΓ of An

C4.20)

Since \f(x-ί-t) —f(x)\ ^ 1 for x € AM, ί € C*, we have for almost every"
x of Aw
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On the other hand, since for every x'} x

we have by f4.21)

J * ~J *
Cx 0

for almost every x £E An. Therefore the WFS of /2(ΛΓ) converges ât almost
every point of An by Dini's test.

Since (4.22) holds for /i instead of f,, fλ(x) satisfies the condition Ip

and is bounded. Hence /2(ΛΓ) satisfies the condition I2 and so the WFS of
fi(x) converges almost everywhere by Lemma 7 and 8.

It is proved that the WFS of /(#) converges at almost every point of
An, Since \An\ -> 1 as n -> oo, the proof of the theorem is completed.

5. Special series. In this section, we shall study the property of a

special series 2 cnψn(x), where {^} is a given sequence which satisfies

suitable conditions. The results obtained here are quite analogous to these
in the case of TFS.

THEOERM 7. If cn -> 0 and {cn} is quasi-convex, the series

(5. 1) 2 °nψn(x)

converges, save for x = 0, to an integrable function f(x), and is the WFS of

For the proof, we need the following two lemmas.

LEMMA 9. If Kn(x) is the "Fejer kernel' defined by (1.23), then

(5.2) f \Kn(x)\dx<2.

o

PROOF. Using the notations in (1.23X1.26'), we have

r1 4π r1 ^ r1

(5. 3) n \ KnCx) I dx ^ 2 2'H \ ^ U ) dx + 2 ^ ( O / â"
o o o

Therefore the equalities

/ Kwt(x)dx = 1, Γ D&t(x)dx = 1
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prove the lemma.

LEMMA 10. Ifcn^cn+1->0 and the series 2 cnψn(x) converges, save
n = 0

oo

for x = 0, to an integrable function f(x), then the series 2 cnψn(x"> is the
n = 0

Fourier series of fix).
oo

PROOF. For any fix tn, the series 2 cnψn O) (1 — Ψ'mOO) converges

uniformly to /(#)(1 — ψm(x)), in fact by an argument as above we have
Q

(I - ψm(X°)) 2 CnψnC 1 - ΨmίX)
Q

^ j l -
Therefore it follows that

/ /CΛT̂ ΛΓ — I f(x)ψm(x)dx = co-c?Λ.

0 0

Since ^ - > O a s m - > oo, we have

ff(x)dx = c0,

and then

όό
This proves the lemma.

We shall prove the theorem. Applying Abel's transformation twice
we obtain

n-3

C5.4) sn(x) = ^

Since \Dn(x)\ < 2/x and \Kn(x) \ <2/x (0 < x < 1), the last two terms on

the right tend to 0 with 1/n for x^O, and therefore snζx)-ϊf(x) = 2 Ck + !J
fc=0

Δa<*/ζb(#). Since
oo

I/Oc) I ^ 2 Cfe + υΔ2c fc |/f fe+1(Λr) I
fc = 0

and the last series integrated over (Ό,l) gives the finite value 2 2(£ H- 1)
fc=0

Δ̂ CA;, /OO is integrable.
The remaining part of the theorem is immediate by Lemma 10.
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In particular, the series

(5-5) 2-^(

are the Fourier series of integrable functions.

THEOREM 8. If c(x), x^O, is positive and convex function, c(x) ->0 «s
oo

oo, and if for ck = c(k), k{ck — cλ:+1) is non-increasing and I S cn = QQ,

1 / , 1 , ,

C5.6.) fix) ~ / ί [ < 0 - c(t + Dl/ί - / 11cTOI dt (x-> + 0),

where

ft*) = 2 CnψnCx).
n = 0

PROOF. Let us put ΛΓ̂  = l/22>. We have obviously
2 P -1 2 P + 1 - 1

/r̂ 2>) = ΣciΛCffp) + 2 ^.^fcC^o +

(5.7) = 2 0* - ^P-fc-x) + 2 C^+fc - CaP+i-fc-i) + - .

> 2 O+1)Δ<*+ 2
λ : = 0 fc = 0

From the assumptions on the sequence {cn}, it follows that
co aP-i_! aP-i-i

(5.8) 2 2 f H l ) Δ w ^ - < / ( ^ ) ^ 2 2 (A? + l)Δc*.
9 = 0 fc = 0 fc = 0

Let Λ:P be 2~p ̂  ^ < 2"p + 1. Then, since ψh(Xp) = Ψ/ΛΓJ,) (0 ̂  ^ < 2*),

2 P - 1

/ U P ) = 2 C ^ : CAi) + 2 Clc

C5.9; afl-i

^Σ 2
Remembering that D.λv(x'v) = 0, we have

2 cJcΨk(Xp) = 2 Λ-MC * P ) Δ ^ - D2PC^P

C5.10J) -
= 2 AH.IC*P;ΔC* .
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If we write k = r 2P -f 5, 0 <; 5 <; 2P

} r = 1, 2. . then by virtue of
<Ί. 22) and the fact D2p(x;) = 0, we obtain

fδ.llj

Thus we have

V1

WV* = 2 2

By a same consideration as in the calculation of ('5.7), it follows that

(5. 13J)

Therefore, by C5.8), C5.9) and (5.13) we have for 2 - * ^ * < 2" ί)+1

- ap-i 2μ-i

<Γ5.14; v 2 ( H l ) Δ ί r f c ^f(x) ^ 2 2 C ^ + l^Δcfc.

The relation (5.6) can be deduced from (5.14) and the assumption on
c(x) as in Zygmund [10; p. 1551, and the proof of Theorem 8 is completed.

From this theorem we have, in particular, 2 Ψn(x)/nΛ ~ X*'1 as

x -> + 0 f or 0 < a < 1, and

(5.15;

as x -> + 0.

- 1/x log**

6. Convergence factor. It was proved by Paley [4] that {l/logllP(n+2)}
(l<^p<i: 2) is the convergence facter for the WFS of functions of Lp class.

In this section, we shall prove that {l/log1/aC* + 2)} and {I/log (k + 2)}
are the convergence factors for the WFS of squarely integrable functions
and integrable functions respectively. The proofs are quite analogous to
those in the case of TES. (See Yano [7] .)

Let f(x) be an integrable function and its WFS be

<6Λ)

Lut us put
n=0



ON WALSH-FOURIER SERIES 239

fc = o

n-i

a. — U

Then we can prove following theorem.

THEOREM 9. 1°. If f(x) e L\ then

(6.4) ίsupls^(x)\2dx^Λί \f(x)\*dx,
0

where A is an absolute constant.
2°. I/fCx) logCl + /2C#)J) € L, then

r1 c1

(6.5) I sup I s*(x) I dx ̂  A I \f(x) | log(l + fλ(x))dx + B,
J n J
0 0

where A and B are absolute constants.
3°. Iff(x)eLthen

(6.6) { fsupKCxWdxjw^Arf \f(x)\dx CΌ<
0 ϋ

where A is a constant depending only on r.

LEMMA 11. Let g(x) be an integrable function and g*(x) be defined by
h

(6.7) g*(x) = sup - * - ί I g(x + t) | dt,
0<?ι<l 6rl J

-ft

then we have

(6. S) sup 4r f 19(x +t)\dt^ 2g*(x).
0<h<ι rl J

0

PROOF. Let us denote the characteristic function of the interval
0 < ί S ^ by ρh(t), then

(6.9) ί \g(x+t)\dt = f ph(t)\g(x4-t)\dt= f ρ(x±t)\g(t)\dt.

0 0 0

The function ρh(x -f-1) is equal to 1 only for the value of t for which

0 <; x 4-1 <Ξ h and vanishes elsewhere. Let x — 2 χn/2n and t = 2 W2^ be

the dyadic expansions of # and / respectively, then by virtue of (Ί. 8)

Therefore, if t satisfies the inequality 0 <Ξ x -f-1 % h, then
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From this it follows

From these considerations, we have
1

(6.10J) I ph(x + t)\g(t)\dt^ I |g(t)\dt ^ 2hgHx).

0 x-h

This proves the lemma.

LEMMA 12. // X»Cf J, 0 ^ t ^ 1, ^ = 0, 1,2, , «rβ periodic functions
with period 1 ^wJ absolutely continuous and satisfy the inequalities

Γ I ̂ f O IΛ < Klt b) [ t -f~ Xn((6. l i ; a; Γ I ̂ f O IΛ < Klt b) [ t -f~ Xn(t) dt ^ K2,

Kι and Kz being independent of n. Then

(6.12.) sup ί 9(x+t)Xn(t)
o

Ag*(x),

where A is independent of g.

PROOF. Using Lemma 11, the proof is quite same as in Zygmund's
book [10 pp. 246-2471.

LEMMA 13. Let

('6.13) Hn(t)^^>

then
( '6 .14) \Hn(t)\ <:χn(t) c θ < t< 1 ; n = 0 , 1 , 2 , ••••,.)

where Xn(t), n = 0,1, • , satisfy the conditions in the preceding lemma.

PROOF. Using the relation (5.15), the proof is quite same as that in
Yano [7 Lemma 1 j .

LEMMA 14. If g(x)<EL, then

(6.15.) sup [ g(t)Hnix+t)dt I Ag*(x),

where Hn^t) is defined by (6.13) and A is independent of g(x).

This is obvious by Lemma 12 and 13.
PROOF OF THEOREM 9.1°. Let n(x), 0 < # < 1, be a measurable function

taking non-negative integral values less than n. We have to prove that for
any g(x) € L1 it holds that
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ΛfVdx s

0 0

We may write

(6.17) / = /

where A(Λ^ (£ = 0,1, 2, , n — 1) are the characteristic functions of the
suitable sets

(0,1) = Eo ZD E{^ -
Then

Since J -fadx + ί)ψi(^ 4- O' dt = ̂ f c ( '^ΨO) ί Ψκ(Oψιίt) dt,

o o
the square of the last factor of (6.18,) is equal to

J. JLtt-l

fc = 0

C6.19) = 2 1 / gίxlgCyϊACP^xlActy)) H^x+y) dxdy
k = 0J J

0 0

+ J ί 9(*My)Pn-L(x)P»-i(y)HJx±y) dxdy
0 0

= /i + Λ
Now

o o

(6.20)
4-

Λ: = 0 J J
0 0

fc-0 *> J
0 0

= /' 4- 7"
By Lemma 14, we get

2 / g(x)Apk(x)dx g(iy)pk
^OJ J
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/

0

S A ί g(x)g*(x)dx ^ A Γ g\x)dx.

o Ό
Similarly we have

(6.22) I / Ί S A Γ g\x)dx, \L2\ ̂ A[ g\x)dx.

o o

From (6.18), (6.19), ('6.20), (6.21) and ('6.22), we have (6.16) and
Theorem 9, 1° is proved.

The remaining parts of the theorem can be shown by Lemma 13 and
the maximal theorem of Hardy and Littlewood.

By (6.4) and (6.6), we deduce that {l/*/log(n + 2)} and {l/log(n + 2)}
are the convergence factors for the WFS of squarely integrable func-
tions and integrable functions respectively.

The failure of the inequality
„ 1

C6.23) ί suplsJOOIrftf.S A Γ \f(x)\dx
U 0

can be seen by the example

^ _ _

^T3 log log n '
The corresponding example for TFS was given by Zygmund
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