CESȦRO SUMMABILITY OF FOURIER SERIES

Gen-Ichirô Sunouchi

(Received September 28, 1953)

1. Introduction. Let $\varphi(t)$ be an even periodic function with Fourier series

$$
\begin{equation*}
\varphi(t) \sim \sum_{n=0}^{\infty} a_{n} \cos n t, \quad a_{0}=0 \tag{1.1}
\end{equation*}
$$

The α-th integral of $\varphi(t)$ is defined by

$$
\begin{equation*}
\Phi_{a}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \varphi(u)(t-u)^{a-1} d u(\alpha>0) \tag{1.2}
\end{equation*}
$$

and the β-th Cesàro sum of (1.1) is defined by $s_{n}^{\beta}(\beta>-1)$. Especially we put $s_{n}^{0}=s_{n}$.

Some years ago we have conjectured that if

$$
\begin{equation*}
\Phi_{\beta}(t)=o(t r) \quad(t \rightarrow 0) \tag{1.3}
\end{equation*}
$$

for $\gamma>\beta>0$, then

$$
\text { (1.4) } \quad s_{n}^{\prime}=o\left(n^{a}\right) \quad(n \rightarrow \infty)
$$

for $\alpha=\beta /(\gamma-\beta+1)$, and proved that this is valid for $0<\alpha \leqq 1$. See IzumiSunouchi [3], Sunouchi [5] and Wang [6]. One of the object of this note is to master this problem thoroughly.

On the other hand Prof. Izumi [2] has proved that if
(1.5) $\quad s_{n}^{\beta}=O\left(n^{\tau}\right) \quad(n \rightarrow \infty)$
for $\beta>\gamma>0$, then
(1.6) $\quad \varpi_{a}(t)=o\left(t^{a}\right) \quad(t \rightarrow 0)$
for $\alpha=(\beta+1) /(\beta-r-1)$. If we add to (1.5) a Tauberian condition
(1.7) $\quad a_{n}=O\left(n^{-(1-\delta)}\right) \quad(n \rightarrow \infty)$
for $0<\delta<1$, then we may expect

$$
\Phi_{a}(t)=o\left(t^{a}\right) \quad(t \rightarrow 0)
$$

for $\alpha=\delta(\beta+1) /(\beta-\gamma+\delta)$. (cf. Sunouchi [5]) The case $\beta=$ integer was considered by Loo [4]. The case $\beta=1$ and $-1<\gamma<0$ was proved by Chandrasekharan and Szász[1] and S. Izumi [3] proved general case under the restriction $\beta \leqq 1$ or $\delta \leqq 2(\beta-\gamma) /(\beta-1)$. In this note we shall prove general case under a weaker Tauberian condition

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-(1-\delta)}\right) . \tag{1.8}
\end{equation*}
$$

(1.5) and so called one-side condition imply (1.8).

The method of proof is a slight modificatoin of Izumi's method. Especially we use Bessel summability instead of Cesàro summability. These two methods of summability are equivalent, and Bessel summability behaves more adequately at the neighborhood of infinity than Cesàro summability.
2. Cesaro summability of Fourier series. Let $J_{\mu}(t)$ denote the Bessel function of order μ, and put

$$
\begin{align*}
\alpha_{\mu}(t) & =J_{\mu}(t) / t^{\mu} \tag{2.1}\\
V_{1+\mu}(t) & =\alpha_{\mu+\frac{1}{2}}(t), \tag{2.2}
\end{align*}
$$

then

$$
V_{1+\mu}^{(k)}(t)=O(1) \quad \text { as } t \rightarrow 0 \text { and }
$$

$$
\begin{equation*}
V_{1+\mu}^{(k)}(t)=O\left(t^{-(\mu+1)}\right) \quad \text { as } t \rightarrow \infty, \text { for } k=0,1,2, \cdots \tag{2.3}
\end{equation*}
$$

If we denote by σ_{ω}^{α} the α-th Bessel mean of the Fourier series (1.1), then

$$
\begin{equation*}
\sigma_{\omega}^{\alpha}=K \omega \int_{0}^{\infty} \varphi(t) V_{++\alpha}(\omega t) d t \tag{2.4}
\end{equation*}
$$

Theorem 1. If $0<\beta<\gamma$ and

$$
\begin{equation*}
\Phi_{\beta}(t)=o(t r), \tag{2.5}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ is summable $(C, \beta /(\gamma-\beta-1)$) to zero at $t=0$.
Proof. Put $\alpha=\beta /(\gamma-\beta+1)<\beta$ and $\rho=\alpha /(1+\alpha)<1$. Neglecting the constant factor the equivalent Bessel mean is

$$
\begin{align*}
\sigma_{\omega}^{a} & =\int_{0}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t \\
& =\left(\int_{0}^{c \omega^{-\rho}}+\int_{c \omega-\rho}^{\infty}\right) \omega \varphi(t) V_{1+\alpha}(\omega t) d t \tag{2.6}\\
& =I+J,
\end{align*}
$$

say, where C is a fixed large constant. Concerning J,

$$
\begin{aligned}
J & =O\left(\int_{c \omega^{-\rho}}^{\infty} \omega(\omega t)^{-(1+a)}|\varphi(t)| d t\right) \\
& =O\left(\omega^{-\alpha} \int_{c \omega^{-\rho}}^{\infty} t^{-(1+a)}|\varphi(t)| d t\right) \\
& =O\left\{\omega^{-a} C^{-(1+a)}\left(\omega^{\rho(1+a)}+\sum_{m=1}^{\infty} m^{-(1+a)}\right) \int_{0}^{2 \pi}|\varphi(t)| d t\right\} \\
& =O\left\{C^{-(1+a)} \omega^{-a+\rho(1+a)}+O\left(\omega^{-1}\right)\left(\omega^{-a}\right)\right\}=O\left(C^{-(1+a)}\right) \leqq \varepsilon,
\end{aligned}
$$

for large C since $\rho=\alpha /(1+\alpha)$.
Now there is an integer $k>1$ such that $k-1<\beta \leqq k$. We suppose that $k-1$ $<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument. As we have already seen,

$$
\begin{equation*}
\sigma_{\omega}^{a}=\int_{0}^{C \omega-\rho} \omega \varphi(t) V_{1+a}(\omega t) d t+o(1) \tag{2.8}
\end{equation*}
$$

By k-times applications of integration by parts, the last integral I becomes

$$
\begin{aligned}
I & =\sum_{h=1}^{k}(-1)^{h}\left[\omega^{h} \Phi_{h}(t) V_{1+a}^{(h-1)}(\omega t)\right]_{0}^{c \omega^{-\rho}}+(-1)^{k} \omega^{k+1} \int_{0}^{\sigma \omega^{-\rho}} \Phi_{k}(t) V_{1+a}^{(k)}(\omega t) d t \\
& =\sum_{h=1}^{k}(-1)^{h-1} I_{h}+(-1)^{k} I_{k+1}, \text { say. }
\end{aligned}
$$

Since $\mathscr{\Phi}_{1}(t)=o(1)$ and $\Phi_{\beta}(t)=o(t r)$, applying M. Riesz's convexity theorem we have

$$
\begin{aligned}
& \Phi_{1}(t)=o(1), \Phi_{2}(t)=o\left(t^{\gamma /(\beta-1)}\right), \cdots, \Phi_{k}(t)=o\left(t^{(h-1) \gamma /(\beta-1)}\right), \cdots \\
& \cdots, \Phi_{k-1}(t)=o\left(t^{(k-2) r /(\beta-1)}\right) \text { and } \Phi_{k}(t)=o\left(t^{k+\gamma-\beta}\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
I_{1} & =\left[\omega \Phi_{1}(t) V_{1+a}(\omega t)\right]_{0}^{o \omega-\rho} \\
& =O\left(\omega \omega^{-(1+a)} C^{-(1+a)} \omega^{\rho(1+a)}\right)=O\left(C^{-(1+a)} \omega^{-a+(1+a) \rho}\right) \tag{2.10}\\
& =O\left(C^{-(1+a)}\right) \leqq \varepsilon,
\end{align*}
$$

and, for $h=2,3, \cdot \cdot, k-1$,

$$
\begin{aligned}
I_{h} & =\left[\omega^{k} \Phi_{h}(t) V_{1+a}^{(h-1)}(\omega t)\right]_{0}^{\sigma \omega-\rho} \\
& =O\left(\omega^{h} C^{(h-1) r /(\beta-1)} \omega^{-\rho(h-1)_{r} /(\beta-1)} \omega^{-(1+\alpha)} C^{-(1+\alpha)} \omega^{\rho(1+\alpha)}\right)
\end{aligned}
$$

by (2.3), Since $\rho=\alpha /(1+\alpha)$ the exponent of ω of the last formula is

$$
\begin{aligned}
& h-\rho(h-1) \gamma /(\beta-1)-(1+\alpha)+\rho(1+\alpha) \\
= & h-1-\rho(h-1) \gamma /(\beta-1)=\frac{h-1}{\beta-1}\{(\beta-1)-\rho \gamma\} \\
= & \frac{h-1}{\beta-1}\left\{(\beta-1)-\frac{\alpha}{1+\alpha} \gamma\right\}=-\frac{(h-1)}{(\beta-1)(1+\alpha)}\{(1+\alpha)(\beta-1)-\alpha \gamma\} \\
= & \frac{(h-1)}{(\beta-1)(1+\alpha)}\{\beta-1-\alpha(1+\gamma-\beta)\}=\frac{h-1}{1+\alpha}\left\{1-\frac{\alpha(1+\gamma-\beta)}{\beta-1}\right\}<0,
\end{aligned}
$$

for $\alpha=\beta /(1+\gamma-\beta)$, and these terms appear for $\beta>1$. Thus we have
(2.11)

$$
I_{h}=o(1), \text { as } \omega \rightarrow \infty, \text { for } h=2,3, \cdots, k-1 .
$$

Concerning I_{k},

$$
\begin{aligned}
I_{k} & =\left[\omega^{k} \Phi_{k}(t) V_{1+\alpha}^{(k-1)}(\omega t)\right]_{0}^{c \omega^{-\rho}} \\
& =O\left(\omega^{k} \omega^{-\rho(k+r-\beta)} \omega^{-(1+a)} \omega^{\rho(1+a)}\right) .
\end{aligned}
$$

The exponent of ω is

$$
\begin{aligned}
& k-\rho(k+\gamma-\rho)-(1+\alpha)+\rho(1+\alpha) \\
= & k-1-\rho(k+\gamma-\beta)=k-1-\frac{\alpha}{1+\alpha}(k+\gamma-\beta) \\
= & \frac{1}{1+\alpha}\{(1+\alpha)(k-1)-\alpha(k+\gamma-\beta)\} \\
= & -\frac{1}{1+\alpha}\{k-1-\alpha(1+\gamma-\beta)\}=\frac{k-1-\beta}{1+\alpha}<0 .
\end{aligned}
$$

Therefore

$$
\text { (2.12) } \quad I_{k}=o(1), \quad \text { as } \omega \rightarrow \infty .
$$

Concerning I_{k+1}, we split up three parts,

$$
\begin{aligned}
& I_{k+1}=\omega^{k+1} \int_{0}^{C \omega^{-\rho}} \Phi_{k}(t) V_{1+a}^{(k)}(\omega t) d t \\
& =\int_{0}^{C \omega^{-\rho}} \omega^{k+1} V_{1+a}^{(k)}(\omega t) d t \int_{0}^{t} \Phi_{\beta}(u)(t-u)^{k-\beta-1} d u \\
& =\int_{0}^{C \omega^{-\rho}} d u \int_{u}^{u+\omega^{-1}} d t+\int_{0}^{C \omega^{-\rho}-\omega^{-1}} d u \int_{u_{+} \omega^{-1}}^{C \omega^{-\rho}} d t-\int_{C \omega^{-\rho}-\omega^{-1}}^{C \omega^{-\rho}} d u \\
& =K_{1}+K_{2}-K_{3}
\end{aligned}
$$

say. Let K_{1} split in two parts

$$
\begin{align*}
K_{1} & =\int_{0}^{\omega^{-1}} d u \int_{u}^{u_{+} \omega^{-1}} d t+\int_{\omega^{-1}}^{C \omega^{-\rho}} d u \int_{u}^{u_{+} \omega^{-1}} d t \tag{2.14}\\
& =\mathrm{L}_{1}+\mathrm{L}_{2}
\end{align*}
$$

Since $V_{1+a}^{(k)}(t)=O(1)$ for $0 \leqq t \leqq 1$,

$$
\begin{align*}
L_{1} & =\omega^{k+1} \int_{0}^{\omega^{-1}} \Phi_{\beta}(u) d u \int_{u}^{u_{+} \omega^{-1}} V_{1+a}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =O\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} \Phi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} u^{\gamma}\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}} d u\right\} \\
& =o\left(\omega^{k+1} \int_{0}^{\omega^{-1}} u^{\gamma} \omega^{-(k-\beta)} d u\right) \\
& =o\left(\omega^{\beta+1}\left[u^{\gamma+1}\right]_{0}^{\omega^{-1}}\right)=o\left(\omega^{\beta-\gamma}\right)=o(1), \quad \text { for } \gamma>\beta . \tag{2.15}\\
L_{2} & =\omega^{k+1} \int_{\omega^{-1}}^{C \omega \Phi^{-\rho}} \boldsymbol{\Phi}_{\beta}(u) d u \int_{u}^{u+\omega^{-1}} V_{1+\gamma}^{k k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =o\left\{\omega^{k+1} \int_{\omega^{-1}}^{C \omega^{-\rho}} u^{\gamma} d u \int_{u}^{u+\omega^{-1}}(\omega t)^{-(1+a)}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-a} \int_{\omega^{-1}}^{C \omega^{-\rho}} u^{\gamma} u^{-(1+\alpha)} d u \int_{u}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-a} \int_{\omega^{-1}}^{C \omega-\rho} u^{\gamma-(1+\alpha)} d u\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}}\right\} \\
& =o\left\{\omega^{k-a} \omega^{-(k-\beta)}\left[u u^{r-a}\right]_{\omega^{-1}}^{c \omega-\rho}\right\} \\
& =o\left(\omega^{\beta-a} \omega^{-\rho(\gamma-\alpha)}\right), \quad \text { for } \gamma-\alpha>0 .
\end{align*}
$$

Since

$$
\beta-\alpha-\rho(\gamma-\alpha)=\beta-\alpha-\frac{\alpha}{1+\alpha}(\gamma-\alpha)
$$

$$
=\frac{1}{1+\alpha}\{\beta-\alpha(1-\beta+\gamma)\}=0
$$

we have
(2.16)

$$
L_{2}=o(1) \quad \text { as } \omega \rightarrow \infty
$$

Concerning K_{2}, if we use integration by parts in the inner integral, then

$$
\begin{align*}
K_{2}= & \omega^{k+1} \int_{0}^{\sigma \omega-\rho} \mathscr{\Phi}_{\beta}(u) d u \int_{u+\omega^{-1}}^{\sigma \omega-\rho} V_{1+a}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
= & \omega^{k+1} \int_{0}^{\omega \omega^{-\rho}-\omega-1} \mathscr{\Phi}_{\beta}(u) d u\left\{\left[\omega^{-1} V_{1+a}^{(k-1)}(\omega t)(t-u)^{k-\beta-1}\right]_{u+\omega^{-1}}^{\omega \omega-\rho}\right. \tag{2.17}\\
& \left.\quad-(k-\beta-1) \int_{u+\omega^{-1}}^{c \omega^{-\rho}} \omega^{-1} V_{1+a}^{(k-1)}(\omega t)(t-u)^{k-\beta-2} d t\right\} \\
= & M_{1}-(k-\beta-1) M_{2},
\end{align*}
$$

say. Then

$$
\begin{align*}
M_{1}= & \omega^{k+1} \int_{0}^{C \omega^{-\rho}-\omega-1} \Phi_{\beta}(u) d u\left\{\omega^{-1} \omega^{-(1+a)(1-\rho)}\left(C \omega^{-\rho}-u\right)^{k-\beta-1}\right. \\
& \left.\quad-\omega^{-1} \omega^{-(1+a)}\left(u+\omega^{-1}\right)^{-(1+a)} \omega^{-(k-\beta-1)}\right\} \tag{2.18}\\
= & N_{1}+N_{2} \\
N_{1}= & o\left(\omega^{k+(1+a)(\rho-1)} \int_{0}^{C \omega^{-\rho}} u^{\gamma}\left(C \omega^{-\rho}-u\right)^{k-\beta-1} d u\right) \\
= & o\left(\omega^{k+(1+a)(\rho-1)} \int_{0}^{C \omega^{-\rho}} u^{\gamma}\left(C \omega^{-\rho}-u\right)^{k-\beta-1} d u\right) \\
= & o\left(\omega^{k+(1+a)(\rho-1)}\left[u^{\gamma+k-\beta}\right]_{0}^{c \omega-\rho}\right) \\
= & o\left(\omega^{k+(1+a)(\rho-1)-\rho(\gamma+k-\beta)}\right)
\end{align*}
$$

Since the exponent of ω is

$$
\begin{aligned}
& k+(1+\alpha)\left(\frac{\alpha}{1+\alpha}-1\right)-\frac{\alpha}{1+\alpha}(\gamma+k-\beta) \\
= & \frac{1}{1+\alpha}\{k(1+\alpha)-(1+\alpha)-\alpha(\gamma+k-\beta)\} \\
= & \frac{1}{1+\alpha}\{k-1-\alpha(1+\gamma-\beta)\}=\frac{1}{1+\alpha}(k-1-\beta)<0
\end{aligned}
$$

(2.20) $\quad N_{1}=o(1), \quad$ as $\omega \rightarrow \infty$.

$$
N_{2}=o\left(\omega^{k-(1+a)-(k-\beta-1)} \int_{0}^{c \omega^{-\rho}-\omega-1} u^{r}\left(u+\omega^{-i}\right)^{-(1+a)} d u\right)
$$

(2.12)

$$
\begin{aligned}
& =o\left(\omega^{\beta-a} \int_{0}^{C \omega-\rho} u^{\gamma-(1+a)} d u\right) \\
& =o\left(\omega^{\beta-\rho} \omega^{-(\gamma-a)}\right)=o(1)
\end{aligned}
$$

Similar estimations give

$$
\begin{aligned}
M_{2} & =\omega^{k} \int_{0}^{C \omega^{-\rho}-\omega-1} \mathscr{D}_{\beta}(u) d u \int_{u+\omega^{-1}}^{C \omega \omega^{-\rho}} V_{1+a}^{(k-1)}(\omega t)(t-u)^{k-\beta-2} d t \\
& =o\left\{\omega^{k} \int_{0}^{c \omega-\rho-\omega^{-1}} u^{r} d u \int_{u_{+} \omega^{-1}}^{c \omega^{-\rho}} \omega^{-(1+\alpha)} t^{-(1+\alpha)}(t-u)^{k-\beta-2} d t\right\} \\
& =o\left\{\omega^{k-1-\alpha} \int_{0}^{C \omega^{-\rho}-\omega^{\omega}-1} u^{\tau} u^{-(1+a)} d u \int_{u_{+} \omega^{-1}}^{C \omega^{-\rho}}(t-u)^{k-\beta-2} d t\right\}
\end{aligned}
$$

(2.22)

$$
\begin{aligned}
& =o\left\{\omega^{k-1-\alpha} \int_{0}^{\sigma \omega^{-\rho}} u^{r-(1+\alpha)} d u\left[(t-u)^{k-\beta-1}\right]_{u+\omega^{-1}}^{c \omega^{-\rho}}\right\} \\
& =o\left\{\omega^{k-1-\alpha} \int_{0}^{\sigma \omega^{-\rho}} u^{r-(1+\alpha)} \omega^{-(k-\beta-1)} d u\right\} \\
& =o\left\{\omega^{k-1-\alpha-(k-\beta-1)}\left[u^{\gamma-\alpha}\right]_{0}^{c_{\omega} \omega^{-\rho}}\right\} \\
& =o\left(\omega^{\beta-\alpha-\rho(\gamma-\alpha)}\right) \\
& =o(1), \quad \text { as } \omega \rightarrow \infty .
\end{aligned}
$$

We have easily

$$
\begin{aligned}
K_{3} & =\omega^{k+1} \int_{\sigma^{-}-\rho-\omega^{-1}}^{\sigma \omega^{-\rho}} \Phi_{\beta}(u) d u \int_{\sigma \omega-\rho}^{u+\omega^{-1}} V_{1+a}^{(k+)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =\omega^{k+1} \int_{C \omega^{-\rho}-\omega^{-1}}^{\sigma \omega-\rho} \Phi_{\beta}(u) d u \int_{\sigma \omega-\rho}^{u+\omega^{-1}} \omega^{\omega^{-(1+a)}} t^{-(1+a)}(t-u)^{k-\beta-1} d t \\
& =\omega^{k-\alpha} \int_{C \omega^{-\rho}-\omega^{-1}}^{C \omega^{-\rho}} \Phi_{\beta}(u) d u \omega^{\rho(1+a)} \int_{C_{\omega}-\rho}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t
\end{aligned}
$$

$$
\begin{align*}
& =\omega^{k-\alpha-\rho(1+\alpha)} \int_{C \omega}^{\sigma \omega^{-\rho}-\rho} \boldsymbol{\Phi}_{\beta}(u) d u\left[(t-u)^{k-\beta}\right]_{C \omega^{-\rho}}^{u+\omega^{-1}} \tag{2.23}\\
& =o\left\{\omega^{k} \omega^{-(k-\beta)} \int_{\sigma \omega^{-\rho}-\omega^{-1}}^{c \omega^{-\rho}} u^{\gamma} d u\right\} \\
& =o\left\{\omega^{\beta}\left[u^{\gamma+1}\right]_{\sigma \omega^{-\rho} \omega_{-\omega^{-1}}^{c \omega^{-\rho}}}\right\} \\
& =o\left(\omega^{\beta} \omega^{-\rho(\gamma+1)}\right)=o\left(\omega^{\beta-\rho(\gamma+1)}\right)=o(1),
\end{align*}
$$

for

$$
\begin{aligned}
\beta-\rho(\gamma+1) & =\beta-\frac{\alpha}{1+\alpha}(\gamma+1)=\frac{1}{1+\alpha}(\beta+\alpha \beta-\alpha \gamma-\alpha) \\
& =\frac{1}{1+\alpha}\{\beta-\alpha(1+\gamma-\beta)\}=0 .
\end{aligned}
$$

Summing up (2.7), (2.10), (2.11), (2.12), (2.15), (2.16), (2.20), (2.21), (2.22) and (2.23) we have

$$
\sigma_{\omega}^{\alpha}=o(1)
$$

which is the required.
3. Converse problem.

Theorem 2. If
(3.1)
$s_{n}^{\beta}=o\left(n^{r}\right),(n \rightarrow \infty)$
for $\beta>\gamma>-1,1+\gamma>\delta$, and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty}\left|a_{\nu}\right| / \nu=O\left(n^{-(1-\delta)}\right), \quad(n \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

for $0<\delta<1$, then
(3.3) $\quad \Phi_{a}(t)=o\left(t^{a}\right), \quad(t \rightarrow 0)$
for $\alpha=\delta(\beta+1) /(\beta-\gamma+\delta)$.
We need the following lemma.
LEMMA 1. If $2 \geqq \alpha>0$ and $\beta \geqq 0$, then

$$
\begin{equation*}
\int_{0}^{t} u^{\beta} \cos n u(t-u)^{a-1} d u=O\left(t^{\beta} / n^{\alpha}\right) \tag{3.4}
\end{equation*}
$$

Proof. If $\beta=0$

$$
\int_{0}^{t} \cos n u(t-u)^{a-1} d u=O\left(n^{-a}\right)
$$

which is proved easily as Young's function. For $\beta>0$, using the second mean value theorem,

$$
\begin{aligned}
& \int_{0}^{t} u^{\beta} \cos n u(t-u)^{a-1} d u \\
= & t \beta \int_{h}^{t} \cos n u(t-u)^{a-1} d u \quad(0<h<t) \\
= & t^{\beta}\left\{\int_{0}^{t} \cos n u(t-u)^{a-1} d u-\int_{0}^{h} \cos n u(t-u)^{a-1} d u\right\} \\
\leqq & t^{\beta}\left\{\left|\int_{0}^{t} \cos n u(t-u)^{a-1} d u\right|+\max _{0 \leqq \tau \leqq t}\left|\int_{0}^{\tau} \cos n u(\tau-u)^{a-1} d u\right|\right\} \\
= & O\left(t^{\beta} / n^{a}\right)
\end{aligned}
$$

Proof of the theorem for $0 \leqq \alpha \leqq 2$. We begin with the case $-1<\beta<0$.

$$
\begin{align*}
\Gamma(\alpha) \Phi_{a}(t) & =\sum_{n=0}^{\infty} a_{n} \int_{0}^{t} \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{M}+\sum_{n=M+1}^{\infty}=I+J \tag{3.5}
\end{align*}
$$

say, where $M=\left[C t^{-1 /(1+\gamma-\delta)}\right]$ for a fixed large C. Since $1+\gamma>\delta, M$ is determined exactly. By the well known formula

$$
\begin{equation*}
a_{n}=\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta+1}{n-\nu} s_{\nu}^{\beta} \tag{3.6}
\end{equation*}
$$

we have

$$
\begin{aligned}
I= & \sum_{n=0}^{M} a_{n} \int_{0}^{t} \cos n u(t-u)^{a-1} d u \\
= & \sum_{\nu=0}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{\nu=0}^{M}(-1)^{n-\nu}\binom{\beta+1}{n-\nu} \cos n u\right\}(t-u)^{\alpha-1} d u \\
= & \sum_{\nu=0}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left[2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos \left\{\left(\frac{\beta+1}{2}+\nu\right) u+\frac{(\beta+1) \pi}{2}\right\}\right. \\
& \left.\quad-\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta+1}{m} \cos (m+\nu) u\right](t-u)^{\alpha-1} d u \\
= & I_{1}-I_{2}
\end{aligned}
$$

say. From Lemma 1,

$$
I_{1}=\sum_{\nu=0}^{M} o\left(\nu^{\gamma}\right)\left(t^{\beta+1} / \nu^{a}\right)=o\left(t^{\beta+1} M^{\gamma-a+1}\right) \cdot o\left(t^{\alpha} t^{\beta+1-a} M^{\gamma-a+1}\right)=o\left(t^{\alpha}\right)
$$

(3.8) $\quad I_{2}=\sum_{\nu=0}^{M} s_{\nu}^{\beta} \int_{0}^{t} \sum_{n=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta+1}{m} \cos (m+\nu) u(t-u)^{a-1} d u$

$$
=\sum_{\nu=0}^{M} o\left(\nu^{r}\right) \sum_{m=M-\nu+1}^{\infty} \frac{1}{m^{\beta+2}(m+\nu)^{a}}
$$

Since $\beta<0$,

$$
\begin{align*}
I_{2} & =o\left(\sum_{\nu=0}^{M} \nu^{\gamma} \frac{1}{M^{a}(M-\nu+1)^{\beta+1}}\right)=o\left(M^{-a-\beta+\gamma}\right) \tag{3.9}\\
& =o\left(t^{\frac{\beta+1-a}{\gamma^{+1-a}}(a+\beta-\gamma)}\right)=o\left(t^{a}\right)
\end{align*}
$$

for $\alpha<\frac{\beta+1-\alpha}{\gamma+1-\alpha}(\alpha+\beta-\gamma)$, which is reduced to $0<(\beta-\gamma)(1+\beta)$.
If $\alpha \geqq 1$,

$$
\begin{align*}
J & =\sum_{n=M+1}^{\infty} a_{n} \int_{0}^{t} \cos n u \cdot(t-u)^{\alpha-1} d u \\
& \leqq \sum_{n=M^{+1}}^{\infty}\left|\frac{a_{n}}{n^{\alpha}}\right|=\sum_{n=M+1}^{\infty}\left|\frac{a_{n}}{n}\right| n^{1-a} \tag{3,10}\\
& =O\left(M^{1-a} M^{-1+\delta}\right)=O\left(M^{-a+\delta}\right) \\
& =O\left(C^{-(a-\delta)} t^{a}\right) \leqq \varepsilon t^{a}
\end{align*}
$$

for $\alpha-\delta=\alpha(1+\gamma-\delta)>0$.

If $\alpha<1$, we choose ε such as $\alpha>\varepsilon>\delta$. Let us put

$$
\sum_{\nu=m}^{\infty}\left|a_{\nu}\right| / \nu=r_{n}, \quad\left|a_{n}\right|=n\left(r_{n}-r_{n-1}\right),
$$

then

$$
\begin{aligned}
\sum_{\nu=m}^{n} \frac{\left|a_{\nu}\right|}{\nu \varepsilon} & =\sum_{\nu=m}^{n}{ }^{\nu 1-\varepsilon}\left(r_{\nu}-r_{\nu-1}\right) \\
& =o(1)+\sum_{\nu=m}^{n} n^{-\varepsilon-1+\delta}=o\left(m^{-\varepsilon+\delta}\right) .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
J & \leqq \sum_{n=M+1}^{\infty} \frac{\left|a_{n}\right|}{n^{\alpha}}=\sum_{n=M+1}^{\infty} \frac{\left|a_{n}\right|}{n^{\varepsilon}} n^{\varepsilon-a}=o\left(M^{\varepsilon-a} M^{-\varepsilon+\delta}\right)=o\left(M^{-\alpha+\bar{\delta}}\right) \tag{3.11}\\
& \leqq \varepsilon t^{a} .
\end{align*}
$$

From (3.8), (3.9) and (3.10) or (3.11), we get the required.
Let us now consider $0<\beta<1$. if we choose $M=\left[C t^{-1 /(1+\gamma-\delta)}\right]$ then

$$
\begin{aligned}
I & =\sum_{n=0}^{M} a_{n} \int_{0}^{t} \cos n u(t-u)^{a-1} d u \\
& =\sum_{n=0}^{M-1} s_{n} \int_{0}^{t} \Delta \cos n u(t-u)^{a-1} d u+s_{M} \int_{0}^{t} \cos M u(t-u)^{\alpha-1} d u \\
& =K+L,
\end{aligned}
$$

say. By the formula

$$
\begin{aligned}
s_{n}= & \sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta}{n-\nu} s_{\nu}^{\beta}, \\
K= & \sum_{\nu=0}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{n=\nu}^{M}(-1)^{n-\nu}\binom{\beta}{n-\nu} \sin \left(n+\frac{1}{2}\right) u \sin \frac{u}{2}\right\}(t-u)^{\alpha-1} d u \\
= & \sum_{\nu=0}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left[2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \sin \left\{\left(\nu+\frac{\beta+1}{2}\right) u+\frac{(\beta+1)}{2} \pi\right\}\right. \\
& \left.-\sum_{n=M-\nu}^{\infty}(-1)^{m}\binom{\beta}{m} \sin \frac{u}{2} \sin (m+\nu) u\right](t-u)^{\alpha-1} d u \\
= & K_{1}-K_{2},
\end{aligned}
$$

(3.12) $\left.\quad K_{1}=\sum_{\nu=0}^{M-1} o\left(\nu^{r}\right)\left(t^{\beta+1} / \nu a\right)=o\left(t^{\beta+1} M^{r-a+1}\right) o^{(} t^{a} M^{\gamma-\alpha+1} t^{\beta-a+1}\right)=o\left(t^{a}\right)$
and

$$
K_{2}=\sum_{\nu=0}^{M-1} s_{\nu}^{\beta} \int_{0}^{t} \sum_{m=M-\nu}^{\infty}(-1)^{m}\binom{\beta}{m} \sin \frac{u}{2} \sin (m+\nu) u(t-u)^{a-1} d u
$$

$$
\begin{aligned}
& =o\left(\sum_{\nu=0}^{M} \nu^{r} \sum_{m=M-\nu+1}^{\infty} \frac{t}{m^{\beta+1}(m+\nu)^{\alpha}}\right)=O\left(\frac{1}{M^{a}} \sum_{\nu=0}^{M} \nu^{\gamma} t(M-\nu+1)^{-\beta}\right) \\
& =o\left(t M^{\gamma+1-\alpha-\beta}\right)
\end{aligned}
$$

for $0<\beta<1$.
Since $\alpha-1<(\beta+1-\alpha)(\alpha+\beta-\gamma-1) /(\gamma+1-\alpha)$, which is reduced to $0<\beta(\beta-\alpha)$,
we have
(3.15)

$$
K_{2}=o\left(t^{a}\right) .
$$

Since we can easily get

$$
s_{n}=O\left(n^{\delta}\right),
$$

from (3.2),

$$
\begin{align*}
L & =s_{M} \int_{0}^{t} \cos M u(t-u)^{a-1} d u \\
& =O\left(M^{\delta} M^{-a}\right)=O\left(M^{-(a-\delta)}\right)=O\left(C^{-(a-\grave{\delta}) t^{a}}\right) \tag{3.16}\\
& \leqq \varepsilon t^{a} .
\end{align*}
$$

$|J| \leqq \varepsilon t^{\alpha}$ is proved analogously. The general case $n<\beta<n+1 \quad(n=1,2, \cdots)$ may be proved by n-times applications of Abel's lemma. The case $\beta=$ integer is proved easily.

If $\alpha>2$, we can not get

$$
\int_{0}^{t} \cos n u(t-u)^{a-1} d u=O\left(n^{-a}\right) .
$$

Therefore we take the integral

$$
\int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u .
$$

If we put

$$
\begin{gathered}
\varphi_{a}(t)=\frac{1}{\Gamma(\alpha) t^{a}} \int_{0}^{t}(t-u)^{a-1} \varphi(u) d u, \quad \alpha>0 \\
\varphi_{a}^{*}(t)=\frac{2 \Gamma(\alpha+1 / 2)}{\Gamma(1 / 2) \Gamma(\alpha)}-\frac{1}{t^{2 a-1}} \int_{0}^{t}\left(t^{2}-u^{2}\right)^{a-1} \varphi(u) d u, \alpha>0,
\end{gathered}
$$

then, Chandrasekharan and Szász[1] proved that

$$
\varphi_{a}(t) \rightarrow l \text { is equivalent to } \varphi_{a}^{*}(t) \rightarrow l \text { as } t \rightarrow 0
$$

$$
\begin{align*}
\varphi_{a}^{*}(t) & =K_{a} \frac{1}{t^{2 a-1}} \int_{0}^{t}\left(\sum_{n=0}^{\infty} a_{n} \cos n u\right)\left(t^{2}-u^{2}\right)^{a-1} d u \tag{3.17}\\
& =\frac{K a}{t^{2 a-1}} \sum_{n=0}^{\infty} a_{n} \int_{0}^{t}\left(t^{2}-u^{2}\right)^{a-1} \cos n u d u
\end{align*}
$$

and

$$
\frac{1}{t^{2 \alpha-1}} \int_{0}^{t}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u=\alpha_{a}(n t)
$$

where $\alpha_{u}(t)$ has been defined by (2.1) and (2.2). (cf. Chandrasekharan and Szász [1]) From (2.3),

$$
\begin{equation*}
\int_{0}^{t}\left(t^{2}-u^{2}\right)^{a-1} \cos n u d u=O\left(n^{-a} t^{a-1}\right) \tag{3.18}
\end{equation*}
$$

Lemma 2. If $\alpha \geqq 1$ and $\beta \geqq 0$,
(3.19) $\quad \int_{0}^{t} u^{\beta}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u=O\left(t^{\alpha+\beta-1} n^{-\alpha}\right)$.

Proof. The case $\beta=0$ is mentioned above. For $\beta>0$

$$
\begin{aligned}
& \quad \int_{0}^{t} u^{\beta} \cos n u\left(t^{2}-u^{2}\right)^{\alpha-1} d u \\
& =t^{\beta} \int_{/ L}^{t} \cos n u\left(t^{2}-u^{2}\right)^{\alpha-1} d u \quad(0<h \leqq t) \\
& =t^{\beta}\left\{\int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{\alpha-1} d u-\int_{0}^{l} \cos n u\left(t^{2}-u^{2}\right)^{\alpha-1} d u\right\} \\
& \leqq t^{\beta}\left\{\left|\int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u\right|+\max _{0 \leq \tau \leq t}\left|\int_{0}^{\tau} \cos n u\left(\tau^{2}-u^{2}\right)^{\alpha-1} d u\right|\right\} \\
& =o\left(t^{\beta}\right)\left\{n^{-a t a-1}+\max _{0 \leq \tau \leq t}\left(n^{-\alpha} \tau^{u-1}\right)\right\} \\
& =O\left(t^{\alpha+\beta-1} n^{-\alpha}\right)
\end{aligned}
$$

for $\alpha>1$.
Proof of the theorem for $\alpha>1$. Let us put

$$
\begin{aligned}
& \quad \begin{aligned}
\varpi_{a}^{k}(t) & =\sum_{n=0}^{\infty} a_{n} \int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{\alpha-1} d u \\
& =\sum_{n=0}^{M}+\sum_{n=M+1}^{\infty}=I+J, \\
\text { where } \quad \mathrm{M} & =\left[C t^{-1 /(1+r-\delta)}\right] .
\end{aligned}
\end{aligned}
$$

From (3.19), we get

$$
\begin{aligned}
J & =\sum_{n=M+1}^{\infty} a_{n} \int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u \\
& =\sum_{n=M^{\prime}+1}^{\infty}\left|\frac{a_{n}}{n}\right| n O\left(n^{-a} t^{a-1}\right) \\
& =O\left\{t^{a-1} M^{1-a} \sum_{n=M+1}^{\infty}\left|\frac{a_{n}}{n}\right|\right\} \\
& =O\left(t^{a-1} M^{1-a} M^{-(1-\delta)}\right)=O\left(t^{a-1} M^{-a+\delta}\right) \\
& \leqq C^{-(a-\delta)} t^{2 a-1} \leqq \varepsilon t^{2 a-1},
\end{aligned}
$$

for $\alpha-\delta>0$.
If $0<\beta<1$, Applying Ahel's Lemma,

$$
\begin{aligned}
I & =\sum_{n=0}^{M} a_{n} \int_{0}^{t} \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u \\
& =\sum_{n=0}^{M-1} s_{n} \int_{0}^{t} \Delta \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u
\end{aligned}
$$

$$
\begin{aligned}
& +s_{M} \int_{0}^{t} \cos M u \cdot\left(t^{2}-u^{2}\right)^{a^{-1}} d u \\
& =K+L
\end{aligned}
$$

say.
(3.21)

$$
\begin{aligned}
|L| & =O\left(M^{\delta} C^{-(a-\delta)} t^{a-1} M^{-a}\right) \\
& =O\left(C^{-(a-\delta)} t^{2 a-1}\right) \leqq \varepsilon^{\prime} t^{2 a-1}
\end{aligned}
$$

From the formula

$$
\begin{aligned}
s_{n} & =\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta}{n-\nu} s_{\nu}^{\beta}, \\
K & =\sum_{n=0}^{M-1} \sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta}{n-\nu} s_{\nu}^{\beta} \int_{0}^{t} \Delta \cos n u\left(t^{2}-u^{2}\right)^{a-1} d u \\
& =\sum_{n=0}^{M-1} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{n=0}^{M-1}(-1)^{n-\nu}\binom{\beta}{n-\nu} \Delta \cos n u\left(t^{2}-u^{2}\right)^{a-1}\right\} d u \\
& =\sum_{\nu=0}^{M-1} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{n=\nu}^{M-1}(-1)^{n-\nu}\binom{\beta}{n-\nu} 2 \sin \frac{u}{2} \sin \left(n+\frac{1}{2}\right) u\left(t^{2}-u^{2}\right)^{a-1} d u .\right.
\end{aligned}
$$

The inner sum is

$$
\begin{aligned}
& 2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \sin \left\{\left(\nu+\frac{\beta+1}{2}\right) u+\frac{(\beta+1) \pi}{2}\right\} \\
& \quad-\sum_{M=m-\nu+1}^{\infty} 2^{\beta+1} \sin \frac{u}{2}(-1)^{m}\binom{\beta}{m} \sin \left(m+\nu+\frac{1}{2}\right) u
\end{aligned}
$$

Let us split K into P and Q, where

$$
\begin{aligned}
& P=\sum_{\nu=0}^{M-1} s_{\nu}^{\beta} \int_{0}^{t} 2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \sin \left\{\left(\nu+\frac{\beta+1}{2}\right) u\right. \\
&\left.+\frac{(\beta+1) \pi}{2}\right\}\left(t^{2}-u^{2}\right)^{\alpha-1} d u
\end{aligned}
$$

(3.22)

$$
=\sum_{\nu=0}^{M-1} o\left(\nu^{r}\right)\left(t^{a+\beta} \nu^{-a}\right)
$$

$$
=o\left(t^{a+\beta} \sum_{\nu=0}^{M-1} \nu^{\gamma-a}\right)=o\left(t^{a+\beta} M^{r-a+1}\right)
$$

$$
=o\left(t^{a+\beta} \sum_{\nu=0}^{M-1} \nu^{\gamma-a}\right)=o\left(t^{a+\beta} M^{\gamma-a+1}\right)
$$

and

$$
=o\left(t^{2 a-1} t^{\beta-a+1} M^{\gamma-\pi+1}\right)=o\left(t^{2^{n-1}}\right), \quad \text { for } 1+\gamma>\delta,
$$

$$
\begin{gathered}
\boldsymbol{Q}=\sum_{\nu=0}^{M-1} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu-1}^{\infty} 2^{\beta+1} \sin \frac{u}{2}(-1)^{m}\binom{\beta}{m} \sin \left(m+\nu+\frac{1}{2}\right) u\right\}\left(t^{2}-u^{2}\right)^{a-1} d u \\
=\sum_{\nu=0}^{M-1} o\binom{\gamma}{\nu} \sum_{m=M-\nu+1}^{\infty} O\left\{m^{-(\beta+1)} t^{a}(m+\nu)^{-a}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =o\left\{\sum_{\nu=0}^{M-1} \nu^{\gamma} t^{a} M^{-a}(M-\nu)^{-\beta}\right\} \\
& =o\left\{t^{a} M^{-a} \sum_{\nu=0}^{M-1} \nu^{\gamma}(M-\nu)^{-\beta}\right\} \\
& =o\left\{t^{a} M-\alpha M^{\gamma} \sum_{\nu=0}^{M-1}(M-\nu)^{-\beta}\right\}=o\left(t^{a} M-\alpha M^{\gamma} M^{-\beta+1}\right\} \\
& =o\left(t^{a} M^{r-a-\beta+1}\right)=o\left(t^{2 a-1} t^{-a+1+(1+\beta-a)(a+\beta-\gamma-1) /\left(1+\gamma^{-a}\right)}\right) .
\end{aligned}
$$

Since $\beta(\beta-\gamma)>0$ ，we have

$$
-\alpha+1+(1+\beta+\alpha)(\alpha+\beta-\gamma-1) /(1+\gamma-\alpha)>0
$$

and

$$
\begin{equation*}
Q=o\left(t^{2 a-1}\right) \tag{3.23}
\end{equation*}
$$

Summing up（3．20），（3．21），（3．22）and（3．23），we get

$$
\Phi^{*} a(t)=o\left(t^{2^{2-1}}\right)
$$

which is the required．If $1<\beta<2$ ，we may apply Abel＇s lemma two times to sum I ．Thus proceeding，we get the theorem for all fractional β ．The case integral β ，the theorem may be proved more easily．

LITERATURES

〔1〕 K．Chandrasekharan and O．Szász，On Bessel summation，Amer．Journ．Math．， 70（1948），709－729．
［2］S．IzUMI，Notes on Fourier analysis（XXXII），Tôhoku Math．Journ．，2nd ser．，1（1950）， 285－302．

〔3〕 S．IZUMI－G．SuNOUCHI，Notes on Fourier analysis（XXXIX）：Theorems concerning Cesàro summability，Tôhoku Math．Journ．，2nd ser．，1（1953）， $313-326$.
［4］C．T．Loo，Two Tauberian theorems in the theory of Fourier series，Trans．Amer．Math． Soc．，56（1944），508－518．
〔5〕 G．SunOUCHI，Notes on Fourier analysis（XLVII）：Convexity theorems and Cesàro summability of Fourier series，Journ．of Math．，1（1953），104－109．
〔6］F．T．Wang，A not on Cesàro summability of Fourier series．Ann．of Math． 44 （1943）， 397－400．

