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1. Introduction. Let φ(t) be an even periodic function with Fourier series
00

(1.1) φ (t) ~ 2 an c o s ni> a° ~ ®

The a-th integral of φQt) is defined by

(1. 2) Φa(0 = jr^y £ *(«) ίt-uY^du Q* > 0)

and the /5-th Cesaro sum of (1.1) is defined by sg (β > - 1 ) .

Especially we put si = s,Λ.

Some years ago we have conjectured that if

(1.3) 0/ΪCO = oOO α -» 0)

for r > j9 > 0, then

(1. 4) sn = oQna) Qn -> oo)

for a = /?/(?* — β + 1)> and proved that this is valid for 0 < a <ί 1. See Izumi-

Sunouchi [3], Sunouchi [5] and Wang [6]. One of the object of this note is to

master this problem thoroughly.

On the other hand Prof. Izumi [2] has proved that if

(1.5) s £ = 0 0 ) Oi-»«o

for β > T > 0, then

(1.6) 0α(O=0(*O σ - > 0 )

for a = (β + l)/(/3 — z — 1). If we add to (1.5) a Tauberian condition

(1.7) βrc = OC^-α~δD) in -» oo)

for 0 < ^ < 1, then we may expect

for a = β(/9 + l)/(/5 - r + 5). (cf. Sunouchi [5]) The case 0 = integer was

considered by Loo [4]. The case β = 1 and — 1 <T< 0 was proved by Chandra-

sekharan and Szasz[l]and S. Izumi [3] proved general caS3 under the restriction

β Ξ j l or tf <J2(/3 —Γ)/Q3 —1). In this note we shall prove general case under a

weaker Tauberian condition

C1.8) 2 ^ ^

(1.5) and so called one-side condition imply (1.8).

The method of proof is a slight modificatoin of Izumi's method. Especially we

use Bessel summability instead of Cesaro summability. These two methods of

summability are equivalent, and Bessel summability behaves more adequately at

the neighborhood of infinity than Cesaro summability.

2. Cesaro summability of Fourier series. Let JμQO denote the Bessel

function of order μ, and put
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C2.1) <UO =

(2.2) V1+M(t) = aM+±CQ,

then Vι+μ ( 0 = O(l) as / -> 0 and

(2. 3) V1+μ CO = O(t^+1^ as t -> oo, for ft = 0, 1, 2, .-#

If we denote by σa

ω the α-th Bessel mean of the Fourier series (1.1), then

C2. 4) σ% = Kω Γ e(OΉ+α(ωO<#
Jo

THEOREM 1. If 0<β<r and
C2.5) 0KO = *C*0.

Fourier series of φ(J) is summable (C, β / ( r - j 9 - l ) ) to zero at t = 0.

PROOF. Put α = β/(T-β 4-1) < j9 and P = α/( l + α:) < 1. Neglecting the

constant factor the equivalent Bessel mean is

ί oo

0

(2.6) = ( f °

say, where C is a fixed large constant. Concerning /,

J=θ([ ω(W)-α+β)

C(ύ~P

( 2 . 7 ) ~ ^ <̂?«, •

for large C since P = a/(l+a).

Now there is an integer k>l such that k-l<β<^k. We suppose that £ — 1

< β < k, for the case β = £ can be easily deduced by the following argument.

As we have already seen,

(2.8) σ « =

By ^-times applications of integration by parts, the last integral / becomes

(2.9) *
= Σ i C - I)*-1//* + ( - l)*/*+i, say.
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Since Φι(t) = o(l) and ΦβQt) = o(P), applying M. Riesz's convexity theorem

we have

0iCO = o(l), 02CO = oί

— ,0*-ι(O = 0θ

Therefore we have

(2.10) = O(ω(y"c ι + α )C-c l + α )ω ί 'c ι + α )) = θ ( C - α + α ) ω " α + c ι + α ) 0

and, for h = 2,3, - ,A-1,

by (2.3) f Since >̂ = a/(I + α) the exponent of ω of the last formula is

h - P(A-l) r / C/5 - 1) - α + a) + PCI + α )

"•

for α = β/(l + T - β), and these terms appear for 0 > 1. Thus we have

(2.11) /A = oCl), a s ^ o o , for A = 2,3,->Jk-l.

Concerning fa,

The exponent of ω is
* - P(^ + r - p) - (1 + a)

r -

Therefore

(2.12) /A = o(ϊ)9 as

Concerning 7A+i, we split up three parts,
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n+i = Jo
dt

(2.-13)

J
ωt) dt \ Φβ(u)(t — u)k P~ι du

du\ dt + \ du \ dt - \ du dt

say. Let ^ Ί split in two parts

ί
ω~x Λ M + U ) " 1 nCω-P nu+ω-1

du dt+\ du dt

= Li + L2.

Since Fi?a (0 = 0(1) for 0 ̂  * ̂  1,

0

- 1

Γ
o

0

= oCω^+1 f urω-u-V du)

(2.15) - o(V + 1 [^r+1]o ') = oQωP~r) = o Cl), for

Φβ(u)du Γ ω F &

{ω/ ί + 1 f ω urdu Γ + < ϋ CωO

L 2 =

?ω-P

r>Cω-P ^ -j u+ω~l

= o{o^"a 1 ul'^^du \(t-u)k-P\ }

f η Cω-P

= o (ω£"α ω-Pcr-«^), for Γ — a > 0.
Since

σ - a)
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we have

(2.16) Z,2 ~ o(l) as ω —> oo.

Concerning KΊ, if we use integration by parts in the inner integral, then

Kz = ωk+ι \°ω ΦβQu) du

(
ω-P-ω-i ( c --, cω-P

Φβ Qu) d

- (k - β - 1) [ αΓι Vil:ι\ωtχt-u ) "~^ dt\

= Mί- Qk~ β- 1)M2,

say. Then

(2.18) - ω~ι

= Nι + iV2,

= o 0*+α+Xi> Γ ω

(2.19)

Since the exponent of ω is

- 1 - a ( 1 + r - « } = - Γ - ^ — Ĉ  - 1 - » < 0,

(2.20) Nι = o (1), as ω -^ co.

pCω-P-ω-ι

(2. 12) pσ«-P
= o " "
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Similar estimations give

M2 — ωk \ Φβ {u)du \ Vί+β15 (ωOQt — uy~β~2 dt
j J —i

0 u+ω

Γ
ω-p-ω-l cω-p

u^ du \ ω~a+a:> /~α+α:) (t—uy~P~2 dt}

= o{ωk-ι'a f ω urωu~a+^ du f " Qt-u) k'^'2 dt}

( 2 . 2 2 ) p ί 7 ω-P

(
0

Cω-P

= 0(1), as ω ~> co.

We have easily

AΓ3 = ωft+1 I ΦβQu) du 1

= ω*+1 I Φ Ĉw) J ^ 1 ω"
C7o)~P~.(o~ι Oo)~P

C2.23) ^ . ^ - P

u+ω~l

« r + 1 }

= o (ω^α)-"^ 1 5) = o (a)""*"-1 5) = o (1),
for

(r +1) = j - ^ (i3 + aβ - ar - a)

= π Έ { 0 - a Cl + r - »> =0.

Summing up (2.7), (2.10), (2.11), (2.12), (2.15), (2.16), (2.20), (2.21),

(2.22) and (2.23) we have
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which is the required.

3. Converse problem.

THEOREM 2. //

(3.1) sβ

n = o

for β>T> ~ 1,1 +r>d, and

(3.2) J lβvl/v«

/or 0 < ί < 1, //te#

(3. 3) 0α(O = 0 (/«), (/ -» 0)

/βr ^ = ί(0 + 1) / 0? - r + ί) .

We need the following lemma.

LEMMA 1. / / 2 ̂  a > 0 ^<i j9^0, //?^

C3.4) ^ ŵ  cos wκ (/ - u)a'x du =

PROOF. // £ = 0

\ cos «w (t—zι)a~ιduJo

which is proved easily as Young's function. For /5>0, using the second mean

value theorem,

I u& cosnu(t — u)a"xdu
Jo

cosnu(t-uy-λdu (0<k<O

- i I ^cosnu t-u « du- ^ cos»« ί-«)«

< Γ

^£/0 i I cos nu(t—u)a~λ du 4- max \ cos nu(j — u)a~ιdu \
U J« 0^Γ^< J n i

Proof of the theorem for 0 <£ α % 2. We begin with the case - 1 < β < 0.

Γ ( O Φ« CO = 2 Λ" I c o s

(3.5) M .

Σ2
say, where Af.= [CΓV<-ι+r~!»] for a fixed large C. Since l+r>δ,M is determined
exactly. By the well known formula



CESARO SUMMABILIΪY OF FOURIER SERΪES 205

(3.6)

we have
M t

I = 2 αw I cos nu{t-u)a"x

71=0 J

0

2
71=0

c o s

say. From Lemma 1,

C3.8) h = 2 5 ^ Γ

Since β < 0,

C3.9)

for tf <

If

+ j9 - r), which is reduced to 0 < Q3 - r ) Q +

J = 2^ an \ cos nw(t-uy-1
du

*~ "XT1

C3.10)

for α - ^ = α(l + r - δ) > 0.

n

ι'a



206 G. SUNOUCHI

If a < 1, we choose £ such as a > £ > δ. Let us put
_ 0 0

^x i I#y I IV'==-TnJ \CLn\ = ^(^/Vι — Tn—\jy

v=m

then

Thus we have

(3.11)

From (3.8), (3.9) and (3.10) or (3.11), we get the required.

Let us now consider 0 < β < 1. if we choose M = [C/" 1 / α + r " Λ ] then
-»/ if

/ = 5jtfrc I cos nu(J—u)a~γdu2
n=0

 J o

ί ^ & ) x d \ cos

say. By the formula

J (^ - S ^ J (Σ(-«"(,-»)sin(» +j)« sinf} <t-»y-'duS J (

•rr T^

= /ll — /l2,

C3.12) Kι = I

and

u=0 o /»=JK" -v
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for 0 < β < 1.

Since a-l<Qβ + l-a)Qa + β - r - l )/(r + l - α ) , which is reduced to

0<βQβ-a\
we have

C3.15) Kz = σOO.

Since we can easily get

Sn = O θ δ ) ,

from C3.2),

L = sM I cosMuQt—u)a~ι du

(3.16)

\J\^eta is proved analogously. The
may be proved by #-times applications of

is proved easily.

If a > 2, we can not get
rt

Jo
Therefore we take the integral

rt

Jo
If we put

1 Λ*

7\(%) ta J
0

general case n< β <n+l
AbeΓs lemma. The case

oo-o.

oQu)du, a>0

t2 — u2^a~ιφ(iu)du, a > 0,

O*=l,2, )
i3 = integer

then, Chandrasekharan and Szasz [ 1 ] proved that

φaQQ -> / is equivalent to φa*QO -> I as / -> 0.

(3.17)
<p*09 - ^« - ^ - Ϊ - ί (y\ an cosnu) Qt2- u*y~ι

1 \ QP - u2y~ cosnudu
w=0

and

1 f'
.2a-ι \ (f - ^ 2 ) α λ cosnudu = α α (

r J o

where otαCO n^s been defined by C2.1) and C2.2). (cf. Chandrasekharan and Szasz

[1]) From (2.3),
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(3.18) Γ C F - M 2 ) " - 1 cos nudu =

LEMMA 2. / / a ^ 1 and /3 ̂  0,

(3.19) £ uKt2-u2y~ι cos wκ =

PROOF. The case β = 0 is mentioned above. For β > 0

Γ ^ cosnuQt2- u2y-χdu

= ^ f cosnuQt2-u2y-1du CO < A ̂  0
JΛ

-ify^du- Γ cosnu{f-u"Y^du \

max j Γ

max

for α > 1.

Proof of the theorem for α > 1. Let us put

Φa CO = 2 an \ cosnuQt2-u2y~ιdu

=/+/.

where M = [α- ι/< ι + '-«].

From C3.19), we get

J — > . an \ cos nuQt2 — u2}a~x du
n=M+l °̂

-t..lϊ

f or α - 5 > 0.

If 0 < β < 1, Applying Ahel's Lemma,

/ = > . tfrc I COS^^C^2 — ^ 2 ) 6 1 " 1 ^

-w2)α~1 (iw
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+ sM X cos Mu QF-~u*y^ du
Jo

say.
C3.21) \L\ =

From the formula

\n-v J Jo

{ {
The inner sum is

(sinf sin

Let us split K into P and Q, where

C3.22) T^o

) oϋ2'1-1^ for
and

M ' ί Σ 20+1 sin f C-DM (fΛ sin
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V=0

Since βQβ-T) >0, we have

- a + 1 4- α+/3 + αXα+/3-r-Γ)/α+r- αO > 0,
and

C3.23) Q = oQt2a-1).

Summing up C3.20), (3.21), C3.22) and C3.23), we get

which is the required. If 1 < β < 2, we may apply Abel's lemma two times to
sum /. Thus proceeding, we get the theorem for all fractional β. The case
integral β, the theorem may be proved more easily.
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